

1 **Reply to reviewer 2**
2
3
4 **Text for submission textbox:**
5 We would like to thank reviewer 2 for the helpful comments and suggestions, and especially
6 for stepping in after the original second reviewer could not submit a review.
7
8 In order to provide an orderly reply, we have uploaded a PDF with an overview of all
9 comments and our replies to these (see below).
10
11

12 **2. Reply to reviewer 2 - anonymous**
13
14 Reviewer comments:
15
16 *In this paper the Authors present a set of analogue models designed to compare different set-ups
17 adopted in analogue modeling of extensional tectonics and to discuss the differences/similarities among
18 them. The different experimental series consider four basic different set-ups, which can be grouped in
19 two different approaches: distributed extension (foam, rubber sheet experiments) and localized
20 extension (basal plates, conveyor belt experiments). The Authors additionally analyze parameters such
21 as the presence of a weak seed to localize deformation, variations in rheology (e.g., thickness of the
22 brittle/ductile layers composing the models), velocity of deformation, etc.*
23
24 *Although the paper is potentially interesting I found it is affected by many important problems, which
25 are summarized in the following*
26
27 *In many parts of the paper the Authors are somehow confusing the description of the experimental set-
28 ups (foam, rubber sheet, basal plates, conveyor belt), with boundary conditions of deformation (e.g.,
29 vertical rheological layering, velocity of extension) and technical expedients to improve experiments
30 (e.g., lateral confinement of the models). This is for instance the case of the introduction section, where
31 the Authors mix many different things (including the analysis of 4-layer models, which do not seem
32 important for this paper – see below). In the experiments, this makes it is difficult (at least in many
33 places) to isolate the effect of the different set-ups alone. In this respect, it is not very clear why the
34 Authors try for instance experiments with variable velocities, which are to me only complicating the
35 interpretation of the influence of set-ups on the experimental results. In summary, to facilitate the
36 reader, I would simply present the results of the 8 reference set-ups.*
37

38 • Each experiment is described by experimental set-up (foam base, rubber sheet base, conveyor
39 sheets, basal plates, lateral confinement), initial conditions (rheology of the material and their
40 layering), and boundary conditions (velocity, basal and sidewall friction). We agree that these are
41 many factors. However, the issue to consider is their inter-relationship. Extension velocity
42 impacts viscous strength directly and therefore we need to consider extension velocity and
43 rheology together when assessing the influence of brittle-ductile coupling on extension style. The
44 impact of experimental set-up is directly modified by the rheology of the overlying materials
45 (which in turn is affected by the velocity that the basal conditions apply). This is why we need to
46 report set-up, boundary conditions and initial conditions together.

- 47 • In order to avoid confusion between setup and initial conditions, we have rephrased the
48 occurrences of the term “set-up” where set-up incl. initial conditions were meant.
- 49
- 50 • Beyond comparing model set-ups and their experimental results we hope to create a baseline for
51 future work. We hope to provide insights into the problems and challenges that one may
52 encounter when modelling extension. Failed models are often not published, so that the same
53 mistakes can be made again. This paper may help to avoid such problems and we have added
54 additional clarification in the introduction.
- 55
- 56 • Four-layer models are relevant as background for our crustal-scale models. We model the mantle
57 through the experimental set-up (Fig. 3). Another approach is to include part of the mantle
58 through appropriate materials and place the bottom boundary further down in low-viscosity
59 regions.
- 60
- 61 • We provide a summary overview in Fig 10 to delineate the effects of the different set-ups and
62 rheology (brittle-only versus brittle-viscous), including variations in extension rate and layer
63 thickness. This figure is used throughout the discussion and we find that especially the variations
64 in extension rate and layer thickness provide highly relevant insights.
- 65
- 66

67 *Some of the models are to me quite strange, or –at least- should deserve a more detailed discussion and
68 comparison with previous experimental works. I refer, for instance, to the foam or rubber sheet
69 experiments with no seed, which -in both cases or purely brittle or brittle/ductile systems- are unable to
70 produce significant deformation. This latter seems to be in these cases mostly accommodated at the
71 model boundaries –i.e. by undesired boundary effects- which makes the experiments a sort of failed
72 models. In many other cases, see Ken McClay’s works as examples, the rubber sheet has always
73 produced significant faulting. The difference may be due a slightly different application of the rubber
74 sheet (see lines 236-238, although there is no explanation for this difference) or different thickness of
75 the brittle layer (larger in McClay’s models), but a comparison/discussion of this seems to be lacking.
76 Anyway, as said, the models look like failed models, and this has to be explained/addressed by the
77 Authors; their meaning is really not clear to me.*

