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Abstract.  10 

Not all continental rifts mature to form a young ocean. The mechanism and duration of their cessation depend on the crustal 

structure, modifications in plate kinematics, lithospheric thermal response, or intensity of sub-crustal flow (e.g., plume 

activity). The cessation is recorded in the structure and stratigraphy of the basins that develop during the rifting process. This 

architecture is lost due to younger tectonic inversion, severe erosion or even burial into greater depths that forces their detection 

by low-resolution geophysical imaging. The current study focuses on a uniquely preserved Oligo-Miocene rift that was 15 

subsequently pirated by a crossing transform fault system and as a result died out. We integrate all geological, geophysical and 

results from previous studies from across the Southern Galilee to unravel the structural development of the Irbid failing rift, of 

Northwest Arabia. Despite tectonic, magmatic and geomorphologic activity postdating the rifting, its subsurface structure is 

preserved at depths of up to 1 km. Our results show that a series of basins subsided at the rift front, across the southern Galilee. 

We constrain the timing and extent of their subsidence into two main stages, based on facies analysis and chronology of 20 

magmatism. Between 20-9 Ma grabens and half-grabens subsided within a larger releasing jog, following an NW direction of 

a deeper presumed Principal Displacement Zone. The basins continued to subside until a transition from the Red Sea to Dead 

Sea stress regime occurred. With the transition, the basins ceased to subside as a rift, while the Dead Sea Fault split the jog 

structure. Between 9-5 Ma basin subsidence accentuated and an uplift of their margins accompanied their overall elongation 

to the NNE. Our study provides for the first time a structural as well as tectonic context to the southern Galilee basins. Based 25 

on this case study we suggest that the rift did not fail but rather faded and was taken over by a more dominant stress regime. 

Otherwise, these basins of a failing rift could have simply died out peacefully. 

1. Introduction  

Failed continental rifts mark regions where crustal extension began in the past but did not mature into continental breakup. 

Their extension first forms an elongated valley that hosts a series of subsiding basins. Seismicity and volcanism accompany 30 

the subsidence, as observed along the Rhine Graben, the East African Rift, the Baikal Rift and the Shanxi Rift of China (Ziegler 

and Cloetingh, 2004). However, some rifts fail to mature beyond this stage. Their seismicity, volcanism, and overall extension 
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gradually cease. They become aulacogens, also called failed-, palaeo-, and aborted-rifts (Hoffman et al., 1974; ���H�Q�J�|�U����������������

Brueseke et al., 2016).  

Rifting cessation may result from modifications in plate kinematics, or in lithospheric thermal re-equilibration (e.g., along the 

Ordovician-Silurian Transbrasiliano lineament; Oliveira and Mohriak, 2003). It could also reflect a decay in plume intensity 

(e.g, Delhi basin; Sharma, 2009) or variations in rheological properties (Lyakhovsky et al., 2012). In this case, the extensional 5 

strain is accommodated by localized deformations over a wider region than the original rift axis (Van Wijk and Blackman, 

2005, Segev et al., 2014). 

The mechanism and duration of the cessation vary from one case to another. A rapid stop reacts to extensional stress decay, 

acquaintance with a more rigid crust, or a newly established stress regime, different enough to mute the rifting process. Fading 

away of the dominant rifting stress leads to attenuation and eventually rift failure. In the Potiguar rift (Brazil) case, Precambrian 10 

basement faulting patterns dictated the Neocomian-Barremian syn-rift grabenization style. Magnetic, gravity and resistivity 

data track transform boundaries inside an intraplate setting, generating fault-controlled depressions. Both the NE-trending 

(parallel to rift axis) oblique-slip faults and the NS-trending en-echelon normal faults die out in the post-rift sedimentary units 

(de Castro and Bezerra, 2015). In southeastern Australia, propagation of the transform fracture zone cuts across preexisting 

basement structures. Folds and foliations of previous structural stages present unfavourable orientations for reactivation under 15 

the present stress field (Lesti et al., 2008).  

Preservation of failed rift structures in the geological record depends on the intensity and efficiency of later tectonic and erosion 

processes. In cases, the internal architecture of the basins comprising a failed rift may be lost due to tectonic inversion, severe 

erosion or even burial into greater depths (Beauchamp et al., 1996; Guiraud and Bosworth, 1997; Beauchamp et al., 1999; 

Dézes et al., 2004). The reconstruction of the architecture depends on the geophysical imaging resolution (d'Acremont et al., 20 

2005; Enachescu, 2006; de Vicente and Muñoz-Martin, 2013; Melo et al., 2016). The current study focuses on the structural 

development of a rift front during its failure and later preservation. We concentrate on the Irbid Rift that developed across the 

Arabian plate and into the Sinai sub-plate during the Oligocene-Miocene (Schattner et al., 2006a; Segev et al., 2014; Fig. 1). 

Despite tectonic, magmatic and geomorphologic activity post-dating the rifting, the original subsurface structure of the failed 

rift is preserved at depths of up to 1 km (Fig. 1).  25 
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Figure 1. Major tectonic, magmatic and sedimentary elements along the eastern Mediterranean basin and surrounding plates (after 
Garfunkel, 1989; Ilani et al., 2001; Schattner et al., 2006a,b; Segev et al., 2017). Inset- main tectonic elements in the vicinity of the 
Arabian Plate- the Dead Sea fault (DSF) and the Owen fracture zone (FZ). The Cretaceous Syrian Arc fold belt extends from Egypt 
to Syria across the Galilee. LM- Levant margin; G- Galilee; RF- Roum fault; SL-Southern Lebanon; SG-Sea of Galilee; DS- Dead 
Sea; LRB- Lebanese Restraining Bend; H- Hula Basin. Bordeaux outline- study area, presented in Fig. 3.  5 
 

 

1.1 Geological Setting  

The Precambrian basement underlying the Galilee assembled during the Pan-African orogeny until ~620 Ma (Bentor, 1985; 

Stern, 1994; Stein and Goldstein, 1996; Stern and Johnson, 2010). Subsequent truncation eroded a 6-10 km thick section from 10 

the Galilee area (Garfunkel, 2002). The Paleozoic opening of the Palmyride rift crossed the Galilee in an NNE orientation 

(Walley, 1998; Segev and Eshet, 2003). Opening of the Levant Basin (Garfunkel and Derin, 1984; Robertson, 1998; Garfunkel, 

1998, 2004; Gardosh et al., 2008) during the early Cretaceous (Segev et al., 2018) re-defined the formerly inland Galilee region 

as a new continental margin. The passive margin accumulated marine sediments until the Late Cretaceous. 

Progressive closure of the Neotethys Ocean at the northern Arabian plate (Stampfli and Hochard, 2009; Frizon de Lamotte et 15 

al., 2011) induced compressional stresses across the Levant margin. The stresses inverted the extensional grabens and folded 

the Levant margin. A ~50 km wide S-shape fold belt developed from northern Sinai, through Israel, and along the Palmyride 

region (the ‘Syrian Arc’; Krenkel, 1924; Hensen, 1951; Guiraud and Bosworth 1997; Walley, 1998; Hardy et al., 2010). 

Compressional stresses kept the margin at shallow depths, while the syn-tectonic chalks of the Santonian-Paleocene Mount 

Scopus Gr. covered the late Cretaceous relief. During the Paleogene-Eocene tectonic and thermal quiescence led to vertical 20 

subsidence of NW Arabia. The resulting transgression submerged the entire Galilee under more than 1000 m of ocean water. 

Lower-middle Eocene sediments comprise mainly chalks and limy chalks with sporadic cherty nodules and layers (Sneh et al., 

2000a; Segev et al., 2011).  

Mantle upwelling of the Afar plume began at 34 Ma, uplifting the overlying crust. Part of the volume propagated away from 

the plume head northwards during the Oligocene-early Miocene (~25-17 Ma). Its imprint on surface topography was recorded 25 

as a gradual and continuous uplift migration across northeastern Africa, gradually exposing the region above sea level. The 

exposure led to a regional truncation that levelled the area into a low-relief peneplain over merely 7 Ma (e.g. Egypt, Jordan, 

southern and central Israel; Picard, 1943; Picard, 1951, Quennell, 1958; Garfunkel and Horowitz, 1966; Garfunkel 1970; 

Horowitz 1979, 1992, 2001; Ben David and Mazor, 1988; Zilberman 1989, 1992; Avni 1991, 1993, 1998; Ben David, 1993; 

Bar et al., 2013, 2016 and Avni et al., 2012). In the Galilee, the Regional Truncation Surface (RTS) serves as a marker, dividing 30 

between marine carbonates below and lacustrine, fluvial and volcanic rocks above (Picard, 1943; Wald et al., under review; 

Wald et al., 2014; Wald, 2016). Meanwhile, Eocene chalks and Paleocene-early Miocene greenish-gray shales and marls 

accumulated on the Levant margin (Fig. 2; Gvirtzman et al., 2011; Steinberg et al., 2011).  

