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Abstract. I present in this work the GHOST (Geoscientific HOllow Sphere Tesselation) software which allows for the fast

generation of computational meshes in hollow sphere geometries counting up to a hundred millions of cells. Each mesh is

composed of concentric spherical shells which are built out of quadrilaterals or triangles. I focus here on three commonly used

meshes used in geodynamics/geophysics and demonstrate the accuracy of shell surfaces and mesh volume measurements as a

function of resolution. I further benchmark the built-in gravity and gravitational potential procedures in the simple case of a5

constant density geometry and finally show how the produced meshes can be used to visualise the S40RTS mantle tomography

model. The code is open source and is available on the GitHub sharing platform.

Copyright statement. TEXT

1 Introduction

In the last 40 years numerical mantle convection studies have improved our understanding of mantle dynamics as a whole10

(Schubert et al., 2001). While early studies looked at aspects of fluid dynamics aspects (Busse, 1975; Christensen and Harder,

1991), more recent studies have been exploring a wide variety of topics. For example mantle mixing (van Keken et al., 2002),

melting (Tackley, 2012; van Heck et al., 2016; Dannberg and Heister, 2016), the effect of plate motion history on the longevity

of deep mantle heterogeneities (Bull et al., 2014), or assimilating lithosphere and slab history in 4-D Earth models (Bower

et al., 2015).15

To a first approximation the Earth is a sphere: the Earth’s polar diameter is about 43 kilometers shorter than its equatorial

diameter, a negligeable difference of about 0.3%. As a consequence, modelling physical processes which take place in the

planet require the discretisation of a sphere. Furthermore, because core dynamics occur on vastly difference time scales than

mantle dynamics, mantle modelling usually leaves the core out, thereby requiring simulations to be run on a hollow sphere

mesh (with the noticeable exception of Gerya and Yuen (2007)).20

Although so-called latitude-longitude grids would seem appealing, they suffer from the convergence of meridians at the

poles (resulting in over sampling at poles) and the juxtaposition of triangles near the poles and quadrilaterals elsewhere. As

a consequence more regular, but more complex, grids have been designed over the years which tesselate the surface of the

sphere into triangles or quadrilaterals (sometimes overlapping). There is the ’cubed sphere’ (Ronchi et al., 1996; Choblet et al.,
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2007), the ying-yang grid (Kageyama and Sato, 2004; Yoshida and Kageyama, 2004; Kameyama et al., 2008; Tackley, 2008;

Crameri and Tackley, 2014, 2016), the spiral grid (Hüttig and Stemmer, 2008), an icosahedron-based grid (Baumgardner and

Frederickson, 1985; Tabata and Suzuki, 2002), or a grid composed of 12 blocks further subdivided into quadrilaterals (Zhong

et al., 2000) as used in the CitcomS code.

How such meshes are built is often not discussed in the literature. It is a tedious exercise of three-dimensional geometry and5

it can be time-consuming, especially the connectivity array generation. In this paper I present an open source mesh generator

for three hollow sphere meshes: the ’cubed sphere’ mesh, the CitcomS mesh and the icosahedral mesh.

I first present the basic workflow which has been implemented to arrive at such meshes, then I showcase its efficiency

and how accurate surfaces and volumes are represented. Finally, I provide a simple example of gravity and gravity potential

calculations on such meshes and compare the obtained values with the analytical solution derived in the Appendix.10

2 Building the hollow sphere meshes

The open source code library GHOST allows three different types of hollow sphere meshes to be built , i.e. meshes bounded by

two concentric spheres:

– The cubed sphere (’HS06’), composed of 6 blocks which are themselves subdivided into Nb×Nb quadrilateral shaped

cells (Sadourny, 1972; Ronchi et al., 1996; het, 2003; Burstedde et al., 2013). Four types of cubed spheres meshes have15

been proposed: the conformal, elliptic, gnomonic and spring types (Putman and Lin, 2007). However only gnomonic

meshes are considered here: these are obtained by inscribing a cube within a sphere and expanding to the surface of

the sphere. The cubed sphere has recently been used in large-scale mantle convection simulation in conjunction with

Adaptive Mesh Refinement (Alisic et al., 2012; Burstedde et al., 2013).

– The CitcomS mesh (’HS12’) composed of 12 blocks also subdivided into Nb×Nb quadrilateral shaped cells (Zhong20

et al., 2000; Stemmer et al., 2006; Zhong et al., 2008; Arrial et al., 2014). Note that ASPECT (Kronbichler et al., 2012;

Heister et al., 2017), a relatively new code aimed at superseeding CitcomS can generate and use this type of mesh

(Thieulot, 2017) but is not limited to it.