- 78 • The pure brittle foam/rubber base models, as well as the pure brittle-viscous reference models do
79 not “properly” localize deformation. These may in a sense be “failed models”, but show nicely
80 how the set-up affects the experimental results in these cases, showing what can go “wrong” and
81 why one might consider using another method. We must stress here, that the aim of this paper is
82 not to present “good” models. We ran various models with various set-ups to compare and
83 simply show what the results are, including such boundary effects. We consider this information
84 highly valuable for analogue modelers, which is a good reason to add and discuss them in the
85 text.
- 86
- 87 • Concerning the width of the rubber sheet, the reason why the work by Ken McClay does create
88 nice structures is because the rubber is spanned between two sidewalls and has only a limited
89 width. In a very real sense it is a plate base model that localizes all deformation in a somewhat
90 wide velocity discontinuity with local distributed extension. It is not surprising that such a set-up
91

92 produces well-developed structures, but we may wonder if this does represent natural conditions.
93 We have added a short discussion to the revised manuscript in Discussion section 4.2 and 4.6.
94

95 *The Authors show and discuss in many places rheological profiles of a 4-layer lithosphere, or show*
96 *models reproducing a complete lithosphere/asthenosphere system (e.g., Fig. 1). However, since their*
97 *models are limited to the crust (or upper crust) this may be –to me– misleading. The lithosphere-scale*
98 *models are normally very different from 2- or 1-layer models, in terms of both architectures of*
99 *deformation and evolution (see for instance Brun and Beslier, 1996). Therefore, I suggest the Authors*
100 *not to go in so much detail in the discussion of rheology at the scale of the whole lithosphere.*

101

- 102 Our model set-ups are indeed aimed at the crustal-scale and include 1 or 2 layers. Even so, each
103 set-up implies assumptions about the sub-crustal mantle. A plate base for example, may infer a
104 brittle upper mantle, whereas a foam base may represent a weak, ductile upper mantle. This is
105 why the sub-crustal mantle is discussed and shown in Fig. 3. We acknowledge of course that
106 multi-layer models may yield different extension styles from simpler one- or two-layer models.
107 As background, and because our set-ups assume a sub-crustal mantle, we discuss lithospheric-
108 scale models in our introduction.

109

110 *I think there is a problem with the scaling of the experiments. The Authors indicate that for a viscosity of*
111 *10(21) Pa s, the system scales down to a velocity of 0,5 mm/y. However, calculations taking values from*
112 *Table 3 (and the velocities reported in the text) seems to result in a velocity of 5 mm/y for the same*
113 *viscosity (which is velocity of extension velocity closer to natural ones). I also checked by computing the*
114 *Ramberg number, which is similar to nature only for velocities of 5 mm/y (assuming a viscosity of*
115 *10(21)). A velocity of 0,5 mm/y seems to result from a viscosity of 10(22) Pa s. This has to be carefully*
116 *checked. Anyway, velocities of ca. 500 mm/h seem to be very high, and more difficult to scale to natural*
117 *conditions.*

118

- 119 There was indeed a typo in the original text, it should be 5 mm/y for a viscosity of 10(21), which
120 is close to the values for the East African Rift as reported by e.g. Saria et al. (2014) later in the
121 same sentence. We have now listed all scaled velocities in Table 2. Indeed, some velocities
122 are quite high, this is now also mentioned in the scaling section. But here a modeler may
123 have some freedom, since e.g. lower crustal viscosities may vary substantially. When one
124 assumes a lower crustal viscosity of 10^{23} Pa*s, even our highest velocities become
125 reasonable. Proper scaling is always a challenge and we can question whether scaling can
126 even be truly correct with the data we have available at the moment. This is another reason
127 to vary, rather than pinpoint, parameters such as velocity so that we understand what their
128 influence may be on the experimental results.

