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Abstract. We introduce a workflow integrating geological uncertainty information in order to constrain gravity inversions. 

We test and apply this approach to data from the Yerrida Basin (Western Australia), where we focus on prospective greenstone 

belts beneath sedimentary cover. Geological uncertainty information is extracted from the results of a probabilistic geological 

modelling process using geological field data and their uncertainty as input. It is utilized to locally adjust the weights of a 15 

minimum-structure gradient-based regularization function constraining geophysical inversion. Our results demonstrate that 

this technique allows geophysical inversion to update the model preferentially in geologically less certain areas. It also 

indicates that inverted models are consistent with both the probabilistic geological model and geophysical data of the area, 

reducing interpretation uncertainty. The interpretation of inverted models finally reveals that the recovered greenstone belts 

may be shallower and thinner than previously thought.  20 

1 Introduction 

The integrated interpretation of multiple data types and disciplines in geophysical exploration is a powerful approach to 

mitigating the limitations inherent to each of the datasets. For instance, gravity data, which has poor horizontal resolution, can 

be integrated with seismic inversion to mitigate the poor lateral resolution of seismic inversion (Lelièvre et al., 2012). Likewise, 

geological modelling and geophysical inversions are routinely performed in the same area to obtain an subsurface model 25 

consistent with geological and geophysical measurements (Guillen et al., 2008; Lelièvre and Farquharson, 2016; Pears et al., 

2017; Williams, 2008). When sufficient prior information is available, petrophysical constraints can be derived for inversion 

(Lelièvre et al., 2012; Paasche and Tronicke, 2007), and integrated with geological modelling to derive local constraints 

(Giraud et al., 2017). However, in exploration scenarios, this might be impractical as the available petrophysical information 

may be insufficient to allow us to derive such constraints (Dentith and Mudge, 2014). In such cases, when more than one 30 
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geophysical dataset is available, practitioners may rely on joint inversion using structural constraints (e.g., Gallardo and Meju, 

2003; Haber and Oldenburg, 1997; Zhdanov et al., 2012).  

Alternatively, when one of the datasets has a spatial resolution that is superior to the others, structural information can be 

transferred into the gradient regularization constraint for the inversion of the lesser resolving method(s), thus mitigating some 

of the challenges faced by joint inversion in such cases into what (Brown et al., 2012) termed guided inversion. This strategy 5 

has been applied in recent years using the interpretation of predominantly propagative data (e.g., seismics, ground-penetrating 

radar) to constrain the inversion of diffusive data (e.g., diffusive electromagnetic methods), see (Yan et al., 2017) and 

references reported therein. However, this avenue remains relatively unexplored to date. 

In this article, we broaden the applications of guided inversion and explore the integration of non-geophysical information in 

inversion, such as geological uncertainty, into what we call uncertainty-guided inversion where we focus on the 10 

complementarity of information content between the datasets. We introduce a new technique that integrates local uncertainty 

information derived from probabilistic geological modelling in the inversion of potential field data, following 

recommendations of (Jessell et al., 2014, 2010; Lindsay et al., 2013; Lindsay et al., 2014; Wellmann et al., 2014, 2017).  In 

contrast to (Giraud et al., 2016, 2017) who derives local petrophysical constraints from petrophysical measurements and 

geological modelling results, constraints used in uncertainty-guided inversion are based solely on the local conditioning of a 15 

gradient regularization function, thereby offering the possibility to integrate probabilistic geological modelling into 

geophysical inversion in the absence of sufficient petrophysical information. This conditioning relies on the calculation of 

local weights derived from prior geological information. In this study, we utilize a probabilistic geological model (PGM) 

(Pakyuz-Charrier et al., 2018)consisting of the observation probability of the different lithologies of the area in every model 

cell. More specifically, we utilize the information entropy (Shannon, 1948; Wellmann and Regenauer-Lieb, 2012), which 20 

measures geological uncertainty in probabilistic models. We calculate it in each model cell of the PGM to derive spatially 

varying weights applied to the gradient regularization function used during inversion.  

