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The main highlights of revisions within the new manuscript are the following:

e Explanation of complex shearlet parameters, their effects, and
sensitivity analysis We have added a new sub-section within Methods,
referred to as 3.2 Sensitivity Analysis of Parameters on Extraction Re-
sults. Alongwith minor additions to Section 2.2 The Complex Shearlet
Transform, Section 3.2 presents a detailed explanation on the parameters
and their effects on trace extraction applied to the simple siliciclastic rock
fracture example (previously Figure 2, now Figure 3). Figure 3 has also
been improved by adding respective vectorized trace result adjacent to
each ridge map, so that the reader can judge the effect of each parame-
ter in terms of vectorized traces. An additional figure is also added that
showcases the effects of parameters on the complex shearlet construction
(Figure 4 in the new manuscript).

e Detection of veins We fully agree with by Dr. Stephen Laubach on the
importance of mineralized fractures in structural studies and, indeed for
the behaviour of fractured reservoirs. Our contribution is geared to the
detection of lineaments visible from the camera of a drone. In most cases,
these are open fractures. The mineralized fractures in Parmelan have an
infill that is not very prominent. We have provided an additional example
(handheld camera) within the Parmelan results (Section 4.1.4, Figure 10 in
revised manuscript) that indicate that extracting filled fractures is possible
and therefore do not constitute a limitation.

e Structural Data The structural data on mineralized fractures that we
have collected in the field confirm that the attitude of fractures are pre-
dominantly vertical. This is also the case for open fractures that are



observed from photogrammetry and which we have confirmed in the field.
Orientations of automatically extracted fractures and ground truth struc-
tural data match in both the Brazilian and French examples. Structural
measurements are added to relevant figures of both Parmelan (Figure 8 in
the new manuscript) and Brejoes (Figure 11 in the new manuscript).

Validity and Limitations The discussion section is expanded with a sec-
tion where issues of vein extracton, false positives, and artificial fragmen-
tation are critically discussed. These issues constituted our Reply to Re-
viewers (and Short Comments) and are now within the revised manuscript.
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Abstract. Representing fractures explicitly using a discrete fracture network (DFN) approach is often necessary to model the
complex physics that govern thermo-hydro-mechanical-chemical processes (THMC) in porous media. DFNs find applications
in modelling geothermal heat recovery, hydrocarbon exploitation, and groundwater flow. It is advantageous to construct DFNs
from photogrammetry of fractured outcrop analogues as the DFNs would capture realistic, fracture network properties. Recent
advances in drone photogrammetry have greatly simplified the process of acquiring outcrop images, and there is a remarkable
increase in the volume of image data that can be routinely generated. However, manually digitizing fracture traces is tedious
time-consuming and inevitably subject to interpreter bias. Additionally, variations in interpretation style can result in different
fracture network geometries, which, may then influence modelling results depending on the use-case of the fracture study. In
this paper, an automated fracture trace detection technique is introduced. The method consists of ridge detection using the
complex shearlet transform coupled with post-processing algorithms that threshold, skeletonize, and vectorize fracture traces.
The technique is applied to the task of automatic trace extraction at varying scales of rock discontinuities, ranging from 10°-102
m. We present automatic trace extraction results from three different fractured outcrop settings. The results indicate that the
automated approach enables extraction of fracture patterns at a volume beyond what is manually feasible. Comparative analysis
of automatically extracted results with manual interpretations demonstrates that the method can eliminate the subjectivity that
is typically associated with manual interpretation. The proposed method augments the process of characterizing rock fractures

from outcrops.

1 Introduction

Naturally fractured reservoir (NFR) modelling requires an explicit definition of fracture network geometry to accurately cap-
ture the effects of fractures on the overall reservoir behaviour. The National Research Council (1996) suggested the idea of
using geologically realistic outcrop fracture patterns to guide subsurface fracture modelling. In recent work, the use of de-
terministic discrete fracture networks (DFNs) based on trace digitization from photogrammetry of outcrop analogues was
investigated by Bisdom et al. (2017) and Aljuboori et al. (2015) for reservoir fluid flow simulation and well testing. Outcrop
derived DFNs encapsulate 2D fracture network properties at a scale that cannot be characterized using either standard surface

approaches (scanlines and satellite imagery) or subsurface techniques (seismic imaging/borehole imagery/core sampling). Ukar
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et al. (2019) suggested a comprehensive set of protocols to select fractured outcrops that are representative of the subsurface.
Stochastic and geomechanical DFNs are alternatives to outcrop derived DFNs for fractured reservoir modeling. Stochastically
generated DFNs have the disadvantage that they cannot replicate the spatial organization of fracture network patterns observed
in nature (Thovert et al., 2017). Geomechanically derived DFNs are based on the physics of fracture propagation (for e.g.
Olson et al., 2009; Thomas et al., 2018) and can reproduce realistic fracture patterns provided the complex paleostress field
and paleo rock properties are known; however, they are also computationally intensive and hence have limited applicability.
A carefully chosen fractured outcrop that is relatively free of noise (fractures resulting from exhumation and weathering and
not too much hidden by vegetation) may be used to interpret realistic fracture networks which are geometrical inputs used in

simulating various subsurface thermo-hydro-mechanical-chemical (THMC) processes.

Recent advances in Unmanned Aerial Vehicles (UAVs) and stereo-photogrammetry has dramatically simplified the acqui-
sition of georeferenced datasets of fractured outcrop images (for e.g. Bemis et al., 2014; Harwin and Lucieer, 2012; Turner
et al., 2012). Photogrammetry using the Structure from Motion (SfM) principle is a relatively inexpensive and rapid tech-
nique by which 3D outcrop models are built by identifying, extracting, and positioning common points in georeferenced
outcrop images (Donovan and Lebaron, 2009). Images are captured using a camera-equipped UAV that is capable of following
pre-programmed flight missions where flight path, altitude, velocity, and overlap are specified. The images undergo further
processing steps that include generating sparse point clouds of common points, aligning the images, generating dense point
clouds (3D representation of outcrop geometry), and generating meshed surfaces (Bisdom et al., 2017). Interpreting fractures
on the image orthomosaics with conventional Geographic Information System (GIS) software completes the outcrop-based

DFEN workflow.