129

130 *The Authors should try to improve the discussion of the applicability of model results to specific natural*
131 *settings: an example of such a detailed discussion is illustrated in Morley (1999 JGS), where the Author*
132 *discusses the relevance of VD, crustal-scale models for the analysis of pre-existing fabrics in the crust.*
133 *The Authors should at least refer to this relevant paper. Also, aren't some of the limitations of model set-*
134 *ups already analyzed in Schreurs et al (2006)? This has to be better clarified*

135

- 136 We would like to point out that our paper aims to compare model methods and results and
137 provide an overview for which tectonic settings these may be appropriate, rather than closely

138 reproduce natural examples. We do agree that in the end, models must serve to better understand
139 nature, but a case study for every single set-up cannot be a part of this paper. We provide a list of
140 natural settings (that is lithospheric profiles) that could be represented by our experiments. We
141 however urge the reader to not simply copy our schemes, but to use them as inspiration and make
142 sure that a certain set-up is appropriate for their natural example.

143

- 144 • We include insights from the very interesting paper by Morley (1999) in the methods and
145 discussion and are grateful for bringing it to our attention.
- 146
- 147 • Indeed, some limitations are already mentioned by Schreurs et al. 2006, in which the authors
148 have run a (in principle) same model in various labs around the world. Their main findings were
149 already mentioned in the introduction and referred to in several places in the text. Only one
150 extension experiment was run in this benchmark study, for which no variations in set-up,
151 rheology or boundary conditions were investigated.

152

153 *Many of the descriptions of the internal deformation (and evolution) of models with a seed (analysis
154 made with the CT scan) are not very useful to delineate differences among the different setups and may
155 be significantly shortened or (at least in some cases) removed.*

156

- 157 • We think that the application of CT images strongly improves the quality of the results, showing
158 certain features with much more clarity (e.g. the conjugate faults in the rubber base models),
159 whereas others might have remained unnoticed or unknown without the CT-scans (the conjugate
160 fault dips of ca. 90°). We must also stress that the application of CT scans to show internal
161 evolution is unique and a great help for model interpretation. The figures thus show the
162 possibilities and advantages of CT-scanning models and we consider that they should be
163 included here.

164

165 *Throughout the paper the Authors use the terms ‘rift’ and ‘graben’ as synonymous, as it is sometimes
166 done in the literature. However, rifts are normally larger than grabens, and involve deformation of the
167 whole lithosphere (e.g., Sengor and Natalin 2001 GSA Special Paper 352). The Authors should try to
168 highlight this difference and indicate individual ‘tectonic troughs’ as grabens (as done in the figures),
169 and when they form in a series giving rise to a wider, more complex deformation zone they could be
170 labelled as a rift system or similar.*

171

- 172 • We do agree that there is a difference between the terms “rift” and “graben” and that the latter
173 are generally considered to be less significant structures. Since our models do imply significant
174 deformation within the whole lithosphere, we have decided to rephrase the occurrences of the
175 term “graben” with “rift”/“rift basin”/“rift structure”. The term “graben” is now only used for
176 minor fault-bounded depressions (e.g. “marginal grabens”)

177

178 Other comments (numbers refer to lines)

179

180 21. ‘the’ instead of ‘our’

181

- 182 • We prefer to change to “their”.

184 29-30. “Brittle-viscous plate base and conveyor base experiments only localize deformation with high
185 brittle-to-viscous thickness ratios that increases brittle-viscous coupling. This effect is further enhanced
186 by higher strain rates.”

187 The effect (localization) or (as I guess) the coupling is enhanced by high strain rates?

188

- 189 • Indeed, we have rephrased to ‘Brittle-viscous plate base and conveyor base experiments only
190 localize deformation with high brittle-to-viscous thickness ratios that increases brittle-viscous
191 coupling. Such coupling is further enhanced by higher strain rates.’

192 32-37. See main comments.

193

- 194 • See reply to main comment on model usefulness.

195 46. ‘The’ instead of ‘These’

196

- 197 • We think “these” is better here, building a link with the previous phrase.

