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Abstract. Instrumental sStrong motion data is not common around the Dead Sea region. Therefore, calibrating a new 

attenuation equation is a considerable challenge. However, the Holy Land has a remarkable historical archive, attesting to 

numerous regional and local earthquakes. Combining the historical record with new seismic measurements will enhance the 

regional equation. 10 

On 11 July 1927, a rupture, in the crust in proximity to the Northern Dead Sea, generated a moderate 6.2ML earthquakeOn 

11 July 1927, a crustal rupture generated a moderate 6.2ML earthquake around the northern part of the Dead Sea. Up to five 

hundred people were killed, and extensive destruction was recorded, even as far as 150 kilometers from the focus. We 

consider local near-surface properties, in particular, the shear-wave velocity, as an amplification factor. Where the shear-

wave velocity is low, the seismic intensity far from the focus would likely be greater than expected from a standard 15 

attenuation curve. In this work, we used the Multichannel Analysis of Surface Waves (MASW) method to estimate seismic 

wave velocity at anomalous sites in Israel in order to calibrate a new attenuation equation for the Dead Sea region. 

Our new attenuation equation contains a term which quantifies only lithological effects, while factors such as building 

quality, foundation depth, topography, earthquake directivity, type of fault etc., remain out of our scope. Nonetheless, about 

60% of the measured anomalous sites fit expectations; therefore, this new GMPE is statistically better than old ones. 20 

From a our local point of view, this is the first time that integration of the 1927 historical data and modern shear-wave 

velocity profile measurements improves the attenuation relationship equation (sometimes referred to as the attenuation 

relation) for the Dead Sea region. In the wider context, regions of low-to-moderate seismicity should use macroseismic 

earthquake data, together with modern measurements, in order to better estimate the peak ground acceleration or the seismic 

intensities caused by future earthquakes. This integration will conceivably lead to a better mitigation of damage from future 25 

earthquakes and improve maps of seismic hazard. 
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1 Introduction 
Generating a modern and applicable attenuation equation is one of applied seismologists main interests. Considering the 

Dead Sea area, for which instrumental strong motion data are not available, this task is particularly challenging. Using the 

Holy Land's historically rich database, researchers had defined seismic intensities and estimated earthquake locations. 

Investigating anomalous sites, with seismic intensities higher or lower than predicted from the basic regional attenuation 5 

relation, may lead to a better attenuation equation. The local geological conditions can strongly influence the nature and 

severity of shaking at a given site. Assessing the local geological conditions by geophysical techniques at these anomalous 

sites, and adding a logarithmic term to a basic attenuation equation, should improve the equation.  

This work focuses on the 1927 event, but it is part of wider research which extends to additional earthquakes. The 1927 

event was chosen as it is the only devastating one recorded, albeit teleseismically, during the instrumented period.  10 

Our main goal in this research is a tighter constraint on the attenuation equation derived from this event. This should allow 

us to examine whether this preliminary work coincides with our expectations of site amplification and de-amplification due 

to the local lithology. 

1.1 Site Response 

Ground motion is controlled by a number of variables, including source characteristics, source distance, propagation 15 

directivity, near-surface geology, etc. The elastic properties of near-surface materials, and their effect on seismic wave 

propagation, are crucial to earthquake and civil engineering, and environmental and earth science studies.  

Seismic surface waves are initiated at the moment that the earthquake wave front impinges on the surface. These waves  

spread out, and the surface shakes as they pass. Surface wave amplitude at the surface is controlled by the mechanical 

properties of the rocks below. These often consist of low velocity weathered rock over bedrock with much higher velocities. 20 

When seismic waves pass from a high-velocity layer to a low-velocity layer, their amplitudes and duration typically increase. 

