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Abstract. The Ogooue deep-sea Fan located in the northeastern part of the Gulf of Guinea expands over more than 550 km 9 

westwards of the Gabonese shelf and passes through the Cameroun volcanic line. Here are presented the first study of 10 

acoustic data (multibeam echosounder and 3.5 kHz seismic data) and piston cores covering the deep-sea part of this West 11 

African system. This study led to the construction of the sedimentary processes map of this area. The overall system 12 

corresponds to a well-developed mud-sand rich deep-sea fan, fed by the Ogooue River ‘sedimentary load. This system 13 

presents the typical morphological elements of clastic slope apron: tributary canyons, distributary channel-levees systems 14 

and lobes elements. However, variations on the slope gradient cumulated with the presence of numerous seamounts, 15 

including volcanic islands and mud volcanoes, led to a more complex fan architecture and sedimentary facies distribution. 16 

In particular, turbidity currents derived from the Gabonese shelf deposit across several interconnected sedimentary sub-17 

basins located on the low gradient segments of the margin. The repeated spill-overs of the most energetic turbidite flows 18 

have notably led to the incision of a large distal valley connecting an intermediate sedimentary basin to the more distal 19 

lobe area. The sedimentary facies repartition over the fan indicates that pelagic to hemipelagic sedimentation is dominant 20 

across the area. Distribution and thickness of turbidite sand beds is highly variable along the system, however turbidite 21 

sands preferentially deposit in the bottom of channel-levee systems and on the most proximal depositional areas. The most 22 

distal depocenters receive only the upper parts of the flows, which are composed of fine-grained sediments. The Ogooue 23 

deep-sea system is predominantly active during periods of low sea-level because canyon heads are separated from terrestrial 24 

sediment sources by the broad shelf. However, the northern part of this system appears active during sea-level highstands. 25 

This feature is one deeply incised canyon, the Cape Lopez canyon, located on a narrower part of the continental shelf has 26 

a different behaviour and receives sediments transported by the longshore drift. 27 
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1 Introduction 37 

The Ogooue Fan is a turbidite system that develops along the central part of the Gabonese margin. Since the Neogene, the 38 

West African margin has recorded deep clastic sedimentation forming vast and thick turbidite systems fed by the 39 

denudation of the African continent. These deep-sea fans are localized at the outlet of the main rivers, such as the Niger, 40 

Congo, Ogooue or Orange River (Anka et al., 2009; Mougamba, 1999; Séranne and Anka, 2005). Due to the presence of 41 

important petroleum resources in late Cretaceous and early Tertiary clastic reservoir formations fed by Albian to Turonian 42 

source rocks, the geology of the equatorial West African margin province has been widely studied since the early 70’s 43 

(Brownfield and Charpentier, 2006). Simultaneously, studies of the recent sediment dispersal pattern along this margin 44 

have been initiated (Heezen et al., 1964; Weering and Iperen, 1984). These studies of recent and still active systems offers 45 

the possibility to observe the continuity between the different features of deep-sea turbidite systems but also to understand 46 

the processes and constraints that govern the construction of such sedimentary systems and the facies distribution.  47 

Such studies have benefited from the improvement of acquisition tools such as multibeam echosounding and very-high 48 

resolution seismic but also from increased frequency of oceanographic cruises allowing to obtain a better cover on the 49 

seafloor. In the Gulf of Guinea, many studies focused on the recent Niger (Deptuck et al., 2007, 2003) and the Congo 50 

systems (Babonneau et al., 2002; Droz et al., 2003, 1996). On the contrary, the Quaternary sediments of the Gabon passive 51 

margin have been relatively poorly studied and the Ogooue deep-sea turbidite system, resulting from the sediment 52 

discharge of the Ogooue River, remained for long uninvestigated especially in its deepest parts (Bourgoin et al., 1963; 53 

Giresse, 1969; Giresse and Odin, 1973).  54 

The survey of the area by the SHOM in 2005 and 2010, thanks to the OpticCongo and MOCOSED cruises, provided the 55 

first dataset on the Ogooue deep-sea turbidite system, from the continental shelf to the abyssal plain. In this paper, we 56 

present the first study of the deep-sea Ogooue turbidite system that allows to provide the overall fan morphology as well 57 

as its subdivisions but also to understand the sedimentary processes which are involved in the development of the observed 58 

sedimentary structures. This study provides an opportunity to investigate a modern deep-sea fan which construction appears 59 

largely controlled by bathymetric constrains and by palaeoenvironmental evolution of the West African margin.  60 
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2 Geological setting 61 

 62 

Fig. 1: a) The Ogooue sedimentary system from source (river and drainage basin) to sink (Quaternary turbidite system). b) 63 

Channel depth profile of the Ogooue River (blue) and its main tributaries (grey) and mean depth profile along the Gabonese 64 

margin. 65 

The Ogooue Fan is located in the northeastern part of the Gulf of Guinea on the Gabonese continental slope. The system 66 

develops on the Guinea Ridge, which separates the two deep Congo and Angola basins. This region is notably characterized 67 

by the presence of several volcanic islands belonging to the Cameroon volcanic line (Fig. 1a). The development of the 68 

Ogooue Fan started during the Late Cretaceous post-rift phase and followed the deposition of a thick Aptian evaporitic 69 

formation which created salt-related deformations of the margin sediments (Cameron and White, 1999; Mougamba, 1999; 70 

Séranne and Anka, 2005; Wonham et al., 2000). The quaternary Ogooue Fan extends westwards over 550 km through the 71 