200 82 and other parts in this section (but also in the resto of the paper). The Authors discuss the effect of
201 boundary conditions (e.g., velocity) in the style of deformation together with the effect of set-ups etc.
202 This is, as said, confusing and the discussion of the effect of different boundary conditions (velocity,
203 rheology) does not seem to be pertinent to this work. Also, analysis of parameters such as velocity or
204 rheology should require a more detailed review of the numerous previous works which have investigated
205 these processes.

206

- 207 • The issue is that velocity (a boundary condition) and rheology (an initial condition that evolves)
208 are closely related. Variations in velocity impact viscous strength and thus brittle-viscous
209 coupling. This is why we discuss the effects of velocity together with rheological set-up. This is
210 indeed based on many previous works that have pointed to the close relationships between
211 velocity and rheology and their effects on extension style. We use the same materials throughout,
212 only changing their thickness ratios in selected experiments. Brittle-viscous coupling is of course
213 affected by other factors

214 Section 1.2. Again, is this summary of experimental materials necessary for the aims of this work? Also,
215 the Authors review materials used to reproduce the asthenosphere but this is really not pertinent here.

216

- 217 • We described standard methods and materials in order to provide an overview of the possibilities
218 for modelling of extensional tectonics. This not only sets the background to our modelling
219 experiments, but we also hope that the overview in combination with our experimental results
220 will form an inspiration for future work. Therefore, we consider the description necessary.

221 156. Suggest to change to ‘Aims of this study’ 158-162. I suggest to move the first sentence to after
222 ‘numerical means’

223

- 224 • Thank you for the suggestion, we have modified the subtitle.

229 173. Is Dooley and Schreurs pertinent here? Maybe better to refer to some works analyzing crustal
230 rheology?

231
232 • Dooley and Schreurs 2012 is a review paper that partially discusses these issues and contains
233 numerous references. We have slightly modified the text.
234

235 181-185. See main comments. These are experimental boundary conditions. C4
236

237 • See answer to main comment about strict classification of “set-up” and “boundary conditions”
238

239 223. I would change to ‘Distributed extension set-ups’
240

241 • Thank you for the suggestion, we have modified the subtitle accordingly.
242

243 225. ‘extension’ instead of ‘deformation’
244

245 • It is modified, thank you for the suggestion.
246

247 239. These differences should be discussed in much more detail. See above.
248

249 • We have added a clarification to the text, but prefer to discuss this in more detail in the
250 Discussion (section 4.2 and 4.6). Please also see our reply regarding the models by McClay
251 above.
252

253 249 and following. See main comment above. For instance, a hot lithosphere following thickening is
254 expected to be characterized by a very ductile crust, leading to very different results.
255

256 • Our approach was not to directly reproduce nature, but rather to start from often-used model set-
257 ups and link those to what they may represent in nature. We stress that modellers should check
258 the rheological profile of the natural case they would like to reproduce. Our Figure 3 only serves
259 as an indication.
260

261 • Concerning the properties of a post-orogenic crust, we agree that it may not be the most elegant
262 example to link with our experimental conditions (set-up and layering). We have replaced it with
263 the example of increased radiogenic heating, which can occur in a normal crust due to anomalous
264 concentrations of radioactive elements, significantly affecting crustal strength (see Mareschal &
265 Jaupart 2013, and our Fig. 12f)
266

267 261. ‘extension’ instead of ‘deformation’
268

269 • Thank you for the suggestion, we modified the subtitle accordingly.
270

271 Section 2.2.2 (294 and following). For the discussion of these experiments I would consider the paper by
272 Morley (1999), as explained above. See also other main comments.
273

274 • We have added additional information on the problems of inherited structures raised by Morley
275 (1999) to this section. However, we should keep in mind that these are not necessarily that
276 important for our set-ups since we are 1) not looking at oblique extension and 2) not concerned
277 with pervasive inherited structures. The VDs can simply represent a new fault at the base of an
278 isotropic (upper) crust.

279
280 *Section 2.3. See discussion about the relevance of the varying boundary conditions (e.g., velocity of
281 deformation). I would remove the experiments, at least those with varying velocity.*

282
283 • Please see our earlier answer above.

284
285 *Sections 3.1-3.2. The experiments with no seed are –as explained above- strange and to me they should
286 be considered failed models. The Authors could think about considering the seed experiments as a
287 different set-up, since they use it to localize deformation in the models*

288
289 • The models without seed could indeed be considered “failed” models, but as they provide useful
290 insights in modelling processes and boundary effects, we would like to share those. These
291 experiments also allow evaluating the impact of distributed extension alone or distributed
292 extension with a seed.