The phenomena of site amplification, as a result of soft sediments overlying hard bedrock, is well known since the early days 

of seismology (Milne, 1898). Site-effects are also well known and were investigated after several major earthquakes: Mexico 

City 1985 (Singh et al., 1988), Yerevan 1989 (Borcherdt et al., 1989), San Francisco 1989 (Hough et al., 1990), Los Angeles 

1994 (Hall et al., 1994) and Kobe, 1995 (Aguirre and Irikura, 1997). Therefore, local lithology is a crucial factor for 25 

estimating site amplification, defined as the amplitude ratio between the surface layer and the underlying bedrock. Site 

amplification at a specific site can be attributed to many factors, such as basin effects, focusing effects, topography, and 

reverberation of the seismic waves in the upper layers due to acoustic impedance differences (Figure 1). 
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The amplification, A, is proportional to the reciprocal square root of the product of the shear-wave velocity, Vs. (Eq. (1)) 

(Aki and Richards, 2002): 

1

s

A
V ρ

∝ ,                                                                                                                                                                           (1) 

where ρ is the density of the investigated soil. As shear-wave velocity decreases by a given fraction the amplification 

increases by half that fraction (for a constant density). Since density plays a minor role (Dal Moro, 20152014; Xia et al., 5 

1999) the Vs value can be used to represent site conditions.  

The most widely used index in the classification of the soil response is the average shear-wave velocity in the uppermost 30 

meters, the Vs30. This index was accepted for site classification in the USA – National Earthquake Hazards Reduction 

Program – NEHRP (Building Seismic Safety Council, 2001). In Europe by the new provisions of Eurocode 8 (BSI, 2011), 

and in Israel it is accepted by the design provisions for earthquake resistance of structures - SI 413 (The Standards Institution 10 

of Israel, 2013). The value of 30 meters comes from the USA and European building codes, where it was found empirically 

that this depth is directly proportional to deeper and shallower values (Boore et al., 2011). Zaslavsky et al. (2012) argued that 

the use of Vs30 is a simplification that cannot be justified in the complex geological conditions in Israel, yet no alternatives 

have thus far been proposed. Therefore, in this scenario, the Israel Standards Institute still adopts the Vs30 index.  

In modern attenuation equations, also known as ground motion prediction equations (GMPE), coefficients are derived from 15 

strong motion data, namely from ground acceleration measurements. In the past, and in areas lacking the technology to 

record earthquakes, it was impossible to measure the peak ground acceleration (PGA) directly. Therefore, it is common to 

categorize historical earthquakes with seismic intensity scales that describe the damage at each site or area (Ambraseys, 

2009; Guidoboni and Comastri, 2005) 

1.2 The M6.2 1927 Jericho earthquake  20 

The left-lateral Dead Sea transform separates the Sinai-Levant Block from the Arabian Plate (Figure 2). The 6.2ML July 11, 

1927, Jericho earthquake (Ben-Menahem et al., 1976; Shapira, 1979) was the strongest and most destructive earthquake to 

hit the Holy Land during  that century. Furthermore, it was the first to be instrumentally recorded by seismographs. The 

epicentral location was originally estimated at a few kilometers south of the Damia Bridge, which is 30 kilometers north of 

Jericho (International Seismological Summary – ISS Bulletin of 1927). In the following decades new estimates have been 25 

published: Shapira et al. (1993) calculated the epicenter to be near Mitzpe Shalem. Zohar and Marco (2012) estimated the 

epicenter to be near the Almog settlement, about 30 kilometers north of Shapira's epicenter, and Kagan et al. (2011), 

surmised that the source was somewhere on the Kalia fault, located in the northern part of the Dead Sea graben, 

perpendicular to the main Dead Sea fault (Figure 2). 
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The damage from the earthquake was heavy, especially in places near the source, but not only there: In Nablus, located 70 

km from the epicenter (Figure 2), 60 people were killed, 474 were injured, and more than 700 structures were destroyed, 

most of which were built on soft sediments (Blankenhorn, 1927; Willis, 1928). By comparison, Jerusalem is only about 30 

kilometers from the source and the damage there was much smaller, especially in property. However, in Mount Scopus and 

the Mount of Olives (eastern neighborhoods in Jerusalem), the damage exceeded that in other parts of Jerusalem (Abel, 5 

1927; Brawer, 1928). Other cities also suffered from this earthquake:  Tens of people were injured and even died, and 

hundreds of houses were ruined in Ramleh and Lod (Brawer, 1928). Jericho in the Jordan Valley also suffered significant 

damage, especially in terms of buildings collapsing (Figure 3). The total number of victims was about 350-500 (Ambraseys 

and Melville, 1988; Amiran, 1951; Arieh, 1967; Ben-Menahem, 1991). Beyond the casualties, several environmental effects 

were reported: The Jordan river flow ceased near the Damia bridge for about 21.5 hours (Willis, 1928) and a one-meter 10 

seiche wave was observed in the Dead Sea (Abel, 1927; Blankenhorn, 1927). Some evidence suggests that the earthquake 

was felt up to 700 kilometers from the epicenter (Ben-Menahem, 1991), although a different interpretation suggests this 

distance was only 300 kilometers (Ambraseys and Melville, 1988).  