Cameroon volcanic line. Overall, the modern slope profile is concave upward, similar to that of many other passive 72 

margins. The mean slope gradient evolves from 12% on the very upper slope to < 0.5 % in the abyssal plain (Fig. 1b). The 73 

Gabonese continental shelf, which is relatively narrow, can be divided into two sub-parts: the south Gabon margin 74 
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presenting a SE-NW orientation and the north Gabon margin presenting a SW-NE orientation. The inflection point of the 75 

shelf is located at 1°00 S. The South part of the margin is characterized by the presence of numerous parallel straight gullies 76 

oriented perpendicular to the slope (Lonergan et al., 2013; Séranne and Abeigne, 1999). On the north Gabon margin, the 77 

area located between 1°00 S and the Mandji Island is incised by several canyons that belong to the modern Ogooue turbidite 78 

system (Fig. 2a). North of the Mandji Island, the seabed reveals numerous random pockmarks as well as sinuous pockmarks 79 

trains. These features are interpreted as the results of fluid migration from shallow buried channels (Gay et al., 2003; Pilcher 80 

and Argent, 2007).  81 

The Ogooue turbidite system is supplied by the sedimentary load of the Ogooue River, which is third largest African 82 

freshwater source in the Atlantic Ocean. Despite the relatively small size of the Ogooue River basin (215,000 km²), the 83 

river mean annual discharge reaches 4,700 m3/s due to the wet equatorial climate prevailing on the drainage basin (Lerique 84 

et al., 1983; Mahé et al., 1990). The Ogooue River flows on a low slope gradient in a drainage basin where very thick 85 

lateritic soils develop over the Congo craton and Proterozoic orogenic belts (Séranne et al., 2008). The estuary area includes 86 

several lakes (Fig. 1b) (Lerique et al., 1983). These features contribute to the mainly muddy composition of the particle 87 

load of the Ogooue River that is estimated between 1 and 10 M t/yr (Syvitski et al., 2005). The limited portion of sand 88 

particles in the river originates mainly from the erosion of the poorly lithified Batéké Sands located on a 550-750 m-high 89 

perched plateau that forms the easternmost boundary of the Ogooue watershed (Séranne et al., 2008) (Fig. 1a). On the 90 

shelf, recent fluviatile deposits consist of fine-grained sediments deposited at the mouth of the Ogooue River (Giresse and 91 

Odin, 1973). The wave regime along the Gabonese coast causes sediments to be transported northward. Sedimentary 92 

transport linked to longshore drift ranges between 300,000 m3/yr and 400,000 m3/yr (Bourgoin et al., 1963) and is 93 

responsible for the formation of the Mandji Island, a sandy spit of 50 km long located on the northern end of the Ogooue 94 

Delta (Fig. 2a). Except for the Cape Lopez canyon, located just west of the Mandji Island and which head reaches only 95 

5 m water depth (Biscara et al., 2013), the Ogooue turbidite system is disconnected from the Ogooue delta during the 96 

present-day high sea-level. 97 
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 98 

Fig. 2: (a) Detailed bathymetric map of the Ogooue Fan, based on the multibeam echosounder data of the Optic Congo2005 and 99 

MOCOSED2010 surveys. (b) Acoustic imagery of the Ogooue Fan (high backscatter: dark tones; low backscatter: light tones). 100 

Detail A: close-up of the deepest part of the Ogooue Fan. Red crosses: location of the studied cores. 101 

 102 

 103 
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3 Material and method 104 

The bathymetry and acoustic imagery of the studied area result from the multibeam echosounder (Seabat 7150) surveys 105 

conducted onboard the R/V “Pourquoi Pas?” and “Beautemps-Beaupré” during the MOCOSED 2010 and OpticCongo 106 

2005 cruises (Guillou, 2010; Mouscardes, 2005) (Fig. 2a). The multibeam backscatter data (Fig. 2b) has been used to 107 

characterize the distribution of sedimentary facies along the margin. Changes in the backscatter values correspond to 108 

variations of the nature, the texture and the state of sediments and/or the sea-bed morphology (Hanquiez et al., 2007; 109 

Unterseh, 1999). On the multibeam echosounder images, lighter areas indicate low acoustic backscatter and darker areas 110 

indicate high backscatter. Five main backscatter types are identified on the basis of backscatter values and homogeneity 111 

(Fig. 2b). Facies A is a homogeneous low backscatter facies, Facies B is a low backscatter heterogeneous facies, facies C 112 

is a medium backscatter facies characterized by the presence of numerous higher backscatter patches. Facies D and E and 113 

respectively high and very high backscatter facies. High backscatter lineations are present within facies D.  114 

4,500 km of 3.5 kHz seismic lines were collected in the area of the Ogooue Fan during the MOCOSED 2010 cruise and 115 

470 km during the Optic Congo 2005 cruise. These data were used to analyze the near-surface deposits. The dataset covers 116 

the shelf edge, the slope and the abyssal plain. In this study, the 3.5 kHz echofacies has been classified according to 117 

Damuth’s methodology (Damuth, 1980, 1975; Damuth and Hayes, 1977) based on acoustic penetration and continuity of 118 

bottom and sub-bottom reflection horizons, micro-topography of the seafloor, and presence of internal structures. 119 

The twelve Küllenberg cores presented here were collected during the cruise MOCOSED 2010. Five of these cores have 120 

already been presented in (Mignard et al., 2017) (Table 1). Visual descriptions of the cores distinguished the dominant 121 

grain size (clay, silty clay, silt, and fine sand) and vertical successions of sedimentary facies. Thin slabs were collected for 122 

each split core section and X-ray radiographed using a SCOPIX digital X-ray imaging system (Migeon et al., 1998). 123 