Manually interpreting fractures is time-consuming and forms a bottleneck in an outcrop-based DFN workflow. A manual
interpretation has a fair degree of associated subjectivity, and interpreter bias may take the form of specific scales of features
being inadvertently omitted or deliberately ignored (Bond et al., 2007; Scheiber et al., 2015). Manual interpretation also suffers
from a lack of repeatability owing to the level of expertise of the interpreter, and the interpretation criteria followed (Hillier
etal., 2015; Sander et al., 1997). Reproducibility may not be guaranteed even with the same interpreter in multiple trials (Mabee
et al., 1994). According to Bond et al. (2015), quantifying the magnitude and impact of subjective uncertainty is difficult. Long
et al. (2018) conducted a study on variability of fracture interpretation in which geologists with varying levels of expertise
interpreted a single image. They found considerable variation in fracture topology, orientation, intensity, and length distribu-
tions in the interpretations. Andrews et al. (2019) made a detailed quantification of subjective bias in scanlined-based fracture
data collection, the associated effects on derived fracture statistics and suggested protocols to-manage-bias—Anotherstudy-by
for managing the variations. Peacock et al. (2019) delved into the multiple reasons for bias and the resulting implications for
modelling. Given the amount of data generated in short UAV flight missions, man-hours spent in interpretation, and the need to

de-bias interpretation as much as possible, automatic feature detection techniques may be considered. Automated approaches
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can speed up the process, improve accuracy, and exploit the acquired data to the fullest possible extent.

In this paper, we introduee-apply an automated method to extract digitized fracture traces from images of fractured rocks.
The method utilizes the complex shearlet transform measure to extract fracture ridge realizations from images. Post-processing
image analysis algorithms are coupled with the ridge extraction process to vectorize fracture traces in an automated manner. The
complex shearlet transform was introduced by Reisenhofer (2014) and King et al. (2015) and previously applied to problems
such as detecting coastlines from Synthetic Aperture Radar (SAR) images (King et al., 2015) and propagating flame fronts from
planar laser-induced fluorescence (PLIF) images (Reisenhofer et al., 2016). We present automatic fracture extraction results
from drone images of two carbonate outcrops (Parmelan, France and Brejdes, Brazil) and station scale images of igneous dyke

swarms.

2 Background

2.1 Review of Autemated-automated and Semi-Automated Fraeture Deteetion-Appreachessemi-automated fracture
detection approaches

Rapid digitization of geological features from photogrammetry is challenging owing to issues like spatially varying image
resolution, inadequate exposure, the presence of shadows due to effects of topography on illumination conditions, and chro-
matic variations of essential features. False positives are non-geological features (such as trees, shrubbery, and human-made
structures) that are detected using semi-automated / automated approaches (Vasuki et al., 2014). Removal of false positives is
time-consuming. On the other hand, essential features that are not detected at all (referred to as false negatives) by an algorithm,
further complicates the task of automated feature extraction. Automated methods, in general, detect more features than what is
present in the image (Abdullah et al., 2013). In this section, we review some approaches for automatic fracture detection based

on the class of algorithm used.

Automated fracture detection utilizing higher dimensional data such as point clouds, digital elevation models (DEMs) and
digital terrain models (DTMs) have an advantage in that depth variations are captured and can be used to extract features. Thiele
et al. (2017) presented an approach based on a least cost function algorithm applicable to ortho-photographs of jointed fracture
sets and 3D point cloud data. Masoud and Koike (2017) introduced a software package to detect lineaments from composite
grids derived from gravity, magnetic, DEMs, and satellite imagery. Bonetto et al. (2015) and Bonetto et al. (2017) presented
semi-automatic approaches that extract lineaments from DTMs utilizing the curvature of geological features. Hashim et al.

(2013) presented an edge detection and line linking method using Enhanced Thematic Mapping (ETM).

Colorimetry of an image can be used to detect features. By partitioning features in the image, e.g., matrix rock as lighter
shades of gray and fractures as darker shades of gray, fracture pixels may be extracted separately from matrix rock using pixel

values. Vasuki et al. (2017) developed an interactive eeler-colour based image segmentation tool using superpixels (Ren and



10

15

20

25

30

Malik, 2003) which are groupings of pixels that are perceptually similar.

Edge detection techniques identify points in images where sharp changes in image intensity occur. Some of commonly used
edge detection techniques in image processing are Canny, Sobel, Prewitt, Robert, Kuwahara, and Laplacian of Gaussian filters.
Alternatively, edges may be detected using methods that are invariant to contrast and illumination in images. Phase symmetry
and phase congruency algorithms (Kovesi, 1999, 2000) fall under this category. Phase symmetry is an edge detection technique
that is invariant to local signal strength. The method works identifies the axis of a feature by isolating pixels symmetric along
profiles that are sampled from all orientations except parallel to the feature. The axes of symmetry are regions where frequency
components either approach a maximum or minimum. The phase congruency method is another edge detection method that
detects features by identifying points where Fourier components are maximally in phase. This approach is also invariant to
the magnitude of the signal. The property of invariance enables the identification of structures within the image even in the
presence of noise. Vasuki et al. (2014) utilized an edge detection algorithm using the phase congruency principle coupled with

a multi-stage linking algorithm for detection of fault maps.

The Hough transform (Duda and Hart, 1972) is another technique that has been used to detect lineaments in images. The
Hough transform identifies pixels in binary images that are likely to represent rock fractures using a voting procedure. Each
pixel in a binary image is represented as a sinusoidal curve in a 2D parametric space (or a Hough space). The voting procedure
accumulates a vote for each curve in the parametric space corresponding to each non-zero pixel in the binary image. The curves
with the highest votes are selected as probable fractures since they correspond to the largest number of non-zero pixels. Results
by Callatay (2016) using the Hough transform for fracture detection report the following limitations. Firstly, the detection is
limited to a given fracture orientation set owing to the definition of the Hough transform parameter space. Secondly, the issues
of false positive detection and discontinuities persisted. The method is also limited by the fact that it needs a binarized image

to start.

The development of wavelet theory in the field of harmonic analysis have led to applications in edge detection (Daubechies,
1992; Heil et al., 2006). Mallat and Hwang (1992) proposed wavelet-based approaches for edge detection. Wavelet-based meth-
ods differ from gradient-based edge detection methods that searches for local maxima of the absolute value of the gradient.
Felsberg and Sommer (2001) introduced monogenic wavelets for the purpose. Tu et al. (2005) considered the use of magnitude
response of complex wavelet transforms. Wavelets, owing to their isotropic properties, cannot extract curve-like features due
to the lack of directional information (Labate et al., 2005). A number of wavelet-based approaches that have been proposed to
overcome this lack of directional information such as curvelets (Candes and Donoho, 2005), ridgelets (Candes and Guo, 2002),
contourlets (Do and Vetterli, 2005), bandlets (Le Pennec and Mallat, 2005) , wedgelets (Donoho, 1999), shearlets (Guo et al.,
2005), and band-limited shearlets (Yi et al., 2009).
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2.2 The ComplexShearlet Transformcomplex shearlet transform

Sheartets In images of fractured outcrops, the presence of discontinuous gaps due to rupture within the rock mass, which occur
naturally and which maybe enlarged through weathering processes, are commonly used as defining criteria by interpreters
to digitally trace and classify as fractures within the rock mass. Fractures may also be partially or completely sealed by the
presence of infilling material that maybe mineralogically different from the adjacent rock material. In such a case, the contrast
in_colour and texture of the infill material provides an interpretative criterion for classification of these material regions as
fractures. The presence of such prominent discontinuities within otherwise smooth regions of rock images, can be exploited by.
the complex shearlet transform to precisely identify position in the form of edges and ridges.

