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Abstract. We develop an amplitude spectral ratio method for event couples from clustered earthquakes to estimate seismic

wave attenuation (Q−1) in the source volume. The method allows to study attenuation within the source region of earthquake

swarms or aftershocks at depth, independent of wave path and attenuation between source region and surface station. We

exploit the high frequency slope of phase spectra using multitaper spectral estimates. The method is tested using simulated full

wavefield seismograms affected by recorded noise and finite source rupture. The synthetic tests verify the approach and show5

that solutions are independent of focal mechanisms, but also show that seismic noise may broaden the scatter of results. We

apply the event couple spectral ratio method to North-West Bohemia, Czech Republic, a region characterized by the persistent

occurrence of earthquake swarms in a confined source region at mid-crustal depth. Our method indicates a strong anomaly of

high attenuation in the source region of the swarm with an averaged attenuation factor ofQp < 100. The application to S phases

fails due to scattered P phase energy interfering with S phases. The Qp anomaly supports the common hypothesis of highly10

fractured and fluid saturated rocks in the source region of the swarms in North-West Bohemia. However, high temperatures in

a small volume around the swarms cannot be excluded to explain our observations.

Copyright statement. TEXT

1 Introduction

The intrinsic and scattering attenuation of the amplitudes of seismic waves is described by the dimensionless factor Q. The15

mapping of spatio-temporal changes of Q is an important step in seismology, since Q is controlled by temperature, rock poros-

ity, fluid saturation and rock composition (Toksöz et al., 1981). Hence, this factor may help to unravel the possible causes of

fluid-induced earthquakes, or thermal anomalies in crustal regions affected by magmatic intrusions. For instance, North-West

Bohemia is regularly affected by earthquake swarms lasting several days or weeks with thousands of recorded events with

largest magnitudes up to Ml 4.4 (Fischer et al., 2014). The causes of the repeated earthquake swarms which occur in narrow20

focal zones remain under debate. Relative earthquake localizations are very precise because of the high waveform quality

recorded with a dense local permanent network (Bouchaala et al., 2013). Different tomography studies revealed consistent fig-
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ures of the 3D velocity structures (Alexandrakis et al., 2014). The attenuation structure in the source region of the earthquake

swarms is scarcely discussed. Some previous studies on whole raypath Q exist and can be used for verification and bench-

marking. However, the main aim of this study is to test whether the here developed method can enhance the resolution of near

source Q and therefore enable more robust conclusions on source dynamics and the role of fluids in the swarm cycle.

Several studies investigated the regional attenuation of North-West Bohemia by integrating along the full path from sources to5

receivers. Gaebler et al. (2015) estimated intrinsic and scattering attenuation of S waves (Qs) by means of 14 selected events.

Their frequency dependent results indicate mean Q̄s of approximately 1000. A study by Michálek and Fischer (2013) investi-

gated source parameters and inferred a station dependent, regional Qp from P phase spectra. They estimated mean Qp ranging

between 100 and 450. They also discuss effects of directivity on Q concluding that the directivity has little influence due to the

position of stations with respect to radiation patterns.10

A tomographic study of North-West Bohemia done by Mousavi et al. (2017) indicated a regional average attenuation of ap-

proximately Qp ≈ 100 to Qp ≈ 300 and a pronounced highly attenuative source region where Qp < 100.

Bachura and Fischer (2016) employed two different methods to resolve the regional coda Qc from the source volume to re-

ceivers. They used 13 selected events of the 2011 swarm and found a variation ofQc between 100 and 2500 within the exploited

frequency range of 1-18 Hz.15

A recent work by Wcisło et al. (2018) used a newly developed differential attenuation estimation technique focused on the

source region. The authors employed the peak frequency method which relates the half-period of P pulses to attenuation. They

also used a differential approach to map the inter-event attenuation using a single station (NKC) and found Qp ≈ 120 and

Qs ≈ 80 in the source region.

Most previous Q studies focusing on NW Bohemia were inherently of low spatial resolution. Firstly, either because Q was20

estimated for the integral ray path between sources and stations (except for the work by Wcisło et al. (2018)) or secondly,

because they focused on low frequencies, or both. E.g. Mousavi et al. (2017) used frequencies between 1 to 30 Hz and Gaebler

et al. (2015) up to 32 Hz.

In this study, we aim to increase the spatial resolution and to resolve Q for waves traveling only within the small source region

of the earthquake swarms. The developed event couple spectral ratio method is based on the assumption of an exponentially25

decreasing spectral slope at high frequencies ω above the corner frequency of the earthquake, often referred to as the ω2 model

(Aki, 1980). From the ratio of the spectral slopes of two events one can estimate the attenuation of P and S phases for the

ray path between the two events, given the differential travel time of both events. Matsumoto et al. (2009) exploit amplitude

spectral ratios of direct P phases and normalize the spectra with the coda energy to compensate for source effects. Opposed

to their approach we focus on the higher frequency content to achieve a higher resolution needed to map the compact source30

volume.