Subsamples were regularly taken in order to measure carbonate content using a gasometric calcimeter and grain size using 124 

a Malvern Mastersizer S. The stratigraphic framework is based on the previous work of (Mignard et al., 2017)), new AMS 125 

14
C dating and facies correlation to determine the boundary between Marine Isotopic Stage 1 (MIS1) and Marine Isotopic 126 

Stage 2 (MIS2). Indeed, the transition from MIS2 to MIS1 is in the south-west Atlantic is marked by an abrupt increase in 127 

carbonate content (Jansen et al., 1984; Olausson, 1984; Volat et al., 1980; Zachariasse et al., 1984). This feature is recorded 128 

in all the deepest cores of this study (Fig. 3). 129 

 130 

 131 

 132 

 133 

 134 

 135 

 136 

 137 

 138 

 139 

 140 

 141 

 142 

 143 

Solid Earth Discuss., https://doi.org/10.5194/se-2018-99
Manuscript under review for journal Solid Earth
Discussion started: 15 October 2018
c© Author(s) 2018. CC BY 4.0 License.

eardh
Cross-Out

eardh
Inserted Text
in

eardh
Cross-Out

eardh
Inserted Text
F

eardh
Cross-Out

eardh
Inserted Text
are

eardh
Cross-Out

eardh
Inserted Text
, respectively

eardh
Cross-Out

eardh
Inserted Text
F

eardh
Cross-Out

eardh
Inserted Text
Four thousand five hundred



 

7 

 

Table 1: Core characteristics. 144 

Core  Depth (m) Latitude  Longitude  Length (m) 

KC01 3504  00°57,010' S 005°31,806' E 12,96 

KC02 4109 00°13,525' S 004°07,620' E 12,76 

KC10 3148 00°56,666’ S 006°39,809’ E 11,54 

KC11 3372 00°52,008‘ S 006°00,008‘ E 9,92 

KC13 2852 00°32,508’ S 007°08,589’ E 7,62 

KC14 3140 00°25,010’ S 006°36,006’ E 11,34 

KC15 3850 00°49,996’ S 004°50,009’ E 12,01 

KC16 3738 01°05,003’ S 004°52,010’ E 11,48 

KC17 565 00°51,188’ S 008°29,377’ E 8,20 

KC18 366 01°01,940’ S 008°25,409’ E 7,99 

KC19 1610 00°41,593’ S 008°18,592’ E 10,03 

KC21 2347 00°13,004’ S 008°00,011’ E 11,81 

 145 

 146 

 147 

 148 

 149 

Fig. 3: Sedimentological core logs from the Ogooue Fan, showing grain-size variation, lithology and bed thickness (location of 150 

cores are presented in Fig. 2). Ages are from 14C dating (dates with a star are from (Mignard et al., 2017). 151 

 152 
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4 Results 153 

4.1 Sedimentary facies 154 

The classification in five sedimentary facies used here is based on photography and X-ray imagery; grain size analyses and 155 

CaCO3 content (Fig. 3). Interpretation of these facies is based on the comparison with previous sedimentary facies 156 

classifications such as (Normark and Damuth, 1997; Pickering et al., 1986; Stow and Piper, 1984).  157 

 158 

Facies 1: Homogenous, structureless marly ooze. This facies is composed of structureless, light beige marly ooze with 159 

relatively high concentration in planktonic foraminifers. The mean grain size is around 15 µm and the CaCO3 content 160 

ranges between 40 and 60 %. This facies is interpreted as a pelagic drape deposits; it forms the modern seafloor of the 161 

deepest part of the Ogooue Fan and is observed in the majority of the cores top corresponding to the MIS 1 interval.  162 

Facies 2: Homogenous, structureless clay: Facies 2 consists of dark brown clay. The mean grain size is less than 15 µm 163 

and the CaCO3 content is less than 30 %. This facies has been interpreted as hemipelagic drape deposits.  164 

Facies 3: Thick, homogeneous silty-clay: Facies 3 consists of very thick homogeneous dark silt-clay layers containing less 165 

than 10% of CaCO3. This facies contains numerous quartz, micas and plant debris indicating a continental origin of the 166 

sediments. It results from the deposition of the fine-grained suspended load coming from the Ogooue River and flowing 167 

down the slope or belonging to the upper term of turbidite gravity flows. 168 

Facies 4: Silty to sandy layers: Facies 4 consists of fine to medium sand beds with a thickness up to several meters. They 169 

display a variety of bedding structures: normally-graded or massive. The composition varies from terrigenous (quartz and 170 

mica) to biogenic (foraminifera), some sequences are highly enriched in organic debris (Mignard et al., 2017). They are 171 

interpreted as being deposited by turbidity currents initiated on the Gabonese continental shelf. Four sequences samples in 172 

core KC01 present a high concentration of volcaniclastic debris, such particles are completely absent of all the other 173 

sequences (Fig. 3). This specific composition and the location of the core suggests that these sequences originate from the 174 

close Annobon volcanic island. 175 

Facies 5: Disorganized sandy clays: Facies 5 consists of thick intervals of deformed or chaotic clay with deformed or 176 

folded silty to sandy layers. This facies is interpreted as resulting from mass transport deposits (slump or debris flow). 177 
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4.2 Fan morphology 178 