The basis of the complex shearlet transform applied to fracture extraction from images emanates from wavelet theory.
Wavelets are rapidly decaying wavelike oscillations possessing a finite duration. Wavelet transforms are routinely used in
digital signal processing applications which are often time-domain signals. They can also be applied to image data which can

be considered as 2D functions. Wavelet transforms are not able to detect directionality of structural features in image data since
they may only be dilated or translated. Shearlets that were introduced by Labate et al. (2005) as a new class of multidimen-

sional representation systemste-overcome-the-, overcame a major shortcoming of wavelets by applying-enabling dilation, shear

transformation, and translation operationsto-wavelet-generating-functions—Sheatlets-are-henee-very-similar-to-wavelets-exeep

that-. The isotropic dilation of wavelets is-was replaced with anisotropic dilation and shearing —Shearlets-have-in the case of
shearlets. These modifications have resulted in shearlets possessing a number of properties that make them better suited to
handle sparse, geometric features in multidimensional-2D image data compared to traditional wavelets (Kutyniok and Labate,
2012).

The complex shearlet transform is a complex-valued generalization of the shearlet transform that was developed by Labate
et al. (2005) to handle geometric structures in 2D data. Reisenhofer (2014) and King et al. (2015) proposed the idea of creating
complex shearlets by modifying the shearlet construction so that real parts of the generating function are even-symmetric and
imaginary parts of the generating function is odd-symmetric. They used the Hilbert transform to convert an-even-symmetric
funetion-into-an-functions into odd-symmetric funetion-and vice versa. The complex shearlet measure for ridge and edge detec-
tion implemented in Reisenhofer (2014); King et al. (2015) and Reisenhofer et al. (2016) merged the ideas of phase congruency

Kovesi, 1999) and complex shearlets.

The complex shearlet measure first introduced by Reisenhofer (2014) and improved by King et al. (2015) was used for
applications like coastline detection King et al. (2015), flame front detection Reisenhofer et al. (2016), and feature extraction
from terrestrial LIDAR inside tunnels Bolkas et al. (2018). Karbalaali et al. (2018) used the complex shearlet transform for
channel edge detection from synthetic and real seismic slices. Reisenhofer et al. (2016) presented a comprehensive compar-

ison of complex shearlet based feature detection compared with conventional edge detectors such as Canny (Canny, 1986),
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Sobel (Sobel and Feldman, 1973), phase congruency (Kovesi, 1999), and another shearlet based edge detector (Yi et al., 2009).
Bolkas et al. (2018) also made specific comparisons between the performance of Canny, Sobel, Prewitt (Prewitt, 1970) edge
detection methods versus space-frequency transform methods such as wavelets, contourlets, and shearlets. A detailed overview

of the complex shearlet transform is provided in Appendix.A for the interested reader.

3 Methods
3.1 The Autematic DeteetionProeessautomatic detection process

The automated fracture trace detection method that we present has five main steps (see Fig. 1). The first step of the method uses

the Complex Shearlet-Based Ridge and Edge Measure (CoShREM), a MATLAB implementation by Reisenhofer et al. (2016)

that utilizes functions from Shearlab3D developed by Kutyniok et al. (2016) and Yet Another Wavelet Toolbox (Jacques et al., 2011

. The first step, namely the ridge detection, is dependent on a number of input parameters tabulated in Table 1 and Table 2.

Equation (A28) gives the expression for the ridge measure.

An optimal set of deterministic parameter values which can extract features on all scales is not known a-prieria priori. There-
fore, we vary the input parameters corresponding to the construction of the shearlet system and the ridge detection parameters
within user-defined ranges to compute multiple ridge realizations. A ridge ensemble map is obtained by superposing the ridge
images and normalizing. A simple sigmoid function is applied on the normalized ridge ensemble to non-linearly scale and
thereby isolate higher image intensities. A user-defined threshold is then applied to the intensity values of the-normalized-ride
this non-linearly scaled, normalized ridge ensemble image to extract a highly probable, binarized, ridge network. The threshold
is set by a visual comparison of the input image with the extracted ridges. The range for each parameter in Table 1 and Table 2

is ascertained by first testing the effect of variation of each parameter with respect to a chosen base case image. This approach

to automated detection captures features of multiple scales and highlights regions of uncertain feature extraction within the

The second step is the segmentation of the detected ridges using Otsu thresholding (Otsu, 1979). This operation removes
small, disconnected, and isolated ridge pixel clusters. The third step is a skeletonization procedure where clusters of pixels
representing the segmented ridges are thinned into single pixel representations. For intersecting fractures, the skeletonization
procedure preserves the topology of the fracture network by recognizing and splitting the frame at the branch point. This step
ensures that in subsequent DFN representation, there is no further effort expended in manually connecting the detected seg-

ments.
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The fourth step involves piecewise linear polyline fitting to the skeletonized clusters. By default, our code attempts to fit
polylines rather than lines to the pixel clusters. Polyline fitting retains geologically realistic, veering and curvature of fractures
in the vectorized result. We use functions from the Geom2D toolbox (Legland, 2019) for the skeletonizing and polyline fitting.
The fifth step is a line simplification procedure applied to the piecewise linear polyline clusters. A large number of polyline
points would increase the size of vectorized files; hence, we use the Douglas-Peucker line simplification algorithm (Douglas
and Peucker, 1973) implemented by Ahmadzadeh (2017). The algorithm simplifies a piecewise linear polyline into one which
has fewer segments. The number of polyline points assigned to each skeletonized cluster is set constant in the code, but this
may be modified to be a linear function of the cluster size measured in pixels. If the image is georeferenced or the image scale

is known, the code georeferences the simplified polylines and writes to a vectorized shapefile format.

The DFN in the vectorized shapefile format may now be used for any application that requires explicit fracture network
geometry. An example of a fractured Posidonia shale micro CT (computed tomography) image slice from Dwarkasing (2016)

(see Fig. 2) illustrates the effects of each of the steps involved.

3.2 Sensitivity analysis of parameters on extraction results

Since the detection results may vary owing to different parameter combinations, we conducted a sensitivity analysis to investigate

the ridge extraction output with variation in parameter input. An example of a fractured image sample representing Mesoproterozoic

sandstone from the Tomkinson Province, Northern Territory, Australia (Fig.3a) is chosen to study the effect of shearlet

an intersection. A subtler fracture is present towards the top-left and a thick fracture located at the bottom-left of the image. A
base case set of parameters for constructing a shearlet system and for ridge identification is set up in the table adjoining Fig.3a.
We vary all parameters one by one with respect to this base case. Ridge extraction using the base case shearlet system shows

that the major intersecting fracture system is identified; however, the largest fracture is detected only partially and that too

only at the peripheries. (see Fig.3b). The subtle fracture is detected but disconnected. A large amount of noise is also present.