The integration methodology we develop is similar in philosophy to (Brown et al., 2012; Guo et al., 2017; Wiik et al., 2015), 

who extract continuous structural information from seismic data to adjust the strength of the regularization term locally in 

order to promote specific structural features during electromagnetic inversion. However, our work differs from these authors 25 

in four main respects. Firstly, the geophysical problem we tackle is different in nature as we constrain potential field data in 

hard rock scenario instead of electromagnetic data in soft rock studies. Secondly, we use a metric encapsulating geological 

uncertainty derived from geological measurements, whereas, in contrast, previous studies use other geophysical attributes. 

Thirdly, we allow inversion to update the model preferably in the most uncertain parts of the geological model, instead of 

encouraging a certain degree of structural similarity between two geophysical inverse models. Finally, while previous work 30 

involve mostly 2D models, every step of our modelling is performed purely in 3D.  
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In this paper, we introduce the methodology and field application as follows. In the methodology Section, we first introduce 

the inversion and integration scheme and algorithm, and provide essential background information about probabilistic 

geological modelling. We then provide the essential background about information entropy before detailing its usage in 

inversion. In the ensuing section, we present a field application case focused on the Yerrida Basin (Western Australia), starting 

with the introduction of the geological context and modelling procedure. We then analyse the influence of local regularization 5 

conditioning on inverted models and demonstrate how it allows clearer and more reliable interpretation of the buried greenstone 

belts than when it is not utilized. 

2 Modelling procedure 

2.1 Inversion methodology 

The inversion procedure we propose integrates spatially varying prior information to weight the regularization function locally 10 

(e.g., in each cell). It is implemented in an expanded version of the least-square inversion platform Tomofast-x (Martin et al., 

2013, 2018), which offers the possibility to condition the regularization function (Tikhonov and Arsenin, 1977) of (Li and 

Oldenburg, 1996) locally using geological uncertainty. This is achieved by incorporating prior information into a structure-

based regularization function in a fashion similar to (Brown et al., 2012; Wiik et al., 2015; Yan et al., 2017) by locally adjusting 

the related weight.  15 

 Solving the inversion problem regularized in this fashion consists of finding a model 𝒎 that minimizes the objective function 

𝜃 given below: 

𝜃(𝒅, 𝒎) = ‖𝑾𝒅(𝒅 − 𝒈(𝒎))‖
𝟐

𝟐
 + ‖𝑾𝒎(𝒎 − 𝒎𝒑)‖

𝟐

𝟐
 + 𝛼‖𝑾𝑯∇𝒎‖𝟐

𝟐 , (1) 

                       Data term                Model term    Structural regularization term 

where 𝒅 relates to the geophysical measurements to be inverted, 𝒈 is the forward modelling operator; 𝒎 relates to the model 

being searched for, and 𝒎𝒑 is the prior model; 𝑾𝒅, 𝑾𝒎 and 𝑾𝑯 are diagonal weighting matrices corresponding to data noise, 20 

model weighting and gradient regularization, respectively. The model term is a ridge regression constraint term (Hoerl and 

Kennard, 1970).  

The structural regularization term in Eq. (1) enforces structural constraints during inversion. It is weighted locally by matrix 

𝑾𝑯, which can be derived from prior information (see Subsect. 2.3 for details). The positive free parameter 𝛼 controls the 

overall weight of the regularization term; ∇ is the spatial gradient operator. Note that ‖∇𝒎‖𝟐, estimates the amount of structure 25 

in inverted physical property model 𝒎.  Note that parts of the model where 𝑾𝑯 = 0 are excluded from the calculation of the 

structural regularization and can change freely to accommodate geophysical data. 
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2.2 Probabilistic geological modelling 

Probabilistic geological modelling is performed using the Monte-Carlo Uncertainty Estimator (MCUE) method of (Pakyuz-

Charrier et al., 2018), which is an uncertainty propagation method for 3D implicit geological modelling using geological rules 

and geological orientation measurements (foliation and interface) as inputs. The sampling algorithm perturbs orientation data 

by sampling probability distributions describing the uncertainty of orientation data to produce a series of unique altered models. 5 

Realizations that do not respect a series of geological rules are considered implausible and are rejected. Coupled to the 3D 

geological modelling engine of Geomodeller© (Calcagno et al., 2008), it produces a set of plausible geological models 

representing the geological model space (Lindsay et al., 2013b). The observation probabilities constituting the probabilistic 

geological model (PGM) are obtained, in each model cell, by calculating the relative observation frequencies of the different 

lithologies from the set of geological models. For the 𝑖 th model cell of a PGM containing 𝐿  lithologies, vector 𝝍𝒊 =10 

[𝜓𝑘=1
𝑖 , … , 𝜓𝑘=𝐿

𝑖 ] contains the observation probabilities of each lithology. As we show in the next subsection, the resulting 

PGM can be used to estimate uncertainty levels and as a source of prior information. 