 179 

Fig. 4: Interpreted gradient-shaded map of the Ogooue Fan showing the main features of the turbidite system. A, B, C, D, E and 180 

F are the six main channels discussed in the text. The sand/shale ratio of the cores are shown (Sa:Sh) as well as the maximum 181 

sand-bed thickness in each core (max sand).  182 

Analysis of the sub-surface data (bathymetry and acoustic imagery) reveals the different domains of the Ogooue 183 

sedimentary system and the different architectural features of the Ogooue Fan (Fig. 4).  184 

The Gabon shelf is relatively narrow decreasing in width from 60 to 5 km toward the Mandji Island. The slope is 185 

characterized by two main topographic elements: (1) the presence of the Mount Loiret, an inactive submarine volcano just 186 

west of the Manji Island, which forms a bathymetric obstacle on the upper slope and (2) a ramp of several tributary canyons 187 

located south of the Mount Loiret. This ramp is composed of ten major canyons, which deeply incise the shelf, and ten 188 

thinner and shallower incisions, which do not reach the shelf break. The continental shelf and the slope present low 189 

backscatter values except for the canyons, which appear with very-high backscatter value.  190 

The transition between the continental slope and the continental rise, between 1,200 and 1,500 m water depth, is marked 191 

by a decrease in the slope gradient from more than 4% to 1.5%. At this water depth, several canyons merge to form five 192 

meandering channels (B to F in Fig. 4). These channels appear with higher backscatter value than the surrounding seafloor 193 

(Fig. 2b). These highly sinuous and meandering subparallel channel-levees complexes extend down to 2,200 m water depth 194 

with a general course oriented toward the north-west (Fig. 5). At 2,200 m water depth, the southernmost channel (channel 195 

F in Fig. 4) deviates its path toward the south-west.  196 
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 197 

Fig. 5: Detailed Bathymetric map of channel D (location in Fig. 2) and serial bathymetric profiles showing the evolution of the 198 
channel-levees along the slope. 199 

Downslope, on central part of the system, the seafloor located between 2,200 m and 2,500 m water depth, presents 200 

numerous erosional features like scours, lineations and secondary channels (Fig. 4). These erosional features appear on a 201 

very gentle slope area (0.6%) characterized by an heterogeneous medium backscatter facies (Fig. 2b). At 2,500 m water 202 

depth, just south of the Sao Tomé Island, the head of a large, 100 km-long, distal valley appears (Fig. 6). This valley can 203 

be divided in two parts of approximately equal length with two different orientations. The upper part of the valley is 204 

oriented E-W whereas the lower part is oriented NE-SW. This direction change is due to the presence of a rocky seamount 205 

located north of the valley and which deflects its course. The first half of the valley is up to 15 km wide with numerous 206 

erosional scars and terraces on its flanks. Its bottom, characterized by very high backscatter value, presents small internal 207 

erosion channels. Downstream, the valley becomes narrower with a “U” shape (Fig. 6, profile 5), its flanks appear regular 208 

with no scar of down-flank mass deposits. The depth of the valley decreases from 60 m in its central part to only 10 m near 209 

its mouth. The area located south of the distal valley is characterized by a heterogeneous low-backscatter facies. Some 210 

erosional features and secondary channels are present but scarce.  211 
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 212 

Fig. 6: (a) Shaded bathymetry of the distal valley of the Ogooue Fan between 2,700 and 3,400 m water depth; b) Interpretation 213 

of the main morphological features of the valley; c) Six transverse profiles of the distal valley extracted from the bathymetry 214 

data.  215 

West of the distal valley outlet, the seafloor is very flat and shows only subtle morphological variations except for local 216 

seamounts (rocky mounts and mud volcanoes). Few channel-like, narrow elongated depressions (maximum 10 m deep) 217 

presenting high backscatter values can be identified. These lineations are restrained to a long tongue of high backscatter 218 

that develops at the mouth of the valley (Fig. 2b, Detail A). This tongue is globally oriented E-W at the exit of the distal 219 

valley and then deflects toward the NW at 3,700 m water depth, following the steepest slope.  220 

North of mount Loiret, the upper slope presents a lower slope gradient compared to the south part and is characterized by 221 

the presence of numerous linear pockmark trains on the upper part and random pockmarks fields on the lower part. These 222 

pockmarks have been previously described in (Pilcher and Argent, 2007). This whole area appears with a very low and 223 

homogeneous reflectivity. Trace of active sedimentation on this part of the margin is only visible in association with the 224 

Cape Lopez Canyon, which is the only canyon located north of the Mount Loiret. This canyon is associated with a small 225 

ponded lobe located just north of the Mount Loiret and referred as the Cape Lopez lobe (Biscara et al., 2011). This northern 226 

system is continued by Channel A which head is located in the vicinity of the Cape Lopez Lobe. At 2,200 m water depth, 227 

Channel A ends and its mouth is associated on the backscatter map with a fan-shaped area of very-high reflectivity which 228 

is associated with some secondary channels and erosional marks (Fig. 2b).  229 

 230 

 231 

 232 

 233 

 234 
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4.3 Echofacies analysis and distribution 235 

 236 

 237 

Fig. 7 : Echofacies map of the Ogooue Fan. Each shade of grey represents a specific echofacies.  238 

Height main seismic facies have been discriminated on the profiles based on amplitude, frequency and geometry of the 239 

reflections (Fig. 7). They have been grouped into five main classes: (I) bedded, (II) bedded-rough, (III) rough, (IV) 240 

transparent and (V) hyperbolic. Although a few transitions between echofacies are sharp, most of them are gradual. 241 