The complex shearlet system is constructed by the tensorial product of a Mexican hat wavelet and a gaussian filter. The
first two parameters waveletEffSupp and gaussianEffSup refer to the pixel widths over which the wavelet amplitudes sharpl
change from zero. The even- and odd-symmetric elements of constructed shearlet system using the base case parameters

for the siliclastic example is depicted in Fig.

and gaussianEffSup. The effect of increasing the effective support on the complex shearlet system is shown in Fig.4(xvii)
i i i ig.4(xxi) indicate the effects of large ratios between the wavelet effective support and gaussian
support. The second parameter is the scalesperOctave which determines the number of intermediate scales per octave. An
octave is the interval between two frequency peaks. For example, we may consider a wavelet that is scaled by a factor of 2.
Physically, this means a stretching of the wavelet thereby decreasing the frequency. The base-2 logarithmic ratio of the reduced

). We chose to maintain a ratio of two between waveletEffSu
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frequency with respect to the original frequency, is the number of octaves by which the frequency has reduced. We set the
number of octaves as a constant value of 3.5. This implies that there are 7 scales for the complex shearlet system as can be seen
in Fig 4(iii) - Fi
can assume, The selected value of 3 indicates that there are 2° 1 2 (ten) orientations possible for the complex shearlet system
(see Fig.4(x) - Fig.4(xvi)) and 2(2° + 2) (or 20 shearlets). For large images and large number of shearlets, computational effort
is quite expensive. The alpha parameter is the degree of anisotropy induced by scaling with a null value of a/pha maximizing
the degree of anisotropy. We vary alpha, shearLevel, and the scalesperOctave but the effects on the constructed complex
shearlet system are minimal as can be seen from Fig.4(xxii) - Fig 4(xXxX).

4(ix). The shearLevel parameter indicate the discrete number of orientations that the complex shearlet system

The effects of variation of the parameters on ridge extraction is depicted in Fig. . Decreasing the value of

the support by half identifies finer features, but then the largest fracture is completely missed (Fig.3e). When the support is
doubled, the emphasis on larger features is more pronounced (Fig.3f). The effects of increasing and decreasing scalesperOctave.
is depicted in Fig.3g and Fig.3h with a higher value resulting in a finer ridge map. The effect of increase and decrease in the
number of shear levels on the final ridge map is quite minimal as can be seen from Fig.3i and Fig.3j. The effect of aniostropy.
parameter alpha is depicted in Fig 3k and Fig.31 with minimal anisotropy resulting in a finer ridge map. The minContrast
parameter is a grayscale threshold (values from 0 - 255) applied to Eq.A28 to extract ridges. A larger value suppresses noisy.
features as can be seen from the comparison between Fig.3m and Fig.3n. The offset parameter is a scaling offset between

odd-symmetric and even-symmetric shearlets quantified in octaves. Reducing the value of this parameter results in a coarser

ridge map with enhanced connectivity (Fig.30) compared to the larger value which results in a finer map (Fig.3p).

From an interpreter’s point of view, three different scales of fracturing need to be identified and false features also need to
be suppressed. From the sensitivity analysis, the parameters that are most important to generate high-probability ridge maps,
are the wavelet supports (required to capture multiple scales of fracture). grayscale contrast (suppressing noise and thereby
false features), and even-odd offset (which suppresses ridge detachments). This example illustrates the necessity of computing.
aridge ensemble instead of searching for an ideal parameter combination.

3.3 Shearlet parameter selection

To decide upon the shearlet parameter space to generate multiple ridge realizations, we chose one sample image (see Fig. 5a).
Base case parameters are chosen based on recommendations underlined in Reisenhofer et al. (2016) for shearlet construction
and ridge detection and these are tabulated in Table 3. The use of these results in the overlay depicted in Fig. 5b. As can be
observed from visual inspection of the overlay of the detected ridges over the original image, the automatic method can extract
a large number of fractures. However, there are still some false positives (features detected on the trees and inside the large

karstic cavities) and false negatives (undetected small scale fractures).
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To select the parameter ranges, we vary parameters with respect to the base case ridge image, thereby generating multiple
ridge images. We use the structural similarity measure (Wang et al., 2004) to quantify the difference between the base case
ridge image and other ridge images. Structural similarity (SSIM) is a measure commonly used in image quality assessment
that returns one value as a measure of similarity between two images, where one image is the reference image. The SSIM is
calculated for each ridge realization image corresponding to each parameter with respect to the base case ridge image. The
SSIM for variation in scaling offset, anisotropy scaling o, Mexican hat wavelet support(Gaussian-suppert-sealeswith-wavelet
stppert), gaussian filter support scales, minimum contrast, scales per octave, and number of shear levels are depicted in Fig. A3
according to the range of parameters in Table 4. From the analysis of the effects of parameters, we decided to vary the shearlet
construction parameters so that we have 70 complex shearlet systems (see Table A1 for the parameters used to construct the 70

complex shearlet systems).

The total number of stochastic runs for the ridge detection is the number of combinations of shearlet systems and ridge
specification parameters. Using such an approach, a probability map of detected features may be obtained based on which eut
off-cut-off thresholds can be defined to remove false positives. The result of such a stochastic run with 1050 realizations is
depicted in Fig. 5. From this result, the utility of the method is evident wherein the features that are obscured by shadows and
the shrubbery has a low strength signal which can then be filtered away thus reducing the number of false positives. Another
advantage is that both large scale and fine features are captured which may not be possible using a single set of shearlet

parameters.

4 Results
4.1 Trace ExtractionResults-extraction results from Parmelan, France
4.1.1 Geological setting of the Parmelan plateau

We tested the automated fracture extraction method on an example from a carbonate outcrop from the Parmelan plateau in
the Bornes Massif, France. The Bornes Massif is a northern subalpine chain in the western French Alps. The method was
applied on a photogrammetric orthomosaic derived from a 3D outcrop model. The outcrop model was built from source photos
acquired using a DJI Phantom 4 UAV. The image resolution is 18.6 mm/pixel. Processing of the drone images and generating
the orthomosaic was done using AgiSoft PhotoScan Professional (Version 1.2.6) (2016*) software. The Parmelan Anticline in
France (see Fig. 6) is situated in the frontal part of the Bornes Massif and consists of Upper Jurassic to Cretaceous rocks of the

European passive margin (Huggenberger and Wildi, 1991; Gidon, 1996, 1998; Berio et al., 2018).

This NE — SW trending anticline consists of a wide, flat crestal plateau bounded by steeply dipping limbs. Carbonates form
the roof of a kilometre- scale box fold formed during the Alpine orogeny (Bellahsen et al., 2014). On the crestal plateau, a 1.7

km by 2.3 km large pavement of flat-lying shallow-water carbonates is exceptionally well exposed. The Parmelan outcrop is a
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good example of fracture patterns formed in a fold-and-thrust setting. We applied the automatic fracture detection technique on
an orthomosaic that has been stitched together from drone photogrammetry over six different drone missions over the Parmelan.
The combined extent of the six orthomosaics is depicted in Fig. 7a, and the areal extent of each orthomosaic is depicted in Fig.
7b.