2.3 Utilisation of information entropy for local conditioning  

Information entropy has recently been introduced in geological modelling by (Wellmann and Regenauer-Lieb, 2012) and is 

gaining popularity as a measure of uncertainty in probabilistic geological modelling (de la Varga et al., 2018; de la Varga and 15 

Wellmann, 2016; Lindsay et al., 2014; Lindsay et al., 2013; Pakyuz-Charrier et al., 2018; Schweizer et al., 2017; Thiele et al., 

2016; Wellmann et al., 2017; Yamamoto et al., 2014). Quoting (Schweizer et al., 2017), information entropy “quantifies the 

amount of missing information and hence, the uncertainty at a discrete location”. For the 𝑖th model-cell, it is given as (Shannon, 

1948):  

𝐻𝑖 = 𝐻(𝝍𝒊) = − ∑ 𝜓𝑘
𝑖

𝐿

𝑘=1

log(𝜓𝑘
𝑖 ). (2) 

 20 

Instead of using 𝑯 directly, we calculate 𝑾𝑯 utilising its normalized complementary, which reflects the degree of certainty 

across the model. Let us express 𝑾𝑯 as follows, for the 𝑖th model cell:  

𝑊𝐻
𝑖 =

max 𝑯 − 𝐻𝑖

max 𝑯 − max 𝑯
 (3) 

The consequence of Eq. (2) and 3 is that 𝑾𝑯  is minimum at interfaces and in areas poorly constrained by geological 

information, and equal to unity in areas where the geology is well resolved. Consequently, the conditioning process attaches 

small weights to the structural term of Eq. (1) in uncertain cells, while consistently high values will be applied to the most 25 

geologically certain cells. As a result, it enables the inversion algorithm to favour nearly constant changes in the inverted model 

in contiguous certain groups of cells (e.g., where 𝑾𝑯 → 1) while relaxing the regularisation constraints in the most uncertain 

parts (e.g., where 𝑾𝑯 → 0).  
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For proof-of-concept validation, we simulated an idealized case study to assess the capability of inversion using 𝑾𝑯 as per 

Eq. (3) to improve inversion results compared to the non-conditioned case (e.g., with 𝑾𝑯 equal to the identity matrix). We 

tested the proposed methodology using synthetic geophysical data calculated from the structural geological model of the 

Mansfield area of (Pakyuz-Charrier et al., 2018), which we populated in the same fashion as (Giraud et al., 2017). The analysis 5 

of inverted models demonstrates the potential of the proposed inverse modelling scheme to ameliorate inversion results and to 

reduce interpretation uncertainty (see details in Appendix A). Importantly, in this synthetic case, local conditioning allows 

geophysical inversion to significantly improve the imaging of geologically uncertain areas. From the success of that theoretical 

proof-of-concept study, we are confident that our integration method can be tested here using real world data for field 

validation. 10 

3 Field validation: Yerrida Basin case study  

3.1 Geological context and geophysical survey setup 

The Yerrida Basin is located in the southern part of the Capricorn Orogen, at the northern margin of the Yilgarn Craton in 

Western Australia (Fig. 1a), and extends approximately 150km N-S and 180 km E-W (Fig. 1b). The studied area is delimited 

in the northwest by the Goodin Fault, which represents a faulted contact between the Yerrida Basin and the Bryah-Padbury 15 