The echofacies of the edge of the Gabonese shelf consists of rough echofacies III (Fig. 7). Core KC18 indicates that this 242 

area is dominated by fine-grained terrigenous sedimentation.  243 
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North of the Mount Loiret, the continental slope presents bedded echofacies I which evolves into echofacies I’ down isobath 244 

1,500 m which corresponds to an increase of the slope gradient. Bedded echofacies are commonly associated with 245 

hemipelagic sedimentation or with the alternation of hemipelagic sediments with gravity flow deposits (Damuth, 1980, 246 

1975; Loncke et al., 2009). The very low reflectivity of the area and the absence of any channel both suggest that only 247 

hemipelagic sedimentation occurs in this area. The wavy aspect of echofacies I’ could be due to creeping.  248 

South of Mount Loiret, echofacies II and II’ dominate on the continental slope. Despite the lack of sampling, the presence 249 

of semi-prolongated seismic reflectors can indicate the presence of coarse sediment. The echo-mapping of the continental 250 

rise reveals the presence of different facies. The central part, just upstream of the distal valley, is characterized by rough 251 

echofacies III that suggests the presence of coarse sediment. Some large channels are marked by hyperbolic facies certainly 252 

due to the irregular and steep seafloor. South of the distal valley, facies II dominates. Core KC10, collected in this area, 253 

indicates the alternation of clayey and sandy layer but with a predominance of fine-grained sediments (Fig. 3 Fig. 4). 254 

Echofacies IV is present in two main areas on the continental rise: they respectively form two lobe-shaped zones: one on 255 

the northern part, following the limits of the high-reflectivity area located at the mouth of channel A; the second in the 256 

southern part of the system in association with channel F. This echo-facies commonly corresponds to massive deposits 257 

without internal organization. Core KC21, collected in the northern area indicates homogeneous silty-clay sediments 258 

similar to those collected near the continental shelf. 259 

 260 

Fig. 8 : a) Transverse 3.5 kHz seismic line and b) line drawing in the upper distal lobe area, see Fig. 7 for location of the line.  261 

On the abyssal plain, the area of the elongated tongue noticeable on the backscatter data presents different echofacies. 262 

Based on the 3.5 kHz profiles, it can be subdivided into two main domains. The upstream part, at the outlet of the distal 263 

valley, is characterized by rough echo character but with a specific organization: multiple aggradational stacked transparent 264 

sub-units from 10 to 30 meters thick are visible on the seismic lines (Fig. 8). This organization is characteristic of sandy 265 

lobes deposits. Core KC11, collected in this environment, presents several relatively-thick sandy layers and a several meter-266 

thick disorganized sandy-clay sequence corresponding to slump deposit. The downstream part presents bedded-rough 267 

echofacies (II) associated with hyperbolic echofacies (V). Core KC15 shows mainly fine-grained sediments but recorded 268 

also several silty layers corresponding to the distalmost turbidite deposits.  269 

On the edge of this tongue, high-penetration bedded facies (I) is dominant. The very continuous parallel bedding indicates 270 

hemipelagic sedimentation, which is confirmed by core KC16 and core KC02 both composed of alternating carbonate-rich 271 

and carbonate-poor clay sediments. Facies V’ forms some patches on the seafloor and correspond to seafloor mounts such 272 

as mud volcanoes or rocky hills. The hyperbolic facies is due to the steep slopes and the irregular bathymetry.  273 
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Facies V and IV are also present forming lenses around the island of Sao-Tomé and Annobon. These features indicates 274 

some downslope sedimentary transfer from these islands. The limited area covered by these facies suggests short transport 275 

by sliding. 276 

 277 

 278 

 279 

 280 

 281 

 282 

 283 

 284 

 285 

 286 

 287 

 288 

 289 
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5 Interpretation and discussion  290 

5.1 Sedimentary processes along the fan  291 

 292 

Fig. 9: a) Synthetic map showing the architecture and the recent sedimentary processes of the Ogooue Fan determined by 293 

imagery and echofacies mapping; b) c) and d) Longitudinal profiles from the bathymetric data along the central, northern and 294 

southern part of the Ogooue Fan. The differences in slope gradient along the transects are associated with the main sedimentary 295 

processes encountered along the slope. 296 

The Ogooue turbidite system is a passive-margin delta-fed deep-sea turbidite system and correspond to a mature mud/sand-297 

rich submarine fan according to the classification of(Reading and Richards, 1994). However, analysis of sub-surface data 298 
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(bathymetry, acoustic imagery and 3.5 kHz echo-characters) reveals a great variability of sediment processes in the 299 

different domains of the margin, controlled mainly by the variations in the slope gradient and the presence of 300 

seamounts(Fig. 9a).  301 

Erosional processes seem to be predominant on the upper part of the slope as indicated by the presence of numerous straight 302 

tributary canyons. Some of these canyons are deeply incised whereas others are much smaller. These characteristics can 303 

indicate different ages for the canyons formations but also different types of formations processes. The morphology of the 304 

smallest ones, which do not reach the shelf edge, indicates a formation by mass wasting and retrogressive erosion on the 305 

continental slope, whereas the deep incision of the others can by due to erosion by turbidity currents sourced from the 306 

continental shelf (Shepard, 1981). These two processes are not mutually exclusive and are probably contemporaneous 307 

along the slope.  308 

The transition from canyons to meandering channels with developed levees is related to a decrease in slope gradient. The 309 

meandering channel-levees systems develops on a relative gentle slope from 1,500 to 2,200 m water depth. These channels 310 

are mainly erosive on their central part while deposition occurs on their sides (Normark et al., 1993). The levees of the four 311 

central channels (B, C, D and E in Fig. 2) show high reflectivity evidencing the occurrence of turbidite overflow processes. 312 