4.1.2 Automatic extraction results on the Parmelan orthomosaic

Considering memory requirements and for faster computation, the image domain was divided into georeferenced sub-tiles
using the Grid Splitter plugin in QGIS software. Visual filtering was carried out to remove tiles that did not have exposed rock,
had a large degree of shrubbery, and which were at the orthomosaic edges where image resolution is poor. A total of 1000 tiles
were chosen for the automated interpretation process. The areal extent of the orthomosaic covered 0.589 km?, and this region
is depicted in Fig. 7. The region covered by the tiles amounts to 0.379 km? and this is shown as an overlay of the selected tiles

in Fig. 8a. Structural measurements were recorded at four small scale stations (around 2-5 sq.m per station) depicted in Fig.

8cf.

An ensemble of 1050 ridges was computed using a set of shearlet parameters. A threshold for the ridge intensity was chosen
to filter out the false positives. The threshold was determined by a visual examination of the overlay of detected ridges over the
original images. The subsequent post-processing steps yielded features in each tile. These were geo-referenced and stitched
back into a single vectorized file representation. Around 3 million features were extracted from the Parmelan orthomosaic. The
P, fracture intensity was computed using the box-counting method by dividing the tile into a 25 x 25 (pixels) regular grid. The
P, fracture intensity plot highlights the spatial variation of fracturing over the Parmelan plateau (see Fig. 8b). The vectorized

fracture shape files along with the Parmelan basemap are presented as a public datatset-dataset (see Prabhakaran et al., 2019a).
4.1.3 Comparison with Manual-manual Interpretation and structural observations

To compare results of the automated approach to a manual interpretation, we chose a sub-region within the Parmelan ortho-
mosaic. The selected subregion depicted in Fig. 9a consists of a 24 m x 24 m tile of the Parmelan orthomosaic. The image
indicates fractures that seem to be isolated, without a well-connected topology, and which are predominantly aligned along an
NW-SE direction. The fracturing intensity is variable across the tile. The contrast between fractures and the host rock fabric
is intensified by the karstification of the fractures, which can be attributed to weathering and dissolution. Fig. 9b depicts an
overlay of the automatically interpreted fractures overlain over the original tile. A total of 2910 features was extracted in this
tile. This example highlights some of the technical challenges associated with automated fracture trace detection. Shrubbery is
present in the image which obscures certain relevant features. The north-western corner of the image is blurred since it forms

the extent of the orthomosaic.

The image also depicts open cavities or blobs, which could be the result of localized weathering. The effect of the cavities

on the feature extraction is that only an edge is detected. Overall the fracture extraction efficiency is quite dependent on the
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resolution and quality of images. In the case of the Parmelan data acquisition, the UAV was flown at an altitude of 50-70
metres above the pavement; therefore, features such as closed veins, and slightly open fractures -and-micro—fractures-are
below the resolution of the drone camera. A higher image resolution is necessary to extract such features. In our specific
case study, good lighting and exposure during the UAV flight mission prevented shadows from obscuring the imagery. Fig.
9c depicts a manually performed interpretation at a zoom level of 1:2000 on the raster image with a total of 341 features. Py,
fracture intensity comparisons of both automatic and manual traces are shown in Fig. 9d and Fig. 9e. The difference between
the automatic and manual interpretation highlights the inclination of the interpreter to neglect small scale features. Based on
geological experience and prior knowledge of the field area, there is a tendency to interpret and link together disconnected

features from the original raster image. The closest small-scale station to the sub-tile depicted in Fig. 9a is station 2. There is
agreement between the rose plots of station 2 (see Fig. 8c) and the interpretations (Fig. 9e and Fig. 9f). The observed fractures

in both cases are predominantly sub-vertical.
4.2 Traece ExtractionResultsfromBrejées; Brazil
4.1.1 Application to mineralized fractures

4.1.2 Geologicalsetting-of the Brejoes Pavement

“Fhe-We now showcase an example of a close-range image containing mineralized veins that are invisible to photogrammetry
at altitudes of 40 - 70 m . The resolution of this image is 0.18 mm/pixel and was taken using a handheld DSLR camera.
In this high-resolution image, the fracture infill has similar colour as the host rock as can be seen in Fig. 10a. A manual
interpretation of the veins (at a zoom of 1:750) is depicted in Fi
wavelet effective supports, it is possible to extract the much thinner and subtle features as depicted in Fig. 10c. It can be
observed from comparison between Fig. 10b and Fig. 10c, that a large number of false features are also highlighted alongside
the features of interest. The main contributors to the extraction of these non-fracture features are the natural rugosity of the
rock face, presence of pebbles, pockmarks, and erosion features. The arrangement of these artefacts display a very different
pattern; small lines with random direction compared to the fractures which are consistently oriented and quite continuous. The
veins are also of different thicknesses, with a few veins anastomosing and some branching in a horsetail manner. Some of the
thicker veins also exhibit microstructure within the mineral infill. Further tuning of parameters in order to capture all the veins
while also suppressing false features is quite challenging and hence we do not explore this in further detail. Despite the noise,
the automated method is not limited to capturing only open fractures but can also extract closed fractures.

. 10b. Using a well-tuned set of parameters with reduced

4.2 Trace extraction results from Brejoes, Brazil

4.2.1 Geological setting of the Brejoes pavement

The second case study for the automated extraction method is a carbonate outcrop from the Irecé Basin, Central Bahia, Brazil

(see Fig. 11a, Fig. 11b). The Irecé Basin is located within the northern region of the Sdo Francisco Craton. The Brejdes
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pavement study area is within the Irecé Basin and consists of Neoproterozoic platform carbonates of the Salitre Formation
(750-650 Ma). The Neoproterozoic cover was affected by the Brasiliano Orogeny (750-540 Ma) in two separate folding events
resulting in fold belts around edges of the Sdo Francisco Craton (Ennes-Silva et al., 2016). The Brejoes pavement UAV imagery
that we used for our analysis was acquired by Boersma et al. (2019). Structural measurements from Boersma et al. (2019)
is shown in Fig. 11c. The orthomosaic covers an area of 0.81 km? and consists of fractured, black oolitic limestones that
correspond to Unit Al of the Salitre stratigraphy (Guimardes et al., 2011). The resolution of the Brejdes orthomosaic is 20.3

mmy/pixel.