Compiling historical evidence, Avni (1999), in his PhD thesis, estimated the seismic intensities (MSK or Medvedev-Karkik-

Sponheuer scale (Medvedev et al., 1965))scale) at 133 different locations around Israel, Palestine, Jordan, Lebanon, Syria, 15 

and Egypt (Figure 4 and for locations and Ssupplementary). The curve that Avni (1999) fit to his scattered MSK vs d points, 

represents his basic attenuation equation, and had an R2 of about 0.26. Based on the methodology proposed by Bakun and 

Wentworth (1997), Hough and Avni (2011) published a new attenuation equation for the Dead Sea region:Avni’s (1999) 

basic attenuation equation yields an R2 of about 0.26. Based on the methodology proposed by Bakun and Wentworth (1997), 

Hough and Avni (2011) revised the attenuation equation for the Dead Sea region:  20 

( , ) 0.64 1.7 0.00448 1.67 log( )MMI M d M d d= − + − −                                                                                              (2) 

where MMI is the Modified Mercalli Intensity (assumed to be equivalent to MSK), M is the magnitude and d is the distance 

from the epicenter.  

Raphael and Agnon (2018) note that damage from the 1927 Jericho earthquake was higher east of the transform (on the 

Arabian Plate) than on the west (Sinai-Levant Block). This observation, consistent with their archaeoseismic findings for 25 

earthquakes in antiquity, requires further study. 



5 
 

2 Methods - Multichannel Analysis of Surface Waves (MASW) 

2.1 MASW Theory 

The MASW method is environmentally friendly, non-invasive, low-cost, rapid, robust, and provides reliable Vs30 data 

(Miller et al., 2002). Multichannel records make it possible to separate different wavefields in the frequency and velocity 

domains. Fundamental and higher modes can be analyzed simultaneously, but generally, only the fundamental mode is used 5 

because it has the highest energy (Park et al., 1998).  

The MASW method  consists of three main steps: (A) Acquisition of experimental data, (B) signal processing to obtain the 

experimental dispersion curve, and (C) inversion to estimate Vs30 (Figure 5). The inverse problem consists of estimating a set 

of parameters that describe the soil deposit, based on an experimental dispersion curve. Inversion problems based on wave 

propagation theory cannot be solved in a direct way due to their non-linearity. Thus, iterative methods must be used where a 10 

theoretical dispersion curve is determined for a given layer model and compared to the previously obtained experimental 

dispersion curve (Ryden et al., 2004). Vs30 typically does not converge to one stable value. In other words, for the same 

dispersion curve, one will get slightly different Vs30 depending on the initial model. Yet, the ensuing uncertainty is of little 

consequence since Vs30 enters logarithmically into the attenuation equation (see below). 

 15 

We carried out the surveys with a linear array of 24 vertical geophones (R.T. Clark’s geophones with natural frequency of 

4.5 Hz) at equal intervals of 2-3 meters over a total length of 46-69 meters. For the survey sound source we used a five-

kilogram sledgehammer striking a twenty-centimeter square aluminum plate at variable offsets of 5, 10, 15, 20, 25 and 30 

meters (both forward and reversed). The seismic data were recorded on a Geometrics Geode seismograph at a sampling rate 

mostly of 8 kHz for 0.5-2 seconds (Table 1). For an acceptable Signal to Noise Ratio, we used the so-called “vertical 20 

stacking” approach, which is a summation of multiple synchronized repetitions of the test (usually five times).  