The sinuosity of these channels is high in the upper segments and decreases westward (Fig. 5). Several studies have 313 

documented that sinuosity of submarine channels increases with time (Babonneau et al., 2002; Deptuck et al., 2007, 2003; 314 

Kolla, 2007; Peakall et al., 2000). The highly sinuous upper parts of the channels have consequently undergone a long 315 

history whereas the distal straighter parts of the channels are in a more immature stage. Moreover, the height of the levees 316 

and the depth of the channels both decrease in the lower parts of the system (Fig. 5). These morphological changes are due 317 

to the slope that becomes gentler and progressively slows down the flow reducing its erosional power in the channel. 318 

Simultaneously, deposition of fine particles by spilling of the upper part of the flow on the levees leads to a progressive 319 

decrease of the fine-grained fraction transported by the channelized flows (Normark et al., 1993). 320 

At 2,200 m water depth, the appearance of numerous erosional features such as isolated spoon-shaped scours, amalgamated 321 

spoon–shaped scours erosional lineations and even secondary channel with tenuous surface expression are characteristic 322 

of the channel lobe transition zone (Jegou et al., 2008; Kenyon et al., 1995; Mulder and Etienne, 2010; Wynn et al., 2007). 323 

The appearance of these features correlates with a second abrupt decrease of the slope and with the transition from bedded-324 

rough to rough echo-facies indicating a change in the sedimentary process. This area corresponds to an unchannelized 325 

deposition area referred as the intermediate depocenter in Fig. 9 and covering area surface of ca. 4,250 km². However, the 326 

low penetration of the 3.5 kHz echosounder and the limited number of seismic lines in this area does not allow to obtain 327 

an more detailed interpretation of the sedimentary processes in this part of the system.  328 

The presence of a steeper slope downslope the intermediate depocenter led to the incision of the distal valley, which acts 329 

as an outlet channel for turbidity currents that are energetic enough to travel through the previous flatter depositional area 330 

(Fig. 9b). The upstream part of the valley is multi-sourced and migrates upstream by retrogressive erosion whereas the 331 

downstream part appears more stable with a straighter pathway and steeper flanks. The pathway of the valley seems to be 332 

highly controlled by the topography of the seafloor. This large distal valley corresponds to a single feeding “source” for 333 

the lower fan and, consequently, the final depositional area is located downstream the valley. At the outlet of the distal 334 

valley, the echofacies allows to distinguish an area mainly characterized by rough echofacies (III) forming stacked lenses. 335 

This area, referred as the upper lobe area in Fig. 9, constitutes the main lobe complex of the Ogooue Fan. According to the 336 

seismic data, this lobes depositional area is ~ 100 km long, reaches ~ 40 km in width, spreads over 2,860 km² and reaches 337 

up to 40 m in thickness. The transparent lenses are interpreted as lobe elements and seem to be bounded by erosive bases 338 
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(Mulder and Etienne, 2010). Some incisions are imaged at the surface of the lobes; two of them are visible in Fig. 8. The 339 

area where incisions are present is interpreted as the channelized part of the lobe. This lobe area presents a gentle slope 340 

oriented north-south, suggesting that topographic compensation would shift southward the future lobe elements. However, 341 

the few numbers of seismic lines does not allow to precise the internal geometry and the timing of the construction of the 342 

different lobes units. 343 

This depositional area is however not the distalmost part of the Ogooue Fan. Indeed, west of this lobe area, traces of active 344 

sedimentation are visible on the reflectivity map (Fig. 2). The backscatter data shows high-backscatter finger-shape 345 

structures organized like veins of a leaf suggesting perennial pathways of gravity flows (Fig. 2b, detail A). These lineations 346 

are concentrated in a narrow 20 km wide corridor just west of the lobe area and then form a wider area extending up to 347 

550 km offshore the Ogooue delta. This part of the system follows the same scheme as the one previously described 348 

between the intermediate depocenter and the upper lobe area (Fig. 9b). Indeed the corridor appears on a segment of steeper 349 

slope just at the downslope end of the upper lobe area. This corridor, which disappears when the slope becomes gentler, 350 

was certainly formed by the repeated spill-over of the fine-grained top of turbidity currents over the upper lobe area. This 351 

architecture suggests that this corridor is dominated by sediment erosion and transport. On the last segment with a very 352 

low slope gradient sediment deposition dominates. 353 

On the northern part of the slope, the isolated system composed of the Cape Lopez Canyon, Cape Lopez lobe, channel A 354 

and northern lobe follows the same scheme (Fig. 9c). Indeed, the two successive depositional areas are located on an area 355 

with a low slope-gradient whereas the erosion and bypass dominates on segments of steep slope-gradient.  356 

In the southern part of the fan, channel F transports sediments southward. At 2,200 m water depth, a transparent echofacies 357 

appears associated with the pathway of this channel. This echofacies suggests that sediment transported by this channel 358 

might be partly deposited in this area by turbidity current overflow. This channel might also be associated with a 359 

depositional lobe; however, the area covered by the MOCOSED survey does not allow us to image it.  360 

The Ogooue Fan presents a succession of depositional areas on segments with gentle slope (referred as ‘steps’ in (Smith, 361 