Basin. The structures of interest in this work are: Archean greenstone belts extending north-northwest that are unconformably 

overlain by Paleoproterozoic sedimentary rocks the form the Yerrida Basin. Features A and B (Fig. 1a and Fig. 1b) indicate 

the interpreted position of buried Wiluna Greenstone Belt. Where the Wiluna Greenstone Belt is exposed, it is host to base and 

precious metal mineralisation (Williams, 2009). With a relatively high positive density contrast (expected to be between 190 

and 270 kg.m-³) to the Yilgarn Craton granite-gneiss host, mafic greenstone belts A, B, and C are suitable targets for gravity 20 

inversion. Interpretations from multiple studies in the region, e.g, (Johnson et al., 2013; Pirajno et al., 1998; Pirajno and 

Adamides, 2000; Pirajno and Occhipinti, 2000) were compiled while additional geological measurements acquired in 2015, 

2016 and 2017 complemented legacy data (Occhipinti et al., 2017; Olierook et al., 2018). This allowed the revision of existing 

models and improved our understanding of the area. This, in turn, also highlights the challenges presented by the 

characterization of greenstone belts A, B and C, and that further geophysical analysis through constrained inversion is a useful 25 

pathway for reducing exploration risk.  

Inverted geophysical data consists of ground surveys obtained from Geoscience Australia (http://www.ga.gov.au/data-pubs). 

Post-processing includes spherical-cap and terrain corrections and the removal of the regional trend to obtain the complete 

Bouguer anomaly, which we forward model following (Boulanger and Chouteau, 2001). As most data points were acquired 1 

to 4 km apart, the dataset was resampled to match the geological model discretization, making up a total of 4882 measurement 30 

points. The model is discretized into 100 × 100 × 42 cells of dimensions 2.335 km × 1.875 km × 1.0475 km, down to a depth 
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of 44 km, making up a total of 420000 cells. We utilize the integrated sensitivities technique of (Li and Oldenburg, 2000; 

Portniaguine and Zhdanov, 2002) to precondition the data term in Eq. (1) in order to balance the decreasing sensitivity of 

gravity field data with depth.   

 

 5 

 

Figure 1. Geological context and geophysical data. (a) Geological map of the area and (b) complete Bouguer anomaly. The dashed lines 

delineate the possible sub-basin extent of the mafic greenstone belts A, B and C.  

3.2 Geological modelling 

Geological data consists of in-situ structural measurements (interfaces and foliations) and interpretation of aeromagnetic, 10 

airborne electromagnetic, Landsat 8 and ASTER data. Legacy data from the Geological Survey of Western Australia (Pirajno 

and Adamides, 2000) and CSIRO (Ley-Cooper et al., 2017) were used, to which about 600 data points and petrophysical 

measurements from recent geological field campaigns were added. Although the available petrophysical measurements are not 

used to derive petrophysical constraints because of the insufficient sampling of several of the modelled lithologies, they are a 

useful source of information to populate geological models and for interpretation.  15 

These datasets were used jointly to build a reference geological model for MCUE simulations, after which lithologies with 

similar density contrasts were merged and subsequently treated as a single rock type. Uncertainty related to structural 
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measurements was subsequently used as inputs to the MCUE perturbations (Pakyuz-Charrier et al., 2018) of the reference 

model to generate a collection of 500 accepted models. Information extracted from the PGM displayed in Fig. 2. Figure 2a 

shows the lithologies with the highest probability for each cell of the PGM. The associated 𝑾𝑯 values used in inversion are 

shown in Fig. 2b. The starting model for inversion, which we also use as prior model 𝒎𝒑, is equal to the mean model of the 

500 plausible models generated by MCUE, is shown in Fig. 2c.  5 
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Figure 2. Geological modelling results. (a) Most probable lithology in each model cell (same colour code as in Fig. 1) (b) values used for 

local regularization conditioning, (c) and starting model derived from PGM and prior petrophysical information). In (a), “background” refers 

to all the lithologies that have a density contrast equal to 0 kg.m-³. 
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3.3 Inversion results and analysis 

Our analysis aims at determining the influence of the local conditioning of structural constraints on inversion through 

comparison with the non-conditioned case, all other things remaining constant.  