Rayleigh wave dispersion curves are obtained by the MASW module of the RadExPro® software, whose calculation 

procedure is based on a paper by Park et al. (1998), and also by the WinMASW® software. From all the dispersion images 

that we calculated from each offset shot (Figure 6), we choose the smoothest and clearest one (Figure 6) to compute the site's 

Vs30 profile. An inversion process then finds the shear-wave velocity profile whose theoretical dispersion curve is as close as 25 

possible to the experimental curve (Figure 6). The data and coefficients are automatically inverted via genetic algorithms 

which represent an optimization procedure belonging to the classification of global-search methods. Genetic algorithms are 

commonly used to generate high-quality solutions to optimization and search problems by relying on bio-inspired operators 

such as mutation, crossover and selection Compared to traditional linear inversion methods based on gradient methods 

(Jacobian matrix) these inversion techniques produce a very reliable result in terms of precision and completeness (Moro et 30 

al., 2007). 
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2.2 Velocity model 

All models were considered to be a stack of homogeneous linear elastic layers, neglecting lateral variations in soil properties. 

The number of unknowns for a layered model, when considering only shear-wave velocity, is three for each layer: density, 

thickness, and one elastic constant. Therefore, the number of unknowns is 3n-1 (where n represents the number of layers). 

The change in density with depth is usually small in comparison to the change in shear modulus and is normally neglected 5 

(Park et al., 1997).  

2.3 Number of layers & layer thicknesses  

The resolution of surface wave surveys decreases with depth. Thin layers are well resolved when they are close to the 

surface, whereas at great depth, the resolution is limited and only large changes can be detected (Foti et al., 2014). 

Regardless of the number of the layers of the site, Vs30 is almost the same in each case (Figure 7). For those reasons, as well 10 

as the lack of density information, we did not restrict each model to a specific number of layers. Without boreholes and 

lithostratigraphic data, which is the case in our work, a useful rule of thumb is to assume layer thicknesses increasing with 

depth, to compensate for the decreased resolution with depth, an intrinsic shortcoming of surface wave testing (Foti et al., 

2014).  

2.4 Depth of investigation 15 

We used a five-kilogram sledgehammer and summed up five strikes. For some sites, this type of source is insufficient to 

determinate a shear-wave profile down to 30 meters. In addition, at some sites, we were not able to spread the geophones at 

intervals of more than two meters, which limited the length of the seismic line. This length probably excludes longer 

wavelengths which limits the depth of investigation. Lastly, as the shear-wave velocity of the lowest frequency is higher - 

more data is available for deeper layers. Therefore, the penetration depth will decrease in areas with low shear-wave 20 

velocity. For instance, if we can clearly detect a phase velocity of about 300 m/sec at 5 Hz, we can roughly estimate a depth 

of investigation of approximately 20-30 meters according to the following equation: 

min

min

fVelocity
f

Z
n

 
 
 = ,                                                                                                                                                          (3) 

where n equals 2-3 (Foti et al., 2014; Moro, 2015). In other words, this equation emphasizes that the depth of investigation is 

about a half to a third of the largest wavelength observed. 25 
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3 Results 

We carried out the surveys with a linear array of 24 vertical geophones (R.T. Clark’s geophones with a natural frequency of 

4.5 Hz) at equal intervals of 2-3 meters over a total length of 46-69 meters. For the survey sound source we used a five-

kilogram sledgehammer striking a twenty-centimeter square aluminum plate at variable offsets of 5, 10, 15, 20, 25 and 30 

meters (both forward and reversed) (Figure 6A). The seismic data were recorded on a Geometrics Geode seismograph at a 5 

sampling rate mostly of 8 kHz for 0.5-2 seconds (Table 1). For an acceptable Signal to Noise Ratio, we used the so-called 

“vertical stacking” approach, which is a summation of multiple synchronized repetitions of the test (usually five times).  

Rayleigh wave dispersion curves are obtained by the MASW module of the RadExPro® software, whose calculation 

procedure is based on a paper by Park et al. (1998), and also by the WinMASW® software. From all the dispersion images 

that we calculated from each offset shot (Figure 6B), we choose the smoothest and clearest one (Figure 6C) to compute the 10 

site's Vs30 profile. An inversion process then finds the shear-wave velocity profile whose theoretical dispersion curve is as 

close as possible to the experimental curve (Figure 6D). The data and coefficients are automatically inverted via genetic 

algorithms which represent an optimization procedure belonging to the classification of global-search methods. Genetic 

algorithms are commonly used to generate high-quality solutions to optimization and search problems by relying on bio-

inspired operators such as mutation, crossover and selection compared to traditional linear inversion methods based on 15 

gradient methods (Jacobian matrix) these inversion techniques produce a very reliable result in terms of precision and 

completeness (Dal Moro et al., 2007). 

