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Abstract.Zoned monazite-(Ce) from Alpine fissures/clefts is used to gain new insights into the exhumation 

history of the

Central Alpine Lepontine metamorphic dome, and timing of deformation along the Rhone-Simplon fault

 zone on the dome’s

Abstract.Zoned hydrothermal monazite-(Ce) from 

fissures/clefts is used to gain new insights into the exhumation history

of the Lepontine Dome in the Central Alps, and timing of deformation along the Rhone-Simplon Fault

 zone on the dome’s

western termination. These hydrothermal monazites-(Ce) directly date deformation and changes in physiochemical 

conditions

through crystallization 

ages, in contrast to commonly employed cooling-based methods. The 480 SIMS measurement ages

from 20 individual crystals record ages over a time interval between  19 and 5 

Ma, with individual grains recording ages over a5

lifetime of 2 to 7.5 Ma. The 

age range combined with age distribution and internal crystal structure help to distinguish between

areas whose deformational history was dominated by distinct tectonic events or continuous exhumation. The comb

ination of

this age data with geometrical considerations and spatial distribution give a more precise exhumation/cooling

 history for the

area. In the east and south of the study region, the units underwent monazite-(Ce) 

growth at 19-12.5 and 16.5-10.5 Ma, followed

by a central group of monazite-(Ce) ages at 15-10 Ma and the movements and related cleft monazites-(Ce) are 

youngest at the10

western border with 13-7 Ma. A last phase around 8-7 Ma is limited to clefts of

 the Simplon normal fault and related strike

slip faults as the Rhone and Rhine-Rhone faults. The large data-set 

spread over significant metamorphic structures shows that

the opening of clefts, fluid flow and monazite-(Ce) stability is direct linked to the geodynamic

 evolution in space and time.

1  Introduction

Metamorphic domes like the Lepontine area of the Central Alps often experienced a complex tectono-metamorphic 

evolution.15

In this case an interplay between exhumation and deformation during doming and activity of

- 923 Removals + 968 Additions
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 large fault systems that dominate

the western parts of the area. Although much of the (thermo)chronological history of the area is well known, 

hydrothermal

monazite-(Ce) ages complement existing cooling ages of 

zircon fission track, Rb-Sr in biotite and apatite fission track/apatite

U-Th/He by providing crystallization and dissolution-precipitation ages that date low-T tectonic evolution.

through crystallization 

ages. 480 SIMS spot analyses from 20 individual crystals, including co-type material of the monazite-

(Nd) type locality, record ages over a time interval of∼19 and 2.7 Ma, with individual grains recording 

age ranges of 2 to5

7.5 Myr. The combination of 

this age data with geometrical considerations and spatial distribution give a more precise young

exhumation  history  for the  area.  In  the  north-east and  south-west  of  the Lepontine  Dome,  units  

underwent  monazite-(Ce)

growth at 19-12.5 and 16.5-10.5 

Ma respectively, followed by crystallization of monazite-(Ce) in the central part at 15-10 Ma.

Fissure monazites-(Ce) are younger at the western limit of the dome with 13-7 Ma. A last age group around 8-5

 Ma is limited to

fissures/clefts associated with the Simplon normal fault and related strike-slip faults such as the Rhone 

Fault. The large data-set10

spread over significant metamorphic structures shows that the fissure mineral crystal-rock interaction,

 fluid flow and monazite-

(Ce) stability are directly linked to the Lepontine Dome’s evolution in space and 

time. A comparison between hydrothermal

monazite-(Ce) thermo-chronometric data suggests that hydrothermal monazite-(Ce) dating could allow to identify 

areas of

slow exhumation/cooling rates during ongoing tectonic activity.

1  Introduction15

Metamorphic domes often experience a complex tectono-metamorphic 

evolution (e.g.Schmidet al., 2004; Stecket al., 2013).

For the Lepontine Dome of the European Alps, this evolution is

 an interplay between exhumation and deformation during

doming and motion along large fault systems that dominate the western regions of the dome.

 Although much of the retrograde

orogenic evolution of the area is well known, hydrothermal 

monazite-(Ce) ages complement existing cooling ages of thermo-

chronometers by providing crystallization and dissolution-precipitation ages that directly 

date low-T tectonic activity.20

Monazite, (LREE,Th,U)PO

4

, is considered an excellent mineral for dating of geologic processes (e.g., Parrish, 1990) that is20

highly resistant to radiation damage (e.g., Meldrum et al., 1998, 1999, 2000) and shows negligible Pb loss 

through diffusion

(Cherniak et al., 2004; Cherniak and Pyle, 2008). Nonetheless, monazite remains geologically reactive after cr

ystallization. It

, is considered an excellent mineral for the dating of geologic processes (e.g.Parrish, 1990).

It is highly resistant to radiation damage (e.g.Meldrumet al., 1998, 1999, 2000) and shows negligible Pb loss 

by diffusion

1

Solid Earth Discuss., https://doi.org/10.5194/se-2019-10

Manuscript under review for journal Solid Earth

Discussion started: 5 February 2019

c

©Author(s) 2019. CC BY 4.0 License.

can experience dissolution-recrystallization, thereby recording new ages through mediation of hydrous fluids

 (e.g., Seydoux-

Guillaume et al., 2012; Janots et al., 2012; Grand

(Cherniaket al., 2004; Cherniak and Pyle, 2008). Nonetheless, monazite remains reactive after crystallization, 

as it can expe-

rience dissolution-recrystallization facilitated through hydrous fluids (e.g.Seydoux-Guillaumeet al., 2012; Ja

notset al., 2012;

Grand

′

Homme et al., 2016).
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Alpine fissures and clefts occasionally containing monazite-(Ce) are voids partially filled by crystals 

that crystallized on

the cleft walls from hydrous fluids during late stage Alpine metamorphism (Mullis et al., 1994; Mullis, 

1996). Dating such

mineralization is often difficult due to later overprinting along with multiple stages of fluid activity (Purd

y 

and Stalder, 1973).5

Alpine fissures in some metasediments and metagranitoids have long been known to contain 

well-developed monazite-(Ce)

crystals (Niggli et al., 1940), but it is only recently that some of these 

could be dated (Gasquet et al., 2010; Janots et al.,

2012). Although other minerals like micas and adularia are common in alpine fissures, they are often 

affected by overpres-

sure/excess argon, (e.g., Purdy and Stalder, 1973), and it is not always clear if these ages represent 

crystallization or cooling

(e.g., Rauchenstein-Martinek, 2014). The Alpine fissures and clefts in the Lepontine region formed after the 

metamorphic peak,10

in relation to extensional tectonic activity. In accordance with this tectonic activity,

 fissures and clefts are oriented roughly per-

pendicular to lineation 

and foliation of the host rock. The fluid that intruded during fissure formation (300-500

◦

C; Mullis et al.,

1994; Mullis, 1996) interacts with the wall rock. This triggered dissolution and precipitation of minerals in

 both host rock and

fissure, causing the formation of a porous alteration halo in the surrounding wall rock. Complex growth domain

s are common

in hydrothermal monazites-(Ce) from such fissures showing both, dissolution and secondary growth (e.g., Janots 

et al., 2012)15

as well as dissolution-reprecipitation reactions resulting in patchy grains (e.g., Gnos et al., 2015). In cont

rast to metamorphic

rocks, where monazite-(Ce) rarely exceeds 100μm, cleft monazite-(Ce) is commonly mm-sized with large individua

l growth

domains. This permits to date individual domains precisely by using SIMS (secondary ion mass spectrometry) and 

even resolve

growth duration (Janots et al., 2012; Berger et al., 2013; Bergemann et al., 2017, 2018, 2019).

2  Geological setting20

2.1  Evolution of the study area

The formation of the nappe stack of the Alps caused by the collision of the European and Adriatic plates was f

ollowed by

the development of several metamorphic domes (Tauern and Rechnitz in Austria, and Lepontine in the western Alp

s; e.g.

Schmid et al., 2004). Their formation was related to crustal shortening associated with coeval orogen parallel 

extension (e.g.,

Mancktelow, 1992; Ratschbacher et al., 1991; Ratschbacher et al., 1989; Steck and Hunziker, 1994). The Western 

and Central25

Alps with the Lepontine metamorphic dome have consequently had a complex tectonic and metamorphic history.

Early high-pressure metamorphism in the Western Alpine Sesia-Lanzo Zone during subduction below the Southern A

lps is

dated at 75-65 Ma (e.g.Ruffet et al., 1997; Duchêne et al., 1997; Rubatto et al., 1998). This was followed by

 underthrusting and

nappe stacking from ca. 42 Ma on during continental collision linked with a transition from high-P to high-T m

etamorphism

(e.g. Köppel and Grünenfelder, 1975; Markleyet al., 1998; Herwartz et al., 2011; Boston et al., 2017). Peak me

tamorphic30

conditions in the Lepontine area in excess of 650

Hommeet al., 2016).