The uplift was accompanied by a regional crustal extension and formation of two NE-SW trending coeval rifts (Schattner et 

al., 2006a). The NW trending Red Sea-Suez rift divided Arabia from Africa (Steckler and ten Brink, 1986; Bosworth et al., 35 
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2005), while the NW trending Irbid Rift developed across the Arabian plate. The northwestern front of the Irbid rift crosses 

the southern Galilee (Fig. 1; Shaliv, 1991; Schattner et al., 2006a). The Irbid rift divides between two crustal terranes that 

differ in thickness and seismicity (Ginzburg et al., 1994; Hofstetter et al., 1996; Ben-Avraham et al., 2002; Segev et al., 2006), 

and possibly consist two different sub-plates (Palano et al., 2013; Schattner and Lazar, 2014). A series of basins subsided along 

the NW propagating Irbid rift. They developed across the present-day Galilee, up to the Levant continental margin 5 

(Lyakhovsky et al., 2012; Segev et al., 2014). However, unlike the Red Sea, spreading across Irbid rift failed to mature into a 

young ocean (Shaliv, 1991; Schattner et al., 2006a). The Galilee basins subsided during the terminal stages of Irbid rift. They 

maintained their low topographic relief despite intense tectonic activity along the nearby Dead Sea Fault plate boundary 

(Shaliv, 1991; Matmon et al., 2003). 

 10 
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Figure 2. Stratigraphic correlation across the Galilee. Pink numbers (1, 2) represent unconformity surfaces. Radiometric ages from 
Shaliv, 1991; Heimann, 1996; Segev, 2000. Dating of Tuff Fejas, Gesher and Cover Basalt formations (shown in red) from 
Rozenbaum et al. (2016). Base of Cover Basalt age is from site 3 of Dembo et al. (2015). CvB-Cover Basalt Formation.; Bi-Bira 
Formation; US-Umm Sabune Formation; CS-Clay Series; S-Susita Formation; Av-Avedat Group; MSc-Mt. Scopus Group; J-Judea 5 
Group. 
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Lateral motion along the N-S trending Dead Sea Fault (DSF) plate boundary initiated between 18 Ma (Freund, 1970; 

Garfunkel, 1998, 1981; Joffe and Garfunkel, 1987) and 14 Ma (Bayer et al., 1988; Bosworth et al., 2005). In a recent study, 

Nuriel et al. (2017) dated the onset of motion along the DSF. Their calcite age-strain analyses yielded ages of 20.8-18.5 Ma 

for the southern DSF, and 17.1–12.7 Ma for the DSF in northern Israel (next to our study area). The motion decapitated Irbid 

rift and isolated the Galilee Basins on the newly formed Sinai plate (Schattner et al., 2006a). Transtenssion along the DSF 5 

resulted in further subsidence of basins along its fault valley during late-Miocene-early Pliocene (Garfunkel, 1981; Joffe and 

Garfunkel, 1987; Smit et al., 2010). Around 5 Ma the lateral displacement along the DSF reached ~40 km, while extension 

across the valley was ~4 km (Joffe and Garfunkel, 1987). However, since 5 Ma subsidence of the DSF basins accentuated 

(Gulf of Aqaba, Dead Sea, and Hula basins; Figs. 1,3; Garfunkel and Ben-Avraham, 2001). This trend was also recorded in 

the basins situated at the junction between the DSF and Irbid rift trends (Figs. 1, 3): Bet Shean (B7), Kinarot (B10), and Sea 10 

of Galilee basins (Hurwitz et al., 1999; Segev et al., 2014; B7, B10 in Fig. 3). Further north, increased transpressional motion 

along the DSF (Freund, 1970; Schattner and Weinberger, 2008; Weinberger et al., 2010) uplifted the Lebanese restraining 

bend (Fig. 1, e.g., Walley, 1998; Gomez et al., 2006; Gomez et al., 2007). Contraction of the bend induced an N-S extension 

of the Galilee basins. As a result, the formerly Irbid rift basins remained low in both structure and topography (Schattner et al., 

2006a, b). 15 
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Figure 3. Location map of the study area. (a) Location of the multi-channel seismic reflection profiles used in this study on a shaded 
relief digital elevation model (DEM- Sneh et al., 2000b). Local names of the basins and the structural highs are abbreviated to 
simplify the description, as follows: B1- Zevulun basin, B2- Yizre’el basin, B3- Kesulot basin, B4- Afula basin, B5- Taanach basin, 
B6- Harod basin, B7- Bet Shean basin, B8- Moledet basin, B9- Sirin basin, B10- Kinarot basin, B11- Southern Golan basin. H1-
Tivon hills, H2- Hayogev-Mizra horst, H3- Navot high, H4- Sede Nahum high. (b) A 1:200,000 geologic map (Sneh et al., 1998). For 5 
color code see Fig. 2, with two exceptions - Lower Basalt Fm. (purple in map) and the Neogene formations: Hordos, Clay Series, 
Bira, Gesher- all of which appear in crème. Abbreviations: F-Fari’a anticline, Z -Zurim escarpment, dividing between upper and 
lower Galilee, BN- Bet Netofa, BK- Bet Hakerem, P- Poriyya, T- Tur’an, SF- Shefar’am, TVN- Tivon, N-Nazareth, C- Mt. Carmel, 
M- Menashe syncline, S- Shekhem syncline, YQ- Yoqneam, MG-Megiddo, UEF- Umm El Fahm anticline, JN-Jenin, GL- Mt. Gilboa, 
DSFV- Dead Sea Fault Valley, HB- Hula Basin. 10 
 

1.2 Morpho-tectonics of the southern Galilee basins 

The southern Galilee Neogene basins extend across ~50 km, between the DSF and the Levant continental margin (Fig. 3). The 

Carmel-Gilboa and Zurim fault systems in the south and north (respectively) bound the Southern Galilee basins (Schattner et 

al., 2006a, b). Their N-S extent narrows westwards from ~35 to ~10 km in a low relief that exhibits sporadic highs dividing 15 

local valleys. The surface of westernmost, Yizre’el (B2) lays at 30-70 m above sea level. To the east Kesulot (B3) and Taanach 

(B5) valleys are at 60-100 m, Harod valley (B6) is between 30 and -210 m, and Bet Shean (B7) is at -250 m. The low relief of 

the southern Galilee basins divides between two segments of the Mesozoic Syrian arc fold belt (Krenkel, 1924) that raised by 

~500 m since the Pliocene. Lower Cretaceous (Kurnub Group) and Jurassic (Arad Group) exposures appear in limited areas. 

The upper Cretaceous Judea and Mount Scopus Groups are exposed mainly along the fold belt truncated crests, for example 20 

along the Gilboa, Carmel, and Nazareth ridges). The fold belt synclines are also uplifted, to ~250 m, exposing the Eocene 

Avedat Group (across Tivon and Menashe hills; Fig. 3).  

Stratigraphy of the southern Galilee basins comprises intercalations of siliciclastic, volcanic and carbonate lithologies of the 

Dead Sea and the Upper Saqiye (previously Tiberias) Groups (Fig. 2). They accumulated mainly under continental (lacustrine-

fluvial) environments with phases of shallow marine intercalations. Since the early Miocene and until the present, the relatively 25 

high rims of the basins have contributed clastics that accumulated in the basins. This mixture resulted in a discontinuous and 

irregular distribution of sedimentary units and facieses across the southern Galilee basins. Some of the units wedge laterally 

(e.g., Um Sabune Conglomerate Fm., Bira Fm. in Fig. 2) while others appear only locally.  

A series of studies conducted over the last half century provide invaluable insights into the stratigraphy, hydrology, geophysics 

and outcrop mapping of the study area and its surroundings. They include masters and PhD theses as well as reports and peer-30 

reviewed papers (e.g., Schulman, 1962; Sass, 1966; Yair, 1968; Weiler, 1968; Dicker, 1969; Klang and Sherman, 1972; Dekel, 

1988; Shaliv, 1991; Hatzor, 1988; Gev, 1989; Sneh et al., 1998; Gardosh and Bruner, 1998; Bartov et al., 2002; Rotstein et al, 

2004; Sagy and Gvirtzman, 2009; Segev et al., 2006; Abelson et al., 2009; Zilberman et al., 2009). Some of the studies focused 

on volcanism, paleo-drainage, and paleohydrology of the Yizre’el basin (Yair, 1968; Schulman, 1962; Wishkin, 1973; Shaliv, 

1991; Gev, 1989; Baer et al., 2006). Geophysical studies showed the architecture of basins along the southern Galilee: Bet 35 

Shean basin (Meiler et al., 2008; Gardosh and Bruner, 1998; B7 in Fig. 3); Zevulun basin (Sagy and Gvirtzman, 2009; B1 in 

Fig. 3); Taanach and Yizre’el basins (Politi, 1983; Rotstein et al., 2004; B5 and B2 in Fig. 3). These studies focused on localized 
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structures across the southern Galilee basins have been thoroughly studied, leaving the larger, regional, context unresolved. 

The current study integrates all the previous results with unpublished data to address fundamental questions regarding the 

origin and development of the lower Galilee: is it a single continental basin that accumulated sediments from its surrounding 

rims (Picard, 1943; Schulman, 1962; Shaliv, 1991)? Alternatively, maybe a full graben bounded by longitudinal faults, Zurim 

and Carmel-Gilboa from the north and south respectively (as suggested by Kafri and Ecker, 1964; Mero, 1983) or possibly a 5 

couple of half grabens bounded by these faults (as proposed by May 1987; Matmon et al., 2003)? What is the structural and 

tectonic association between the southern Galilee basins development and the nearby DSF and Levant continental margin? In 

what manner does the structural development of the southern Galilee basins relate to the regional volcanic events?  