From 24 surveys, we succeeded in extracting Vs30 for 19 of the 20 sites studied (the Hartuv data were too noisy for 

interpretation) (Table 2 and Supplementary). These would be used to recalibrate the attenuation equation arrived at by 

previous investigators at 133 sites19 of the 133 sites    20 

3.1 Velocity model  

All ground models were considered to be a stack of horizontal homogeneous elastic layers, neglecting lateral variations in 

soil properties. The number of unknowns for a layered model, when considering only shear-wave velocity, is three for each 

layer: density, thickness, and one elastic constant. Therefore, the number of unknowns is 3n-1 (where n represents the 

number of layers). The change in density with depth is usually small in comparison to the change in shear modulus and is 25 

normally neglected (Park et al., 1997).  

3.2 Number of layers & layer thicknesses 

The resolution of surface wave surveys decreases with depth. Thin layers are well resolved when they are close to the 

surface, whereas at great depth, the resolution is limited and only large changes can be detected (Foti et al., 2014). 

Regardless of the number of the layers at the site, Vs30 is almost the same in each case (Figure 7). For these reasons, as well 30 

https://en.wikipedia.org/wiki/Optimization_(mathematics)
https://en.wikipedia.org/wiki/Search_algorithm
https://en.wikipedia.org/wiki/Mutation_(genetic_algorithm)
https://en.wikipedia.org/wiki/Crossover_(genetic_algorithm)
https://en.wikipedia.org/wiki/Selection_(genetic_algorithm)
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as the lack of density information, we did not restrict each model to a specific number of layers. Without boreholes or other 

direct lithostratigraphic constraint, which is the case in our work, a useful rule of thumb is to assume layer thicknesses 

increasing with depth, to compensate for the decreased resolution with depth, an intrinsic shortcoming of surface wave 

testing (Foti et al., 2014). 

3.3 Depth of investigation 5 

We used a five-kilogram sledgehammer and summed up five strikes. For some sites, this type of source is insufficient to 

determinate a shear-wave profile down to 30 meters. In addition, at some sites, we were not able to spread the geophones at 

intervals of more than two meters, which limited the length of the seismic line. This length probably excludes longer 

wavelengths which limits the depth of investigation. Lastly, as the shear-wave velocity of the lowest frequency is higher - 

more data is available for deeper layers. Therefore, the penetration depth will decrease in areas with low shear-wave 10 

velocity. For instance, if we can clearly detect a phase velocity of about 300 m/sec at 5 Hz, we can roughly estimate a depth 

of investigation of approximately 20-30 meters according to the following equation: 

𝒁𝒁 =
𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝒇𝒇𝒎𝒎𝑽𝑽𝒎𝒎

𝒇𝒇𝒎𝒎𝑽𝑽𝒎𝒎
𝒎𝒎

 ,                                                                                                                                                                            (3) 

where n ranges between 2 and 3 (Foti et al., 2014; Dal Moro, 2014). In other words, this equation emphasizes that the depth 

of investigation is about a half to a third of the largest wavelength observed. 15 

3.4 Recent improvement of the 1927 epicenter 

Zohar and Marco (2012) relocated the 1927 epicenter to a point near the Almog settlement. We used this most recently 

published epicenter to calculate new epicentral distances for the 133 sites. Since Equation 2 above is dependent upon d, we 

checked the variable scatter in the points, but found that the changes in the best-fit coefficients were very minor, so that we 

assumed for all purposes to use the original.   20 

Figure 8 shows a scatter plot of the original MMI (assumed equivalent to MSK) vs. new d for their 133 sites. Hough and 