– The icosahedral mesh (’HS20’) composed of 20 triangular blocks (Baumgardner and Frederickson, 1985; Baumgardner,

1985) subdivided into triangles, which is used in the TERRA code (Bunge et al., 1996, 1997, 1998; Davies et al., 2013).25

Given the regularity and symmetry of these meshes determining the location of the mesh nodes in space is a relatively

straightforward task. Building the mesh connectivity in an efficient manner is where the difficulty lies.

The approach to building all three meshes is identical:

1. A reference square or triangle is populated with cells, as shown in Fig. (1) parametrised by a level l: the square is subdi-

vided into l×l quadrilaterals while the triangle is subdivided into l2 triangles (implemented in the block_node_layout30

subroutine.
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Figure 1. Reference square and triangles meshes at level 5

2. This reference square or triangle is then replicated nblock times (6, 12 or 20) and mapped onto a portion of a unit sphere.

The blocks are such that their union covers a full sphere but they cannot overlap except at the edges, see Fig. (2). This

takes place in the map_blocks subroutine.

3. All block meshes are then merged together to generate a shell mesh. This task is rather complex as duplicate nodes must

be removed and all connectivity arrays of the blocks must then be mended accordingly. This task is carried out in the5

merge_blocks subroutine.

4. Shell meshes are replicated nlayer+1 times outwards with increasing radii. The nlayer shells are then merged together to

form a hollow sphere mesh, as shown in Fig. (3). This is carried out in build_hollow_sphere.

More information on these steps is available in the manual of the code. In Table (1) the number of nodes and cells for a

variety of resolutions for all three mesh types is reported. Looking at the CitcomS literature of the past 20 years, we find that10

the mesh data presented in this table cover the various resolutions used, e.g. 12× 483 (McNamara and Zhong, 2004; Arrial

et al., 2014), 12× 643 (Bull et al., 2014) 12× 963 (Bull et al., 2010), 12× 1283 (Becker, 2006; Weller and Lenardic, 2016;

Weller et al., 2016). Note that in the case of the HS06 and HS12 meshes the mesh nodes are mapped out to the 6 or 12 blocks

following either an equidistant or equiangle approach as shown in Fig. (6) (see Putman and Lin (2007) for details on both

approaches).15

2.1 Mesh generation performance

The total time to generate the coordinates and the connectivity of the final hollow sphere mesh was timed for all three mesh

types and is shown in Fig. (4). The reported times scale ideally with the number of nodes, i.e. linearly or O(N), up to 100

million mesh nodes and a mesh containing a million or so nodes can be built in less than a second on a laptop.
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Figure 2. From left to right: HS06, HS12 and HS20 shells coloured by block number.

Figure 3. a) HS06 mesh composed of 6 blocks containing each 63 cells; b) HS12 mesh composed of 12 blocks containing each 63 cells; e)

HS20 mesh composed of 20 blocks containing each 63 cells.

2.2 Areas and volume measurements

The area of the shell of unit radius can be calculated by summing the areas of each cell. In the case of triangles Heron’s formula

is used, which states that the area of a triangle whose sides have lengths a, b, and c is

A=
√
s(s− a)(s− b)(s− c) (1)
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type level N Nel structure

HS06 2 78 48 6× 23

HS06 4 490 384 6× 43

HS06 8 3,474 3,072 6× 83

HS06 16 26,146 24,576 6× 163

HS06 32 202,818 196,608 6× 323

HS06 64 1,597,570 1,572,864 6× 643

HS06 128 12,681,474 12,582,912 6× 1283

HS06 256 101,057,026 100,663,296 6× 2563

HS12 2 150 96 12× 23

HS12 4 970 768 12× 43

HS12 8 6,930 6,144 12× 83

HS12 16 52,258 49,152 12× 163

HS12 32 405,570 393,216 12× 323

HS12 48 1,354,850 1,327,104 12× 483

HS12 64 3,195,010 3,145,728 12× 643

HS12 128 25,362,690 25,165,824 12× 1283

HS12 256 202,113,538 201,326,592 12× 2563

HS20 2 126 160 20× 23

HS20 4 810 1,280 20× 43

HS20 8 5,778 10,240 20× 83

HS20 16 43,554 81,920 20× 163

HS20 32 337,986 655,360 20× 323

HS20 64 2,662,530 5,242,880 20× 643

HS20 128 21,135,618 41,943,040 20× 1283

HS20 256 168,428,034 335,544,320 20× 2563

Table 1. Number of nodes N and elements/cells Nel for the three types of meshes and for various levels. HS06: cubed sphere; HS12:

CitcomS mesh; HS20: icosahedral mesh.

where s is the semiperimeter of the triangle:

s= (a+ b+ c)/2 (2)

In the case of quadrilaterals the four points composing each of them are not necessarily coplanar and the definition of the

surface is ill-posed. Each quadrilateral is therefore decomposed into four triangles sharing a vertex in the middle given by the

barycenter of the four points. The area of each quadrilateral is then approximated by the sum of the areas of all four inscribed5

triangles.
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Figure 4. Measured times to build and assemble the mesh as a function of its number of nodes N .
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Figure 5. Relative shell area error as a function of its number of nodes N .

The relative error on the shell outer area eA = (Ameas−Ath)/Vth where Ameas is the total measured area and Ath = 4πR3
2

is shown in Fig. (5) and for all three meshes the error is found to decrease linearly with the number of points for all three types

of meshes.
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Figure 6. Elemental area for a) equiangular HS06 mesh, b) equiangular HS12 mesh, c) equidistant HS06 mesh, d) equidistant HS12mesh

and e) HS20 (level 7).

Fig. (6) shows shells which approximately count the same number of nodes. We see that the equiangle projection of the

nodes for the HS06 and HS12 meshes yields cells whose area are homogenous in value than when the equidistant projection is

used.

Although the volume of the hexahedra could have been computed directly with the formula of Grandy (1997), a Gaussian

quadrature rule is used since it is also needed in the next section. The total volume of the spherical mesh is given by:5

V =

∫ ∫ ∫
Ω

dV =
∑
c

∫ ∫ ∫
Ωc

dV (3)

where Ω stands for the volume inside the spherical shell, Ωc is the volume of a cell. The sum runs over all the cells c= 1, ...Nel

and a 2× 2× 2 quadrature rule is used in each cell.

The measured hollow sphere mesh volume and its relative error eV = (Vmeas−Vth)/Vth where Vmeas is the total measured

volume and Vth = 4π(R3
2−R3

1)/3 is shown in Fig. (7) and for all three meshes the error is found to decrease with the number10

of points for all three types of meshes with a −2/3 exponent.
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Figure 7. a) Measured total volume for all three shells as a function of the number of nodes N ; b) Corresponding total volume relative error

as a function of N .

3 Gravity field and potential measurements

The gravity potential U can be computed by means of the Poisson equation ∇2U = 4πGρ where ρ is the density and G is

the gravitational constant (see Turcotte and Schubert, 2012, Chapt. 5). The analytical solution of this equation in the case of a

constant density spherical shell is given in Appendix A.
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Figure 8. Norm of the gravity vector |g| as a function of the radial coordinate r. The gray area symbolises the spherical shell.

The gravity vector and potential at location r′ can also be computed by means of volume integrals:

g(r′) =

∫
Ω

G ρ(r)

|r′− r|3
(r′− r)dr (4)

U(r′) = −
∫
Ω

G ρ(r)

|r′− r|
dr, (5)

and both expression can then be computed using the numerical quadrature described in the previous section.

In what follows I set the inner radius R1 = 1, the outer radius R2 = 2, the density of the material is ρ0 = 106 and G =5

6.673848×10−11m3 kg−1 s−2. Figs. (8) and (9) show the gravity g = |g| and potential U measured at 256 points along a line

between r = 0 and r = 4R2 for all three mesh types. Data points align along the analytical curves and the error is found to

decrease as a function of the mesh resolution.

4 Application: visualisation of a tomography dataset

The S40RTS model is one of the most widely used tomographic models of the mantle (Ritsema et al., 2011). It is based on 2010

million Rayleigh wave dispersion, 500,000 shear-wave Traveltime, and 1100 normal-mode Splitting function measurements.

The data is widely available, for instance on the website of the main author (http://jritsema.earth.lsa.umich.edu//Research.html)

or as part of the SPECFEM 3Dglobe code (https://github.com/geodynamics/specfem3d_globe).

I have adapted the Fortran interface provided with the dataset and for each node of the grid the shear-velocity variation δ lnVs

is computed, as well as the relative density variation δ lnρ= ξδ lnVs where ξ = 0.25 is assumed to be constant with depth for15

9



-0.002

-0.0015

-0.001

-0.0005

 0

 0  1  2  3  4

U

r

analytical
HS06 (6x323)

HS12 (12x323)
HS20 (20x323)

Figure 9. Gravity potential U as a function of the radial coordinate r. The gray area symbolises the spherical shell.