3.3.1 Comparative analysis strategy 

Prior to examination of the inverted models, we analyse geophysical data misfit after inversion for a fixed number of major 5 

iterations (100) of the least-square geophysical inverse solver superior to that needed for convergence of the inversion 

algorithm (~10 in this case). This enables us to ensure that the inversion results we compare produce, in our case, similar 

gravity anomalies. Our study of inverted models focuses on results obtained through usage of non-conditioned (Fig. 3a) and 

conditioned regularization function (Fig. 3b) using 𝑾𝑯 (Fig. 2b). In addition to departures from the starting model, variations 

between the two cases are studied by visual comparison of Fig. 3a and Fig. 3b, through qualitative (Fig. 3c) and quantitative 10 

comparative analysis (Fig. 3d-e). Our interpretation of inversion results is complemented by metrics quantifying the differences 

between models. We give particular attention to model cells where the probability of mafic greenstone is superior to zero. For 

these cells, we classify lithologies by identifying cells with a density contrast corresponding to mafic greenstone.  

3.3.2 Results 

Data root-mean-square (RMS) error decreases during inversion from 12.46 mGal to reach 1.59 mGal and 1.53 mGal for the 15 

non-conditioned and conditioned cases, respectively. The corresponding data misfit maps show a linear correlation coefficient 

of 0.999 (see details in Appendix A3 and Fig. A3). This similarity illustrates that, as in many other studies, most changes 

related to holistic data integration in geophysical inversion occur primarily in model space, hence reducing the effect of non-

uniqueness (Abubakar et al., 2012; Brown et al., 2012; Demirel and Candansayar, 2017; Gallardo et al., 2012; Gallardo and 

Meju, 2004, 2007, 2011; Gao et al., 2012; Giraud et al., 2017; Guo et al., 2017; Heincke et al., 2017; Jardani et al., 2013; 20 

Juhojuntti and Kamm, 2015; Molodtsov et al., 2013; Moorkamp et al., 2013; Rittgers et al., 2016; Sun and Li, 2016, 2017). 

Qualitatively, comparison of Fig. 3a and Fig. 3b reveals that departures from the starting model (Fig. 2c) are more significant 

in the most geologically uncertain areas. Quantitatively, the RMS model update for cells characterized by 0 ≤ 𝑾𝑯 < 0.05 

(most uncertain group) is equal to 40.1 𝑘𝑔 𝑚3⁄  and 51.5 𝑘𝑔 𝑚3⁄ , for the non-conditioned and conditioned cases, respectively, 

whereas the same quantities are equal to 17.7 𝑘𝑔 𝑚3⁄  and 16.9 𝑘𝑔 𝑚3⁄  for the cells identified by 0.95 < 𝑾𝑯 ≤ 1 (most 25 

certain group). This suggests that local regularization conditioning allows inversion to update the model preferentially in 

geologically uncertain areas. In turn, differences with the starting model in more geologically certain areas are reduced 

compared to the non-conditioned case. This effect of conditioning is corroborated by Fig. 3c where the longest distances to the 

dashed line, which represents equal model update for the two studied cases, occur in geologically uncertain areas. This also 

translates in higher difference between model updates of the two compare cases in Fig. 3d for lower values of 𝑾𝑯. In addition, 30 
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we observe that local conditioning produces stronger density contrasts in Fig. 3b in some of the areas where the conditioning 

values are higher in Fig. 2b. Furthermore, structures in the inverted model are easier to identify when local conditioning is 

used. It is confirmed by global roughness measures ‖∇𝒎‖2  equal to 3.4 (𝑘𝑔 𝑚3⁄ )/𝑚  and 4 (𝑘𝑔 𝑚3⁄ )/𝑚  for the non-

conditioned and conditioned cases, respectively. More specifically, as shown by Fig. 3e, this difference arise in parts of the 

model associated with lower 𝑾𝑯, which characterize uncertain areas, including interfaces between lithologies.  5 

The recovered greenstone belts are shown in Fig. 3a and Fig. 3b.  In Fig. 3b, the extension of recovered mafic greenstone belts 

is significantly different than when geological uncertainty is not accounted for (Fig. 3a). In particular, belt A is significantly 

larger in Fig. 3b than in Fig. 3a (2.4×102 km3 vs 4.6×102 km3). Similarly, the extent of belt C is increased overall (volume of 

5.3∗ 102km³ vs 14×102km3), while its different portions reconnect; the northern half is also significantly shallower and broader 

than in Fig. 2a and Fig. 3a. It appears that belt A remains thinner and shallower (Fig. 3b) than suggested by the preferred 10 

lithology volume (Fig. 2a). While similar geometries for belt B are recovered in Fig. 3a and Fig. 3b, they both differ from Fig. 