4.2.2 Automatic extraction results on the Brejoes orthomosaic

The Brejoes orthomosaic is split into 222 tiles for the analysis and this region is shown in Fig. 11ed. The Brejoes example
has a different fracturing style than the Parmelan and consists of an intricate pattern of multi-scale conjugate fractures. The
shearlet combinations utilized in the case of the Parmelan was insufficient to capture this variation in scales. Specifically, in
the Brejoes case, the large scale features were not captured. A visual inspection of the ridges was necessary to identify the
shearlet combinations that amplified the large scale features. The contribution of these ridges was increased (factor of 8) in the
ridge ensemble to highlight these large deformation features. Fig. 11d-¢ depicts the P,; fracturing intensity computed using the
box-counting method by dividing each tile into a 25 x 25 (pixel) regular grid. The vectorized fracture shape files along with the
Brejdes basemap are presented as a public datatset-dataset (see Prabhakaran et al., 2019b).

4.2.3 Comparison with ManualHnterpretationmanual interpretation and structural observations

The automatically extracted features from the Brejoes image data was compared with manual interpretations performed by and
obtained from Boersma et al. (2019) at seven stations. The automatic interpretations were trimmed to the peripheries of the

manual interpretations for a fair comparison between both vectorizations. The location of these stations alongside the auto-

matic versus manual interpretations are shown in Fig.12. A comparison of the rose plots and cumulative length distributions of
the manual and automatic interpretations is depicted in Fig.13. A few observations can be made from the comparison. Firstly,

similar to the Parmelan case, the interpreter picks a lesser number of features. Secondly, there is a tendency to extend fractures
across image regions where there is no real evidence of rock failure. Thirdly, there is an inconsistency in specifying the con-

necting topologies between the interpreted traces.

In some stations (see Mid #2, Mid #3 and North in Fig.12), the automated interpretation suffers from a large number of false
positives. A close examination indicates that the presence of shadows and eroded, undulating topography of the rocks are the
main reasons for these false positives. In the Brejoes case, the drone was flown at around 10.00 AM, and hence the exposure of
the outcrop face was not optimal. The inclined illumination enhances shadows on the rugged topography, which are then seen

as false positives in the automatic interpretation. False positives due to shrubbery are minimal in the station regions considered.
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4.3 Benchmarking with data from Thiele et al. (2017)

We further tested the automated trace detection on a recently published case study from Thiele et al. (2017). The images se-
lected are orthophotographs of two 10 x 10 m areas from Bingie Bingie Point, New South Wales, Australia (see Fig. 14a and
Fig. 15a). The exposed rocks are Cretaceous to Paleogene dykes, intruding diorites, and tonalities cross-cut by joint sets (Thiele
et al. 2017). The images are complex as they contain both open and closed fractures of different scales, distributed between
multiple lithological layers. The images also contain water, shadows, and debris, which makes it even more challenging. We
chose this dataset to benchmark the quality of our results with those presented using the semi-automatic cost function based

trace mapping approach of Thiele et al. (2017).

The variation in fracture scales implied that similar to Brejoes, a different set of shearlet combinations were needed. We
generated 2700 ridge realizations which were used to construct a normalized ridge ensemble map for both images (see Fig.
14b and Fig. 15b). A simple, non-linear sigmoid function was applied to the normalized ridge intensity to enhance ridge
strength (see Fig. 14c and Fig. 15c) and a threshold was chosen based on visual comparison with the source image to yield
highly probable, binarized ridge images (see Fig. 14d and Fig. 15.d). The subsequent workflow steps, as described in Sect. 3.1
were followed to obtain vectorized traces (see Fig. 14e and Fig. 15¢e). The vectorized traces were used to render assisted inter-

pretations depicted in Fig. 14f and Fig. 15f which are comparable in quality to the assisted interpretation of Thiele et al. (2017).

In the published results of Thiele et al. (2017), assisted interpretations of both areas are achieved in 37 minutes and 34
minutes, respectively. We can report better performances of 27 and 32 minutes for the same areas. The time does not include
computing of the ridge realizations. Once the high probability trace map was generated, the subsequent steps of the automated
detection workflow took around 3 minutes. The remainder of the time was used to perfect the assisted interpretation. The post-
processing tasks performed in this second step were the removal of false positives owing to shadows, water, and debris and
joining of segments which were disjointed due to poor resolution within the image. Though we have performed a benchmarking
exercise with the data from Thiele et al. (2017) and also compared our results with manual interpretation, it would be useful
to compare with more manual interpretations to further validate the accuracy of the technique. Such comparison, however, can
be done only on networks which are either limited in their spatial extent or in the number of features interpreted. For large

orthomosaics, a benchmarking exercise can be challenging as few manually rendered datasets are comparable in network size.

5 Discussion

Extraction of fracture traces from photogrammetric data is a necessary processing step to construct DFN representations.
DFNs created using fracture patterns that are directly extracted from rock images, are advantageous as they honour the spatial
architecture of fracture networks. Automated extraction methods reduce the human component in data processing, and we
have achieved this using the complex shearlet transform ridge detection method accompanied by post-processing steps. The

complex shearlet method can detect both edges as well as ridges in fractured rock images. We find that the ridge measure works
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very well for extraction of fractures, and we use the ridge measure in all our case studies. Though the method performs very
well and can extract much more traces than is possible manually while reducing interpreter bias, there are some issues which
that need to be mentioned. In this section, we detail-some-discuss on the validity and limitations of the technique, areas where

there is scope for further development, and also describe some potential extended applications of the method.

5 5.1 Validity and limitations

— Detection-of large-cavities-and fatse-positivesDetection of mineralized features The method works well when the
features of interest are barren and a prominent. When fractures are closed and filled then they are generally harder to
detect and require high resolution images (< 1 mm/pixel) which can be recorded only at very close ranges at very-low
UAV flight altitudes. Recent outcrop studies (Ukar etal., 2019) indicate that many of the barren features in outcrop

10 are absent within the same subsurface lithological unit while maintaining good correspondence between mineralized
features in both outcrop and subsurface. When mineral fill has a marked colour contrast with respect to the host rock
(as in vein data published recently by Meng et al., 2019), then superpixel segmentation algorithms can be successful
(Vasuki et al., 2017). In the case of poor contrast, the complex shearlet transform would require a great deal of manual
tuning of detection parameters to extract reliable results. At such close ranges, as is needed for veins extraction, it is also
15 likely that many more noisy features un-related to fracturing would arise.

Since_mineralfill of fractures can provide a clearer picture into evolution, timing, and stress history of fractures,
identifying them on an outcrop scale is important. This is doubly significant, when the goal is to directly extrapolate
fracture patterns from a particular outcropping to the same subsurface target. In such a case, close range UAV-mounted
hyperspectral data acquisition would be better suited than conventional imaging and image processing methods. With
20 hyperspectral imaging, data is collected in near-continuous spectral bands. The spectral response of minerals constituting
the rock, owes to atomic-molecular level processes triggered on interaction with a light source (active or passive) and
this may be utilized to identify mineral composition. Since mineral fill of veins are likely to have a different spectral
response from the mineralogy of the host rock, this variation may be used to isolate the pixels that correspond to veins.