293
294 *388-393 (but also 408-414, 432-439, etc.). See above comment on details of the CT scan.*

295
296 • See our earlier reply to the usefulness of the CT data.

297
298 *423-424. The focusing of deformation at the sidewall is to me an anomalous, undesired boundary effect
299 which makes the model a failed model.*

300
301 • These are indeed boundary effects, but these cannot be avoided (see above and discussion later in
302 paper in Discussion Section 4.6)

303
304 *426. What does ‘poor lighting conditions’ mean?*

305
306 • It means that the illumination we applied by lamps was not perfectly oriented to visualize these
307 low-offset structures. The text is modified to clarify.

308
309 *471 and following (and similar effects for the conveyor belt experiments). Again, the non connection of
310 the grabens in the central portion of the model, where deformation is taken up at the boundaries, make
311 to me the model a strange (failed?) model. It is also strange that a reduction of the thickness of the
312 ductile layer did not help to reduce the effect.*

313
314 • This is actually a very common effect in (our) models (see also Zwaan et al. 2016, 2018 and
315 Zwaan & Schreurs 2017) and seems to be an inherent feature of models with continuous ductile
316 layers. The fact is that in such models, we do not pull the sand, but the silicone. As the viscous
317 layer flows, it leaves gaps at the sidewalls, as the sand is not directly attached to the sidewalls.
318 Analogue models with similar brittle-viscous set-ups, but without such effects, have probably
319 only a limited (narrow or thin) viscous layer or find other (unclear) ways to counteract these

320 problems. When assessing published model results, one can often distinguish such boundary
321 effects, they are just not highlighted. We prefer to be open about the experimental limitations and
322 their effects, hoping that future model projects may be aware of this issue and can hopefully take
323 measures or find solutions.

324
325 *512 and following. The Authors are introducing here a description of technical expedients to reduce*
326 *undesired effect. See main comments above.*

327
328 • We prefer to describe measures taken to reduce boundary effects and their success (or not).
329 Please see our earlier replies above.

330
331 *518 and following. Too many details introduced and described, which make the experimental analysis*
332 *difficult to follow. See again main comments.*

333
334 • We agree that there is a high information density in this section. We have partially rewritten, but
335 do stress that these models are important for the overall message of our paper.

336
337 *539-549. This is a somehow obvious conclusion, familiar to experimentalists.*

338
339 • We agree that this may seem obvious. Still the total lack of influence of the set-up due to
340 decoupling was surprising to us, as we did expect to have at least some influence from the VD.
341 This highlights the importance of considering viscous rheology, layer thickness and extension
342 velocity in such set-ups. We also prefer to share our findings so that future researchers do not
343 reproduce the same “failed” models.

344
345 *I think the organization of section 4 somehow exemplifies the confusion between setups and boundary*
346 *conditions throughout the paper. In fact, although the paper should be focused on the analysis of the*
347 *different set-ups, the discussion is organized in sections describing the models in terms of rheological*
348 *boundary conditions (brittle-only vs brittle/ductile models)*

349
350 • The decoupling observed in the brittle-viscous reference models was the reason we organized the
351 start of the discussion in a brittle-only part and a brittle-viscous part. This way we do not have to
352 repeat the same obvious comparison several times and can instead focus on the effect of layering,
353 which is more important here.

354
355 *573 and following. The Authors should better discuss here the differences with McClay’s models in*
356 *terms of brittle deformation (not observed in the current models, well developed in McClay’s models).*

357
358 • We have added details on why McClay’s models do develop clear structures that are absent in
359 our experiments in Discussion section 4.2 ‘It is worth noting that the results from our
360 experiments with a full rubber base (distributed faulting) differ from those obtained with narrow
361 rubber sheets between base plates (localized and well-developed rift basins, e.g. McClay &
362 White 1995 and McClay et al. 2002; Schlische & Withjack 2009). This is because in the latter
363 experiments, deformation is strongly concentrated above the rubber sheets, with the edges of the
364 plates acting as VDs. These models produce well-developed rift structures, but mix two basal

365 boundary conditions (distributed extension and VDs) making it more difficult to identify
366 equivalent natural conditions (Morley 1999, see also 4.6)'

368 584 and following. See above comments for the discussion of VD (or conveyor belt) experiments

369

- 370 • We have added details on the nature of the VDs and what they may represent in nature to the
371 methods section.