The spatially compact seismic clusters in NW Bohemia provide us with a favorable case study scenario due to the high sim-

ilarity of source characteristics (Michálek and Fischer, 2013). We test our method on data recorded from October 6 until

October 13, 2008 and a double-difference relocated event catalog of 3841 events with local magnitudes between -0.9 and 3.5

(Fischer and Michálek, 2008). The high density of events during earthquake swarms clustering within a small and confined35
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region allows to infer the local attenuation from event couples, by applying the spectral ratio method (Aki, 1980) to their high

frequency amplitude spectra as we will explain in the following section. One major issue when calculating spectral content of

very few data samples is spectral leakage, as a result of the finiteness of the time window under study. In order overcome this

problem Thomson (1982) proposed the multitaper method, which we employ using mtspec (Prieto et al., 2009; Krischer, 2016).

5

2 Method

A velocity spectrum A(ω) of a direct body wave phase originating from a source j recorded at a station i can be described as

(Sanders, 1993):

Ai,j(ω) = Sj(ω)Ii(ω)Ri(ω)Gi,j · e
−ωt∗i,j

2 (1)

where ω is the angular frequency. Sj(ω) describes the source spectrum and Ii(ω) the instrument response.Ri(ω) is the receiver10

site effect. Gi,j is the frequency independent geometric loss. The exponential term depends on the angular frequency ω and t∗,

the path integrated attenuation from the source to the receiver:

t∗ =

∫
Q−1/vds (2)

with Q as the dimensionless quality factor, velocity v of the medium and ds a segment along the ray path from the source

to the receiver. Attenuation is considered here as a combination of intrinsic and scattering losses. Instead of estimating a15

total t∗ describing the full ray path’s attenuation we estimate a local t∗ from velocity spectra of two earthquakes sharing the

greater part of their ray paths from the seismogenic zone to a receiver. Site effects as well as the receivers response functions

cancel out when two spectra recorded at the same site are analyzed by means of amplitude ratios. Let Aj,0 and Aj,1 be two

velocity amplitude spectra of events E0 and E1 (in the following referred to as first and second event of a couple) recorded at

a station j (Figure 1). We assume that their source spectra S0(ω) and S1(ω) resemble each other to a degree where the effect20

of random perturbations at high frequencies average out when the proposed method is applied to many couples. Taking the

natural logarithm of the spectral ratio of Ai,0 and Ai,1 yields:

ln(Ai,0(ω)/Ai,1(ω)) = ln(
Gi,0

Gi,1
)−ωδt∗/2 (3)

with

δt∗ = t∗i,0 − t∗i,1 (4)25

This equation describes a linear relation with frequency independent geometrical losses to the left of the negative sign in

equation 3. The slope k of a line fitted to equation 3 can be used to derive the attenuation time t∗ in between the two sources

from which Q−1 can easily be inferred using equation 2.

The far field amplitude spectrum A(ω) of P and S phases can be parameterized as follows: a seismic moment dependent low

frequency plateau, the corner frequency fc and the high-frequency spectral decay approximately proportional to ω2 resulting30
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Figure 1. Schematic illustration of the geometrical constraints and the employed parameters. The triangle represents a recording station at

the surface. Attenuation is estimated for the traversing distance ray path segment (Dt, green dashed line). Geometrical constraints respect

the passing distance (Dp). Grey shaded area illustrates the Fresnel volume of the first event.
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Figure 2. Ray segments with respect to stations LBC and NKC. Source region seen from West (left) and from South (right). The colors indicate

the station at which the displayed ray segment arrived as well as the underlying source of the segments. Grey points show hypocenters which

occurred during the investigated time interval but were not attributed to an event couple.

from finiteness of particle rise time and the rupture duration (Aki and Richards, 2002). To remove the dependence on seismic

moment we investigate the high-frequency spectral decay, only. Furthermore, exploiting spectral content above the corner

frequency also reduces source directivity effects on attenuation estimates (Cormier, 1982).

We infer the corner frequency based on previous studies on NW Bohemia seismic swarms. We use a relation proposed by

Michálek and Fischer (2013) to calculate source radii r based on the moment M0 of an event:5

r = 0.155 ·M0.206
0 (5)

where M0 = 1.38ML + 10.3. The resulting source radii r are then converted to fc using

fc = kβ/r (6)

with k = 0.32 (Madariaga, 1976), and β = 3.5 km/s, which is a reasonable assumption for the source region (Michálek and

Fischer, 2013). We increase the lower frequency limit (fmin) used for our spectral analysis by additional 5 Hz with respect10

4



to fc to account for uncertainties in M0 and to ensure linearity of the high frequency decay. This approach allows frequency

bands being wide enough for employing a stable linear regression. The upper frequency limit fmax was chosen dependent on

the Fresnel volume (see below) of a couple’s first event (Figure 1) and the upper corner frequency of the anti-alias filter of

the recording equipment which is approximately 85 Hz. We calculate the power spectral density using the multitaper spectral

analysis method (MTM) (Thomson, 1982; Park et al., 1987). With this method the time series is multiplied with several5

orthogonal slepian tapers which are resistant to spectral leakage. The power spectral density is then reconstructed after Fourier

transformation of the tapered samples and a weighted summation of the resulting spectra. A more exhaustive explanation can

be found in Park et al. (1987). The applied code is a Python wrapper to the Fortran routine MTSpec (Prieto et al., 2009;

Krischer, 2016). MTM achieves stable spectral estimates also for very short time windows. A critical parameter of the MTM is

the number of slepian tapers as it balances the smoothness and precision of spectral estimates. We use the implemented default,10

which is

Ntapers = int(bw · 2)− 1 (7)

where bw is the bandwidth_factor which we set to bw = 4. Lower values prove to increase the number of outliers due to

increased spectral leakage. Higher values did not change the results significantly but are more expensive to compute.