A recent review on close range hyperspectral imaging for mineral identification identifies various previous studies

25 performed for specific minerals (Krupnik and Khan, 2019). It would be interesting to observe, identify, and distinguish
between mineralized sequences based on the differences in spectral response of the fracture infill material. Since hyperspectral
data is much more yoluminous and with significantly more complex image processing than conventional photogrammetry,
such analysis could be confined to selected regions within the outerop. In conjunction with conventional UAY photogrammetry.
that covers larger spatial area, laboratory based geochemical studies, and outcrop observations (scanline sampling,

30 abutting relations etc.), a more detailed fracture characterization may be conducted.

— Detection of large cavities and false features Both the Parmelan and Brejoes pavements exhibit karstification with
the Parmelan containing many more collapsed karstic regions. The presence of such low-aspect ratio discontinuities are

quite rare in siliciclastic and volcanic outcrops but can prove problematic to the application of the method in carbonate
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outcrops where karstification is severe. Both the ridge and edge measures would fail in identifying such blobs or would
at best, extract the periphery of the cavity. In recent work by Reisenhofer and King (2019), blob detection measures have

been developed within the shearlet framework and could potentially solve this issue.

Another issue is the effect of undulating topography and shrubbery in generating false positives. False positives gener-
ally appear when there is shrubbery, shadows, very rugged terrain, and non-fracture bedding planes. In the case of the
Parmelan, the use of multiple ridges was successful in suppressing the false positives owing to shrubbery. However, in
Brejoes, false positives due to underbrush were more difficult to suppress because they shared the same scale as that of
the fractures. In Brejdes, shrubbery was also present within some of the wider fractures causing false negatives. In such
cases, manual interference is necessary to either mask the regions of shrubbery before the automatic extraction or to
remove (or connect) the vectorized traces after the automated extraction. Additionally, carbonate outcrops are prone to
widespread erosion owing to exposure to meteoric water from precipitation cycles and air corrosion. Geomorphological

features owing to these erosive processes may also play a role in generation of false positives.

Optimization-of processingParameter selection
A significant difference in fracture scales within the-same-image-an image of interest can prove problematic for the

method. In such a case, a vast number of ridge detection runs sweuld-be-and associated increase in computational time is
needed to construct a ridge ensemble that takes into account all scales of discontinuities and yields a satisfactory result.

When such variation is localizedand-easty-recognizable, the image could be segmented into regions that correspond

to varying fracture intensities and processed separately. This may be difficult to assess a priori and in such cases

would require trial runs. In the Brejoes outcrop example and the close range Parmelan vein example, this difference
in fracture scales was ubiquitous throughout the exposure and more pronounced than the Parmelan outcrop. Using visual

comparison with the original image, the effect of ridges resulting from certain shearlet parameter combinations was

enhanced, so that the ridge ensemble is improved. In Brejdes, it was the large scale features that needed to be strengthened

—Sinee-thesesteps-need-manualinterventionwhile in the case of the Parmelan vein example, the smaller features needed

sharpening. Since parameter selection is still done manually, a more comprehensive way of arriving at the optimal
shearlet combination is desirable. An algorithm that automatically optimizes for shearlet parameters corresponding to

each individual scale of fracture is worthy of attention.

Relationship-between-extractable-Por—drone flying-altitude—and-camera-resotutionArtificial fragmentation of traces
Manual fracture interpretation from images often involve the step of classifying fracture traces into separate sets based
on ground truth observations or with respect to fracture strike. The automated method described here in its current form
can only extract traces and cannot distinguish / classify traces as belonging to separate sets. When fractures intersect each
intersecting fractures, the automated method would result in four traces intersecting at a single branch point, even though
a manual interpretation would only identify two fracture traces belonging to two different geometric sets. This type of
fragmentation would result in different length distributions as observed in (insert figures that compare automatic and
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manual interpretations). This kind of fragmentation is not an issue if such an outcrop DEN is used for geometric input for

flow / geomechanics simulation. This is because the process of meshing models with explicitly specified DFN geometr

fractures). Therefore, the practioner must exercise caution when using cumulative length distributions derived from
outcrop DFN s that are automatically extracted.

A single fracture could also be fragmented without being cut by other intersecting fractures. This may happen in the
case of false negatives (due to shadows falling over part of fracture, debris or shrubbery within an open fracture, and
in between them. This kind of fragmentation affects the topology of the network in addition to depressing the height
cumulative length distribution. It maybe noted that, specification of fracture endpoints manually is also fraught with bias
(Peacock et al., 2019). A solution would be to use a range of linking thresholds to connect traces and study the effects of
threshold values on network topology and length distribution,

5.2 Recommendations for future work

— Link between extractable P,;, drone flying altitude, and camera resolution

From the P,; analysis on the Parmelan and the Brejdes automatically extracted fractures, the maximum value P,; was
around eight m™!. The same drone model was used in both cases (DJI Phantom 4), and the flying altitude was also similar
(between 40 and 70 metres). Although such a conjecture needs further verification, there could be a relation between
the resolution of imagery and maximum extractable fracture intensity. Often flight altitudes are chosen by drone pilots
depending upon considerations such as local topography, weather conditions, and presence of impediments (such as
trees, electricity poles, and telecommunications towers). A detailed analysis of the relation between flying altitude (and
consequently image resolution) and extracted fracture intensity could provide drone pilots with insights and guidelines
for UAV-based outcrop analysis. The ideal flying resolution to identify features of interest may be ascertained by carrying

out a series of acquisitions at a location where ground truth is known.

— Generating-dataforfracturedreservoirmodetting-workflowsGenerating data for fractured reservoir modelling workflows

Fractured reservoir characterization workflows in the oil and gas industry have traditionally used stochastic techniques
that attempt to extrapolate averaged fracture statistics (either from borehole imagery, core data, or outcrop analysis) to
reservoir volumes. The use of Multiple Point Statistics (MPS) for fracture network generation was highlighted by Bruna
et al. (2019) as an alternative approach to DFN modelling. MPS uses training images of realistic fracture networks to
learn patterns and then generate non-stationary fractured reservoir models. Corrected for false positives and noise, the
automated method can produce accurate, geologically realistic, and unbiased training images that can feed into the MPS
workflow. Since our method can extract large scale fracture networks (millions of features from sub- square kilometre
regions), it is also well suited to provide training data for deep learning workflows. Recently, the use of Generative Ad-

versarial Networks (GANs) for geological modelling at the reservoir scale was proposed by Dupont et al. (2018), Zhang
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et al. (2019) as an alternative to conventional geostatistics, MPS, and object-based modelling. GANs form a subset of
deep learning architectures that are used for generative modelling (Goodfellow et al., 2014). GANs that are trained on

realistic data can then generate geologically realistic, non-stationary models.