Avni (2011) fit this data with a curve whose equation best describes the attenuation equation for this event. Using the 

mathemathical form of their curve, we calculated upper and lower limits such that 60% of the points are enclosed. This we 

call the 60% prediction boundary. We consider that the lithological effects probably account for much of the scatter beyond 

this boundry, due to amplification and de-amplification. 25 

Zohar and Marco (2012) relocated the epicenter to a point near the Almog settlement. We used this most recently published 

epicenter for calculating the new epicentral distances, d. Figure 8 shows a scatter plot of MMI vs. d for their 133 sites. Hough 

and Avni (2011) fit this data with a curve which best describes the attenuation relation for this event. Using the 

mathemathical form of their curve, we calculated upper and lower limits such that 60% of the points are enclosed. This we 

call the 60% prediction boundary. We consider that the lithological effects probably account for much of the scatter beyond 30 

this boundry, due to amplification and de-amplification.  
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3.1 MASW surveys  

From 24 surveys, we succeeded in extracting Vs30 for 19 of 20 sites (the Hartuv data were too noisy for interpretation) (Table 

2 and Supplementary). 

4 Discussion 
A number of researchers have studied the 1927 event. Avni (1999) tried to reduce the impact of local geology and attempted 5 

to generate basic attenuation curves for specific azimuths. Zohar and Marco (2012) relocated the source position while 

Shani-Kadmie et al. (2016) studied directivity of the source pattern.  None of these publications address the Vs30 

measurements. An attenuation equation with a term that depends on the Vs30 index should lead to a better understanding of 

past events, and to more useful predictions of future earthquakes. 

4.1 Survey locations and validation 10 

The decision as to where exactly each survey should take place was based on Avni's thesis (Avni, 1999). Where the location 

was not sufficiently known, we rechecked the reference given by Avni. In most cases, there was evidence of specific 

damaged buildings. We tried to locate these buildings on historical maps (1927-1945). Unfortunately, most sites were 

located inside urban areas, where we could not carry out the seismic surveys. Therefore, we surveyed in nearby open areas as 

close as possible to the referenced damage zones.  15 

To validate our results, we compared them with a summary of thousands of seismic evaluations around Israel carried out 

over the years by the Geophysical Institute of Israel (GII), and compiled in a report by (Aksinenko and Hofstetter, 2012). 

These evaluations were based upon refraction and borehole velocity measurements yielding Vs and/or Vp values, as well as 

the effects of topography and geology. The spacing of their data was such that often a number of GII sites had to be averaged 

to provide a value within several kilometers for comparison with our MASW values. However, Figure 9 shows that the GII-20 

based values are in consistent agreement with those of the MASW. However, this comparison is a bit tricky because Vs30 

results for two sites 5 km or much less distant could be significantly different, as shown in Figure 10. Remembering that Vs30 

enters a logarithmic term, we find our approach potentially useful.  

 

Table 2 lists our 24 sites alphabetically, with their respective Vs30 values, the computed errors, and epicentral distances, d. 25 

The Vs30 values vary from a low of 232 m/sec in Beit Alfa, -85 m.s.l. (Figure 11), in the thick and active alluvial plain of the 

famous Valley of Gilboa some 10 km from the Dead Sea rift, and a site of many millennia of agriculture. The highest value 

is 1,444 m/sec in Peqi'in, 680 m.s.l (Figure 11). in an area of ancient hillside orchards, and massive carbonate bedrock. On 

the other hand, the two Motza sites (Figure 11) lie in Emeq HaArazim (Valley of the Cedars) on the western flank of 

Jerusalem within the massive anticlinorium of the Judean Hills, at about 570 m.s.l.. Motza 1 (1065 m/sec) is on a compacted 30 
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dirt parking lot above alluvium and the Soreq Fm., while Motza 2 (874 m/sec) is farther up the valley on a gentle hillside 

above the Bet Meir Fm.. Both are of similar limestone and marl composition and Cretaceous age.    

 

4.2 A new attenuation equation 

In the present case of the 1927 earthquake, the sources of the data are mostly historical documents and not strong data 5 

measurements. This makes it difficult to quantify site response into a single equation. In the practical modern attenuation 

relationship, Vs30 is a crucial index. A term that depends on Vs30 has previously been constrained for several large data sets 

(Abrahamson et al., 2014; Boore et al., 1997; Campbell and Bozorgnia, 2008). We chose the Boore et al. (1997) attenuation 

equation (Eq. (4)) in order to emphasize site response:.   