Fissures and clefts occasionally contain hydrothermal monazite-(Ce). They represent

 voids partially filled by crystals that

precipitated  on  the  fissure  walls  from  hydrous  fluids  during  late  stage  metamorphism  (Mulliset

 al.,  1994;  Mullis,  1996).5

Dating such 

mineralization is often difficult due to later overprinting along with multiple stages of fluid activity (Purd

y 

and
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Stalder, 1973). Fissures and clefts in some metasediments and metagranitoids have long been known to contain 

well-developed

monazite-(Ce) crystals (Niggliet al., 1940), but it is only recently that some of these 

were dated (e.g.Gasquetet al., 2010;

Janotset al., 

2012). Although other minerals like micas and adularia are common in alpine fissures, they are often affected

by overpressure/excess

 argon, (e.g., Purdy and Stalder, 1973), and it is not always clear if these ages represent crystallization10

or cooling (e.g., Rauchenstein-Martinek, 2014). The 

fissures and clefts in the Lepontine region formed after the metamorphic

peak, in relation to extensional tectonic activity. Accordingly, fissures and clefts are oriented roughly 

perpendicular to the

lineation 

 and  foliation  of  the  host  rock.  The  fluid  that  intruded  during  fissure  formation  (300-500

◦

C in some regions were reached diachronously from south to north in time

around 30-19 Ma and accompanied by limited magmatic activity from 33 Ma down to ca. 22 Ma (von Blanckenburg et 

al., 1991;

Romer et al., 1996; Schärer et al., 1996; Oberli et al., 2004; Rubatto et al. 2009; Janots et al., 2009). Prog

rade metamorphism

C;  Mulliset al.,  1994;

Mullis, 1996) interacted with the wall rock. This triggered dissolution and precipitation of minerals in both

 host rock and

fissure, leading to the formation of a porous alteration halo in the surrounding wall rock. Complex growth dom

ains are common15

in hydrothermal monazite-(Ce) from such fissures showing both, dissolution and secondary growth (e.g.Janotset

 al., 2012;

Bergemannet al., 2017, 2018), as well as dissolution-reprecipitation reactions resulting in patchy grains (e.

g.Gnoset al.,

2015). In contrast to metamorphic rocks, where monazite-(Ce) rarely exceeds 100μm, fissure monazite-(Ce) is co

mmonly

mm-sized, with large individual growth domains. This permits dating individual domains precisely by using seco

ndary ion

mass spectrometry (SIMS), resolve growth duration and identify phases and single events of tectonic activity

 (e.g.Janotset al.,20

2012; Bergeret al., 2013; Bergemannet al., 2017, 2018, 2019).

The aim of this study is to illustrate that hydrothermal monazite-(Ce) dating provides information about the t

ectonic evolution

of the Lepontine Dome.

2  Geological setting

2.1  Evolution of the study area25

The formation of the nappe stack of the European Alps caused by the collision of the European and Adriatic pla

tes was followed

by the development of several metamorphic areas (Tauern, Rechnitz in the Eastern Alps, and Lepontine in the Ce

ntral Alps;e.g.

Schmidet al., 2004). Their formation was related to crustal shortening associated with coeval orogen-parallel

 extension (e.g.

Mancktelow, 1992; Ratschbacheret al., 1989; Ratschbacheret al., 1991). The Western and Central Alps with the L

epontine

Dome have consequently had a complex tectonic and metamorphic history.30

Early high-pressure metamorphism in the Western Alpine Sesia-Lanzo Zone during subduction below the Southern A

lps

is dated at 75-65 Ma (e.g.Ruffetet al., 1997; Rubattoet al., 1998; Regiset al., 2014). This was followed by un

derthrusting

and nappe stacking fromca.42 Ma on during continental collision linked with a transition from high-P/low-T to

 barrow type

2
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was followed by staggered exhumation in the Ticino and Toce culminations of the Lepontine dome.

 Accelerated cooling below
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Figure 1.Map of the Lepontine Dome, modified from Stecket al.(2013) and Schmidet al.(2004). Colored areas mark 

the areal division in

the context of this study.

metamorphism (medium P/T;e.g.Köppel and Grünenfelder, 1975; Markleyet al., 1998; Herwartzet al., 2011; Bostone

t al.,

2017). Peak metamorphic conditions in the Lepontine area (in excess of 650

◦

C in some regions) were reached diachronously

from south to north around 30-19 Ma (e.g.Schäreret al., 1996). Barrovian metamorphism was followed by 

exhumation starting

in the east and 

migrating to the west of the Lepontine Dome, with vertical displacement along the Insubric Line starting as

early as 30 Ma (e.g.Hurford, 1986; Steck and Hunziker, 1994). Accelerated cooling below 500

◦

C occurred at  26 Ma first in the central Lepontine (Hurford, 1986). This was followed in the 

east by a period of rapid

cooling of the Ticino dome between 22 and 17 Ma (Steck and Hunziker, 1994; Rubatto et

 al., 2009) after which exhumation

slowed down. To the west, the Toce dome experienced phases of accelerated cooling somewhat later in the time

 of 18-15 Ma

and 12-10 Ma (Campani et al., 2014). The later cooling phase was related to detachment along the Rhone-Simplon 

Fault (Steck5

and Hunziker, 1994; Campani et al., 2014).

While most of the Lepontine area is marked by doming and associated deformation events, the western and southw

estern

limits of the study area are dominated by the Rhone-Simplon Fault system, its extensions 

to the Rhine-Rhone Line to the north

along the Aar massif and the Centovalli Fault to the south. The extensional Simplon Fault zone (SFZ) was 

already active during

thrusting in the external alpine domain (e.g., 

Grosjean et al., 2004), with transpressional movements in the hanging wall of the10

dextral ductile Simplon shear zone occurring from ca. 32 Ma on (Steck, 2008).

 The ductile-brittle transition of the SFZ was

constrained to the time between 14.5 and 10 Ma (Campani et al., 2010). 

Brittle deformation of the SFZ and Centovalli fault

continued after this (Zwingmann and Mancktelow, 2004; Surace et al., 

2011), with the youngest displacement activity dated to

ca. 5-3 Ma (Campani et al., 2010).

2.2  The study Area15

The study area comprises roughly half of the Lepontine metamorphic dome (Fig. 2), from the Tambo nappe, east o

f the Forcola

fault, over the central Lepontine dome to the Val d’Ossola, south of the Centovalli Fault, and the southern Go

tthard nappe and

Aar massif to the north. See Fig. 1 for the tectonic position of the samples. The total number of 20 monazite-

(Ce) samples

dated in this study and 6 samples described in the literature (Janots et al., 2012; Berger et al., 2013; Berge

mann et al., 2017)

were divided into four groups roughly correlating to tectonic subdivisions of the area (Fig. 2). These are (1) 

the area to the east20

of the Forcola Fault (East; 2 samples), (2) the central Ticino dome and southern Gotthard nappe (Center; 7 sam

ples), (3) the

Toce dome, bounded by the Rhone-Simplon Fault to the west and adjacant south-western Gotthard nappe and parts

 of the Aar

massif (West; 10 samples), and (4) the area to the south of the Centovalli and southern Simplon faults (South; 

1 sample). Most

of the samples were provided by mineral collectors, as hydrothermal cleft monazite-(Ce) is uncommon and often

 difficult to

detect in the field when covered by dirt or chlorite. See Table 1 for location details.25

3  Analytical techniques

Monazites-(Ce) were individually polished to the level of a central cross section and assembled in mounts of s

everal grains.

Backscatter electron (BSE) images were then obtained. Secondary ion mass spectrometry (SIMS) spot analyses (Fi

g. 4) were
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placed according to compositional domains visible in these images in order to capture the crystallization hist

ory. As far as

possible, the placement of measurement spots located near cracks or holes was avoided, as the Th-Pb isotope sy

stem may be30

disturbed in these areas (Janots et al., 2012; Berger et al., 2013).

C first occurred at∼26 Ma in5

the central Lepontine Dome (Hurford, 1986). This was followed in the 

eastern Lepontine Dome and along the Insubric Line

between 22 and 17 Ma by a period of rapid cooling (Steck and Hunziker, 1994; Rubattoet

 al., 2009) after which exhumation

slowed down. The area to the west in the surrounding of 

the Rhone-Simplon Line experienced phases of accelerated cooling

somewhat later at 18-15 Ma and 12-10 Ma (Campaniet al., 2014).

The western and southwestern limits of the study area are dominated by the Rhone-Simplon Fault system, its 

extensions10

to the Rhine-Rhone Line to the north along the Aar Massif and the Centovalli Fault to the 

south (Fig. 1). The extensional

Simplon Fault zone (SFZ) was active contemporaneous with thrusting in the external Alpine domain (e.g., 

Grosjeanet al.,

2004). The ductile-brittle transition of the SFZ was constrained to the time between 14.5 and 10 Ma (Campaniet

 al., 2010).

Brittle deformation of the SFZ and Centovalli Fault continued after this (Zwingmann and Mancktelow, 2004; 

Suraceet al.,

2011), with the youngest displacement activity dated toca.5-3 Ma (Campaniet al., 2010).15
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Figure 1.Geological-geometric situation of the study area. (a) Tectonic sketch map modified after Steck et al. 

(2013) and Schmid et al.
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(2004); (b) Tectonic section over the Simplon Fault zone into the western Lepontine, based on Campani et al. 

(2014); (c) Tectonic section

through the western Northern Steep Belt, modified and extended after Leu (1986); (d) Tectonic section through 

the eastern Northern Steep

Belt, redrawn after Wiederkehr et al. (2008); (e) Sketch of the situation at

 the Forcola normal fault, see also Meyre et al., (1998) and Berger

et al. (2005).

Th-Pb analyses  were conducted  at the  Swedish  Museum of  Natural History  (NordSIM facility) on  a Cameca 

 IMS1280

SIMS instrument. Analytical methods and correction procedures followed those described by Harrison et al. (199

5), Kirkland

et al. (2009) and Janots et al. (2012), using a -13kV O

2−

primary beam of ca. 6nA and nominal 15μm diameter. The mass

Figure 2.Tectonic overview over the study area. (a) Tectonic sketch map modified after Schmidet al.(2004) and

 Stecket al.(2013), sample

BLAU is from Janotset al.(2012);

 (b) Tectonic section over the Simplon Fault zone into the western Lepontine, based on Campaniet al.

(2014); (c) Tectonic section 

through the western Northern Steep Belt, modified and extended after Leu (1986); (d) Tectonic section through

the eastern Northern Steep Belt, redrawn after Wiederkehret al.(2008); (e) Tectonic section across

 the Forcola normal fault, see also Meyre

et al., (1998) and Bergeret al.(2005). Profiles (b)-(e) are not to scale with map (a).
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Table 1.Information on sample localities for all analyzed grains. Sample GRAESER1 

has identification number NMBa 10226, VALS has

Table 1.Information on sample localities for all analyzed grains. Sample GRAESER 1 

has identification number NMBa 10226, VALS has

NMBE43124.