We impose strong geometrical constraints to select event couples with respect to a station as sketched in Figure 1. Ray tracing15

is done based on a 1D velocity model suggested by Alexandrakis et al. (2014) for the seismogenic region combined with a

regional crustal model proposed by Málek et al. (2000) (Fig. 4, left panel). The first geometrical constraint is the traversing

distance (Dt, green dashed line, Fig 1) between an event E0 with respect to perpendicular projections of other hypocenters

onto that path. The second constraint is the passing distance (Dp, red dashed line in Fig 1) of that projection of E1 onto the ray

between E0 and the station. We defined a minimum traversing distance of Dt ≥ 1500 m to ensure that the signal of the second20

event is attenuated sufficiently to be detectable in the couple’s spectral ratio.

Subsequent to geometrical preselection upper frequency limits of the analyzed bandwidth are potentially corrected to lower

values dependent on the 2nd Fresnel volume in between event E0 and a station. The wavelength from which this frequency

limit can be deduced is given as (Matsumoto et al., 2009):

λ=D2
p

Dt +x

Dpxn
(8)25

Dp and Dt are passing distance and the traversing distance as defined above. x is the distance from the passing point with

respect to the second event E1 to the receiver (Figure 1). n is the number of the Fresnel volume. The frequency limit can

then be deduced from the wavelength and the wave velocity of the underlying medium. This approach provides a physically

meaningful limitation to impose on the frequency bandwidth. It ensures that E1 is located within the Fresnel volume (grey

shaded area in Figure 1) for the entire analyzed frequency band.30

With this approach we get an estimate for the attenuation along the traversing distance (green dashed line in Figure 1) and

when repeated for a large number of event couples can retrieve a median attenuation for the entire source region. The de-

scribed method is advantageous over other methods which require handcrafted features like onset duration picking as it can be

automatized given that an onset catalog is at hand.
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Figure 3. Mapping potential locations of future seismic stations favorable to resolve Q at the swarm using the described method. The size

of the blue points for each tested location represents the relative number of arriving shared ray paths from event couples. Red dots show the

seismicity of the investigated swarm. Green triangles indicate locations of the WEBNET stations.

3 Synthetic Study

In order to evaluate the expected number of exploitable couples given the geometrical constraints we calculate the relative

number of pairs at discrete surface points covering the region of North-West Bohemia. The size of the blue points in Figure

3 represents the relative number of arriving shared ray paths from event pairs at possible station sites based on ray tracing

through a 1D layered model (Fig. 4). Largest numbers of pairs are expected along a North-South striking patch which follows5

the striking direction of the main fault plane. However, in this case study we use only those stations which provide continuous

recordings for the investigated time span. These are stations KRC, LBC, NKC, SKC and VAC. After geometrical filtering we

expect stations NKC and LBC to produce the highest number of couples since they provide continuous recordings for the

entire time period and are in a favorable lateral location. Most other stations are located where no or a negligible number of

event pairs are expected. Figure 2 shows the rays which penetrate the source volume and fulfill the geometrical requirements10

described above. It shows that for events recorded at the most significant stations NKC and LBC the highest ray density and

therefore sensitivity is in the lower half of the seismogenic zone. This bias is more pronounced for recordings at station LBC.

Also, these ray segments sample the volume up to approximately 500 m to the West of the seismic swarm.

We use synthetic waveforms calculated using reflectivity method (Wang, 1999) employing the same 1D velocity model as

for ray tracing (Figure 4). The model simplifies the true conditions and therefore produces comparably clear phase onsets.15

However, the recorded data are also dominated by relatively little scattering and sharp onsets (Fischer et al., 2010). The effects

of scattering on the final results will be discussed in greater detail in sections 5.

Hypocentral locations and origin times are taken from the double difference relocated catalog of Fischer and Michálek (2008).

All synthetic sources are double couple sources with mean strike, dip and rake set to 170± 10, 80± 10 and −30± 10 degrees,

respectively, uniformly distributed in all three domains. The mean strike, dip and rake values are the predominant source types20

stated by Fischer et al. (2014) which were retrieved based on polarity analysis of P phases. The seismogenic zone (depth 8500
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Figure 4. Synthetic velocity and attenuation model used for validation of the method. The seismogenic zone is marked by light blue. The

attenuation in that zone is expected to be decreased with respect to the regional attenuation model.

m - 10500 m in Figure 4) has a Qp of 100 and Qs of 50. It is overlain by a more complex attenuation structure, characterized

by higher Q values.