2004)) and segments of steeper slope associated with erosion or bypass (Fig. 9). The depositional behavior in such system 362 

is guided by an equilibrium profile of the system that creates preferential areas of sedimentation or erosion (Ferry et al., 363 

2005). Erosion is favored where local gradient increases, the eroded sediments being delivered downstream resulting in a 364 

local increase in sediment load (Gee and Gawthorpe, 2006). This kind of fan geometry is common along the West African 365 

margin where abrupt changes in slope gradient and complex seafloor morphology are inherited from salt tectonic movement 366 

(Ferry et al., 2005; Gee et al., 2007; Gee and Gawthorpe, 2006; Pirmez et al., 2000). Moreover, in the case of the modern 367 

Ogooue Fan and unlike the Congo and Niger systems, the presence of several bathymetric highs including the volcanic 368 

islands of the Cameroon Volcanic Line and the different mud volcanoes constitute additional constraints for the flows. 369 

These bathymetric highs deviate the pathways of different channels of the system as well as the pathway of the distal valley 370 

and create several downslope depositional lobes. Such features are similar to the morphology of the Northwest African 371 

margin where the Madeira, the Canary and the Cape Verde islands create a complex slope morphology (Masson, 1994; 372 

Wynn et al., 2002, 2000). This specific topography controls the distribution of sedimentary facies along the Moroccan and 373 

Mauritanian margin and creates several interconnected depositional basins similarly to the different depositional areas of 374 

the Ogooue Fan.  375 
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5.2 Sedimentary facies distribution 376 

The main sedimentary processes that are involved in the deposition of the Upper Quaternary sediment of the Ogooue 377 

system are hemipelagic fall-out together with turbidity currents. Fine-grained pelagic/hemipelagic ‘background’ 378 

sedimentation is dominant across a large area of the margin, particularly on the lower rise and the adjacent basin plains. 379 

These sediments are then overprinted by downslope gravity flows such as turbidity currents. However, the previously 380 

described fan organization implies a specific repartition of the sedimentary facies and sand distribution within the system 381 

(Fig. 4).  382 

Cores collected in the upslope area (KC18 and KC17) show mostly hemipelagic sediments with a very low proportion of 383 

carbonate. This reflects significant detrital flux associated with proximity to the Ogooue platform and influences of the 384 

Ogooue river plume. Core KC19 collected down the slope just at the transition from canyon to channel-levees complexes 385 

show two several meters-thick sandy sequences corresponding to top-cut-out Bouma sequences (Ta) interbedded with the 386 

upper slope hemipelagites. These sandy turbidites, which are the thickest sand beds recorded in all the cores (Fig. 4), 387 

indicate the occurrence of high-density turbidity currents flowing down the canyons. The lack of the upper terms of the 388 

turbidite is consistent with deposition in the canyon of coarse-grains located at the base of the turbidity currents, whilst the 389 

finer upper part of the current is transported downstream or spills over the levees. Levee deposits have been sample by core 390 

KC13, which shows numerous turbidites made up of centimeter-thick parallel or cross-bedded laminations of silt and fine 391 

sands (Fig. 3). Unfortunately, no core has been collected directly in the intermediate depocenter. However, the rough 392 

echofacies III found in this area associated with various erosional features suggest a high sand/shale ratio. 393 

The distal valley certainly acts mainly as a conduit for the sediments, transporting them further downstream. However, 394 

core KC14, collected on an internal terrace of the valley, shows that this valley is also an area of active sedimentation 395 

notably due to down-flank sliding. The bottom of the valley could thus be composed of slump deposits and coarse-grained 396 

sediments deposited by gravity flows. Downstream the distal valley, core KC11 show that coarse-grained turbidites are 397 

deposited in the first part of the lobe area. The abrupt transitions between erosional/bypass and depositional behavior 398 

observed notably at the mouth of the distal valley is the result of hydraulic jumps affecting flows when they become 399 

unconfined between channel sides and spread laterally (Garcia and Parker, 1989; Komar, 1971). Core KC15, located in the 400 

lower lobe area, is composed of very thin silty turbidites corresponding to the upper terms of the Bouma sequence 401 

interbedded with hemipelagic deposits. The upper lobe area certainly acts as a trap for the basal sand-rich parts of gravity 402 

flows. Consequently, only the upper part of the flows, which is composed of fine-grained sediments, travels beyond this 403 

area. The observed facies spatial distribution suggests a filling of the successive depocenters with a downslope decrease of 404 

the coarse-grained sediment proportion (Fig. 4). The same facies distribution can be observed in the northern system. 405 

Indeed, no sandy turbidites are recorded in KC21, only fine-grained sedimentation, whereas the study of cores taken in the 406 

Cape Lopez lobe shows the presence of numerous sandy turbidite (Biscara et al., 2011). The Northern lobe is thus fed by 407 

the downslope spilling of suspended fines transported at the top of turbidity currents flowing through the Cape Lopez 408 