SampleLocalityLatitude   Longitude   Altitude (m)

BETT11Bettelbach,46

Region   SampleLocalityLatitude   Longitude   Altitude (m)

SouthVANI 6Cava Maddalena, Beura46

◦

04.30’8

◦

17.71’260

WestBETT 11Bettelbach,46

◦

25.62’8

◦

11.70’1460

Niederwald, Goms

BLAS1Piz Blas,46

◦

34.68’8

◦

43.98’2790

Val Nalps, Sedrun

DURO1Doru, Gantertal,46

◦

17.63’8

◦

02.07’1160

Simplon

DURO2Doru, Gantertal,46

◦

17.64’8

◦
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spectrometer was operated at +10kV and a mass resolution of ca. 4300 (M/∆M, at 10% peak height), with data col

lected

in peak hopping mode using an ion-counting electron multiplier. Unknowns were calibrated against monazite-(Ce) 

standard

17.3’3150
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Figure 2.Map of the Lepontine metamorphic dome, modified from Stecket al.(2013) and Schmidet al.(2004). Colore

d areas mark areal

division in the context of this study. Published monazite-(Ce) locations (grey stars) are from Janotset al.(20

12), Bergeret al.(2013) and

Bergemannet al.(2017).

44069 (Aleinikoff et al., 2006). Lead isotope signals were corrected for common Pb contribution using measured

2.2  The study area

The study area comprises the part of the Lepontine Dome in which mineralized fissures/clefts are commonly foun

d (Fig. 1),

from the Tambo nappe, east of the Forcola Fault, over the central Lepontine Dome to the Simplon Fault in the w

est/southwest

south of the Centovalli Fault, and the southern Gotthard nappe to the north (see Fig. 2 for the tectonic posit

ion of the samples).

The 20 monazite-(Ce) samples dated in this study were divided into four groups (Fig. 1). These are (1) the are

a to the west5

of the Adula nappe (East; 2 samples), (2) the Lepontine Dome east of the Verzasca anticline including part of

 the southern

Gotthard nappe (Center; 5 samples), (3) the west equally bound by the Verzasca anticline, the Rhone-Simplon Fa

ult to the west

and adjacant south-western Gotthard nappe (West; 12 samples), and (4) the area to the south of the Centovalli

 and southern

Simplon Faults (South; 1 sample).

3  Study approach and techniques10

3.1  Monazite-(Ce) crystallization and alteration under hydrothermal conditions

The possibility of hydrothermal monazite-(Ce) crystallization within an open fissure/cleft depends on the chem

ical composition

of the aqueous fluid filling it. Following the initial formation of a fissure/cleft, the intruding metamorphic 

fluid (300-500

◦

C;

Mulliset al., 1994; Mullis, 1996) leaches and partly dissolves the surrounding host rock, and leads to crystal

lization of mineral

phases on the fissure/cleft wall under chemical equilibrium conditions. If the resulting chemical equilibrium

 between fluid15

phase, cleft minerals and those parts of the wall rock accessible to the fluid is disturbed, a new cycle of di

ssolution and crys-

tallization within the cleft occurs. Chemical disequilibration is generally triggered by tectonic activity cau

sing a deformation

of the fissure/cleft and results in sudden changes in the P-T conditions, the influx of a new fluid, or the ex

posure of previously

unaltered wall rock (e.g.Mulliset al., 1994; Rollandet al., 2003; Sharpet al., 2005). Since the fissure/cleft

 remains fluid
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filled, these mechanisms of (partial) dissolution and precipitation of newly formed cleft minerals occurs repe

atedly, resulting20

in the strong zonation, alteration and dissolution features of most cleft minerals (e.g.Mullis, 1996; Sharpet

 al., 2005; Heijboer,

2006). Therefore the mineral association of a cleft is the result of a series of equilibrium states and does n

ot represent a mineral

paragenesis. This means that each crystal or crystal part was during its formation in chemical equilibrium wit

h the surrounding

fluid, so that each primary chemical zone within a crystal represents a change in the cleft fluid chemical com

position.

Hydrothermal monazite-(Ce) typically crystallizes at temperatures below∼350

◦

C/∼300

◦

C (Gnoset al., 2015; Bergemann25

et al., 2017, 2018). Due to the presence of fluid in the cleft, it continues to be reactive down to 200

◦

C or somewhat below

(e.g.Townsendet al.,  2000;  Bergemannet al.,  2018).  During  the  formation  of  a  grain,  any  tectonic  a

ctivity  that  changes

the chemical equilibrium within a cleft, causes the crystal to develop a primary chemical zonation usually vis

ible in BSE

images. After crystallization, monazite-(Ce) shows practically no U-Th-Pb diffusion at the prevalent P-T condi

tions (Cherniak

and Pyle, 2008). However, the changing chemical conditions in a hydrothermal environment may not only cause ne

w growth30

around an existing grain, but can result in partial (re-)crystallization/dissolution-reprecipitation in equili

brium with the cleft

fluid (e.g.Janots et al, 2012; Bergemannet al., 2017; Grand

′

Hommeet al., 2018). The dissolution-reprecipitation processes

6

Figure 3.BSE image of monazite-(Ce) samples showing different kinds of internal primary and alteration structu

res. (A) The dark grain

areas of the grain, primarily located close to rims and inclusions, display sharp irregularly shaped borders a

nd porosity. These areas consist

of secondary monazite that isca.2.5 Myr younger than the pristine lighter grain parts (Fig. 5b). Image (B) sho

ws part of a large grain with

partially preserved sector-like zonation. Indications for alteration are irregularly shaped secondary zonatio

n, both patchy in the middle and

wavy on the right side, as well as porosity and fractures. The light rim visible at the top likely represents

 a late overgrowth but yields some

of the oldest ages of the grain, predating those of some of the interior grain parts by several million years

 (Fig. 5t). The grain in (C) displays

multiple rims combined with sector-like zonation around a central part. Although the grain shows practically n

o alteration features, the outer

rim has the oldest and most homogeneous age pattern, with the central part possessing a wider age range with s

ome significantly younger

ages (Fig. 5m, Supplement Table 1). The youngest ages were found in part of the inner rim, postdating all othe

r ages measured in the second

rim or center by several million years.

may be initiated on any part of the crystal in contact with the surrounding fluid. A self-sustaining reaction

 front propagates

in  this  case  into  the  mineral  for  as  long  as  the  interfacial  fluid  remains  connected  to  a  flu

id  reservoir  (e.g.Putnis,  2002,

2009). The alteration is therefore not limited to grain rims, but commonly occurs along mineral inclusion inte

rfaces, cracks

and microcracks due to which also internal parts of a crystal may be altered (Fig. 3a, b; Grand

′

Hommeet al., 2018). These

processes may be active as long as conditions in the cleft stay within the monazite-(Ce) formation temperature 

window and5

stability field, and appear to be largely temperature independent with only slightly increasing reaction speed

s with increasing
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temperature (Budzynet al., 2011). Therefore, several (re-)crystallization or dissolution-precipitation cycles

 may occur over

the active lifespan of a monazite-(Ce) crystal (e.g.Bergemannet al., 2018, 2019). Later reactions may be aided 

by porosity

and fractures in the primary and secondary monazite-(Ce), induced by the previous dissolution-reprecipitation/

recrystallization

events, by bringing an increased crystal volume into direct contact with the fluid (Putnis, 2002, 2009). Possi

ble signs of these10

alteration processes recognizable in BSE images are irregularly shaped (Fig. 3 a, b) or weak (Fig. 3 b) intern

al zonation, or

7

cross-cutting by secondary zones (Fig. 5 j, k), as well as a high porosity (Fig. 3 a, b;e.g.Gnoset al., 2015;

 Bergemannet al.,

2017, 2018). Micro-scale alteration along cracks, inclusions and porosity may produce altered areas within a c

rystal that cannot

be recognized in BSE images but yield a different age (Fig. 3c; Grand

′

Hommeet al., 2018). Dissolution-precipitation processes

may sometimes largely preserve the chemical composition of an affected crystal part, possibly due to only smal

l pore fluid

volumes involved in the reaction that did not equilibrate completely with the fluid surrounding the crystal, c

onsequently areas5

affected by alteration that posses different chemical compositions may have reprecipitated simultaneously (Gra

nd

′

Hommeet

al., 2016; Bergemannet al., 2017, 2018).

3.2  Analytical techniques

Most of the samples were provided by mineral collectors, as hydrothermal cleft monazite-(Ce) is uncommon and o

ften difficult

to  detect  in  the  field  when  covered  by  dirt  or  chlorite.  See  Table  1  for  location  details.  Mo

nazites-(Ce)  were  individually10

polished to the level of a central cross section and assembled in mounts of several grains. Backscatter electr

on (BSE) images

were then obtained, using a Zeiss DSM940A electron microscope at the university of Geneva and a beam current o

f 3.5 nA.

As the surface of the mounts has to remain flat for ion probe dating, element mapping that would cause damage

 to the epoxy

is not possible. Secondary ion mass spectrometry (SIMS) spot analyses (Fig. 5) were placed according to visibl

e domains in

these images. As far as possible, spot measurements next to cracks were avoided, as the Th-Pb isotope measurem

ents may be15

disturbed in such areas due to unevenness in the sample surface (Janotset al., 2012; Bergeret al., 2013).

Th-Pb analyses were conducted at the Swedish Museum of Natural History (Nordsim facility) on a CAMECA ims1280

SIMS instrument. Analytical methods and correction procedures followed those described by Harrisonet al.(199

5), Kirkland

et al.(2009), and Janotset al.(2012), using a -13 kV O

2−

primary beam ofca.6 nA and nominal 15μm diameter. The mass

spectrometer was operated at +10kV and a mass resolution ofca.4300 (M/∆M, at 10% peak height), with data colle

cted20

in peak hopping mode using an ion-counting electron multiplier. Unknowns were calibrated against monazite-(Ce) 

standard

44069 (Aleinikoffet al., 2006). Lead isotope signals were corrected for common Pb contribution using measured

204

Pb and an

assumed present-day Pb isotope composition according to the model of Stacey and Kramers (1975). The measuremen

t of

204

Pb

is subject to an unresolvable molecular interference by

232

Th

143
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++

2

(also affecting

, also affecting

206

Pb and

207

Pb to a lesser degree

through replacement of

16

O with heavier O-isotopes), which may result in an overestimation of common Pb concentrations. A

O by heavier O-isotopes, which may result in an overestimation of common Pb concentrations. A25

correction was applied whenever the

232

Th

143

Nd

16

O

++

2

signal at mass 203.5 exceeded the average background signal on the5

signal at mass 203.5 exceeded the average background signal on the

ion-counting detector by three times its standard deviation. Age calculations use the decay constants recommen

ded by Steiger

and Jäger (1977). Th-Pb ages presented were corrected for common Pb and doubly charged

and Jäger (1977). The Th-Pb ages were corrected for common Pb and doubly charged

232

Th

143

Nd

16

O

++

2

overlap and

are given at 2σuncertainties.