2. Dataset and Methodology 

Geological reconstruction of the structure and development of the southern Galilee basins relies on an integrated interpretation 10 

of all available geophysical and geological datasets from the study area. The new database was constructed on the Kingdom 

Suite (IHS) platform. It includes 85 multi-channel seismic reflection profiles, 506 boreholes, outcrop data, and previous 

interpretations. The seismic reflection data were acquired between the 1970's through 2000's. The profiles cover a total length 

of 800 km. The average penetration depth is 500-1000m below the seismic datum (sea level). The boreholes depth ranges 

between 35-2390 m below surface. Seismic resolution enables the interpretation of geological units starting from the upper 15 

Cretaceous (Fig. 2).  

Stratigraphic, hydrological, geophysical and outcrop datasets collected in the past across the study area are integrated here into 

a single database. These sources include Schulman (1962), Sass (1966), Aizenberg (1967), Yair (1968), Weiler (1968), Dicker 

(1964), Dicker (1969), Klang and Sherman (1972), Dekel (1988), Shaliv (1991), Hatzor (1988), Gev (1989), Sneh et al. (1998), 

Gardosh and Bruner (1998), Bartov et al. (2002), Rotstein et al (2004), Sagy and Gvirtzman (2009), Segev et al. (2006), 20 

Abelson et al. (2009), Zilberman et al. (2009). Structural maps constructed from interpreted key surfaces include associated 

faults. The surfaces and faults were exported from the Kingdom Suite to Petrel (Schlumberger) to build a structural model. 

Previous geological mapping was used to extend the structural model from sea level datum (elevation of 0m) up to the present-

day topography (30-550m asl). Using a 2000 m/sec velocity for the shallow, near-surface beds (weathered beds), enabled 

correlation between depth and time domains. Completion of the structural model relied upon digitization of truncation surfaces 25 

from previous studies in ArcMap (ESRI) (Weiler, 1968; Dicker, 1969; Dekel, 1988; Shaliv, 1991; Shaliv, 2003; Sneh, 2008). 

Outcropping truncated surfaces are considered as layers within a specific unit rather than its top (due to erosion). Control points 

were added from boreholes. Integration of all datasets yielded a coherent database and a three-dimensional geological grid 

model of the Galilee subsurface, extending from a depth of 2500m to the present-day surface topography. 

 30 
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3. Results 

The results section describes the sedimentary fill of the basins in chronological order. It is followed by a description of the 

structural elements. Local names of the basins and the structural highs are abbreviated to simplify the description (Fig. 3). The 

geographical location of all sites mentioned in text appear in the Google EarthTM supplementary material, herein referred to as 

GE. The sedimentary fill is bounded between two temporal and structural markers. The basin floor is marked by the Oligo-5 

Miocene Regional Truncation Surface (RTS; ~23-17 Ma; Figs. 2, 4), a peneplain predating the subsidence of the basins. The 

RTS truncates the folded and displaced structures of the Judea, Mt. Scopus and Avedat Groups (Fig. 2). The latter is diminished 

towards H2 and pinches out approximately 400 meters west of it (Fig. 5). The sedimentary fill culminates upwards up to the 

top of Bira Fm. that formed a very low relief. The Cover Basalt Fm. locally covers the Bira Fm., providing a temporal marker. 

Analysis of the entire database indicates that the type section is located along the axis of the Southern Galilee basins (B2, B4, 10 

B6, and B7). Further details from B3, B5, B8-B9 basins complete the section. Additional information from B1, B10, and B11 

is provided in the discussion. 

 

 

 15 
 
 
 
 
 20 
 
 
 
 
 25 
 
 
 
 
 30 
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Figure 4. (a) Subcrop map of the Oligocene regional truncation surface (RTS) in UTM GWS1984 Zone 36N projection. The map 40 
shows the youngest units truncated by the RTS, based on the integrated interpretation of geological and geophysical data, from the 
surface and subsurface. Colors correspond to the seismic profiles. Red polygon marks the extent of data gathered in the current 
study. (b) Spatial variation in truncation across the Galilee represented by contours of equal time gap in million years. Black dots 
mark locations where the youngest unit below RTS and older unit from above are available for quantifying the time gap (see also 
SM6). Some of the data points are today exposed above the datum of the map. Note that some of the points may include pre-Oligocene 45 
truncations. 
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3.1 Basin fill 

The oldest formations deposited above the RTS are the contemporaneous Lower Basalt and Hordos Fms. (Fig. 2). Today, these 

formations appear in the subsurface, and also outcrop across marginal areas and local highs (Fig. 6). The Hordos Fm. predates 

the Lower Basalt Fm., yet their seismic appearance is similar. They resemble in reflection frequency, amplitude, and continuity. 5 

Some differences between these formations appear in parts of B7. Seismic and borehole data (Fig. 9, Figs. S5, S8, S14) show 

that the Hordos Fm. covers the floor of the B6-7, 10 basins, and thickens southwards along the DSF. Further up the section, it 

interfingers with the Lower Basalt Fm. that thins southwards along the DSF. The Lower Basalt Fm. directly overlays the basin 

floor in B2-5, excluding local highs (Figs. 5, 7). The concordant seismic appearance of the formation hints to the consecutive 

succession of basalt flows, and the hiatuses between them (Figs. 5, 7, 8). The lateral continuation of reflectors degrades towards 10 

fault and fold zones, representing displacement events postdating the accumulation of the Lower Basalt Fm. (Figs. 9, 10, 11; 

Figs. S1-4, S8, S10). The Lower Basalt Fm. is missing from B1, where the oldest basin fill unit comprises marls associated 

with Bet-Guvrin Fm. (Lower Saqiye Group; Figs. 3, 4). 

Numerous seismic, borehole and outcrop datasets indicate that the Lower Basalt Fm. generally thickens towards the center of 

each of the basins (Fig. S6). The thickening is also indicated by the arrangement of main faults, dikes, and volcanic feeders 15 

(Figs. 5, 10, 11, Figs. S1-5). In B3-7 and H2 the thickness exceeds 100 m. In B2, the Lower Basalt Fm. fills a Cretaceous 

syncline while onlapping its flanks. It thickens from a few meters over H1 to a constant ~125 m at the center of B2. The 

thickness of the Lower Basalt Fm. reaches 400-600 m adjacent to H2 (Fig. 10). At the western part of B4, a borehole crossed 

630 m of the Lower Basalt Fm. (Table 1). However, this is a minimal value since the base of the formation has not been 

reached. B3 is divided into two sub-basins by H2. The eastern part of B3 accumulated 50-100 m of Lowe Basalt Fm., while 20 

the western part accumulated at least 350 m (base of the formation was not reached). In the eastern border of B4 and B5, the 

Lower Basalt Fm. reflectors onlap an elevated Eocene block (H3) at ~10°. The Lower Basalt Fm. thickness does not exceed 

200 meters in B5. Its reflectors appear parallel/subparallel to the basin floor (RTS, Figs. S3, S16). Further east, near B6-7 

Lower Basalt Fm. thickness varies considerably between 395 to 750 m (Table 1). In B10 the Lower Basalt Fm. reaches 3500 

m (Table 1). The southern subsurface limit of the Lower Basalt Fm. is Nahal Bezek fault, whereas a localized several tens of 25 

m thick outcrop appears further south in Marma Fayad (location: Fig. 6, Google Earth Archive- GE; Figs. 6, 7, 10a). 

Top of the Lower Basalt Fm. is an erosional unconformity that accentuates eastwards, according to the age of the units 

overlying it (Figs. 2, 3, 6, Fig. S5). In the west, Um Sabune conglomerate and the Clay Series Fms. overlay the Lower basalt 

in B2-5 basins (Figs. 5, 8, 11). Bira Fm. covers this unconformity over the H2, H3 structural highs and across B6 (Fig. 9). In 

the eastern Galilee (B8-9) and B7, the top Lower Basalt unconformity is either directly overlain by the Cover Basalt Fm. at 30 

elevated terrains (e.g. Yisachar-Gazit and Hashita-Geva blocks of B8 (location: Fig. 10a) or covered by the Bira Fm. (Figs. 3, 

10, Fig. S8). 
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Data source (Well name, 
Seismic data, reference) 

Associated 
basin 

Thickness 
(m) 

Base 
reached? 

Basin floor Figure 

Poriyya type section; Shaliv 
(1991); Schulman (1962) 

B10 750 No Senonian Figs. 8, 9 in 
Shaliv (1991); 
location: Fig. 3, 
10b, GE  

Gideon 5 B4 630 No Senonian Fig. 5, GE 

Bira 3 B8 450 No Eocene GE 

Shadmot Devora B9 385 Yes Eocene GE, Fig 6 

Belvoir 1 B6-7 660 Yes Senonian GE, Fig 6 

Seismic data  B7 1000 
(interfingers 
with Hordos 
Formation) 

Yes Senonian Figs. 9,11 

Inbar, 2012 B8 2000-3500 No Senonian  
 
Table 1 - marked thicknesses of Lower Basalt Fm. 
 