2a as only the eastern part is preserved. Note that it is larger in Fig. 3b, with a volume 40% higher than in Fig. 3a. As discussed 

in the next subsection, these differences have a signification impact on the interpretation of inversions results and are important 

to understand the influence of local conditioning on inversion.  
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Figure 3. Comparison of inversion results. (a) inverted models with non-conditioned regularization weights, and (b) using local conditioning, 

(c) cross-plot between the corresponding absolute value of the update of the starting model, (d) difference in model updates  𝜹‖∆𝒎‖ =
‖𝒎𝒄𝒐𝒏𝒅 − 𝒎𝒏𝒐𝒄𝒐𝒏𝒅‖𝟐 as a function of values of 𝑾𝑯 and (e) difference in model roughness 𝜹‖𝜵𝒎‖ = ‖𝜵𝒎𝒄𝒐𝒏𝒅‖𝟐 − ‖𝜵𝒎𝒏𝒐𝒄𝒐𝒏𝒅‖𝟐 as a 

function of values of 𝑾𝑯. The model cells labelled A, B and C are interpreted as mafic greenstone belts. All voxels are coloured as a function 5 
of density contrast.  
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3.4 Interpretation  

Note that, in contrast to the differences between inversion results highlighted above for belts A and C, differences between the 

inverted models in the north-eastern part of the model and the different interpretations of belt B (Fig. 3a and Fig. 3b) are small. 

This shows that locally conditioned regularization does not enforce changes in the inverted model everywhere geological 

uncertainty is high as uncertainty is only a reflection of potential errors. Rather, this indicates that in such cases, the guiding 5 

effect of such regularization will be exerted provided that it does not prevent the data term in 𝜃(𝒅, 𝒎) as per Eq. (1) from 

decreasing. This also confirms that geophysical data is the main driver of the model updates in geologically uncertain areas. 

Instead of smooth departures from the starting model to match geophysical data regardless of geological considerations, local 

regularization constraints allow inversion to account for the probabilistic geological modelling of the area and for geological 

uncertainty. It can therefore provide results that conform better to known geology. 10 

In consequence, by confronting a probabilistic geological model encapsulating all MCUE realizations with geophysical 

measurements in an inversion scheme favouring model updates in the most geologically uncertain areas, inversion 

complements probabilistic geological modelling in that it guides and refines the interpretation of the geoscientific data in the 

area. 

Geophysical inversion using geological uncertainty information (Fig. 2b) confirms the presence of high density anomalies that 15 

we interpret to be the mafic components of the greenstone as suggested by MCUE in several portions of the model. It also 

adjusts the outline and geometry of belts A, B and C to obtain a model honouring geological uncertainty information. In 

particular, mafic greenstone A and B may be smaller than the extent suggested by the PGM, and mafic greenstone C shallower 

than anticipated. Inversion results interpretation also reveal that greenstone B might be extended further to the east than 

indicated by the preferred lithology volume (Fig. 2a) and that greenstone C may be thinner in its central part.  20 

4 Conclusions 

We have introduced a new integration scheme for the inversion of gravity data that utilizes a measure of geological uncertainty 

to calculate locally-conditioned gradient regularization constraints. Contrarily to previous work, this approach enables the 

integration of probabilistic geological modeling in geophysical inversion in the absence of petrophysical information sufficient 

to the calculation of petrophysical constraints. It uses geophysical measurements to optimize the inverse problem by updating 25 

the physical property model preferably in geologically uncertain parts of the studied area during what we called uncertainty-

guided inversion. This therefore partly mitigates inversion’s non-uniqueness through the addition of constraints encouraging 

inversion to produce models that account for geological uncertainty across the entire inverted volume. We have demonstrated 

that it can be used collaboratively with geological modelling efficiently through field application in the Yerrida Basin. 