4  Results

The complete ion-probe data set is given in the data Supplement Table 1 (PANGEA, doi: still pending), see Tab. 

2 for an10

overview and Figs. 4 and 7 for measurement positions and a graphical representation. As there are difficulties 

with the U-

Pb system for hydrothermal monazite-(Ce) (Janots et al., 2012), only

208

Pb/

232

Th ages were used. For explanations on age

patterns across the grains, grouping and weighted mean age determination, see the discussion in Chapter 5.2.
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overlap and are

reported at 2σuncertainties. Weighted mean age plots were done using Isoplot v. 3.75 (Ludwig, 2012).

4  Th-Pb monazite-(Ce) dating30

The dating of hydrothermal monazite-(Ce) differs from thermo-chronometers that posses a closure temperature in

sofar, as a

crystal may record several ages due to new crystallization or alteration of crystal parts. The grains directly 

record tectonic

8
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Figure 3.Back-scatter electron images of studied cleft monazite-(Ce). The zonation corresponds largely to vari

ations in Th contents. Spots

refer to SIMS analysis spots, with colours indicating chemical and age domains. The color of the frame indicat

es data for which it was

possible to calculate weighted mean

208

Pb/

Table 2.Overview list of the

232

Th ages.
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Figure 4.Back-scatter electron images of studied cleft monazite-(Ce). The zonation corresponds largely to vari

ations in Th contents. Spots

refer to SIMS analysis spots, with colours indicating chemical and age domains. The color of the frame indicat

es data for which it was

possible to calculate weighted mean

Th-

208

Pb/

232

Th ages.
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Table 2.Measurement spots AIGG1 1, 9, 11, BLANC2 7, 8, 23 and SALZ15 4 were excluded due to their location on

 cracks or signs of

mineral inclusions.

SampleFigure   Weighted mean domain ages   MSWD   Number of pointsSample spot age range

(Ma)(Ma)

VANI63a, 4a14.68±0.472.8516.80±0.31 – 10.62±0.18

BETT113b, 4c9.96±0.301.5910.55±0.33 – 7.34±0.26

Pb age range and significant minimum and maximum ages obtained for each grain, and weighted

mean domain ages that could be calculated for the samples.

Region   SampleFigure# ofSpot age rangemin. agemax. ageWeighted meanMSWD# of

analysesof sample (Ma)(Ma)(Ma)domain ages (Ma)points

SouthVANI 65a2416.80±0.31 – 10.62±0.1816.80±0.3110.62±0.1814.68±0.472.85

WestBETT 115b1910.55±0.33 – 7.34±0.2610.31±0.31like mean age9.85±0.292.112

7.53±0.310.533

DURO13c, 4c9.96±0.180.30710.82±0.26 – 8.21±0.20

DURO 15c2510.82±0.26 – 8.21±0.2010.82±0.26like mean age9.95±0.180.377

9.50±0.230.654

8.34±0.200.294

DURO23d, 4d7.63±0.130.55811.48±0.28 – 7.02±0.18

DURO 25d3211.48±0.28 – 7.02±0.1811.48±0.28like mean age7.63±0.130.558

7.18±0.180.504

GRAESER13e, 4e9.03±0.190.28512.14±0.30 – 7.57±0.19

7.91±0.261.77

GRAESER33f, 4f15.60±0.61 – 6.36±0.39

KLEM13g, 4g8.43±0.200.94510.64±0.26 – 7.97±0.20

KLEM23h, 4h13.44±0.310.57513.65±0.33 – 9.47±0.40

DUTH 65e2612.60±0.37 – 9.33±0.3212.60±0.37like mean age11.90±0.271.512

9.74±0.221.513

GRAESER 15f3112.14±0.30 – 7.57±0.1912.14±0.30like mean age9.16±0.240.194

8.78±0.271.87
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7.73±0.160.546

GRAESER 35g1715.60±0.61 – 6.36±0.3915.60±0.616.36±0.39

GRAESER 4Appendix212.25±0.51 – 11.88±0.4712.25±0.5111.88±0.47

KLEM 15h2410.64±0.26 – 7.97±0.2010.64±0.267.97±0.208.43±0.200.945

KLEM 25i1713.65±0.33 – 9.47±0.40like mean agelike mean age13.44±0.310.575

11.74±0.320.835

10.12±0.942.64

KLEM33i, 4i12.64±0.380.18512.96±0.46 – 8.43±0.32

KLEM 35j2412.96±0.46 – 8.43±0.32like mean age8.43±0.3212.50±0.340.656

11.99±0.662.36

SCHIESS13j, 4j9.69±0.602.449.94±0.25 – 6.78±0.18

VANI43k, 4k8.03±0.533.399.27±0.43 – 6.89±0.37

8.03±0.442.27

VANI53l, 4l7.21±0.431.968.07±0.36 – 4.86±0.24

10.17±0.522.47

SCHIESS 15k279.94±0.25 – 6.78±0.186.90±0.18like mean age9.78±0.220.415

7.03±0.382.35

VANI 45l169.27±0.43 – 6.89±0.379.27±0.436.89±0.378.03±0.442.27

VANI 55m208.07±0.36 – 2.69±0.117.45±0.222.69±0.117.21±0.431.96

5.53±0.603.55

BLAS13m, 4m12.83±0.392.0514.49±0.26 – 7.82±0.22

DUTH23n, 4n13.20±0.390.61414.34±0.41 – 11.15±0.43

DUTH33o, 4o13.48±0.531.8714.53±0.43 – 10.61±0.34

DUTH63p, 4p11.88±0.301.61112.60±0.37 – 9.33±0.32

9.73±0.301.810

LUCO13q, 4q14.23±0.230.77514.74±0.30 – 9.90±0.17

SALZ23r, 4r12.92±0.251.61114.28±0.74 – 10.51±0.39

CenterBLAS 15n1814.49±0.26 – 7.82±0.2214.49±0.267.82±0.2212.83±0.392.05

DUTH 25o1614.34±0.41 – 11.15±0.4314.34±0.4111.15±0.4313.41±0.702.05

DUTH 35p2614.53±0.43 – 10.61±0.3414.53±0.430.61±0.3413.48±0.531.87

LUCO 15q2514.74±0.30 – 9.90±0.1714.74±0.309.90±0.1714.23±0.230.775

SALZ 25r2814.28±0.74 – 10.51±0.3914.28±0.74like mean age12.98±0.252.217

10.95±0.371.59

TAMB13s, 4s17.49±0.400.72419.02±0.47 – 8.32±0.11

EastTAMB 15s2419.02±0.47 – 8.32±0.1119.02±0.478.32±0.1117.49±0.400.724

14.3±1.12.74

13.28±0.983.05

VALS3t, 4t15.27±0.351.1716.43±0.61 – 12.09±0.57

VALS5t4316.43±0.61 – 12.09±0.5716.43±0.61like mean age15.27±0.351.17

14.70±0.410.816

12.48±0.460.484

12.61±0.360.577
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Figure 5.Diagrams showing

activity instead of cooling through new/re-crystallization, ase.g.in the case of Ar-Ar dating in white micas.

 Consequently,

unless coupled with fluid inclusion analysis, a hydrothermal monazite-(Ce) age in itself only provides a very

 general idea

of temperature conditions (ca.350-200

◦

C or somewhat below; Gnoset al., 2015; Bergemannet al., 2017, 2018) and more

information on temperatures needs to come from a comparison with thermo(-chrono)meters.

The SIMS spot analyses were distributed on the basis of domains visible in BSE images, among these the center

 and outer5

rim if distinguishable,to capture the crystallization duration. In order to obtain more robust growth domain a

ges, the selected

domains were large enough to place a minimum of three measurement spots. The number of domains dated was limit

ed by

available machine time. Only
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208

Pb/

232

Th ages for all samples. The colours indicate chemical domains with weighted mean

Th ages were used, as the Th-Pb system is favorable in dating hydrothermal monazite-

(Ce) due to high Th/U ratios at low U content, which preclude the use of the

207

Pb/

235

U system. Additionally, the high Th/U

ratios and young age oft the samples also exacerbate the uncorrectable excess in

206

Pb due to the incorporation of

232

Th, an10

intermediate decay product of

238

U (Janotset al., 2012). This means that only

208

Pb/

232

Th

ages given where applicable.

Th single or weighted mean ages

instead of concordia ages should be used.

Previous studies found no simple chemical criteria to identify altered zones and have shown that U-Th-Pb conte

nts seem to

be the easiest way to differentiate between zones, both primary and secondary (e.g.Gnoset al., 2015; Bergemann

et al., 2017).

Figure 5 includes plots showing compositional varation used as a basis for domain age calculations. The derive

d spot ages15

were grouped together on the basis of chemical composition representing crystal formation or replacement under 

changing

equilibrium chemical conditions, and, if possible, spatial distribution across the sample according to zonatio

n visible on BSE

images. Whenever age clusters were found on the basis of these groups, weighted mean domain ages were calculat

ed (Fig. 5),

as these could be shown to date tectonic activity (Grand

′

Hommeet al., 2016; Bergemannet al., 2017, 2018, 2019; Ricchiet

al., 2019). Since any new crystallization or alteration associated with a change in chemical composition must

 have happened20

in equilibrium with the surrounding fluid, any age cluster within a chemical group must be due to those crysta

l parts’ simul-

taneous formation or alteration. Therefore, two chemically distinct groups that yield, within error, identical 

weighted mean

ages, still signify two distinct crystal formation/alteration events closely following each other. In areas th

at experienced strong

and discrete tectonic events, usually in the vicinity of shear zones, this approach allows the calculation of

 domain ages for a

majority of the analyzed spots from the dataset of a sample (e.g.Janotset al., 2012; Bergeret al., 2013; Berge

mannet al.,25

2017, 2019; Ricchiet al., 2019). Although, as only a limited number of analyses are possible to be obtained fo

r each grain,

some of the weighted mean ages may only combine a small number of individual ages. This appears to be especial

ly true for

ages dating late stage events (e.g.Bergeret al., 2013; Grand

′

Hommeet al., 2016; Bergemannet al., 2017, 2018).