The clastic formations of the Dead Sea Gr. overlie the truncated top of Lower Basalt Fm. (Figs. 8, 9, 11, Figs. S1-6, S8, S10, 

S14). Data indicate that the group accumulated during the upper Miocene-Pliocene in a lacustrine/fluvial environment. 5 

Appearances of lumachelle ostracods at the Bira Fm. indicate an episodic connection to the marine environment. Interchanging 

paleosol horizons and volcanic remains crossed in boreholes point to exposed continental environments. Um Sabune 

Conglomerate Fm. overlies Lower Basalt Fm. at H1, the margin of B2 (Kishon 1 borehole, Fig. 8, GE), and in the eastern 

Galilee. The conglomerates appear near the margins of the basins and volcanic centers. They are bounded by the intersection 

between Gevat and Nazareth faults (Fig. S7). Um Sabune Conglomerate Fm. contains basaltic pebbles derived from the Lower 10 

Basalt Fm., as well as alluvial carbonate and basaltic pebbles that experienced extensive mechanical reworking.  

The Clay Series Fm. is contemporaneous to Um Sabune Conglomerate Fm. (Figs. 2, Fig. S7). The grain size of both formations 

decreases upwards as well as towards the depocenters of each basin. The geographic coverage of these formations defines the 

present spatial extent of basins B2-6 (Fig. 3). The Clay Series Fm. appears at the center of B2-B7. In places, it directly overlays 

the Lower Basalt Fm. (e.g., Taanach 4 borehole, Fig. S3, GE). Its thickness is relatively constant along the axis of the central 15 

basins B2 (400 m), B4 (200 m) and it reduces towards B6. In more peripheral areas it ranges around tens of meters (Figs. 8, 9, 

11, S1-6, Table 1). The thickness differences may point to differential subsidence while deposition. 
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Figure 5. (a) Multi -channel seismic reflection profile line MI-2187 crossing the basin axis (location in Figure 3). (b) The 
RTS horizon (celeste) divides pre-truncation from post-truncation sediments. Hayogev-Mizra Horst (HMH) intervenes 
between Kefar Baruch and Afula Neogene basins. Cretaceous units at the syncline were interpreted using intersecting 
and overlapping deeper seismic profiles from the DS series (see Fig. S3). Boreholes KY15- Kefar Yehoshua15, G1- 
Gideon 1 and G5- Gideon 5 (location in Fig. 3b, GE, Fig. S3). Uppermost unit (gray): alluvium. (c) Same profile, 5 
flattened relative to the celeste horizon to image the truncation. The flattening tool enables a comparison between 
predating and postdating processes: Cretaceous folding and Neogene subsidence of basins, respectively. Bi-Bira 
Formation; CS-Clay Series; LwB-Lower Basalt Formation; Groups: Avedat Group; Mt. Scopus Group; Judea Group. 

 
Figure 6. Lower basalt Formation and Hordos Formation outcrop extent. The westernmost outcrop is along the eastern margins of 10 
H1 (location: Fig. 3; DEM- Sneh et al., 2000b).  

 

Lower Basalt Fm. is covered by three younger formations: Bira Fm., Gesher Fm. and locally by the Cover Basalt Fm. (Fig. 2). 

Seismic resolution does not allow to differ between the Bira Fm. and the Gesher Fm. so these two units are generally termed 

Bira Fm. in seismic profiles shown here. The Bira Fm. consists mostly of marls, but also of marine and lacustrine limestones, 15 
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gypsum and salt. Its thickness ranges between 0-200 m (Fig. 9, Fig. S5). Bira Fm. also overlies Um Sabune Conglomerate and 

Clay Series Fms. in places (Figs. 2, 5, 8-9, 11, Figs. S1, S4-6). In seismic data Bira Fm. appears as a continuous set of reflectors, 

detectable across the basins (Figs. 5, Fig. S4) even in folded and faulted regions (Figs. 8, 11). Reflectors at the base of the 

formation onlap an unconformity. The top of Bira Fm. is an unconformity surface (Fig. S4). In places, it is overlaid with 

paraconformity by the Cover Basalt Fm. (Fig. 9). Bira Fm. is missing over topographic and structural highs (Figs. 5, 9, Fig. 5 

S5). 

 

 
Figure 7. Structural map of the top of the Lower Basalt Formation surface. Note that the lowest areas strike NW. GH- Givat Hamore, 
MGD- Megiddo, YQN- Yoqneam, NZR- Nazareth. 10 
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Figure 8. Multi -channel seismic reflection profile line MI-2180. Kefar Baruch basin (B2) and Hayogev-Mizra horst (HMH) are 
sheared by faulting and folding. Vertical offset alongside folding on fault branches deform the Clay Series, Um Sabune and Bira 
formations. Gevat fault suggests a horizontal offset due to its near vertical fault plane and 1 km wide flexures (see also Fig. 11). 5 
Thick Lower Basalt formation on the south suggests a volcanic source in HMH area (see also Fig. 10).  This profile cuts the primary 
deformation zone and its uplifted southern shoulders- HMH.  
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3.2 Faults  

Three types of faults appear in the database: (1) major marginal faults that bound the southern Galilee basins from north and 

south; (2) faults dividing between basins, sub-vertical to the basin axis. Their orientation ranges between NE to NNE; and (3) 

Through-going faults that cross the basins. The current study focuses on the first two types, while the third is at the center of 

Wald et al. (under review).  5 

 

3.2.1 Major faults 

Three major marginal faults define the southern rim of the Southern Galilee Basins. In the NW, the Carmel fault down-throws 

B1 by ~1500 m. Further ESE, a series of normal faults, includes the Yoqneam fault, whose downthrown side is B2. The throw 

decreases southeastwards from ~200 m to ~50 m (Figs. 7, 10C, GE). The trace of Yoqneam fault diminishes to the SE until it 10 

intersects with Gideon and Hayogev faults in Megiddo region (western margin of B4-5; Fig. 8). The Umm El-Fahm fold 

plunges NE towards B5, where it appears at a depth of 150-200 m below surface (Fig. S9). Given the poor seismic imaging, a 

southern bounding fault is marked as suspected (Figs. 10b-c, Figs. S10, S11). However, this discontinuity of reflectors may be 

ascribed to an apparent structural throw, termed Dotan flexure herein (Figs. 10c, 13, Fig. S10) between Umm El-Fahm anticline 

(Fig. 3, Figs. S10, S11) and Shekhem syncline (Fig. 3, Fig. S9), of the upper Cretaceous Syrian Arc fold belt (Fig. 3).  15 

The amount of displacement increases again along the Gilboa fault in the southeast. The Gilboa fault extends from the middle 

of H2 southeastwards (Fig. 10, Figs. S9, S11). In the NW the Gilboa fault appears in the subsurface of northern B5, where the 

entire package of reflectors of the basin fill is dipping northwards, towards B4. It downthrows B4 by 400 m relative to B5. The 

fault downthrows B6 about the Gilboa block footwall (Figs. 7, Fig. S11, GE). The fault is detectable across the shallow 

subsurface, up to the seismic datum (mean sea level), and exposed in places. This suggests it was active at least through the 20 

Plio-Pleistocene. In the east, the Gilboa fault also appears in the subsurface of B7, where it forms a flower structure, attesting 

to a lateral component of displacement. Vertical displacement along the fault is in the range of 100 m (Fig. 10, Fig. S11). In 

the southeast, Tayassir, Bardala, and Bezeq faults bound B7 from the south (Figs. 10, Figs. S9, S11, S14). These faults divide 

between the basin and the NNE trending Faria anticline that plunges from the south. At the eastern boundary of the study area, 

DSF truncates the eastern part of B7 (Fig. S14). 25 

The northern border of the Galilee basins is the E-W trending Bet Hakerem fault system (including Zurim escarpment) and 

Ahihud fault (e.g., Matmon et al., 2003; Schattner et al., 2006b; Figs. 3, 10c). The Neogene basins mapped here pinch out 

northwards and do not reach these faults. Therefore, the E-W trending Tur’an, Bet Netofa and Bet Hakerem valleys are 

excluded from the current analysis (locations: Fig. 3). A series of NW to W trending faults divides between the latter E-W 

valleys and the Neogene basins. The western segment of Bet Qeshet fault borders H1 from the north. Further east, three step 30 

faults downthrow B2 (Zarzir, Timrat, Nahalal faults; Figs. 10c, 11, Fig. S2). The NE-trending Nazareth fault downthrows B3 

southwards, while B3 fill is dipping to the north (Fig. S4). East of B3, the Tavor horst (T in Fig. 6) is uplifted along the eastern 

segment of Bet Qeshet fault (Figs. 3, 10c, 12, GE). The fault divides the horst from the Sirin-Qama block (B9- Fig. 3, location 
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of fault: Fig. 10c, GE). Neogene exposures extend up to the northeastern corner of the southern Galilee basins (Fig. 6, 10). 

However, in this area, the delimitation of southern Galilee basins is less clear, due to later displacements. 

3.2.2. Secondary faults 

A series of NNE to NE-trending normal faults divide between the basins and structural highs of the southern Galilee. The 

faults are nearly perpendicular to the axis of the basins complex. Seismic data show that displacements across these faults are 5 

mainly vertical with a horizontal component. Regional numerical modelling of Lyakhovsky et al (2012) followed by a review 

of rift-transform interaction adjacent to continental margins (Segev et al., 2014), has predicted rift-perpendicular features. 