In order to mimic uncertainties in origin times, locations and velocity model travel times are perturbed by 10 ms, uniformly

distributed. The uncertainties of the velocity model have an effect only in the source region since both rays of a couple traverse

through the same overlaying velocity model.5

The window length was 0.15 s for P and 0.3 s for S phases. The minimum allowed cross correlation of event couples in

synthetic tests and later application to real data was set to 0.75. Signal-to-noise ratio (SNR) of a phase under consideration

compared against a noise sample preceding the P phase has to be larger than 5 across the entire selected frequency band (after

slight spectral smoothing to reduce effects of spectral notches). These two requirements efficiently reject outliers. The minimum

allowed bandwidth is 10 Hz, which excludes all events with magnitudes of less than 0.5, given the magnitude dependent lower10

frequency limit (fmin = fc + 5.0Hz, where fc is calculated using equation 6). The bandwidth threshold stabilizes the linear

fit to the spectral ratio as it limits the minimum number of data points. We evaluate Qp from vertical channels and Qs on

North-South and East-West components and average results for each couple.

Data availability of the recorded dataset has been accounted for. Synthetic traces were only produced for an event if the

recorded dataset contains data as well. All synthetic traces where convolved with the transfer functions of the WEBNET15

stations to generate realistic velocity traces.

Figure 5 shows distributions of retrieved Q−1 estimates from all event couples of the synthetic test using noise-free traces. In

this as well as in the following test depicted in Figure 6 traces have not been convolved with a source time function (i.e. they

have impulsive source durations). The resulting distributions show some scattering solutions. Peaks in both cases (Qp and Qs)

resemble the targeted attenuation model (dashed, vertical line).20

The next test depicted in Fig. 6 includes additive recorded noise. Data windows without seismic events in the field recorded

data have been manually extracted and randomly added to synthetic traces to mimic realistic noise conditions. P phase results
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Figure 5. Synthetic tests targeting Qp = 100 (a)) and Qs = 50 (b)) with noise free data. No source time functions have been convolved. The

correct values for Qp and Qs are indicated by the vertical dashed lines. The station color coding as given in the legend is used consistently

throughout all following images.
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Figure 6. Synthetic tests with the same setup as in Figure 5 but with additive real recorded noise from analyzed stations. Again, traces have

not been convolved with a source time function.

show a broadening of the distributions at all stations. While the distribution of station LBC still centers around the model value,

the results of station NKC show only weak correlation with the correct model. This is a result of the location of station NKC

close to the nodal plane of the dominant rupturing plane where smallest signal amplitudes are expected. S phase results match

the model at NKC but show strong scattering at LBC as a result of the interference with the added noise as well as the P phase

coda.5

In a next step (Fig. 7) we convolve synthetic Greens functions with realistic magnitude dependent source time functions. The

applied source time function is half sine shaped where the slope of the high frequency spectral roll off is not dependent on

the width of the applied pulse as can be seen in Figure 8 where normalized synthetic source spectra are depicted for different

relative pulse widths. The vertical position of the spectral envelope changes with changing duration but the slope remains the
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Figure 7. Synthetic tests with the same setup as in Figure 6. Synthetic traces were convolved with magnitude-dependent synthetic source

time functions.

Figure 8. Normalized synthetic amplitude spectra of applied source time functions with different durations as a factor relative to the blue

one (factor=1). The slope of the high frequency spectral roll-off is identical.

same for all depicted factorized pulse widths. Other than expected, this stabilizes results. This is a result of the pulse broadening

which leads to a stabilization of MTM estimates as onsets become less transient.

The performed synthetic tests cannot reproduce waveforms in its full natural complexity. Nevertheless, they prove that the

concept is capable to estimate attenuation of the anticipated region.

4 Application to North West Bohemia5

North-West Bohemia is a favorable case for testing our approach. Several focal mechanism studies on earthquake swarms in

this region indicate dominant principle faults striking at 169◦ and 304◦ (Vavryčuk, 2011), which have been active in different

seismic sequences. Events occurring during a swarm tend to rupture on the same fault. This observation in combination with
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Figure 9. Two P phase wavelets recorded at station LBC and their spectra from events with local magnitudes Ml=1.2 and Ml=1.4. First two

panels show a) first and b) second event of the analyzed event couple. The grey shaded area in c) indicates the used frequency band. The

cross-correlation coefficient is 0.91 and the attenuation was in this case estimated as Q−1 ≈ 0.006

compactness of seismic clusters (Figure 10) explains the high similarity of waveforms observed for each swarm. We therefore

also assume that source characteristics including rupture directivity effects are similar throughout each swarm cycle.