A problem in this approach, used in other areas of the Alps, is that large parts of the Lepontine Dome region

 experienced

more than two distinct deformation events and/or phases of prolonged small scale tectonic activity, likely dur

ing exhumation.30

Experiments have shown that a reason for a large age scatter in crystal domains affected by alteration may be

 an incomplete
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age resetting due to the survival of primary monazite nanoscale domains (Grand

′

Hommeet al., 2018). This may have caused

the observed spread out age patterns without age clusters in zones visible in BSE, which impede the calculatio

n of weighted

mean ages (Fig. 5). Especially prolonged phases of low-intensity tectonic activity would presumably repeatedly 

cause small

volumes of monazite-(Ce) to reprecipitate during re-equilibration of the fluid chemistry.35
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Figure 4.Time diagram combining identified peaks from the inset and weighted mean ages of all samples from the 

Lepontine Dome. The inset

shows an age probability density plot representing the dataset of each region (Fig. 1) according to the number 

of ages per 0.5 Myr interval. In

the time diagram, darker colors represent peaks or plateaus from the inset indicating times of intense monazit

e formation/alteration. Lighter

shades mark the remaining times for which more than one age was recorded, indicating either only limited tecto

nic activity or mixing ages.

Black error bars indicate weighted mean ages from this study.

11

Additionally, as stated above, altered areas may preserve their overall chemical composition but consist of a

 submicroscopic

mix of different phases (e.g.Grand

′

Hommeet al., 2016), and analyses belonging to the same chemical group may therefore

show  a  large  age  scatter.  The  limited  number  of  analyses  per  grain  would  therefore  result  in  m

any  individual  ages  being

discarded for these areas. Accordingly, events may, especially in larger grains, not be recognized if looking

 at the well defined

weighted mean ages only. To avoid this, the entire dataset of each region was plotted according to the number

 of ages per 0.55

Myr interval to identify age clusters across the grains of a given region (Fig. 4 inset). The identified age p

eaks and phases for

which a significant number of ages were obtained were then combined with the weighted average ages to visualiz

e distinct

events or phases of tectonic activity (Fig. 4). Age peaks of a region’s dataset and weighted mean ages of indi

vidual grains

generally agree, with some phases of age recording visible in the overall age record not identified through we

ighted mean ages.

For the interpretation of the data, weighted mean ages are preferable to pinpoint deformation events. However, 

at least the10

beginning and end of the age record within a sample must have a geological significance since their recording

 must have been

triggered by tectonic activity, even if one assumes all ages in between to be simply mixing ages. Accordingly, 

weighted mean

ages are in the following generally discussed as precise ages, while spot ages are treated as approximate age

s.

4.1  Results

The ion-probe measurement data set is given in the data Appendix Table A1 and can be found in the PANGAEA data 

base15

(https://doi.org/10.1594/PANGAEA.898689).  The  age  data  of  the  individual  samples  and  the  whole  data  

set  cover  a  large

range ofca.16 Myr, covering the time between∼19 and 2.7 Ma. Individual grains record ages over a lifetime of 2 

to 7.5 Myr.

An overview over the individual age ranges and the weighted mean domain ages that could be calculated for the

 individual

samples is shown in Table 2. Figure 5 shows the measurement positions, weighted mean domain ages, where availa

ble, a
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graphical representation of the measured ages and a chemical for each sample the best shows the different grou

ps.20

Sample GRAESER 4 (Appendix Fig. A1; Appendix Table A1) is a grain (co-type) from the monazite-(Nd) type locali

ty

(Graeser and Schwander, 1987). Due to very low Th contents only two spots yielded ages of 11.88±0.47 and 12.25

±0.51

Ma, clearly indicating that the monazite-(Nd) crystallized coevally with monazite-(Ce).

Typical for hydrothermal cleft/fissure monazite, the contents of Th and U are generally relatively low compare

d to monazite

from other geological environments (Appendix Table A1; Janotset al., 2012). With Th contents generally ranging 

between25

5000 and 60000 ppm, with (parts) individual samples considerably lower (down to 1000 ppm) or higher (up to 110

000 ppm),

while U contents are below 1000 ppm (only KLEM 3 up to 3300 ppm), resulting in high Th/U ratios of up to sever

al hundred.

Lead contents show a spread from a few up to several hundred ppm, with common Pb contents generally considerab

ly below

10%. However, a number of measurements in GRAESER 3 and TAMB 1 show very high common Pb contents above 70%

with a maximum of 99%. With the exception of sample BLAS 1, all sample grains show at the least some alteratio

n features30

(irregular, wavy or unclear zonation, porosity) and can roughly be divided into five partly overlapping groups 

on the basis of

their appearance in BSE images (Fig. 5): (1) Sector like zonation:

DUTH 6 shows some signs of alteration and complex zonation in the inner part of the grain.

12

GRAESER 3 shows no clear signs of alteration, but an extreme zonation in both Th (∼1800-113000 ppm) and U (∼10

-680

ppm) contents according to visible zonation and elevated (>10%) to extreme (65-99%) common Pb contents. The ag

es derived

from the low Th measurements should be treated with caution, as they show a greater spread at higher error tha

n the other

measurements.

VANI 4 shows in places strong signs of alteration.5

VANI 5 displays in places only weak zonation with sometimes strong alteration signs. Thorium contents are rela

tively low

at 1600-10800 ppm, and common Pb contents elevated but mostly below 20%.

VALS, by far the largest analyzed grain, that shows in places only weak zonation with sometimes strong alterat

ion features.

Thorium contents are low (>3500 ppm) with only an overgrowth rim showing higher contents (up to 12300 ppm). Co

mmon Pb

contents are elevated but remain below 25%.10

(2) Sector like + oscillatory/ring zonation:

BLAS 1 shows no visible signs of alteration, but the interior part of the crystal gives younger ages than the

 outer part.

DURO 1 has strong zonation with only minor signs of alteration.

KLEM 1 shows signs of alteration, and the zonation is diffuse in places like the center and part of the rim.

SCHIESS 1 shows in parts strong alteration signs and the primary zonation is cut in places.15

(3) Clear distinction between primary and altered zones:

BETT 11 is the only sample that is featureless, but it shows altered areas around holes and along rims.

VANI 6 displays oscillatory-complex zonation, with clearly discernible altered grain parts around pores and al

ong rims.

LUCO 1 is largely featureless with right and interior parts showing an intricate secondary zonation pattern.

(4) Weak zonation with minor alteration features:20

DUTH 2 displays only weak remnants of sector-like zonation.

KLEM 3 shows weak remnants of oscillatory zonation that is cut and transitions in places into a diffuse patter

n.

SALZ 2 shows remains of sector-like combined with complex zonation.

(5) Weak zonation with strong alteration features:

DURO 2 displays remnants of oscillatory zonation.25

DUTH 3 has partly preserved oscillatory zonation with parts of the grain having a diffuse pattern.

GRAESER 1 shows remains of sector combined with oscillatory zonation, but strong zonation in the altered parts 

of the

crystal.
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GRAESER 4 shows remnants of sector zonation and has very low Th contents of just below 1100 ppm and elevated c

ommon

Pb contents below 20%.30

KLEM 2 has a diffuse internal structure and elevated common Pb contents that remain below 21%.

TAMB 1 has Th (>3300 ppm) contents that do not allow the identification of clear chemical groups. Weighted mea

n ages

could therefore only be calculated for spots located in close proximity that give a similar age. While most of 

the measurements

have common Pb contents of >5%, five measurements show very high contents of 72-96%, but despite this appear u

ndisturbed.

13

Figure 6.Diagrams showing

Figure 

5.Visualization by sample of all SIMS analyses conducted for this study. Chemical plots that best show the dif

ferent groups within a

sample (left), BSE images(center) with colored ovals representing analysis spots being to scale, age diagrams

 (right) show

208

Pb/

232

Th ages for all samples. The colours indicate chemical domains with weighted mean

Th ages.
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Figure 5.Visualization by sample of all SIMS analyses conducted for this study. Chemical plots that best show

 the different groups within a

sample (left), BSE images(center) with colored ovals representing analysis spots being to scale, age diagrams

 (right) show

208

Pb/

232

Th

ages given where applicable.
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Th ages.

15

Figure 7.Diagrams showing

Figure 

5.Visualization by sample of all SIMS analyses conducted for this study. Chemical plots that best show the dif

ferent groups within a

sample (left), BSE images(center) with colored ovals representing analysis spots being to scale, age diagrams

 (right) show

208

Pb/

232

Th ages for all samples. The colours indicate chemical domains with weighted mean

Th ages.
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Figure 5.Visualization by sample of all SIMS analyses conducted for this study. Chemical plots that best show

 the different groups within a

sample (left), BSE images(center) with colored ovals representing analysis spots being to scale, age diagrams

 (right) show

208

Pb/

232

Th

ages given where applicable.
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5  Discussion

5.1  Hydrothermal monazite-(Ce) crystallization

Hydrothermal fissure monazite-(Ce) typically crystallizes at temperatures below  350

◦

C (Gnos et al., 2015; Bergemann et al.,

2017, 2018) down to somewhere in the range of 200

◦

C or slightly below (e.g.Townsend et al., 2000). Crystallization and

later reactions occur when the fissure fluid is brought into disequilibrium. This may be caused by tectonic ev

ents for a number5

of reasons: by volume changes due to deformation, partial collapse of the fissure walls bringing the fluid int

o contact with

unaltered wallrock or the influx of new fluid.