Locally, these faults, structural highs, and basins between them are evident from the structural map of top Avedat Gr. that 

consist the floor of most of the basins (Fig. 12). The following paragraphs describe the division along the major axis, from 

NW to SE.  10 

The structural and topographic transition between H1 and B2 occurs along a lineament associated with Sede Yaakov and 

Aloney Abba faults. These faults are derived from the geological map (Sneh et al., 1998; Segev et al., 2006) since a seismic 

profile does not intersect them. These faults expose fragmented outcrops of the Lower Basalt Fm., as well as a chain of localized 

springs (Figs. 3, 10c, GE). The intersection between Sede Yaakov and Gilboa West faults in the WSW of B2 is a fracture zone 

(Tel Kashish; location: GE; Figs. 7, 10, 11, 12, Fig. S12). Hayogev fault bounds B2 in the east, defining the transition to the 15 

NE-trending H2. The Lower Basalt Fm. forms a westward dipping monocline above the fault (Fig. 5).  

The H2 horst is topographically elevated by several tens of meters above B2 and B4. H2 plunges to the NE into the subsurface 

of B3, partially dividing B3 into two sub-basins (Figs. 5, 6, Fig. S1, GE). Plio-Pleistocene sediments are absent from the top 

of H2. The Lower Basalt Fm. overlies an erosional unconformity of the top Judea Fm. (Gideon 1 and 4 wells; location: GE; 

Figs. 5, 9) and Mt. Scopus Gr. (Gideon 3 well; Fig. 5; Figs. S3, S4, S10; location: GE). Gideon fault bounds H2 from the east, 20 

down-throwing B4. Normal displacement along this fault is ~100 m in its northern and southern margins. It reaches ~500 m 

in the middle (main axis of the basins). Correlation between seismic data and Gideon 1, 2, and 5 wells (Figs. 5, 9, GE, Fig. S5) 

show uneven thickness between the fault flanks, suggesting that it was active several times during the mid and late Miocene, 

at least until the end of deposition of Bira Fm. (Figs. 5, 7, 9, Fig. S5).  

Three structural elements separate B3 from B4. Afula fault vertically throws Lower Basalt Fm. reflectors northward by app. 25 

200 m (Figs. 7, 10). East of the fault the volcanic Givat Hamore and Ein Dor blocks separate B3 from B4. (Fig. 10, location: 

Fig. 7, GE). Gideon 5 well located along the margin of B4 crossed 980 m of Neogene basin fill and did not encounter the base 

of Lower Basalt Fm.. This suggests that vertical displacement across Gideon fault occurred during the mid-Miocene. The 

displacement took place concurrent with dike intrusions and uplift of Givat Hamore and Ein Dor blocks (Figs. 7, 10). 

Gilboa fault defines the boundary between B4 and B5 to the south, off the axis of the southern Galilee basins. Data indicate 30 

that the B5 fill thickens northwards towards Gilboa fault (Fig. 12, Fig. S16). B5 is bounded by H2 in the west and H3 in the 

east. Avital fault crosses the NW corner of B5 (Fig. 10c, Fig. S10). Displacements along this sub-vertical fault are mainly 

horizontal. They are associated with branching into secondary faults and local folding (Figs. S10, S16). 
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The elongated B6 basin extends along the main axis of the southern Galilee basins, north of the Gilboa fault. The Lower Basalt 

Fm. covers the WNW margin of H3. An intermediate graben hangs as a step between B6 and H3, faulted along Gilboa fault 

(Shaliv 2003, 2005). Seismic data show that the northern limit of B6 is downthrown along Hashita and En Harod faults relative 

to Hashita-Geva/Zevayim block (Figs. 7, 10, 12, 13). Sub-vertical normal faults downthrown B7 relative to the eastern flank 

of H4 and Hashita-Geva block (Figs. 9, 13; Figs. S11, S13). Bet Shean fault is the easternmost of this series. It downthrows 5 

the Lower Basalt Fm. 200 m on its eastern side (Fig. S14). However, the basin fill thickens and tilts to the east, where its 

original structural boundary is unclear. Similarly, the structural transition from B7 northwards into B8 is vague. 

 

 

Figure 9. Multi -channel seismic reflection profile across basins B2, B4, B6, B7 (lines MI-2187, DS-2009, DS-2015, DS-10 
3596). The RTS horizon (celeste) divides pre-truncation from post-truncation sediments. Hayogev-Mizra High (HMH) 
intervenes between Kefar Baruch and Afula Neogene basins. Cretaceous units at the syncline were interpreted using 
intersecting and overlapping deeper seismic profiles from the DS series. Location in Figure 3; Unit color code- Figure 
2. 

 15 

4. Discussion 

Integrated analysis of the geological-geophysical dataset shows the structural development of the original flat Oligocene to 

early Miocene RTS (Fig. 2; Avni et al., 2012) into a series of extensional basins (grabens and half grabens). The discussion 

addresses the development of the basins based on their structure and stratigraphy. It then suggests a classification of the 

southern Galilee basins, at each stage, given the regional tectono-stratigraphic events and comparison to similar structures 20 

worldwide. These insights are used for understanding the structural development of a failing rift during its final stages. 
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Figure 10. (a) Inferred volcanic sources for the Lower Basalt Formation. Miocene edifices interpreted by Yair (1968), 
Dicker (1969) and Shaliv (1991) are ascribed to normal faulting synchronous with Lower Basalt Formation flows. Part 
of the sources were interpreted using potential methods (Segev and Rybakov, 2011). (b) Isopach map of the 
interfingering Lower Basalt Formation and the Hordos Formation. Locally, the latter predates the former. Contour 
spacing: 100m. G.H. - Givat Hamore (c) Faults within the study area. Red lines: post Avedat Group (Lower-Middle 5 
Eocene) faults. Black fault lines: Offset all surfaces within the scope of this study, from top Judea Group to top Lower 
Basalt Formation (Upper Cretaceous to Miocene). 
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Figure 11. Multi -channel seismic reflection profile line MI -2178. Normal and lateral shear adjacent to Mt. Carmel and 
Tivon blocks. Normal faulting vertically offsets basin fill units and post-Bira Formation folding (postdating uppermost 
Miocene-Pliocene). A paleo alluvial fan, predating the vertical offset, is depicted by the Clay Series. NHL- Nahalal; 
KY - Kefar Yehoshua. Location in Figure 3; Unit color code- Figure 2. 5 
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4.1 Subsidence of basins 

4.1.1. First stage (20-9 Ma) 

The first stage of subsidence initiated during the early-mid Miocene. The subsidence occurred mainly near the eastern part of 

the southern Galilee basins, across B6-11 (Fig. 3). Subsidence and faulting developed while the conglomerate member of 5 

Hordos Fm. accumulated in topographic lows (Schulman and Rosenthal, 1968; Garfunkel, 1989). A composite section crossing 

the basins along a WNW trajectory shows that Hordos Fm. accumulation in B6-8 was accompanied with normal faulting and 

folding (Fig. 9). However, remains of Hordos Fm. are not restricted the subsiding basins. They appear in sporadic outcrops, 

such as Marma Fayad and Ein Gev (thickness exceeds 200 m; location: Fig. 6, GE); in various elevations on the northern flank 

of Faria anticline; across the tilted blocks of the eastern Galilee; and across southern B9. Above mentioned evidence suggest 10 

that the current shape of the southern Galilee basins was formed by younger deformations, while preceding Miocene basins 

extended further south of their present-day structure. It also indicates that these remains were displaced by younger faults 

(Figs. 10, 12; Shaliv et al., 1991) that were active during the initiation of motion along the DSF (Freund, 1978; Garfunkel, 

1981; Garfunkel, 1989). 

The Spatial and temporal provenance of the lower to mid-Miocene conglomerate of Hordos Fm. are still debated. Conglomerate 15 

accumulation of the Hordos Fm. suggests that basin subsidence predates the Lower Basalt Fm., although in several localities 

it inter-fingers with it (Fig. 9, Figs. S8, S14). Temporal emplacement therefore is tricky. Outcrop and seismic data from B2 

show that normal faults displace a conglomerate unit, before the Lower Basalt Fm. accumulated (Fig. 11). Sandler et al. (2004) 

associates the conglomerate unit to Bet Nir Fm., suggesting it is concurrent with the Lower Basalt Fm. (17-9 Ma). Our 

integrative morpho-structural analysis bridges over the spatial gap between the isolated patches of the conglomerates (e.g. 20 

Kafri (2002) provenance study), suggesting that Bet Nir and Hordos Fms. accumulated at the same time frame. Together they 

are products of the same paleo-drainage system that extended from the east to the west across the low relief of the Galilee, 

immediately before the subsidence of the basins. 

The southern Galilee basins accumulated an up to 650 m thick section of volcano-clasts and flows of Lower Basalt Fm. during 

their subsidence (Fig. 10). In general, the thickness of a basaltic unit is expected to increase close to its source. This assumption 25 

guided the identification of volcanic sources across the study area. The seismic and borehole database provided evidence for 

thickness variations and information about the lithology. Previous studies provided basalt dating from outcrops and wells, 

along with mapping of tilted blocks and faults (Fig. 10; GE; Segev et al., 2006; Dicker, 1964; Schulman, 1962; Shaliv, 1991). 