372 593. *Role of sedimentation not clear. Is it because the sediments are expected to load and therefore
373 reduce the topography of the base of the basin? This has to be clarified.*

374

- 375 • The sediments may simply fill the basin, restoring the original topography and adding more
376 material that can be deformed. Without sedimentation, the sand slopes on the moving plates will
377 just reach equilibrium and no further deformation will occur in the sand, no matter the amount of
378 extension (displacement of the base plates or sheets).

379 607 and following. See comments on the failed models.

380

- 381 • See our earlier replies above.

382 Section 4.4. As explained above, in my view the experiments investigating variations in velocity are not
383 relevant to the aims of the papers. Moreover, they should discuss in some details the scaling of velocities
384 in the models (some of which may be unrealistically high – see above) and compare the results with
385 many previous works investigating similar.

386

- 387 • See our previous comments explaining why variations in extension velocity are an integral part
388 of this work. We agree that some velocities may seem quite unrealistic when scaling with a
389 lower crust viscosity of 10^{21} Pa*s. A more viscous lower crust (ca. 5×10^{23} Pa*s) would result
390 in lower equivalent natural extension rates. We have added the velocity scaling for each model in
391 Table 2 (based on a lower crustal viscosity of 10^{21} Pa*s).

392 696-698. Sentence not very clear.

393

- 394 • It is rephrased

395 706. Brun and Beslier?

396

- 397 • Thank you for mentioning this paper, they indeed develop a similar double trough. We have
398 included the reference.

399 735 and following. But I wonder why the results are so different with a somehow similar set-up. This is
400 not explained and deserves a more detailed analysis.

401

- 402 • We have added some details on differences in rubber base model results to Discussion sections
403 4.2 and 4.6.

411 *Section 4.7. Is the analysis of strength profiles relevant? Many other papers in the past have shown this*
412 *(see Burov's or Cloetingh's papers or schematization of strength envelopes in Brun 1999 or the classic*
413 *paper by Buck 1991 among others). So, I do not feel it is important to re-calculate again strength*
414 *profiles*

415

- 416 • Strength profiles can vary to a substantial degree depending on numerous factors (materials,
417 material layering, deformation rate, presence of water and/or melt, temperature etc). Therefore,
418 we think it appropriate to calculate our own profiles and compare with the experimental profile.

419
420 *795. As said, this is to me due to failed modelling*

421

- 422 • We are afraid that this is a feature that is quite common in analogue experiments, even if not
423 always fully described. Please see our previous reply on failed models.

424
425 *812. Maybe in some specific conditions, but I guess it is not so easy to generalize these set-ups*

426

- 427 • Unless the brittle upper mantle can continuously rejuvenate as a symmetric (!) conveyer belt
428 system, this is a valid statement. However, it is not when we concern an asymmetric conveyer
429 system, which is (after a shift of reference frame) the same as an asymmetric plate base system
430 (see Appendix A1). We added a clarification to the text that now reads: 'The symmetric
431 conveyor belt extension mechanism may not be well suited to crustal-scale models, as the
432 continuous "upwelling" of the plastic sheets resembles a convection cell system, which could be
433 taken to simulate sub-lithospheric mantle behaviour and would therefore be more appropriate for
434 lithospheric-scale models driven by mantle convection. For crustal-scale wide rift experiments
435 we recommend using an asymmetric plate base or conveyor belt mechanism instead, which are
436 the same after a shift of reference frame (appendix A1)'

437
438 *815 and following. Again, is this reasoning needed here?*

439

- 440 • We would like to suggest some ideas for future work, which is one of the goals of this paper,
441 therefore we feel this reasoning is needed.

442
443 *Table 3. Indicate the scaling of velocity here*

444

- 445 • It was already included. We have now also included the scaling (for the reference viscosity of
446 10^{21} Pa*s) in Table 2.

447
448 *Figs. 1, 3, 12. See comments above*

449

- 450 • See reply above.