After crystallization, monazite-(Ce) shows practically no U-Th-Pb diffusion (Cherniak and Pyle, 2008). Howeve

r, replace-

ment mechanisms that may be active in a hydrothermal environment may cause (re-)crystallization and possibly n

ew growth

around an existing grain or dissolution-reprecipitation. From the fluid film, a secondary monazite-(Ce) phase

 precipitates at10

the surface of the primary phase. The self-sustaining reaction front propagates into the mineral for as long a

s the interfacial

fluid retains a connection to a fluid reservoir. This dissolution-reprecipitation process may be initiated on

 any part of the crystal
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Th ages.
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in contact with the surrounding fluid. It is therefore not limited to grain rims, but commonly occurs along mi

neral inclusion

interfaces, cracks and microcracks, that may be invisible in BSE images (Grand

′

Homme et al., 2018).

These processes may be active as long as conditions in the cleft stay within the monazite-(Ce) stability fiel

d. Therefore, sev-

eral (re-)crystallization or dissolution-precipitation cycles may occur over the active lifespan of a monazite

-(Ce) crystal. Later

reactions may be aided by secondary porosity and fracturing induced by the previous dissolution-reprecipitatio

n/recrystallization5

events, by bringing an increased crystal volume into direct contact with the fluid.

5.2  Monazite-(Ce) Th-Pb single and weighted mean ages

As detailed above, SIMS spot analyses were placed across the samples according to growth domains visible in BS

E images

(Fig. 4). The derived spot ages were grouped together on the basis of chemical composition thought to represen

t crystallization

under  homogeneous  chemical  conditions,  and  spatial  distribution  across  the  sample  according  to  zon

ation  visible  on  BSE10

images to calculate, whenever possible, weighted mean domain ages (Fig. 7). It appears that dissolution-precip

itation may

largely  preserve  the  chemical  composition  of  an  affected  crystal  part,  this  would  mean  that  area

s  with  different  chemical

compositions may have reprecipitated simultaneously. Despite this, spots of different chemical groups were onl

y in a few,

clear cases grouped together for weighted mean age calculation. This is to avoid the risk of mistaking multipl

e mixing ages of

different chemical domains as a distinct event. In areas that experienced few and discrete tectonic events, th

is approach allows15

the calculation of domain ages for most analyzed spots of the dataset of a sample (e.g.Janots et al., 2012; Be

rgemann et al.,

2017). However, large parts of the study area experienced more than two distinct deformation events and/or pha

ses of prolonged
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activity. New growth on an existing crystal results in sharp boundaries between zones. But dissolution-repreci

pitation processes

may lead to irregularly shaped altered zones within a crystal, which may or may not be visible on a BSE image. 

If this happens

multiple times the limited number of analyses per grain will result in many individual ages being discarded. M

eaning that20

events may not be recognized when looking only at the weighted mean ages. To avoid this, the entire dataset of 

each region

was additionally plotted according to the number of ages per 0.5 Ma intervals to identify age clusters (Fig.

 1, appendix). In the

next step the peaks or plateaus of the age histogram were plotted according to their relative intensity. They

 were then combined

with the weighted average ages (this study; Janots et al., 2012; Berger et al., 2013; Bergemann et al., 2017)

 to visualize distinct

events or phases of tectonic activity (Fig. 8). As only a limited number of analyses are possible to obtain fo

r each grain, some25

weighted mean ages combine only a small number of individual ages. This is especially true for ages dating mul

tiple late

stage events that presumably happened at relatively low temperatures. In such cases only those weighted mean a

ges were kept

whose geologic significance is also indicated by other dating techniques such as fault gouge dating, specifica

lly close to the

Rhone-Simplon line. Otherwise, these ages are included in the overall age range of the sample in question give

n in Tab. 2.

Another reason for a spread out age pattern may be a grain experiencing prolonged phases of low-intensity tect

onic activity of30

multiple small deformation events during exhumation. In which case only small volumes of monazite-(Ce) would r

eprecipitate

due to disequilibration during deformation. This leads tendentially to unclear crystal zonations that make it

 difficult to correctly
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Figure 5.Visualization by sample of all SIMS analyses conducted for this study. Chemical plots that best show

 the different groups within a

sample (left), BSE images(center) with colored ovals representing analysis spots being to scale, age diagrams

 (right) show

208

Pb/

232

Th ages.

18

Figure 

8.Time  diagram  combining  identified  peaks  and  weighted  mean  ages  derived  from  the  data  displayed  

in  Fig.  1,  appendix,  and

weighted mean average ages. The color intensity indicates the amount of spot ages in this range. Lighter shade

s indicate fewer ages. Black

error bars indicate weighted mean ages from this study, while grey bars indicate data from Janots et al. (201

2), Berger et al. (2013) and

Bergemann et al. (2017). The inset shows an age histogram representing the complete dataset of each region acc

ording to the number of ages

per 0.5 Ma intervals.
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identify growth zones on BSE images (compare Gnos et al., 2015; Bergemann et al., 2018). As opposed to areas w

here crystals
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record individual, stronger deformation events that tend to show a sharper zonation (compare Janots et al., 20

12; Berger et al.,

2013; Bergemann et al., 2017, 2019).

5.3  Monazite-(Ce) ages and Lepontine history

Hydrothermal cleft monazite-(Ce) crystallization and dissolution-reprecipitation occurred over time in differe

nt parts of the5

study region, as it passed through the monazite-(Ce) stability field. The time interval recorded within indivi

dual monazite-(Ce)

crystals spans from 2.5 Ma to 7 Ma for individual grains (Fig. 7, Table??). The recorded time interval within

 individual grains

is generally longer in the South and East regions of the study area (Fig. 2). The total age range covers the t

ime from ca. 19 to 5

Ma. The monazite-(Ce) chronologic record can be seen to start in the eastern- and southernmost regions (Fig.

 9). The recorded

activity then moves to the northeastern and central to the western area. Younger ages in the west progressivel

y concentrate on10

the large fault systems of the Rhone-Simplon Fault and the proposed location of the Rhine-Rhone Line. The olde

st recorded

monazite-(Ce) ages of 19-17 Ma from the eastern edge of the study area (Figs. 7s, 9a) coincide with a phase of 

rapid exhumation

and cooling between 22 and 17 Ma (Steck and Hunziker, 1994; Rubatto et al., 2009). At that time, temperatures

 in parts of

the north-western area (northern Ticino Dome) were still prograde at 450-430

Figure 

6.Figure modified from Stecket al.(2013), with cooling ages compiled by Steck and Hunziker (1994), and complet

ed with data from

Kelleret al.(2005), Rahn (2005), Elfertet al.(2013) and Bostonet al.(2017). Cleft monazite crystallization age

s of samples from this study,

located in the vicinity of the cross section (Figs. 1, 2 are shown for comparison. Note that monazite from roc

ks gives T-max, considerably

higher than the crystallization temperature of the hydrothermal cleft/fissure monazite-(Ce) variety.

5  Hydrothermal monazite-(Ce) ages compared to thermochronometry

Hydrothermal monazite-(Ce) crystallization and alteration occur typically in a temperature window of ca. 350 – 

200

◦

C 19-18 Ma (Janots et al., 2009) as deduced

from allanite dating. After this, temperatures must have decreased to lower temperatures during exhumation, as 

hydrothermal15

monazite-(Ce) crystallization in the north(east)ern area started at around 16 Ma in the Valsertal (sample VAL

S, Fig. 7t) and

then at the southern edge of the Gotthard nappe at 14-15 Ma (Fig. 9b). This may indicate crystallization durin

g a deformation

phase indicated by 17-14 Ma

C (Gnos

et al., 2015; Bergemannet al., 2017, 2018) independent of the local cooling rate. In many areas the oldest rec

orded hydrother-

mal monazite-(Ce) ages are predated by

40

Ar/

39

Ar biotite ages interpreted as dating recrystallization (Wiederkehr et al., 2009).

The monazite-(Ce) age record for the entire (north)eastern region continues until ca. 13 Ma after which the re

cord ends for

the Valsertal where cooling below 180

◦

C is dated at around 12 Ma (zircon U/Th-He; Price et al., 2018). The age range of the20

Valsertal sample of 16-12 Ma perfectly coincides with hydrothermal cleft monazite-(Ce) ages from within the Go

tthard nappe

of ca. 16-12 Ma (Janots et al., 2012; Ricchi et al., in review), after which monazite activity moved into the

 Lepontine dome

south of the Gotthard nappe. Locally within in the dome, in the northern part of the western region, zircon fi

ssion track (ZFT)

ages of 10-9 Ma in the border area of Ticino dome and Gotthard nappe (Janots et al., 2009) are equal to the la

st widely recorded
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hydrothermal monazite-(Ce) ages of around 10 Ma. One sample records ages of 9-8 Ma (BLAS1; Fig. 4m) that is in 

agreement25

with K/Ar fault gouge data of 8.9±0.2 to 7.9±02 Ma close to BLAS1 and SALZ2 (Alp Transit tunnel; Zwingmann et

 al.,

2010), as fault gouge ages seem to typically coincide with the end of monazite-(Ce) growth (see below; Bergema

nn et al.,

2017).

While

Ar white mica cooling ages, and are slightly predated by to coincide with ZFT

ages (Gnoset al., 2015; Grand

′

Hommeet al., 2016; Bergemannet al., 2017, 2019; Ricchiet al., 2019). This sequence is also5

found in most parts of the Lepontine Dome as shown for samples located in vicinity of the NE-SW cross section

 (Fig. 6), based

on Stecket al., (2013). Moreover, it is also well visible in (Fig. 6) that monazite in clefts starts to crysta

llize much later than

monazite in the metamorphic rocks (data from Köppel and Grünenfelder, 1975, and Bostonet al., 2017).