By the time of the 2008 swarm the WEBNET stations were equipped with three component short period seismometers, except

for station NKC located in the epicentral area which is a broad band station. All waveforms are sampled at 250 Hz. An example

of a P phase onset recorded at station LBC is shown in Figure 9 together with the estimated amplitude spectra. A manual5

revision of all event waveforms has been done to remove those which show indications of event doublets happening shortly

after each other but not being indicated as such in the catalog. Spurious signal leftovers of a preceding event not necessarily

cause high distortion of the fundamental P phase waveform and may thus not be removed by setting a cross correlation

threshold. However, their effect lead to distortion at high frequencies of phase spectra and significantly increase the number of

outliers during the analysis. The catalog of HypoDD (Waldhauser and Ellsworth, 2000) relocated events is comprised of 384110

events and their associated P and S phase picks. When applied to station LBC, a total of 641 couples were used which fulfill

the requirements in terms of SNR, cross-correlation and geometrical constraints. Results of P phases evaluated at station LBC

(Fig. 11, left) have a median Q̄−1
p = 0.019, equivalent to Q̄p = 53. The distribution shows some negative results which do not

have a physical meaning and are related to noise in spectral estimates. Results retrieved based on data from station NKC are

significantly more unstable, as Figure 11 (left) indicates. The distribution shows a large number of negative results. The median15
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Figure 11. Attenuation results at stations LBC and NKC for Qp (a)) and Qs (b)). Median values are indicated by the overlined Q.

attenuation is Q̄−1
p = 0.001, equivalent to Q̄p = 1000. 1404 couples where used in this case.

Attenuation evaluated for S phases show almost zero centered distributions at both stations NKC and LBC which in turn means

significant number of negative and therefore unphysical measures. Median attenuation values are Q̄s
−1 = 0.0023 (Q̄s = 435)

at station NKC andQ−1
s = 0.0037 (Q̄s = 270) at stations LBC, respectively. Both values are comparably large compared toQp

estimates from station LBC. A bias of these S phase attenuation measures is introduced by the P phase coda energy interfering5

with S phases and therefore distorting the anticipated high frequency content.

In order to achieve a better understanding of the method’s breakdown for P phase recordings of station NKC we disable the
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Figure 12. Incidence angles plotted against Q−1
p of rays originating from event couples recorded at station LBC (left) and NKC (right).

Q−1
p = 0 is highlighted with a dashed line.

cross correlation threshold and scrutinize Q−1 against a multitude of parameters for station NKC and LBC. Figure 12 shows

incidence angles of rays of event couples on the y- andQ−1 on the x-axis. Incidence angles are estimated using a 1D raytracing

algorithm (Heimann et al., 2017). By definition the incidence angle is almost identical for both events of a couple. It becomes

evident from figure 12, b) that larger incidence angles (> 8 degrees) show a tendency at station NKC to produce negative Q−1

while results from events with steep incidence angles produce positive Q−1 values. When compared to the same kind of plots5

for station LBC no such trend is evident.

Station NKC is located at the northern edge of the swarm’s epicentral region. Hence, incidence angle approximately correlates

with latitude, indicating a location dependent problem. The depth sections of results from stations LBC and NKC (Figure 13)

show again that the attenuation is mostly positive (red) at station LBC (Fig. 13, a) and c)) in accordance with Figure 11. The

distribution of attenuation at station NKC (Fig. 13, b) and d)) indicates a trend of decreasing Q−1 values from North to South.10

This supports the hypothesis of a location dependent issue. Figure 13 d) shows accumulated positive results related to first

events at 1.4 to 2.0 km North (x-axis) which coincides with the position of a small sub-cluster seen in Figure 13 b) below

a depth of 9.8 km. From 1.2 to 1.4 km North the event couple distribution becomes more sparse. The separation of positive

attenuation in the North and mostly negative attenuation in the South of that gap implies a systematic change in frequency

content from two separated segments of the swarm occurring along raypaths from the source region to station NKC.15

Figure 14 shows P phase waveforms of first events of couples recorded at station NKC and LBC, filtered between 1 and

30 Hz for events northern (Fig. 14, left panels) and southern (Fig. 14, right panels) of the aforementioned gap. While the

used filter frequencies are actually below the exploited frequency band used in the analysis these waveforms demonstrate that

the waveform complexity is significantly higher for events recorded at station NKC than for those recorded at station LBC

indicating that scattering plays a major role along the ray paths to station NKC. The average shape of the waveforms following20

the first onset pulse differ in the northern and the southern sections. Furthermore, there are P phases with flipped polarities
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Figure 13. Spatial distributions of attenuation at station LBC (left) and NKC (right). The source region is depicted as seen from the West.

The origin of the coordinate system corresponds to the southernmost event. Panels a) and b) show average color coded attenuation results

of each used event. Panels c) and d) show the attenuation for each single event pair. First (deeper) events of each couple are represented by

the x-axes whereas second events of each couple are represented by the y-axis. Attenuation at station LBC is mostly positive. Sub-horizontal

seismicity gaps in panels a) and b) are caused by the set minimum distance (Dt) between two events.

which indicates that station NKC was situated closer to the nodal plane than station LBC. This aspect is in accordance with

synthetic tests in chapter III which show worse performance of station NKC then station LBC for P phase measures.

5 Interpretation and Discussion

We present a newly developed method to estimate attenuation from spectral ratios of event couples. The short analyzed time

windows are prone to spectral leakage which we mitigate by applying the multitaper approach. However, this method can only5

suppress leakage caused by windowing effects. Leakage from source effects such as finiteness of the slip and the rupture are

not smoothed as they are expected source characteristics and not filter artifacts.