Inversion results show that our integration methodology has the capability to refine the recovered physical property model and 30 

interpretations in portions of the model where geological uncertainty is high. Another advantage of the proposed technique 
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pertains to its time and cost-effectiveness as our workflow utilizes the PGM resulting from geological modelling and requires 

the same parameterization as non-conditioned inversion.  

In the Yerrida Basin study area, application of the proposed methodology provided the effective delineation of the greenstone 

belts by quantitatively integrating geological measurements and geophysical data. Our findings suggest that some of the 

greenstone belts covered by the basin might be shallower than previously anticipated and occupy smaller volumes. This is 5 

particularly pronounced in the North-East (belt C) where the resulting model is in agreement with the shallowest cases allowed 

by the PGM. Likewise, in the South (belt A), only the shallowest part of the mafic greenstone body can be resolved, while the 

south-eastern (belt B) greenstone belt appears to be limited in extension to the eastern part of the volume where it is the 

preferred lithology in the PGM. In such cases, this can also indicate that these greenstone bodies might be too thin to be imaged 

by gravity data. These results have implications for the geological knowledge of the southern Capricorn Orogen as they indicate 10 

reduced (compared to the preferred lithology volume) mafic greenstone volumes under the Yerrida Basin on one hand, and 

decreased cover thickness on the other hand, thereby opening the door to updates in the geological interpretation of the history 

of the Yerrida Basin and potential new undercover exploration prospects.   

Future research include the utilization of local petrophysical constraints of (Giraud et al., 2017) in the uncertainty-guided 

inversion scheme we presented, as well as its application to weight the cross-gradient term of (Gallardo and Meju, 2003) in 15 

joint inversion schemes. With this last respect, uncertainty-guided inversion can be assisted in the most uncertain parts of the 

model by guided inversion (in the sense of Brown et al., 2012) or through cross-gradient joint inversion. 

 

Code and data availability. Reference property models, inversion results and recovered models relating to the Yerrida Basin 

shown in this article are made available online: Jeremie Giraud, Mark Lindsay, and Vitaliy Ogarko, 2018, Yerrida Basin 20 

Geophysical Modeling - Input data and inverted models. (Version version 1.0) [Data set]. Zenodo. 

http://doi.org/10.5281/zenodo.1238216. Reference property models, inversion results and recovered models relating to the 

synthetic case from the Mansfield area shown in this article are made available online: Jeremie Giraud, Vitaliy Ogarko, and 

Evren Pakyuz-Charrier, 2018, Synthetic dataset for the testing of local conditioning of regularization function using geological 

uncertainty. (Version version 1.0) [Data set]. Zenodo. http://doi.org/10.5281/zenodo.1238529 25 

Appendix A:  proof-of-concept using synthetic case study  

This Appendix introduces the proof-of-concept of the proposed method through an idealized case study illustrating the 

potential of the proposed inverse modelling scheme to ameliorate inversion results and to reduce interpretation uncertainty. 

We use the same 3D density contrast model as (Giraud et al., 2017), which is obtained using the structural framework and 

PGM of (Pakyuz-Charrier et al., 2018). The short presentation of the model below and the analysis of results provides essential 30 

information and support about the proof-of-concept of the methodology used in the paper.  
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A1 Synthetic survey setup  

The 3D unperturbed geological model was generated from contact (interface points) and surface orientation (foliations) field 

measurements collected in the Mansfield area (Victoria, Australia). It presents a Carboniferous mudstone-sandstone basin 

oriented N170, abutting a faulted contact with a folded ultramafic basement to the South-West. Model complexity was 

artificially increased through the addition of a North-South fault and of a mafic intrusion.  5 

The reference density contrast model (Fig. A4a) was obtained assigning density contrasts consistently with the structural 

setting of the unperturbed model, assuming a flat topography. Density contrasts of 0 and 100 kg.m-³ were assigned to the upper 

and lower basin lithotypes, respectively. Mafic rocks were assigned a density contrast of 200 kg.m-³ while the density contrast 

of the ultramafic basement was set to 300 kg.m-³.  