A comparison of monazite-(Ce) crystallization ages with ages obtained with thermochronometers, whose closure t

emper-

atures depend on the cooling rate, seems to allow the identification of areas experiencing low cooling rates a

t the time of10

hydrothermal monazite growth. In such cases, monazite has a larger time window to record tectonic activity, an

d

40

Ar/

39

Ar cleft muscovite ages of 15.60±0.30 to 14.71±0.13 Ma (Rauchenstein-Martinek, 2014) slightly south

of LUCO1 coincide with the earliest monazite-(Ce) crystallization, this differs markedly from the situation fu

rther west or30

in the Aar and Mont Blanc massifs (Bergemann et al., 2017; 2019). There, as discussed below, ZFT ages predate

 or mirror

primary monazite-(Ce) crystallization and are in turn predated by

Ar

19

white mica ages coincide with the beginning of the monazite-(Ce) age record and ZFT ages coincide with or even 

postdate

the youngest found monazite-(Ce) ages. This is the case in (1) the central region of the study area, where the 

youngest white

mica cooling ages of 15.1±0.70 to 16.30±0.23 Ma 

(Allazet al.,2011) located west of sample DUTH 2 and south of sample

LUCO 1 (Fig. 1) coincide with the earliest monazite-(Ce) crystallization dated at ca. 14.3 to 14.7 Ma, and ZFT 

ages of 9.7

±0.5 Ma Ma (Janotset al.2009) coincide with the late phase of monazite-(Ce) age recording around 10 Ma. Also

 (2) in the5

vicinity of sample VANI 6 south of the RSF (Fig. 1) the ZFT ages, ranging from 12.0±2.6 to 7.1±1.6 Ma (Kellere

t al.,

2005), overlap with the youngest monazite-(Ce) spot ages of around 12.5 to 10.6 Ma. There are no

40

Ar/

39

Ar white mica ages. The coincidence of these ZFT

and

Ar white mica ages

in direct vicinity of VANI 6. However, the sample is located in an area that does not show the jump in cooling 

ages found

along the rest of the brittle Rhone-Simplon Fault bordering the Lepontine Dome to the west (Kelleret al., 200

5; Campaniet

al., 2010). A similar age pattern was also found outside the study area, in (3) the Eastern Alps in Austria, i

n an area affected10

by Cretaceous Eo-Alpine Barrow-type metamorphism (Bergemannet al., 2018). There, primary monazite-(Ce) mean ag

es of

90.6±1.3 to 89.2±1.8 Ma coincide with

40

Ar/
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muscovite cooling ages with the hydrothermal monazite-(Ce) crystallization suggests slow cooling rates during
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Figure 9.Overview maps of the study area showing the distribution of the monazite-(Ce) age record over time. W

eighted mean average ages

are given near the stars representing the corresponding sample locations. Note the shift over time from the ou

ter regions of the Lepontine

dome to the internal areas and then to the shear zones bounding its western limit.
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continued deformation (Bergemann et al., 2018) for the time from around 15 Ma until ca. 9 Ma, as the systems c

losed only at

the lower end of the closure temperature window in this case.

To the west, an early phase of accelerated cooling in the area was dated to 18-15 Ma (Steck and Hunziker, 199

4; Campani et

al., 2010), evidence of which is also preserved in the oldest monazite-(Ce) data of   17 Ma (Fig. 7a) from sou

th of the Rhone-

Simplon Fault (RSF). Zircon fission track ages of 14-11 Ma (Hurford, 1986) and cleft adularia ages between 12.

92±0.17 Ma5

and 10.82±0.12 Ma (Rauchenstein-Martinek, 2014) from south of the western Gotthard slightly predate to coincid

e with a

later phase cooling and increased tectonic activity in the western Lepontine area. Primary monazite-(Ce) cryst

allization in parts

of the northwestern and central Lepontine as well as the central Aar massif occurs at around 12 Ma, followed b

y monazite-

(Ce) crystallization in the westernmost area around 11-10 Ma dating exhumation (Fig. 9 c,d). Multiple monazite

-(Ce) samples

from locations in the Gotthard nappe and Aar-massif yield weighted average ages of  10 Ma. These age patterns

 are related to10

processes during backfolding of the northern steep belt (in the sense of Milnes 1974), dating it to ca. 10 Ma

 in this area (Steck,

1984; Steck and Hunziker, 1994; Campani et al., 2014).

The 12-10 Ma cooling phase of the western Lepontine was related to detachment movements along the Rhone-Simplo

n

Fault.  This  time  interval  marks  the  end  of  the  hydrothermal  monazite-(Ce)  age  record  in  the  han

ging  wall  of  the  Rhone-

Simplon Fault. Correspondingly, 12-10 Ma also marks the beginning of monazite-(Ce) crystallization to the east 

of the fault,15

first in the vicinity of the Aar massif (Figs. 7 c, d, j) and then also further south (Fig. 7k). Primary monaz

ite-(Ce) crystallization

ages along the eastern side of the RSF are tendentially predating, but still in close agreement with zircon fi

ssion track ages in

this area. In the case of sample VANI6 from south of the RSF (Fig. 7a) ZFT ages of this area show a scatter fr

om 12 to 7 Ma

(Keller et al., 2005) that overlap with the youngest monazite-(Ce) age spots. Monazite-(Ce) ages of 9-7.5 Ma i

ndicate continued

exhumation of the western region and the central areas leave the hydrothermal monazite-(Ce) stability field at 

this time (Fig.20

9f). The number of weighted mean ages (i.e. clear age patterns within the crystals) staggered over a relativel

y short time (Fig.

8), suggest deformation pulses during brittle tectonics along the Rhone-Simplon/Centovalli Faults and corrobor

ates evidence
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of continued deformation along the southern RSF and the Centovalli Fault (Zwingmann and Mancktelow, 2004; Sura

ce et al.,

2011). The youngest widely recorded monazite-(Ce) age group for the western Lepontine dates to around 7 Ma (Fi

gs. 7 b, d, j-l;

9f). This coincides with young fault gouge data of 8-6 in this region (Zwingmann and Mancktelow, 2004, Surace

 et al., 2011)25

Overall, the 10-7 Ma time interval is characterized by phases of strike-slip deformation along the extended Rh

one-Simplon

fault system. This is recorded through hydrothermal monazite-(Ce) and fault gouge illite crystallization that

 was not restricted

to the south-western Lepontine but also recorded in faults bounding the Mont Blanc massif (Bergemann et al., 2

019). The ages

of 8-7 Ma of the sample with the youngest recorded age (VANI5) among the studied monazites-(Ce) are concurrent 

with the

youngest recorded ages of all other samples along the Rhone-Simplon fault system. The sample comes from an are

a where30

hydrothermal gold mineralization occurred and the youngest age group of VANI5 give a weighted mean age of 5.53

±0.60

Ma that coincides with ZFT ages of 6.4-5.5 Ma (Keller et al., 2005). The area also has a muscovite

Ar white mica ages of 88.4±0.4 to 84.3±0.7 Ma (Dallmeyeret al., 1996)

and the youngest monazite spot ages of around 70 Ma coincide with ZFT ages that show a considerable spread of

 ca.70-50 Ma

(Kurzet al., 2011; van Gelderet al., 2015). The three areas have in common that exhumation/cooling rates were

 low (Stecket

al., 2013; Fügenschuhet al., 2000) during the time of hydrothermal monazite-(Ce) crystallization.15

Due to the slow cooling rates, the Ar system closure and the end of fission track annealing would have occurre

d at the lower

end of their respective temperature windows, while monazite-(Ce) crystallization presumably occurred during th

is ca. 350-200

◦

C temperature window (Gnoset al., 2015; Bergemannet al., 2017, 2018). This may indicate that the coincidence o

f

40

Ar/

39

Ar age of 10.56

±0.31 Ma (Pettke et al., 1999) that postdates other white mica ages of the area by 4-5 Ma (see summary in Camp

ani et al.,

2010), similar to the difference between the youngest recorded ages for monazite-(Ce) samples from the same ar

ea.
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Ar

white mica ages with the beginning of monazite-(Ce) crystallization and ZFT ages overlapping with the latest h

ydrothermal

monazite-(Ce) crystallization can be used as an indicator of slow exhumation/cooling rates during ongoing tect

onic activity.20

6  Monazite-(Ce) ages and late Lepontine Dome evolution

Hydrothermal cleft monazite-(Ce) crystallization and dissolution-reprecipitation varied in space and time in t

he study region

as it passed through the monazite-(Ce) crystallization recording window. The growth duration recorded by the s

pot age range

within individual monazite-(Ce) crystals spans from 2.5 Ma to 7 Myr (Table 2, Fig. 5). The total age range of

 all grains covers

the time fromca.19 to 2.7 Ma.25

The monazite-(Ce) age record starts in the eastern region (Fig. 1) of the study area at the edges of the Lepon

tine Dome (Fig.

7a), with the earliest ages around 19 Ma (sample TAMB 1; Figs. 4, 5s), slightly postdated by sample VALS somew

hat to the

north of TAMB 1 at∼16.5 Ma (Fig. 5t). While the age record continues in the east, it starts in the Central reg

ion (Fig. 1)
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around 14.7 - 14.3 Ma. The parallel monazite-(Ce) age record for the central and eastern regions continues unt

ilca.12.5 Ma

after which it ends in the east, with the exception of isolated spot ages of∼8.3 Ma in the east (TAMB 1) and

 7.8 Ma in the30

center (BLAS 1). The western area (Fig. 1) has a more heterogeneous age record with starting dates being diach

ronous within

the area from east to west/south-west (Figs. 7b-e). The oldest ages are around 13.6 Ma (KLEM 2) with the area

 in which ages

are recorded progressively spreading west, until by ca. 10 Ma most samples from the western region record age

s. After this,

20

the age record ends first in the central region and then the easternmost western region atca.9.5 Ma. The recor

d continues in

most of the western region (Fig. 7e), until it becomes progressively more localized by∼7.5 towards the west an

d the vicinity

of the Rhone-Simplon Fault system (Fig. 7f). The youngest widely recorded monazite-(Ce) age group for this are

a dates to

around 7 Ma (Fig. 7f), and only one sample (VANI 5) records ages down to around 5 Ma, with a single spot age o

f∼2.7

Ma. The southern region (Fig. 1) at the very edge of the Lepontine Dome, separated from most of the Western re

gion by the5

Rhone-Simplon Fault, shows a similar age range as the eastern region. As in the east, the monazite-(Ce) age re

cord starts early

at ca. 16.8 Ma and continues somewhat further down to around 10.6 Ma (Fig. 5a-d).