The given geometry and available data limit the perceptive field of the applied method mostly to the lower half of the seismic

13



Figure 14. P phase onsets of couples’ first events in the northern and the southern part of the swarm area. Panel a) shows recordings at

station LBC, b) recordings at station NKC.

swarm (Fig. 2). Rays arriving at station LBC show a worse penetration of the focal zone compared to those arriving at station

NKC (Fig. 2) where the takeoff angle is almost perpendicular to the normal orientation of the main rupturing fault. Therefore,

the setting of sources with respect to station NKC is favorable from a geometrical point of view as it can be considered to have

a higher sensitivity for attenuation in the source volume.

Synthetic tests show that the method is capable to reproduce average source volume attenuation of Qp = 100 and Qs = 505

given the 2008 earthquake swarm hypocentral locations. In noise free condition a precise result can be achieved for both, P

and S phases at both significant stations NKC and LBC. With additive recorded noise, the distribution of QP results broadens

but still resembles the true attenuation with high precision at station LBC. Synthetic waveforms at station NKC suffer from

weaker SNR at high frequencies indicating that the applied SNR-threshold of 5 is too optimistic. However, reducing this value

would also reduce the number of data points and therefore have a negative impact on the statistical significance of results. Qs10

results at station NKC are more robust then at station LBC. Both measures, Qs and Qp, improve when convolving synthetic

waveforms with synthetic source time functions as this stabilizes the multitaper spectral estimates.

The application to recorded P phase onsets shows fewer negative Qp results at station LBC and than at station NKC which

results in a distribution with a clearer offset with respect toQp = 0. Waveforms recorded at station LBC are significantly higher

correlated than those at station NKC where changing waveform polarities and high waveform complexity can be observed. We15

hypothesize that rays arriving at NKC experienced relatively stronger scattering or that a nearby reflector creates multiples

which interfere with signals recorded at NKC. In the latter case, the reflector would have to be situated in a location where

interactions with signals arriving at LBC are weaker. Mousavi et al. (2017) assume a highly fractured medium in combination

with accumulated free gas or fluids which would cause a high attenuation in the source region and could therefore explain our

14



observations on low Qp. A 3D Vp/Vs tomography by Alexandrakis et al. (2014) identified a low VP /VS ratio body directly

overlaying the focal zone. The increased waveform complexity seen at station NKC can be a result of waveform interaction

with that body. The effects do not necessarily have an influence on results at station LBC where rays have different paths and

take off angles.

Another influence may be rooted in the different families of focal mechanisms. Vavryčuk et al. (2013) reported three different5

families of focal mechanisms for the 2008 swarm. While the slope of high frequency spectra should not directly be affected by

the radiation pattern, there can be higher order effects like rupture propagation and rupture complexity. Dependent on the take

off angle these rupture dynamics can affect the high frequency spectral roll off and therefore map into attenuation estimates

(Kaneko and Shearer, 2015). P phase polarity changes at station NKC indicate that the station is located close to the nodal

plane of the main rupturing fault. This circumstance can increase the effect of the aforementioned effects seen at station NKC.10

If they differ systematically in the lower and upper source region, this can lead to biases in attenuation analysis due to the

heterogeneous sensitivity across the fault plane. Still, we do not see such effects at station LBC and therefore speculate, that

the dominating effect is the differing raypaths or a combination of both, raypath scattering and rupture dynamics.

Our findings in terms of P wave attenuation based on data from station LBC show similarly low values compared to results

by Wcisło et al. (2018) who obtained Qp ≈ 120 for the source regions. Previous studies by Michálek and Fischer (2013)15

investigated source characteristics in NW Bohemia and suggested station dependent whole path integrated mean QP values

ranging between 100 and 450. We find lower values which can be a result of hydration of the seismogenic zone. Haberland

and Rietbrock (2001) also report highly increased attenuation (Q< 100) within earthquake cluster regions and postulated

that this could be related to hydration or partial melting. For instance, melt migration has been postulated from the size and

migration pattern of earthquakes of the 2000 earthquake swarm (Dahm et al., 2009). On the other hand, Alexandrakis et al.20

(2014) interpret their results on velocity variations by dehydration processes. Our results deduced from station LBC for average

attenuation are in line with previous findings pointing to high attenuation in the source volume.

Frequency bandwidth is a critical parameter which is limited mostly by the corner frequency of the recording setup and signal

to noise ratio at high frequencies. Future plans of the Intercontinental Drilling Project (ICDP) include the installation of up to

4 borehole seismometers in NW Bohemia. It can be expected that our method will benefit from these measurements. Improved25

signal to noise ratios allow to sample and exploit information at higher frequencies which will stabilize the spectral estimate.

Furthermore, higher sampling rates allow a better temporal (and therefore spectral) resolution of P and S phases. This will,

in turn, also allow to use even shorter time windows. For the method discussed here, it would be favorable if at least one of

these borehole stations will be situated in a location where a high number of ray path sharing couples can be found. The most

sensitive region follows the NNE - SSW striking of the fault and concentrates in the North of the earthquake swarm (Fig. 3).30

In late September 2017 the University of Potsdam installed a short period seismometer close to the Czech-German border in

Oberzwota (red triangle, map 10) which is a favorable location. The station recorded 1000 samples per seconds for 62 days

during a period of relative quiescence. Nevertheless, approximately 30 events were recorded in the swarm area with local

magnitudes down to Ml=0. Despite the installation directly on top of the weathering layer the recordings showed signal to

noise ratios larger than 5 at 120 Hz and above for smallest magnitudes. It becomes evident that even a surface mounted station35
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would allow to harness spectral information above the corner frequency of the WEBNET stations also for smallest magnitudes

and which indicates that this will improve the resolution and robustness of our method once the ICDP borehole installations

are operating.