2
1 2 3 5ln ( 6) ( 6) ln(r) lnv

A

VsY b b M b M b b
V
 

= + − + − + +  
 

,                                                                                         (4) 10 

where Y is the ground-motion variable (peak horizontal acceleration or pseudo-acceleration response in g), M is the moment 

magnitude, r is the epicentral distance in kilometers, VA, and all b terms are frequency dependent coefficients to be 

determined. By adding Boore et al.'s (1997) Vs term to Hough and Avni (2011) attenuation equation (Eq. (2)), we suggest a 

new equation for the region: 

30
40.64 1.7 0.00448 1.67 log( ) ln

A

VsMMI M d d C
V

 
= − + − − +  

 
,                                                                             (5) 15 

where VA and C4 are adjustable coefficients. The first four coefficients remain the same as we assert that the magnitude, 

attenuation, geometrical spreading and site response are all independent. We adopt the value of VA from Boore’s (1987) 

equation (Eq. (4)), as it represents a single value independent of the frequency. We took formerly derived GMPE, with its 

coefficients, and added another term, by regressing only for the new coefficient, then optimizing C4 and VA by Least Squares 

Fitting (LSF), as shown in Figure 11 Figure 12 we get the final equation: 20 

300.64 1.7 0.00448 1.67 log( ) 2.1ln
655
VsMMI M d d  = − + − − −  
 

,                                                                            (6) 

4.3 The performance of the new attenuation equation  

With these coefficients, 58% or 11 of 19 sites, were amplified or de-amplified as we expected. For the entire distance range 

(up to 250 km) the Vs30 corrections leave 42% sites out of the prediction boundary (eight of nineteen sites). Seismic 

intensities at all these eight sites are overpredicted by the attenuation equation (Eq. (2)) (Figure 12Figure 13). We expect that 25 

Vs30 at these sites will be higher than 655 m/sec in order to obtain de-amplification. However, our results show the opposite 

effect - these eight sites are characterized by lower Vs30 which drives amplification. This can be caused by the fact that 

measurements were taken over agricultural fields, of which the upper layers (the first few meters) are characterized by low 
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shear-wave velocity, decreasing the average Vs. Another reasonable explanation is that we did not succeed in extracting the 

average shear-wave velocity down to 30 meters and perhaps we missed some high-velocity shear-wave layers at deeper 

layers. In such cases, we constrain the last layer to be thicker in order to estimate Vs30 for all our surveys. 

5 Conclusions 

In this research, we investigate site amplification and de-amplification around Israel. According to previous studies (Aki, 5 

1988; Boore, 2003; Borcherdt, 1994; Field and Jacob, 1995; Joyner and Boore, 1988), the local lithology can amplify or de-

amplify wave amplitude. The commonly used modern seismic method – MASW – allowed the extraction of Vs profiles at 19 

sites reportedly damaged by the 1927 ML6.2 earthquake. We use these profiles to update the attenuation equation for the 

Dead Sea region by including the Vs30 term. 

According to this new equation, 11 sites, which constitute 58% of our measured samples, move into the 60% prediction 10 

boundary. This suggests that the prediction boundary actually encompasses over 80% of the macroseismic observations. This 

fit is better than any available attenuation equation for the Dead Sea region. However, as we have used only 19 sites, we 

should consider further research and provide wider results. Although our final equation (Eq. (6)) shows amplification and de-

amplification depending on Vs30, it does not take into consideration any other factor, such as building quality, foundation 

depth, topography, earthquake directivity, type of fault, etc. Obviously, for better results, we must use additional methods 15 

and jointly invert some other seismic data such as: refraction (S and P waves), Horizontal to Vertical Spectral Ratio (HVSR), 

MASW of the transverse component of Love waves, MASW of the radial component of Rayleigh wave, Extended Spatial 

Auto-Correlation (ESAC), etc. Also, with these data in hand, a full inversion for the epicenter will be in order. 