MCUE perturbations of the reference model were performed using standard measurement uncertainty values recommended 10 

by metrological studies as reported by (Allmendinger et al., 2017; Novakova and Pavlis, 2017) generating a series of 300 

models subsequently combined into a PGM. The resulting volume representing the 𝑾𝑯 values calculated from this PGM in 

each cell of the model as per Eq. (3) is show in Fig. A4b.  

 

Figure A4.  Reference model and 𝑾𝑯 values used for local regularization conditioning. (a) Unperturbed reference model with density 15 

contrast value, (b) uncertainty values used for local regularization conditioning.  

(b)

(a)

(c)
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A2 Comparison of inversion results  

To assess the impact of local conditioning of the regularization function, we compare inversions using non-conditioned (Fig. 

A5a) and locally conditioned (Fig. A5b) regularization function, respectively. Please note that, simulating the absence of prior 

petrophysical information, a homogenous starting model set to 0 kg.m-³ was used in both cases. 

 5 

 

Figure A5. Comparison of inversion results. (a) Inverted models with non-conditioned regularization weights, and (b) using local 

conditioning. 

Besides qualitative visual comparison of the models, we interpret inversion results through the commonly used model and data 

root-mean-square error (RMSE). We evaluate the geometrical similarity between insverted and true model through the Bravais-10 

Pearson correlation (also often called ‘linear correlation coefficient’) between their gradients (Table A1).  

Comparison of the reference model (Fig. A4a) with inversion results in Fig. A5a and Fig. A5b shows that while the structures 

in shallowest part of the model are well retrieved in both cases, it appears that they are considerably better recovered through 

usage of conditioned regularization overall (Fig. A5b). The guiding effect of 𝑾𝑯  is visible in Fig. A5b where the main 

structures at depth follow the genesral features of the conditioning volume (Fig. A4b). Moreover, in order to minimize the 15 

conditioned regularization constraint simultaneously to data misfit, inversion was driven to accommodate inverted model 

values (Fig. A5b) such that they are closer to the causative model (Fig. A4a) than without conditioning (Fig. A5a). This leads 

(a)

(b)
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to reduced model RMSE on one hand, and data RMSE on the other hand (Table A1). This reduction in data RMSE can also 

be explained by the relaxation of the constraints in several portions of the model, thus increasing the degree of liberty to 

accommodate the model towards lower data misfit. Importantly, the Bravais-Pearson correlation between the inverted and 

reference model gradients is nearly three times higher when information from information entropy is used, which indicates 

that local conditioning of the regularization function also allows for significantly better retrieval of the causative bodies’ (e.g., 5 

true model) structural features.   

From these observations, we conclude that the application of the local conditioning scheme can fulfill the objectives of data 

integration in inversion as it is capable to recover models that are closer to the causative bodies and easier to interpret, while 

potentially providing reduced data misfit.  

A3 Data misfit maps from inversion in the Yerrida Basin  10 

Figure A6 below relates to the analysis of data misfit in Sect. 3 of the article through the plot of the data misfit maps for the 

non-conditioned and conditioned cases (Fig. A6d and Fig. A6h, respectively). It is complemented by the corresponding plots 

of starting (Fig. A6a and Fig. A6e), observed (Fig. A6b and Fig. A6f), and calculated data (Fig. A6c and Fig. A6h). Note that 

Fig. A6c and Fig. A6g show little visual differences, and that Fig. A6d and Fig. A6h exhibit similar features while showing 

limited coherent signal.  15 

 

 

Figure A6. Comparison of input and output geophysical data. (a) and (e) show data calculated from the starting model, (b) and (f) input 

measurements, (c) and (g) data calculated from the inverted model, and (d) and (f) the absolute value of the difference of the misfit between 

the observed and calculated data. (a)-(d) (e.g., first line) and (e)-(h) (e.g., second line) correspond to the non-conditioned and conditioned 20 

cases, respectively. 

(a) (b) (c) (d)

(h)(e) (f) (g)
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Table A1. Indicators for comparison of inversion results in terms of model, data, and structure.  10 

 

 Model RMSE (kg.m-³)  Data RMSE (m.s-²) Bravais-Pearson correlation 

between gradients 

Non-conditioned regularization 74.66 2.38*10−9 0.18 

Locally conditioned regularization 53.05 7.44*10−10 0.53 
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