Integration of the data sources indicate that the basalts arrived through dikes (e.g. Gilboa, Mishmar Haemek), stocks (Givat 

Hamore), volcanic eruption centers (Kippod, Kochav Hayarden, Tel Agol), and fault planes (Sede Yaakov, Moledet, Yoqneam, 30 

Sandale, Aloney Abba; Figs. 7, 10, 11, 12). Baer et al. (2006) dated the eruption at Givat Hamore to 13.5 Ma. Geochemical 

analysis of volcanic products suggests that the lithosphere of the Galilee has been rich with veins that fed the Miocene 
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magmatism (Weinstein, 2000). Some of the volcanic sources (e.g., dikes, Hazor, 1988; Shaliv, 1991) follow the southern 

boundary faults of the basins, suggesting a possible connection (Figs. 7, 10). 

During the mid-Miocene, normal displacements along faults facilitated deepening of the basins (Figs. 7, 10c, 12). Structural 

signature of the left-lateral displacement along the DSF enhanced between 12-14 Ma. Bosworth et al. (2005) suggest that the 

movement started at ~14 Ma in association with the transition of Red Sea opening. In response, the slip along DSF shifted 5 

from a N60°E opening motion, perpendicular to the Red Sea axis, to a N15°E motion, diagonal to that axis but parallel to the 

axis of the DSF. Others estimate the initiation of DSF displacement in the study area to 13 Ma (Shaliv, 1991). Northward 

channelling of the Afar plume (Ritesma et al., 1999; Chang et al., 2011; Hansen and Nyblade, 2013) along with geodetic and 

structural research (Bellahsen et al., 2003; Bosworth et al., 2005; ArRajehi et al., 2010) suggest a transition in stress regime. 

Three-dimensional analogue models of the Red Sea-Gulf of Aden rift system point at an increase of 70% in the rotational 10 

relative motion between Africa and Arabia since 13 Ma (Molnar et al., 2017). This pronounced shift at 13 Ma has left footprints 

in the Galilee branch. 

The association between volcanism and tectonics specifically around 13 Ma appears in several studies across the Arabian plate 

(e.g., Bayer et al., 1989; Camp and Roobol, 1992; Ebinger and Casey, 2001). Until 13 Ma volcanic activity closely follows the 

faulting event. A marked shift in volcanism is noted at ~13 Ma. In the western Arabian plate, volcanic fields renewed their 15 

activity after a cessation of 9 Ma (Bohannon et al. 1989; Camp and Robool 1992; Ilani et al. 2001; Krienitz et al. 2009). In 

contrast, magmatic activity in the Galilee was relatively continuous. K-Ar dating bound the volcanic activity across B2 between 

16-9 Ma (i.e., the Lower Basalt Fm.; Shaliv, 1991). Further to the east across B6-B11, H3 and Mt. Gilboa, older K-Ar ages of 

17-15 Ma were retrieved (Shaliv, 1991; 3,5,14, 19 in Fig. 10a). Updated 40Ar/39Ar dates yield a lower limit of 17 Ma for the 

Lower Basalt Fm. (Rozenbaum et al., 2016; Sandler et al., 2015). Since 13 Ma, volcanism was active across Harrat-A-Sham- 20 

western Arabia and the Galilee. It was active during the subsidence of the southern Galilee basins and accumulation of 

conglomerates.  

Integration of all above evidence indicates that during the first stage an E-W trending paleo-drainage system developed across 

the southern Galilee, accumulating conglomerates. Shortly after, this drainage pattern ceased during the relief accentuation 

due to subsidence of a series of <10 km wide grabens and half-grabens. The basins collected conglomerates, separately, along 25 

with the Lower Basalt Fm.. The basins subsided along an NW-trending axis (Fig. 12). Within this general trend, some 

individual basins trend to the WNW and W. These basins continued to sink, extend and even merge during the transition to 

the second stage of subsidence. 

 

 30 
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Figure 12. Structure of the study area during the Cenozoic. (a) Structural map of the top Avedat Group. The current 
structure of the Galilee is a product of two main subsidence phases shown in b. (b) Aerial extent of the first subsidence 5 
stage (20-9 Ma) is outlined in Light yellow. Dark orange- pronounced subsidence during the first stage, overlapping 
the current Dead Sea fault valley.  The second subsidence stage (9-5 Ma) is outlined by a series of NNE trending basins, 
perpendicular to the major axis of basins from the first stage. Darker brown- pronounced subsidence. The second stage 
stress field is depicted by black arrows (compression) and blue arrows (extension). Bounding normal faults also exhibit 
a lateral component. HMH- Hayogev-Mizra high, TVN - Tivon, SN- Sede Nahum, BSN- Bet Shean. 10 

 

4.1.2 Second stage (9-5 Ma) 

Tectonic displacements that acted during the first stage of subsidence continued during the second, along with erosion. A series 

of blocks and depressions depicted from the structural map of the Lower Basalt Fm. points at the continuance of vertical 

motions. Basins continued to subside, forming local topographic lows that accumulated the erosion products. Conglomerates 15 

of the Um Sabune Fm. settled close to the edges of the basins (Fig. 8, Figs. S2, S7). Their composition includes pebbles of 

Lower Basalt Fm. as well as older carbonates (Sandler et al., 2004). Grain size of the conglomerates decreases upwards 

(Schulman, 1962), indicating a moderation of tectonic activity along the rims of the basins with time. Um Sabune Fm. outcrops 

tilt southwards along the northern rim of B2 (Kafri, 2002); consist 200 m of the Shokek 1 well, drilled in a western marginal 

graben of B7, unconformably covering Avedat Fm. (location- GE); occur at the northern plunge of the Faria fold, southern B7 20 
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border (Shaliv et al., 1991); compose the upper part of B8-9 inter fingering with the Bira Fm. (see below). The Um Sabune 

Fm. appears to thicken within the incised channels that drain B6. The thickening could result from two factors. Syn-tectonic 

magmatism allowed the Lower Basalt Fm. to accumulate within subsiding basins on the one hand whereas other parts of the 

formation were uplifted across their rims. The basins deepened while their margins were gradually elevated (Dicker, 1964). 

Therefore, elevated terranes and basinal margins were the provenance of the Um Sabune Fm.. Ongoing subsidence of B7-8 5 

during the mid-late Miocene facilitated the accumulation of thick section of Um Sabune Fm. near the margins of the basins 

(e.g., Bet-Yosef, Neve Ur and Zemach wells, Fig. 8; Fig. S7; locations: GE), the Clay Series Fm. was deposited within their 

depocenters (B2-6; Figs. 8, 9, 11; Figs. S1, S2, S4-6). The Clay Series Fm. has been preserved since most of the tectonic 

activity focused on the edges of the basins. According to tens of water wells this formation is verified as a local aquiclude 

(Wishkin, 1973).  10 

Deposition of the Bira Fm. occurred during the volcanism that produced the Intermediate Basalt Fm.. This volcanic formation 

mainly follows faults (Shaliv, 1991) and due to its minor occurrences (thin sections of few to tens of meters) seismic resolution 

does not permit its interpretation. It occurs cross H3 (Shaliv et al., 1991), along Rewaya and Gefet faults (Fig. 9, Figs. S5, S8, 

S14) in B7-10 and the central Jordan Valley (Schulman, 1962; Rozenbaum et al., 2016). With time, accumulation of Bira Fm. 

moderated the rugged relief of the Galilee until it became almost flat at the end of the Miocene (Fig. S5). The outcrops of Bira 15 

Fm. appear today close to faults that were active during the second stage of subsidence, and in places cover these faults. This 

evidence suggests that Bira Fm. recorded the cessation of subsidence of the southern Galilee basins. The cessation might be 

associated with a short-term tectonic quiescence across Sinai plate and its nearby Levant margin, allowing marine 

transgressions to cover the low relief of the southern Galilee. 

Previous studies suggest that part of Bira Fm. accumulated across the southern Galilee basins during one or more marine 20 

transgressions during the upper Miocene (Blake, 1935; Schulman, 1962). Shaliv (1991) suggests the transgression occurred 

between 7-6 Ma (Tortonian), whereas the global eustatic record does not contradict additional marine intercalations between 

5.4-5.25 Ma (e.g., Haq et al., 1987; Müller and Hsu, 1987). This deduction is also supported by mega-fauna (Shaliv, 1991), 

ostrea lumashell unusual facies in outcrops of southern B9 (Schulman, 1962) and lithological resemblance of the latter evidence 

and those of the southern Galilee basins (Michelson and Lipson-Benitah, 1986). The transgressions probably arrived from the 25 

west (Mediterranean) since at that time the topographic valley along the N-S trending DSF already existed (Fig. S14; Segev et 

al., 2017). In addition, lithology of Bira Fm. shows a distinct marine to estuarine (saline to brackish) facies shift from west to 

east (Dicker, 1964). The change occurs north of B6 (B7-8, along Moledet-Bira 2-Bira 4-Shadmot Devora wells, see GE). 

Gvirtzman et al. (2011) describe a lateral facial shift during the late Miocene (Fig. 13 in Gvirtzman et al., 2011): Pattish Fm. 

represents a continental shelf (i.e., marine) environment. The transition to the lacustrine floodplain facies of Bira Fm. is located 30 

on the eastern flank of H1, next to the intersection between Sede Yaakov and western Gilboa faults in Tel Kashish (Figs. 3, 

10c, Fig. S12; Zilberman and Sandler, 2013). Further east the facies shifts land locked lake environments of the Sedom Fm.. 