Canyon.  409 

Whatever the current pathways are, the deposited material has a continental origin as suggested by the abundance of quartz, 410 

micas and plant debris in the coarse-grained fraction. The important proportion of planktic foraminifers in the coarse-411 

grained fraction of turbidites located in the distal part of the system (core KC10- KC11- KC15) suggests that turbidity 412 

currents previously eroded pelagic and hemipelagic deposits on the slopes located upflow where such deposits cover large 413 

areas (Viana and Faugères, 1998). The presence of volcanoclastic debris in sandy layer found at the base of core KC01 414 

suggests that sedimentary input may also come from the volcanic islands of Sao Tomé and Annobon. However, acoustic 415 
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data indicate that these inputs are limited to the close vicinity of the Sao-Tomé and Annobon islands. On the contrary to 416 

the model proposed by (Wynn et al., 2000) for the Northwest African slope, the volcanic islands and other seamounts 417 

present on the Ogooue turbidite system act mainly as obstacles for the flow pathway but are not important sediment 418 

suppliers for the deep-sea system.  419 

5.3 Palaeoceanographic control on the fan activity 420 

The results of Mignard et al. (2017) concerning the study of five cores located along the central part of the Ogooue fan 421 

showed that the fluvial sediments fed this part of the system almost only during times of relative low sea-level. This eustatic 422 

control on the turbidite activity (switch on/off behavior)  is classical for mid and low latitude passive margin fans where 423 

canyon heads are detached from terrestrial sediment sources (e.g. Mississippi Fan (Bouma et al., 1989), Amazon Fan (Flood 424 

and Piper, 1997), Rhone Fan (Lombo Tombo et al., 2015), Indus Fan (Kolla and Coumes, 1987)). Conversely, 425 

sedimentation during periods of relative high sea-level such as the Holocene, is dominated by hemipelagic to pelagic fall-426 

out with a low part of fine terrigenous particles. Therefore, all cores collected in the central part of the system are capped 427 

by 8 to 20 cm of light-brown nannofossil ooze corresponding to Holocene hemipelagic deposits (Fig. 3).  428 

However, the northern part of the system appears to have a different behavior. (Biscara et al., 2011)) showed that the Cape 429 

Lopez lobe is currently recording both hemipelagic and turbidite sedimentation despite the present-day high sea-level. This 430 

lobe is fed in sediment by the Cape Lopez Canyon, which incises the shelf up to the extremity of the Mandji Island (Biscara 431 

et al., 2013). The deep incision of the continental shelf up to the coast combined with the longshore sediment transport 432 

along the Mandji Island and the narrow shelf in this area (4 km wide) favor the capture of sediment by this canyon during 433 

time of high sea-level (Biscara et al., 2013; Reyre, 1984). The northern lobe, which is directly connected to the Cape Lopez 434 

lobe by Channel A, appears to be also fed by terrigenous sediments during the Holocene. Core KC21, located at the entrance 435 

of the northern lobe, is entirely composed of facies 3, even for sediments deposited during MIS1 (Fig. 3).  436 

In the Ogooue Fan system, the shelf width between the littoral area and the canyon heads is the main control factor on the 437 

fan activity. During periods of relative low sea-level, the canyons of the central part of the system receive sediment from 438 

the river system that extended across the subaerially exposed continental shelf. During periods of relative high sea-level, 439 

river sediments are unable to reach the canyon heads south of the Manji Island and accumulate on the continental shelf 440 

close to the Ogooue delta. However, part of these sediments mixed with sediments coming from the south Gabon margin 441 

are drift-transported and contribute to supply the Cape Lopez canyon and consequently the Cape Lopez and Northern Lobe. 442 

Due to their specific location and favorable hydrodynamic conditions on the shelf, sedimentation on the Cape Lopez and 443 

the Northern lobes is active during relative sea-level highstands, on the contrary to the rest of the Ogooue Fan. This type 444 

of supply is similar to the activity of the California margin where the La Jolla canyon is fed by drift-transported sediments 445 

during highstand (Covault et al., 2011, 2007).  446 

6 Conclusions  447 

This study provides the first data on the morphology of the recent Ogooue deep-sea turbidite system and interpretations on 448 

sedimentary processes occurring in this environment. The whole system is a mature, mud/sand rich submarine fan globally 449 

organized upstream to downstream with canyons, then channel levee, then lobes. However, detailed study of acoustic data 450 

proved that inherited paleo-topography and topographic features such as the Sao-Tomé and Annobon volcanic Islands and 451 

other seamounts present in the area have significant effects on the distribution of sedimentary facies and morphological 452 
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elements of the system. The long-term interaction between gravity flows and the sea-floor topography have induced the 453 

construction of successive depocenters and bypass areas. The gravity flows modified the topography according to a 454 

theoretical equilibrium profile, eroding the seafloor when slopes are steeper than the theoretical equilibrium profiles and 455 

depositing sediments when slopes are gentler than the theoretical equilibrium profile. Three successive sediment 456 

depocenters have thus been identified along a longitudinal profile. They are associated with three areas of low slope 457 

gradient. The two first deposition areas – the intermediate depocenter and the upper lobe area- recorded coarse-grained 458 

sedimentation and are connected by a well-developed large distal valley measuring 100 km long. The distalmost depocenter 459 

– the lower lobe area - received only the fine-grained portion of the sediment load that has bypassed the more proximal 460 

deposit areas. The presence on the slope of the Mount Loiret has caused the formation of an isolated system composed of 461 

the Cape Lopez canyon and lobe, which continues downstream by the Northern Lobe area. 462 

The Ogooue Fan is currently in a low activity period since the recent Holocene rise of sea-level. Nowadays, the 463 

sedimentation is mostly located on the Ogooue delta platform and on the upper slope. The turbidite system was most active 464 

during the last glacial lowstand. Nonetheless, the northern part of the system appears to have an asynchronous activity with 465 

the rest of the fan as this part is fed by the drift-transported sediments during time of relative high sea-level when the 466 

activity in the rest of the system is shut-down.  467 
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