Overall, the monazite-(Ce) chronologic record shows a clear east-west trend without large age jumps within the 

Lepontine

Dome. The record starts in the eastern- (and southern) parts of the study area, with the activity then moving

 through the central

to the western area, where it progressively concentrates on the large fault systems in the west of the Leponti

ne Dome.10

The oldest recorded monazite-(Ce) ages were found in the eastern area (TAMB 1; Fig. 1) and fall into two group

s, around

19 Ma and a mean age at 17.49±0.4 Ma (Figs. 4, Tab. 2), during which time the area around TAMB 1 experienced a 

time

of rapid exhumation and cooling (Steck and Hunziker, 1994). The nearby Forcola Fault (Fig. 1) was estimated to 

have been

active sometime around 25-18 Ma on the basis of Rb-Sr and K-Ar cooling ages (Meyreet al., 1998). In this conte

xt, the

monazite-(Ce) ages would date the final deformation phases of such normal faults as the Forcola Fault. Notabl

y, these faults,15

and possibly the Forcoloa Fault itself, may have been active far longer, as suggested by monazite-(Ce) ages do

wn to∼8.3 Ma

(Figs. 5s, Tab. 2). The youngest ages even postdate apatite fission track ages (AFT; Fig. 6), which may have b

een facilitated by

the late circulation of hot fluids, something which could be shown for hydrothermal monazite-(Ce) of the Lauzi

ere and Mont

Blanc Massifs (Janotset al., 2019; Bergemannet al., 2019). North of TAMB 1, the sample VALS age record starts

 slightly

later at∼16.5 Ma that then runs parallel to that of TAMB 1 (Figs. 5s, t).20

In the central area close to the sample locations, temperatures were still prograde up until the time of 19-18 

Ma at 450-430

◦

C

(Janotset al., 2009) as deduced from allanite dating. After this time, conditions must have decreased to lower 

temperatures

during exhumation, as the hydrothermal monazite-(Ce) age record started after around 16-15 Ma in the Gotthard

 Nappe and

eastern Lepontine Dome (Fig. 7b) and continued to later than∼13 Ma (Fig. 7c). After this time the age record r

eceded from

the eastern region, which cooled below 180

◦

C around 12 Ma (e.g. Priceet al., 2018, zircon U/Th-He), and the Gotthard Nappe25

west- and southwards into the Lepontine Dome. This would date the decoupling of the Gotthard Nappe which exper

ienced a
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rapid exhumation due to steepening during backfolding (Wiederkehret al., 2009; Ricchiet al., 2019) from the Le

pontine Dome

toca.13-12 Ma, as the samples of the central area south of the Gotthard Nappe show a continued widespread age

 record down

to∼9 Ma (Fig. 7d). During this time interval (Fig. 7c) primary monazite-(Ce) crystallizes also along the rest

 of the extended

Rhone-Simplon Fault system (Grand

′

Hommeet al., 2016; Bergemannet al., 2017, 2019; Ricchiet al., 2019). Where it dates30

in some areas a switch from thrusting/transtensional movements to pure strike-slip deformation through the for

mation of a new

cleft generation with a different orientation associated with strong hydrothermal fluid activity (Bergemannet

 al., 2017, 2019;

Janotset al.,2019). Since in the study area clefts outside the Gotthard Nappe, where they are horizontal, are

 vertical whether

they formed during extension or later strike-slip deformation, such a switch in deformation style cannot be pr

oven. But it might

21

Figure 7.Overview maps of the study area showing the monazite-(Ce) age record over time and space. Note the sh

ift over time from the

southern and eastern regions of the Lepontine Dome to the central and western areas and finally to the areas c

lose to the shear zones bounding

its western limit. Weighted mean ages, quoted near the stars representing the corresponding sample locations,

 indicate individual deformation

events that could be identified for a grain within a given time interval. Published hydrothermal monazite-(Ce) 

locations (grey stars) of the

areas adjacent to the Lepontine Dome are from Janotset al.(2012), Bergeret al.(2013) and Ricchiet al.(2019).

22

6  Conclusions

Hydrothermal fissure monazite-(Ce) always dates crystallization and not cooling due to system closure and ofte

n shows com-

plex  recrystallization  features.  It  provides  an  important  record  of  the  shifting  tectonic  activity  

associated  with  the  regions

exhumation history within the monazite stability field. A comparison between hydrothermal monazite-(Ce) sample

s from dif-

ferent parts of the Lepontine metamorphic dome shows that age clusters within individual crystals from a simpl

y exhuming area5

have a less clear age distribution than samples from fault zone areas, or fast exhuming areas. Monazite-(Ce)

 (re)crystallization/

dissolution-reprecipitation during exhumation is in these areas connected to 

repeated tectonic activity of small intensity, while

distinct events or short periods of intense tectonic activity of fault zones appear to result in larger, more

 homogenous crystal

zones that are easier to date.

The

explain the progressive restriction of the monazite-(Ce) age record areas to samples from the vicinity of majo

r fault zones in

the western Lepontine Dome (Figs. 7d-f).

11 Ma (Fig. 7d) marks the end of the hydrothermal monazite-(Ce) age record in the hanging wall of the Rhone-Si

mplon

Fault (southern region, Fig. 1) which had continued since∼16.8 Ma, largely parallel to that in the eastern reg

ion (Figs. 7a-d).

At the same time, 11-10 Ma also marks the beginning of monazite-(Ce) crystallization in the foot wall of the R

hone-Simplon5

Fault ((Figs. 1, 7d). The primary monazite-(Ce) crystallization ages of the western area tend to postdate, but 

are still in close

agreement with zircon fission track ages (Fig. 6). Samples of the western region often yield well constrained

 weighted mean

ages (Fig. 5), which might suggest a dominance of strong individual tectonic events. This in mind, weighted me

an ages in the

western zone (Fig. 4) may suggest deformation during brittle tectonics along the extended Rhone-Simplon Fault

 system.
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The mean age group around 12 Ma, found in the eastern part of the western zone (Figs. 4, 7c) is related to the 

exhumed10

deeper part of the Simplon Fault (Hartel and Herwegh 2012), whereas the younger ages are more close to the loc

alized and

late Simplon Fault. The 12 Ma age also falls together with the switch in deformational style elsewhere in the

 Western Alps

discussed above, and is followed by a group from∼10-7 Ma (Figs. 4, 7d). These two age groups are also recorded 

in the

central Lepontine (sample DUTH 6; Fig. 5e). After 10 Ma, the weighted mean ages show a spread down toca.7 Ma b

ut

are progressively restricted to the westernmost areas close to 

the fault zones (Figs. 4, 7e, f). The ages likely mark phases of15

tectonic activity and corroborate evidence of continuing deformation along the Rhone-Simplon Fault (e.g. Zwing

mann and

Mancktelow, 2004; Campaniet al., 2010; Suraceet al., 2011). Only one sample in this group (VANI 5; Fig. 7f) yi

elds ages

younger thanca.7 Ma, with a weighted mean age around 5.5 Ma and a spot age of∼2.7 Ma (Fig. 5m). The sample com

es

from an area where strong late-stage hydrothermal activity occurred, and the∼5.5 Ma age coincides with ZFT age

s of 6.4-5.4

Ma that are younger than those found in most of the region (Kelleret al., 2006). This coincidence of ages youn

ger than in20

the surrounding areas may indicate a resetting of the ZFT ages through the hydrothermal activity. These phases 

of strike-slip

deformation are not local to the western Lepontine Dome, but seem to have affected the extended Rhone-Simplon

 Fault system

in much of the Western Alps (Bergeret al., 2013; Grand

′

Hommeet al., 2016; Bergemannet al., 2017, 2019; Ricchiet al.,

2019).

7  Summary25

Hydrothermal  fissure  monazite-(Ce)  offers  the  possibility  to  date  tectonic  activity  in  the  brittle  

domain  for  extended  time

periods, as it could be shown to provide a record of the shifting tectonic activity within the Lepontine Dome

 associated with

the  regionsal  exhumation  history.  A  comparison  between  hydrothermal  monazite-(Ce)  samples  from  diff

erent  parts  of  the

Lepontine Dome and thermo-chronometric data suggest that hydrothermal monazite-(Ce) dating might be used to id

entify

areas of slow exhumation/cooling rates during ongoing tectonic activity. The

232

Th-

208

Pb monazite-(Ce) crystallization data records prolonged hydrothermal activity between   19 and 5 Ma con-10

tribute to the understanding of the tectonic evolution of the Central Alps in a temperature range of ca.

 350-200

Pb monazite-(Ce) crystallization data30

records prolonged hydrothermal activity between∼19 and 2.7 Ma, and contribute

 to the understanding of the tectonic evolution

of the Central Alps in a temperature range of roughly 350-200

◦

C. The oldest

ages of  19-17 Ma come from the eastern- and southernmost regions of the study area (Fig. 1), in the hanging w

all of the For-

cola and Rhone-Simplon faults defining the borders of the metamorphic dome. Within the dome, monazite-(Ce) cry

stallization

started in the 

northern Ticino dome and eastern Gotthard nappe around 15 Ma and show signs of slow exhumation. Further

west, in the Toce dome, primary crystallization occurred in the 

western Gotthard nappe and the central Aar massif at 12-1015

Ma. Younger ages of 9-7 Ma in the west of the study area record the progressive concentration of 

tectonic activity along the

large fault systems of the Rhone-Simplon Fault and the Rhine-Rhone Line.

C. The monazite-(Ce) age record reveals a relatively smooth
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east-west age trend within the Lepontine Dome. The record starts in the eastern- (and southern) parts of the s

tudy area, with
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Figure 8.Backscatter electron image of monazite-(Nd) co-type material sample GRAESER 4 with the ovals represen

ting the two measure-

ment spots that yielded a Th-Pb age to scale.

the recorded activity then moving through the central to the western area, where it progressively concentrates 

on the large fault

systems of the western Lepontine Dome. The oldest ages of∼19-17 Ma come from the eastern- and southernmost reg

ions

of  the  study  area,  in  the  hanging  wall  of  the  Forcola  and  Rhone-Simplon  normal  faults.  Within 

 the  dome,  monazite-(Ce)

crystallization started in the 

eastern Lepontine Dome, as well as the eastern Gotthard Nappe around 16-15 Ma. Further west,

primary crystallization occurred in the western Gotthard nappe at 13-10 

Ma. Younger ages of 9-7 Ma in the west of the study5

area record the progressive restriction of the recorded tectonic activity 

to the extended Rhone-Simplon Fault system.
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