During the late Miocene, Tortonian episodic marine transgressions filled the southern Galilee basins. Saline conditions 

developed in separated water bodies as evident from the accumulation of laminar marls and evaporates (Bira and Sedom Fms; 
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Shaliv, 1991; Fig. 17d in Segev et al., 2017). Clean gypsum crystals found at the outlet of Tavor stream are associated with 

proximal lagoon depositional environment (location: Fig. 6; GE). Rozenbaum et al. (2016) suggest that the gypsum crystals 

formed before the onset of the Messinian salinity crisis, i.e. prior to 5.96 ± 2 Ma (Krijgsman et al., 1999; Manzi et al., 2013). 

Our data show that chalks and limestones were deposited in shallow basins at the Yisachar and Poriyya area, while 

conglomerates accumulated along the rims of the basins (Fig. S15). This flooding is contemporaneous with the onlap of the 5 

Pattish Fm. reefal limestones along the Israeli coastal plain.  

At the end of the second stage, shallow brackish water lakes occupied the topographic lows above the basins. Limestones and 

chalks of the Gesher Fm. accumulated in lakes (Shaliv et al., 1991; Rozenbaum et al., 2016). The thickness of Gesher Fm., 

merely reach tens of meters, slightly above the seismic resolution limit. Bira and Gesher Fms. sealed the southern Galilee 

basins and formed a relatively flat relief. Similar to the RTS at the base of the basins, the relatively flat top of the Bira and 10 

Gesher Fm. serve as a marker for tectonic activity that deformed the study area during the Plio-Pleistocene.  

Data presented in this study suggest that the uplift of Mount Carmel, Tivon and Shefar'am occurred close to the end of the 

second stage, between 5-6 Ma (Figs. 3, 12). The uplifts placed topographic barriers between the Mediterranean Sea and the 

inland lakes, diverting possible marine transgressions to regions south of the Galilee. These observations stand in line with 

Shaliv (1991). Gvirtzman et al. (2011) suggest that the Carmel area was submerged under marine conditions before the upper 15 

Miocene. They base this deduction on a single outcrop located in Bet-Rosh that contains a continuous marine succession from 

the Eocene to mid-Miocene. These authors accept the possibility that the Galilee was exposed and claim that it resembled the 

Carmel in the timing of initiation of vertical displacements during the upper Miocene. The integrative geological-geophysical 

data presented here show differently. Our results attest to hundreds of meters thick lacustrine-fluvial infill that accumulated 

during the early and mid-Miocene displacements, while tectonics were active (Figs. 7-12).  20 

In summary, the pattern of subsidence of separated and localized basins continues from stage one to stage two. However, 

during the second stage, the basins also elongated along an NNE trend, while keeping the elevated structural highs in between 

(Fig. 12). Numerical modelling of deeper sections of the lithosphere predicted such relief pattern, of rift axis perpendicular 

faulting (Lyahovsky et al., 2012; Segev et al., 2014). The subsidence extended beyond the area studied here into the regions 

that were uplifted and eroded during the Plio-Pleistocene, for example, over H3 and the tilted blocks of the eastern Galilee 25 

(Figs. 3, 6, 7). 

4.2 Tectonic classification of the basins during the two stages 

The Galilee basins developed during the Neogene through two major structural processes. Extensional regime during the first 

stage formed the Galilee basins. The thinning of the Lower Basalt Fm. to the northwest (Figs. 6, 10) points to shallowing of 

the basin floor in that direction, and hence to a reduction in regional extension towards the continental margin in the west. At 30 

this stage, the structure of the basins and their dimensions are equivalent to the definition of intraplate basins that form during 

rifting (Evison, 1959; Bosworth, 1994; Busby and Ingersoll, 1995; Allen and Allen, 2005; Morley et al., 2004) as well as to 

the grabens and half-grabens of intra-continental rifts (Bosworth, 1994). Previous studies showed the development of the 
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Qishon-Sirhan rift during the Oligocene-Miocene in a northwesterly direction (Shaliv, 1991; Schattner et al., 2006a; Segev et 

al., 2014). Results of the present study claim this rift comprises the southern Galilee Basins during their first stage of 

development.  

The second stage of subsidence (9-5 Ma) marks a transition of the extensional stress regime into transtension along a primary 

NNE direction and a secondary WNW direction. Basins subside vertically and extend perpendicularly to the principal axis of 5 

the first stage basins, while structural highs separate between them (Fig. 12). The highs are accommodation zones, structurally 

equivalent to the separators between basins along the East African Rift (Bosworth, 1985; Bosworth et al., 1986; Rosendahl, 

1987; Ebinger et al., 1987; Burgess et al., 1988; Ebinger et al., 1989; Morley et al., 1990). These studies also show that basins 

along a forming rift accumulate sediments while tectonic subsidence is in action. As a system, some of these rifts may succeed 

and continue to drift, while others fail. The two stages recorded here occurred alongside the initiation of motion along the 10 

nearby DSF plate boundary. While motion took place along the entire boundary between the Arabian and Sinai plates, 

intracontinental basins subsided only across the southern Galilee. 

4.3 Structural transitions along the plate boundary 

The on-going Afro-Arabian and Eurasian convergence (Letouzey, J. and Tremolieres, 1980) induced three major stress regimes 

across the Galilee. (1) The Syrian Arc compressional stress regime (Krenkel, 1924) produced a WNW shortening during the 15 

Turonian (Eyal, 1996; Eyal et al., 2001). Compression-related folds plunge north towards the Carmel-Gilboa trajectory, are 

buried at the subsurface of the southern Galilee basins, and are exposed again across the northern Galilee (Fig. 3). (2) The Red 

Sea extensional regime prevailed during the Oligocene to the early Miocene (Steckler and tenBrinck, 1986; Khalil and McClay, 

2002; Younes and McClay, 2002; Bosworth et al., 2005; Khalil and McClay, 2016). It resulted in the coeval opening of the 

parallel Red Sea and Sirhan rifts (Shaliv et al., 1991; Schattner et al., 2006a). The ENE axis extension (McClay and Khalil, 20 

1998; Younes and McClay, 2002; Bosworth et al., 2005) later shifted during the Neogene (Garfunkel and Bartov, 1977) to the 

NNE (N15°E, Bosworth et al., 2005). The NW trending faults developed across the study area are part of a larger set of the 

western Arabian plate. Fault systems of the Suez-Red Sea (Steckler and ten Brink, 1986), Sirhan (Schattner et al., 2006a) and 

Karak (Bender, 1974) reactivated traces of the Precambrian Najd fault system (Stern, 1985; Agar, 1987; Stern, 1994). Our data 

show that the Red Sea regime provided sufficient conditions for the first stage of subsidence of the southern Galilee basins, at 25 

the northwestern tip of the Sirhan rift. The failure of this rift during the early-to-mid Miocene is closely associated with the 

emergence of the third, Dead Sea, stress regime (Schattner et al., 2006b; Segev et al., 2014). 

Convergence between the Arabian and Eurasian plates transformed into collision and slowed down during the mid-Miocene 

(14-12 Ma). This short recess resulted in tectonic quiescence in Suez (Bayer et al., 1989), the southern equivalent of the Galilee 

basins. In between the two rift systems, the Negev ceased to subside (Zilberman and Calvo, 2013; location- Fig. 1); while the 30 

Judea region was elevated by 400 m above the Miocene coastline (Sneh and Buchbinder, 1984; Bar, 2013; location- Fig. 1). 

During the same time window, a numerical simulation shows a depression that subsided along the Sirhan trajectory, still not 

entirely affected by the displacement along the intersecting DSF. This depression extended from Irbid structural low in the 
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east (NW Jordan) to Beteha-Sea of Galilee-Kinnarot basins in the west (Location- Fig. 1; Fig. 10 in Segev et al., 2014). During 

that time, volcanic activity stopped in Syria (Mouty et al., 1992).  

The tectonic transition between the Red Sea and Dead Sea stress regimes was accompanied by up to 50% decrease in the 

relative velocity of the African plate around 11 Ma (Reilinger and McClusky, 2011), and a geometric rearrangement of the 

plates around 9 Ma (McQuarrie et al., 2003; Faccenna et al., 2013). This transition corresponds with the first to second 5 

subsidence stage shift of the southern Galilee basins (Fig. 12). The DSF cuts through all previous structures along its ~1000 

km trajectory. These include the Sirhan rift. As a result, the southern Galilee basins, isolated from their original system, 

continued to extend along an orientation tangential to the new stresses. This extension appears as the second stage of subsidence 

of the southern Galilee basins (Fig. 12). 