6 Conclusions

Applying the source couple amplitude spectral ratio method to differential phase measures is an alternative to methods which5

commonly exploit the lower frequency ranges. Theoretically, it is therefore able to achieve better resolution. Our synthetic

study validates this. The geometrical constraints of this method require a high density of events as it is the case for natural

earthquake swarms or seismic nests but also for hydrofracturing experiments.

The application to data from the 2008 North West Bohemia earthquake swarm indicates source region Qp < 100 based on data

recorded at station LBC. The sensitive region measures only approximately 2000 ∗ 500 ∗ 500 meters in North, East and West10

direction (Fig. 2). Results can therefore be considered of high spatial resolution. Nevertheless, the distribution of solutions

significantly scatter and we see room for improvement e.g. through high frequency borehole recordings. We are not able to

retrieve stable estimates at station NKC but instead see negative attenuation in southern and positive attenuation in the northern

section of the swarm. P phase waveforms of the two sections show systematic differences at both significant stations which

indicates a North-South structural difference. Furthermore, this effect does not inflict on measures at station LBC. Given the15

fact that ray segments at NKC and LBC probe two different but directly neighboring media leads us to the conclusion that the

fractured medium is highly concentrated along the source patch and that the surrounding medium can be considered much

more dense or intact.

Author contributions. MK: Implementation, testing, evaluation and application to synthetic and recorded data, as well as paper writing.

SC: Scientific supervision, evaluation of tests and applications. MO: Scientific supervision, discussion, manuscript revision. TD: Scientific20

supervision, discussion, manuscript revision. FK: Scientific supervision, discussion, manuscript revision.

Competing interests. None

Acknowledgements. This work is part of the HISS project which is funded by the DFG ICDP. Project no.: CE 223/2-1

16



References

Aki, K.: Attenuation of shear-waves in the lithosphere for frequencies from 0.05 to 25 Hz, Physics of the Earth and Planetary Interiors, 21,

50–60, https://doi.org/10.1016/0031-9201(80)90019-9, 1980.

Aki, K. and Richards, P. G.: Quantitative seismology, University Science Books, Sausalito, California, 2 edn., 2002.
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Response to reviewer #1:

All references in the comments below refer to the references in the paper.

1. 1. Page 5, Line 23-25, “The size of blue points in Figure 3 represents relative number of pairs 
based on ray tracing through a 1D layered model”: What the blue dots in Figure 3 indicate is not 
clear. Earthquake swarms are indicated by red dots. Please elaborate more on the definition of 
“event couples” in this figure.
We extended the text in this section as well as in the figure caption to make clear that the blue 
points’ size scales with the number of arriving ray paths from event couples at theoretical 
station sites given the geometrical constraints described in the text.

2. Page 8, Line 7-8, “S phase results match the model at NKC but show strong scattering at LBC”. 
Can you elaborate why this is the case?
We extended the underlying paragraph to clarify this: “[…] as a result of the interference 
with the added noise as well as the P phase coda”.

3. Source time function is half sine shaped but the width depends on the magnitude, which seems 
realistic. Can you comment on how this source time function is representative in this field?
The source time durations we used in the synthetic modeling are based on estimates for the 
stress drop and source dimensions taken from the paper by Michálek (2013) for the 2000 - 
2008 swarm activity and are therefore assumed to be representative for the given task.

4. Velocity model is 1D (see Fig 4), and high frequency component that is used is C2 SED 
Interactive comment Printer-friendly version Discussion paper around 80 Hz (see Fig.9c). The short
wavelength component is around 60 m assuming Vp=5000m/s in this case. In 1D velocity model 
used in the test does not include any spatial heterogeneity in the order of this short wavelength. Can 
you comment on to what extent we can ignore effects of spatial heterogeneity that is sensitive to the
high frequency components in the data? I found that the authors discussed the effect of wave 
scattering in section 4 and 5. It would be good to mention here that these effects will be discussed 
later
We used the velocity model suggested by Alexandrakis (2014) which we assume is the most 
realistic 1D velocity model available. Small scale heterogeneities are expensive to model as 
these effects in the temporal and spectral domain can easily be outweight by and also cause 
numerical instabilities. We added a comment on the following discussion in the text and also a 
sentence with regard to the actual waveforms recorded in NW Bohemia which is typified by 
clear onsets, as well (see Fischer (2010)).

5. Figure 9: I did not find sentences explaining Fig. 9 in the main text.
We added a sentence and a reference regarding that figure in the text.

6. Page 11, lines 10-11, “It becomes evident that larger incidence angles (> 8 degrees) show a 
tendency to produce negative Qˆ−1 while results from events with steep incidence angles produce 
positive Qˆ−1 values.” : Please mention that this refers to Figure 12(b), otherwise it does not make 
sense.
We extended that sentence to highlight that this refers to station NKC and explicitly refer to 
that figure.