Despite the scarcity of data, this is the first time that an integration of historical data with shear-wave velocity profile 

measurements improves the attenuation relation. In order to better estimate the peak ground acceleration or the seismic 20 

intensities that will be caused by future earthquakes, attenuation relations are necessary for areas characterized by high 

seismicity. Some of the regions of low to moderate seismicity have rich sources of historical earthquake data. The integration 

of historical data with modern shear-wave velocity profile measurements will lead to a better understanding of future 

earthquakes. 
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Figure 1: Schematic view of site amplification. Seismogram at the surface shows amplification in comparison to the seismogram 
located over the bedrock (modified after Ciaccio and Cultrera, 2014). 
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Figure 2: Research area: A) Middle East area with the main tectonic elements. B) Proposed epicenters for the 1927 earthquake 
event with all sites that were investigated placed over a 25m DTM image (Hall, 1996). C) Detailed location of the proposed 
epicenters. Also shown are sites mentioned in the text: Jerusalem (J) and Nablus (N).  
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Figure 3: Wreckage of the Winter Palace Hotel, Jericho, after the 1927 earthquake. American Colony (Jerusalem). Photo Dept., 
photographer.  
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Figure 4: Isoseismal map. The epicentral locations in red and black circles. Red and green dots are suspect amplified or de-
amplified sites (respectively). Blue dots are sites which have MSK values expected from the attenuation equation (with 60% 
prediction boundary). 
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Figure 5: Multichannel Analysis of Surface Waves (MASW) technique: A. Acquisition – Using a sledgehammer as an artificial 
source and a linear array of geophones that receives all wavelets. B. Signal process – A fundamental mode and first higher mode 
over the dispersion image. C. Inversion – Final Vs profile which best fits the dispersion curve. 
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Figure 6: Data processing (example from Binyamina): A – Raw data of four different offsets. B – The four relative dispersion 
images calculated from the raw data. C – Best dispersion Image (offset 15): pink dots are the analyst's dispersion curve picking. 
The blue line and yellow dashed line are respectively the best and the mean curves from the final model,. D – Shear-wave velocity 
model (Blue profile for the best one and red dashed line is the mean profile from 100 lower RMS. 5 
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Figure 7: Vs30 as a function of a number of layers (example from Beit Alfa). 
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Figure 8: Avni’s seismic intensity (MMI) estimates of all the 133 sites. Distance is corrected according to the Zohar & Marco 
epicenter. Yellow dots are suspected amplified or de-amplified sites. Sites with pins are sites where we measured the Vs profile. 
Blue dots are sites which have MSK values expected from the attenuation equation (within the 60% prediction boundary).  
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Figure 9: Comparison between our Vs30 results (light blue) and those calculated from GII’s report (red) (Aksinenko and 
Hofstetter, 2012). 
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Figure 10: Comparison between GII’s closest measurements (up to 550 meters). 
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Figure 11: Three of the sites investigated: A) Motza 1, B) Motza 2, and C) Peqi’in. Black lines represent the seismic line location. 
D) The locations of the sites over a 25m DTM image (Hall, 1996). Also shown are sites mentioned in the text: Jerusalem 
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Figure 12: A Sensitivity analysis for calibration of the new equation. 
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Figure 13: Site response corrections: Yellow dots are MMI before site correction and black dots with error bars due to Vs 
uncertainty, represent the MMI after reducing site effects. 
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Acquisition parameters 

Number of geophones  24 

Geophone spacing 2-3 meters 

Array length 46-69 meters 

Sampling rate 8 kHz 

Record length 0.5-2 second 

Receivers 4.5 Hz vertical 

Source 5 kg hammer 

Table 1: Acquisition parameters. 

 

ID Site Vs30 [m/sec] Error [%] Epicentral distance 
1 Acre 261 13 131 
2 Ashkelon 561 5 89 
3 Be’er Sheva 359 8 91 
4 Beit Hakerem 1436 12 29 
5 Beit Alfa 232 5 79 
6 Binyamina 316 5 95 
7 Givatayim 396 6 72 
8 Herzliya 330 5 77 
9 Jasar-Majami 294 9 92 

10 Lod 1 320 4 60 11 Lod 2 374 6 
12 Motza 1 1065 8 33 13 Motza 2 874 8 
14 Mt. Scopus 1 600 6 23 15 Mt. Scopus 2 582 5 
16 Nahalal 380 7 102 
17 Nahariya 883 1 139 
18 Peqi'in 1444 3 131 
19 Ramleh  360 4 61 
20 Tzemach 1 281 5 101 21 Tzemach 2 273 4 
22 Tzora 430 3 50 
24 Yavneh  361 10 72 

 5 
Table 2: MASW results. 
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