Previous studies widely agree on an N-S extension of the Galilee during the upper Miocene. Schulman (1962) and Horowitz 10 

(1979) suggest that the Galilee basins continued to extend during the upper Miocene. Freund (1970) calculates the finite N-S 

extension based on exposed faults in the Galilee. His results indicate an increase from 0% along the Mediterranean coast, 

through 5% across the central Galilee, and 7% in B7 near the DSF. This distribution pattern of displacement also corresponds 

to the exposure of Lower Basalt Fm. that decreases westwards. Freund (1970) related the differential N-S extension to the 

displacement along the nearby DSF. Ron and Eyal (1985) suggest that during the Miocene to early Pliocene an N-S extension 15 

with E-W compression prevailed across the Galilee. These stresses resulted in lateral shear along conjugate faults, accompanied 

by block rotation. The NNE trending extensional basins defined in our results are in line with these deductions. The separation 

between first (17-9 Ma) and second (9-5 Ma) stages suggested here for the first time explains the structural relations between 

the declining Irbid rift and the emergence of DSF dominance. The NE extension of the Galilee during the declining rifting 

decreases in the second stage and shifts to NNE. However, NNE extension, including an E-W compression component, prevails 20 

into the Pliocene (Figs. 12, 13). Plio-Pleistocene geodynamic analysis poses the study area as a seismogenic branch off the 

DSF plate boundary. The Primary Deformation Zone (PDZ) is expressed by a northwest oriented cross-cutting shear that 

overcomes basin subsidence. Earthquake epicenter distribution and mechanisms, GPS measurements and regional studies point 

to a seismogenic zone located at 9-17 kilometres beneath the surface (Eyal and Reches, 1983; Ron and Eyal, 1985; Ben-

Avraham and Ginzburg, 1990; Eyal, 1996; Hofstetter et al., 1996; Hardy et al., 2010; Salamon et al., 2006; Gomez et al., 2007; 25 

Shamir, 2007; Marco, 2007; Sadeh et al., 2012; Palano et al., 2013). Our tectonic analysis of the Galilean sheared margins in 

the frame of the Dead Sea fault localization process will be published in a separate paper (Wald, 2016).      
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Figure 13. (a)  Plan view of the northwest trending Irbid rift dissected by the Dead Sea fault plate boundary. (b) 
Presumed releasing jog that subsided across the Galilee above a left-lateral strike-slip Primary Deformation Zone 
(PDZ) during the Irbid rifting (marked as 1st stage; modified after McClay and Bonora, 2001). NNE elongation 
provoked extension across the interpreted normal faults (marked by celeste lines). The 2nd stage reflects the Dead Sea 5 
Fault (DSF) stress regime. (c) East-west geological cross section through basins B5, B6, B8, B7 (location in Figs. 3 and 
13B). The profile is extracted from a structural model constructed for the entire study area based on seismic data, wells, 
and outcrops. Blue and pink shading represent the 1st and 2nd subsidence stages respectively. An inverted relief of 
tilted blocks is a result of a Pliocene-Pleistocene ESE compressional stress component of the Dead Sea Fault stress 
regime. 10 

4.4 Failed rifts and magmatism 

The low extension rate (<7%) in the Galilee corresponds to similar values in other failed rifts, such as Lake Tanganyika 

(Morley et al., 1990; Rosendahl, 1987). The extension is also associated with dike emplacement. Dikes may focus the strain 

to detachment faults (Rosenbaum et al., 2008). In Afar and Ethiopia (eastern Africa) normal faults developed during the initial 

stages of rifting and were abandoned 10 Ma later. Extensional stresses there have focused on a narrow region that contains 15 

faults and magmatic intrusions (Ebinger and Casey, 2001). In the Gulf of Aden, the magmatic activity was smaller. d'Acremont 

et al. (2005) show an abandonment of older detachment faults within the rift environment replaced by the formation of a newer, 
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shorter segmentation along the central axis of the rift. Rift associated magmatism therefore commences in regions distant from 

the rift axis, and is dependent on fault distribution. In systems where extension is localized to narrow zones, dikes may follow 

extension lineaments. Examples of such cases are the Gulf of California (Lizarralde et al., 2007) and along the magmatic 

boundary of the north Atlantic (White et al., 2008). In both areas, the basaltic intrusions appear within the narrow 50-100 km 

outline of the rift. Hence evidence for magmatic intrusions and their spatial arrangement may hint at rifting orientation and 5 

associated extensional stresses. 

During the first stage of subsidence in the Galilee volcanism arrived mainly through extensional lineaments associated with 

normal faulting, along with the subsidence of the basins (Fig. 12). Syn-tectonic volcanism supplied the thick sections of Lower 

Basalt and Hordos Fm. in B4, B6, and B7 (Figs. 6, 9, 10b). A volcano in the southern margin of B6 and possible sources along 

H2 supplied additional volcanics that accumulated in B2, B4, and B5. The magmatic intrusions in H3 (Givat Hamore: location: 10 

Figs. 3, 10, 7) were dated to 15 Ma and associated with an NW to WNW faulting system (Fig. 7; Dicker, 1964; Shaliv, 1991).  

Volcanism continued during the second stage of subsidence, along with the vertical and horizontal displacement of the study 

area. The Intermediate Basalt Fm. dated to ~6 Ma arrives through normal faults bounding H3 from the NE, and perhaps through 

a volcano located in the Rewaya block (Shaliv, 1991; Fig. S8). The directional correlation between faulting and volcanic 

centers and lineaments (Figs. 7, 10, 12) obeys to a similar regional tendency. Equivalent correlation appears in Karak graben 15 

(Bender, 1974), Miocene dikes across Sinai (Bartov et al., 1980; Baldridge et al., 1991), and across Harrat-A-Shaam volcanic 

field (Feraud et al., 1985; Mor, 1986; Giannérini et al., 1988; Brew et al., 2001; Al Kwatli et al., 2012). The strips of alkaline 

volcanism across the Arabian plate represent the beginning of Miocene volcanism (Camp and Roobol, 1992; Weinstein, 2000; 

Ilani et al., 2001). We, therefore, suggest that the faulting and volcanism of the southern Galilee also follow weak lineaments 

in the lithosphere.  20 

The timing of regional volcanism is noteworthy. Between 18-12 Ma volcanic activity ceased across the Arabian plate and was 

dominant across the southern Galilee basins (Lower Basalt Fm.). This shift may represent an NW propagation of extension 

and volcanism across the Arabian plate (Weinstein, 2000). The northwestern Arabia volcanism was renewed at 14-12 Ma 

(Bohannon et al., 1989; Camp and Robool 1992; Ilani et al., 2001; Krienitz et al., 2009). Several studies link the renewal and 

activity with structural aspects (Bayer et al., 1988; Camp and Roobol, 1992; Ebinger and Casey, 2001). However, other studies 25 

suggest that the lateral slip along the DSF decreased during the upper Miocene (Hempton, 1987; Bayer et al., 1989; Reilinger 

and McClusky, 2011; Faccenna et al., 2013), while drift across the NW trending Irbid rift was active (Segev et al., 2014; Segev 

et al., 2017). Our results suggest that this decrease also enabled the subsidence of the southern Galilee basins during the second 

stage, as part of the hybrid Red Sea - Dead Sea stress regime. With enhancement of motion along the DSF during the lower 

Pliocene around 5 Ma, the Dead Sea stress regime became dominant, laterally shifting the southern Galilee basins, and 30 

structurally isolating them from their first association to the Irbid rift. 
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5. Conclusions 

The Galilee basins subsided along the northwestern front of the Sirhan rift. Integration of geological and geophysical data 

bounds the subsidence of the basins between two major surfaces: the Oligocene Regional Truncation Surface (RTS) and the 

top of Bira Fm. unconformity. The subsidence is divided into two stages.  

During the first stage (20-9 Ma) the Galilee basins subside along the main trend of the Oligo-Miocene Sirhan rift system. They 5 

subsided as grabens and half-grabens, bounded by normal faults and structural saddles. Larger subsidence was recorded along 

the main NW trending rift axis. Smaller basins subsided off the main axis. The subsidence occurred along with extensive 

volcanism that arrived through fault planes that bound the basins. The spatial arrangement of the rift basins suggests that they 

follow a larger Principal Displacement Zone (PDZ). The major boundary faults mapped here are the surface expression of the 

PDZ strands that bound the basin complex of the rift from north and south. The complex originally formed as a releasing jog 10 

along a rift system. The structural change around 9 Ma is associated here with the gradual transition between the Red Sea and 

the Dead Sea stress regimes. With the initiation of shearing along the DSF, the jog and its basins were truncated. The transition 

elongated the basins, accentuated their subsidence, and uplifted their surrounding margins.  

During the second stage (9-5 Ma) left lateral shearing of the entire study area results in subsidence of a series of NNE trending 

basins, perpendicular to the major axis of basins from the first stage. Structural highs that divide between the first-stage basins 15 

remain high during the second stage. However, during the second stage, their bounding normal faults also exhibit a lateral 

component. The general shear distorts the original structure of the first stage basins north and south of the major NW-trending 

axis. The length of the basins decreases from ~60 km in the east to ~15 km in the west of the study area. The volcanism of the 

second stage arrives from weak zones and focusses on structural boundaries between the basins, and volcanic activity along 

their margins.  20 

Structural architecture of the southern Galilee indicates that the rift basins continued to subside while the Irbid rift was active. 

Their shape and arrangement were constrained by two main rheological features – the bounds of a releasing jog along the PDZ 

and the acquaintance with a more cohesive crust at the peripheral area, perhaps a “locked zone” (see Lyakhovsky et al., 2012; 

Segev et al., 2014). However, neither of these seems to have caused the cessation of rifting. In fact, the basins at the rift tip 

subsided until the jog was decapitated by the motion along the DSF. The main cause of the structural transition (and 25 

preservation) of the southern Galilee basins was the transition from one dominant stress regime to another. Our study provides 

a unique and detailed architecture of a rift basin complex. Based on this case study we suggest that the rift did not fail but 

rather faded and was taken over by a more dominant stress regime. Otherwise, basins of this failing rift could have simply died 

out.  
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