7. Page 13, Lines 21-22, “Mousavi et al. (2017) assume a highly fractured medium in combination 
with accumulated free gas or fluids. Our findings support this hypothesis.” : I did not see the clear 
relation between the authors results and this hypothesis. Please elaborate more



We clarified in the text that the hypothesis by Mousavi et al. (2017) would cause high source 
volume attenuation which is supported by our observations on P-wave attenuation.

Other minor comments:
All mentioned points have been corrected.



Response to reviewer #2

1. P3: the Method is described in a rather confusing way. Some examples: – t* in Eq(1) is different 
from t* in Eq(3). Instead t*ijshould be in Eq(1) and t* = t*i0 – t*i1 in Eq(3) – what do you mean by
saying ‘spectra S0 and S1 are similar’ – I think they should be identical so that Eq(3) holds. To 
make it clear refer to ‘below’ where this is clarified - there is a mistake in Eq(3): logarithm is 
missing in front of G0/G1
 We apologize and improved the methodological section considering all suggestions. We moved
the clarification on what ‘equal’ means with respect to the two spectra to an earlier 
paragraph.

2. Fig. 2: the hypocenters are not visible: what about plotting them in the upper layer?
Done.

3. P5/14: Please specify how are the upper frequency limits corrected to account for the Fresnel 
volume
We have added one short paragraph to specify the role of the Fresnel volume to limit the 
frequency content.

4. P5/23: The position of the blue points in Fig 3 is not clear; they do not appear to show the ray 
We rewrote the caption of figure 3 to clarify the meaning of the blue points.

5. P7/3: Which three requirements do you have in mind? I have found only two in the preceding 
text
Corrected. 

6. P8: Please explain the difference between synthetic traces in Figs 5, 6 and 7. It is not clear which 
source time functions were used to generate Fig. 5, 6 and 7. Were these magnitude-dependent in 
Fig. 7 only? And what about Green functions? To my understanding, the synthetic traces in Fig.5 
are computed using 1D model, which means (to my understanding) that the source time functions 
have been convolved with the appropriate Green function. So what is the difference in data for Figs 
5 and 7? Possibly only two instead of three figures are necessary here?
We now explicitly mention in the caption and text the source time function used to plot figure 
5, 6 and 7. This implies that figure 7 differs from the previous ones in the usage of the 
magnitude dependent source time function.

7. There is no reference in the text for Fig. 9
We added a reference and text introducing that figure.

8. Fig. 10: The swarm locations shown on the map look rather scattered – are these indeed the 
HypoDD locations you have used for the analysis?
The shown hypocentres are the hypoDD relocated events. We improved the map in general 
and use smaller points now.

9. Fig. 11: How did you determine the incidence angles: from ray tracing or these are measured 
from the seismograms?
We used a 1D raytracing algorithm. We clarified this in the text.

10. P11/10: that larger -> that for larger
corrected

11. P11/17: I think that the sentence “This trend is mostly dependent…” is not necessary



We didn’t remove this sentence as we think that this is a true feature. See reply no. 12.
12. Fig. 13: It would be more suitable to use a kilometer scale on this plot. Besides, the gap at 
50.211 latitude appears enigmatic. I believe this plot should be station independent, because it 
shows coordinates of the events, so it should be visible at both the stations. Even if different events 
would be used at different stations, at least some indication of the gap should be visible also at 
LBC, provided there is some overlap between the event sets. Could you please show the vertical 
section of used relocations in order to identify the origin of the gap?
We use a kilometer scale now and modified the figure to show the contribution of deeper and 
shallower sources as a vertical section in the upper panels. The former latitude gap at station 
NKC was partially due to a plotting problem. However, some gap is still visible and resulting 
from the spatial non-homogeneous distribution of the deeper sources (Panel b)).

13. P12: I am not sure if only scattering is responsible for the reported waveform complexity at 
NKC. It could be caused by different effects. One of these could be the proximity to the nodal line, 
where the P-onsets are usually of emergent nature and later arrivals are more visible. The data 
shown however look quite impulsive, which could indicate that the two mechanisms have different 
nodal lines, which not close to the NKC projection. Another reason could be overlap of waveforms 
with opposite polarity, which makes the image more complex.
We actually consider different hypothesis to explain the complex signals at station NKC 
including scattering (P 13/13) but also focal mechanisms (P 13/5 ) and nodal lines (P 13/9). 
(Line numbers refer to the updated manuscript).

14. • P13/6: Here it would be helpful to discuss more the different ray direction and coverage of the 
focal zone for NKC and LBC as visible in Fig. 2, which could affect different sensitivity of the 
stations to attenuation.
We extended the paragraph discussing the focal zone penetration with respect to Figure 2. 

15. P14/1-8: It would be suitable to refer here to the study of Wcislo et al (2018) who obtained 
similar Qp and Qs using different method on the same data. Mentioning this in Conclusions is too 
late; BTW Conclusions usually do not contain citations.
We now cite the work of Wcislo earlier in the discussion.