Figure 10. HS06 grid with 64 layers and level=64. a) δ lnVs at the surface of the model (R= 6346km) and at depth down to the core mantle

boundary (R= 3480km); b) absolute density variation δρ (kg/m3).

simplicity (see Fig. 6 of Steinberger and Calderwood (2006)). The absolute density variation with regards to the PREM model

(Dziewonski and Anderson, 1981) is then obtained as follows: δρ= ρPREM ∗ δ lnρ. Results are shown in Fig. (10)
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5 Conclusions

The three types of hollow sphere meshes presented in this work are currently in use in the ELEFANT code (http://cedricthieulot.net/elefant.html).

Furthermore the HS12 mesh was recently used in Thieulot (2017) in which a family of analytical solutions for viscous incom-

pressible Stokes flow in a spherical shell is presented.

Following the example of CitcomS, each block of the final mesh could actually be built and used by a different MPI thread5

in the context of parallel calculations Burstedde et al. (2013). Each block could then subsequently be divided to allow for more

threads to be used than the original number of blocks.

Other tomography models than S40RTS (Ritsema et al., 2011) could have been chosen such as UUP07 (van der Meer

et al., 2017; Hall and Spakman, 2015) and other geophyical databases could have been coupled with it, such as the crust and

lithospheric model Litho1.0 (Pasyanos et al., 2014) to arrive at a more complete high resolution of the Earth. Gravity (anomaly)10

and geoid measurements could then be carried out.

Finally, this library is aimed at students and researchers alike. It provides the essential building block for many geophysical

applications: a non overlapping tesselation of the mantle. It also provides the starting point for any Finite Element or Finite

Volume Method based geodynamical code. Which of the three mesh types is best may be problem-specific and potential users

are encouraged to explore various combinations of resolutions and mesh types. However, under the assumption that the quality15

of the numerical solution correlates with the uniformity of the mesh cells volume, it appears that an equiangular projection

should always be prefered to an equidistant one.

Code availability. The code is written in Fortran90 and the development version is freely downloadable at

https://github.com/cedrict/GHOST.

GHOST v1.0 was released May 11th, 2018 with doi:10.5281/zenodo.1245533 as is available at20

https://github.com/cedrict/GHOST/releases/tag/v1.0.

Appendix A: Analytical solution for the gravity and gravitational potential fields inside and outside a constant density

spherical shell

The gravity potential can be computed by means of the Poisson equation ∇2U = 4πGρ where G is the gravitational constant

(Turcotte and Schubert, 2012). The density is non zero only inside the domain parametrised by R1 ≤ r ≤R2. Outside the25

spherical shell one then needs to solve the Laplace equation ∆U = 0 which simplifies to:

1

r2

∂

∂r

(
r2 ∂U

∂r

)
= 0 (A1)

by symmetry which has the simple solution:

g =
∂U

∂r
=
C

r2
(A2)
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where C is a constant. In order to avoid an infinite gravity field at r = 0, we need to impose C = 0, i.e. the gravity is zero for

r <=R1. Inside the shell, ρ= ρ0 and we easily obtain:

g =
∂U

∂r
=

4π

3
Gρ0r+

A

r2
(A3)

where A is an integration constant. We know that g = 0 at the inner boundary r =R1 (no mass within a radius r ≤R1 so we

can compute A and finally:5

g =
∂U

∂r
=

4π

3
Gρ0(r− R3

1

r2
). (A4)

The branch for r ≥R2 is given by Eq. (A2) and requiring the gravity field to be continuous at r =R2:

g(r) =
GM
r2

(A5)

where M = 4π
3 πρ0(R3

2−R3
1) is the mass contained in the shell. Turning to the potential, we obtain its expression for r >=R2

by integrating Eq.(A5):10

U(r) =−GM
r

+D (A6)

where D is an integration constant which has to be zero since we require the potential to vanish for r→∞.

For R1 ≤ r ≤R2, Eq. (A4) yields:

U(r) =
4π

3
Gρ0(

r2

2
+
R3

1

r
) +F (A7)

where F is a constant. Continuity of the potential at r =R2 requires that15

F =−2πρ0GR2
2. (A8)

Since gravity is zero for r ≤R1 the potential is then constant and continuity requirements yield

U(r) = 2πGρ0(R2
1−R2

2). (A9)
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