— Deep learning methods for trace extraction
Deep learning methods have revolutioned computer vision applications. Various neural architectures have documented
high degrees of accuracy in machine vision tasks such as overall image classification, identification and classification

of objects within an image images, localization of objects, extraction of regions of interest (semantic segmentation)

2

and extraction of regions corresponding to individual objects (instance segmentation). The problem of fracture trace
extraction falls within the problem category of region extraction of individual objects and hence may be attempted using.
techniques such as mask Regional Convolutional Neural Networks (He et al., 2017). Deep learning methods, in general,
require large amounts of labelled data to train. In the case of a mask RCNN, the library of training images must contain

marked regions (or overlays) indicating pixels of interest that correspond to individual fractures. The automated method

described in this manuscript can be used to rapidly generate a large number of overlay images that can be used as trainin
data for mask RCNN architectures.

6 Conclusions

This paper presents a method to automatically detect and digitize fracture traces from images of rock fractures using the
complex shearlet transform. The technique replaces the task of manually interpreting fractures, which is time-consuming, prone
to interpreter bias, and which suffers from a lack of repeatability. The case studies that are presented highlight the utility of
the complex shearlet based measure for automatically detecting fracture traces from 2D images. The automatic trace detection
method combines the complex shearlet ridge measure with a series of post-processing steps that include image segmentation,
skeletonization, polyline fitting, and polyline simplification. We tested the method at different scales of rock displacement, at
outcrop scale (~ 102 m) and station-scale (< 10 m), using two orthomosaics reconstructed from drone photogrammetry and
two rock pavement images. We have considered carbonate and igneous rock lithologies in the case studies. Using the method,
we have extracted millions of 2D features from outcrop-scale drone orthophotos. The processing time of the technique depends
upon the intensity of fracturing and the complexity of the fracture networks contained within the image. The automatic trace
extraction results are quantitatively compared with manually interpreted fractures on selected sub-samples of the image domain
using fracture trace density metrics. The automated technique is capable of extracting a much larger number of features, with a
marked reduction in bias. The method outlined in this paper greatly simplifies the process of generating deterministic, outcrop-
based DFNs. The automatically extracted, fracture patterns can be used by structural geologists to link deformation features to

tectonic history and by geomodellers in sub-surface NFR modelling.

Code and data availability.
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. MATLAB code that was used to generate the results in this manuscript is available on Github

https://github.com/rahulprabhakaran/Automatic-Fracture-Detection-Code (see Prabhakaran 2019)

. Fracture and image data correponding to the Parmelan and Brejdes outcrops are available at the 4TU Centre for Research Data repository

(https://researchdata.4tu.nl/en/)
— Fracture Network Patterns from the Brejoes Outcrop, Irecé Basin, Brazil (see Prabhakaran et al. 2019a)

— Fracture Network Patterns from the Parmelan Anticline, France (see Prabhakaran et al. 2019b)
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Appendix A: Overview of the Complex Shearlet Transform
Al The Continuous Shearlet System

A shearlet generating function consists of an anisotropic scaling matrix and a shear matrix. Let the shearlet generating function
be:

v € L*(R?) (A1)

The admissibility criteria for the shearlet generating function is :

$(€16)
/ é. 2 d€2d§1 < 00 (Az)
1

R2

‘ 2

where 1[) is the 2D fourier transform of .

A shearlet satisfying Eq.A2 is an admissible shearlet or a continuous shearlet (Kutyniok and Labate, 2012). The admissibil-
ity condition implies that a reconstruction formula exists for the associated continuous shearlet transform. In order to achieve
an optimally sparse approximation of an image that possesses anisotropic singularities, the analysing elements must consist of
waveforms that range over several scales, orientations, and locations with the ability to become very elongated. To this end, a
combination of a scaling operator to generate elements at different scales, an orthogonal operator to change orientations, and a

translation operator to displace elements over the 2D plane, is used. The scaling matrix A, is defined as (Labate et al., 2005):

A, = , a €[0,1]

The value of « controls the degree of anisotropy. (For more information on the anisotropy scaling molecules or & —molecules
1

see Grohs et al. 2016.) The scaling matrix is parabolic when o = 3.

An orthogonal transformation to change the orientations of waveforms. Rotation operators are not preferred as they destroy
the structure of the integer lattice Z2 whenever the rotation angle is different from 0, £, &, :I:%”. Changes in the structure
of integer lattice is problematic when transitioning from continuum to digital setting. Hence, a shearing transformation is used

where the anisotropic shearing transformation matrix S5 are defined as:

1 s
S = where the parameters a € RT,s € R
0 1

The shearing matrix S, preserves the structure of the integer grid for any s € N. The shearing matrix parametrizes orien-

tations using the variable s associated with slopes rather than angles and leaves the integer lattice invariant, provided s is an
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integer. The difference between isotropic and anisotropic dilation with shearing is depicted in Fig. Ala and Fig. Alb).

A shearlet system is defined as (Kutyniok and Labate, 2012):
SHW) = {dune=a /0 (47187 (1) acRY s eR1 B2 (A3)

where (- — t) denotes the translation by a point ¢.
The corresponding shearlet transform for mapping a function f € L2 (RQ) into coefficients, SHy f (a,s,t) specified by

scaling a, shearing s and translation ¢ is given by:

f — SHll) f(a,s,t) = f7 %,m (A4)
A2 Cone Adapted Continuous Shearlet Systems

Equation A4 renders horizontal shearlets elongated at very fine scales, which is problematic in digital implementations. Because
the shearing operator can range over a non-bounded interval, directions are not treated uniformly. To overcome this drawback
of shearing, the cone adapted shearlet system was introduced in which the frequency plane is split into a horizontal and vertical
cone that restricts the shear parameter to bounded intervals (see Fig. A2 a). Dividing the frequency plane in such a manner
ensures uniform treatment of directions (Guo et al., 2005; Kutyniok and Labate, 2012). A cone adapted shearlet system can be
tiled by further division of the frequency domain. Such a tiling configuration (see Fig. A2 b) ensures that all directions are treated
"almost equally" (Kutyniok and Labate, 2012). There is still small, but controllable bias in the coordinate axes directions). The
cone adapted shearlet systems can therefore be expressed as the union of a horizontal cone, a vertical cone, and a low-frequency
centre component. The frequency plane is thus split into four horizontal and vertical cones with a low-frequency square region

in the centre. The low-frequency region is given by the relation (Kutyniok and Labate, 2012):

R={(&): &l l&l <1} (A5)

Inside each cone, the shearing variable s is only allowed to vary over a finite range. This produces elements with uni-
formly distributed orientations. The union of the generating functions for the horizontal cones ¢ € L? (RQ), vertical cones

¢ € L?(R?) and for the square low frequency region ¢ € L? (R?) is expressed as (Kutyniok and Labate, 2012):

SH(p,9,0) = ®(p) UT(¥) UT (W) (A6)
where

(o) ={p,=¢(-—t): t € R?*}; (A7)

()= {Joss=a 0 (4,87 (—1) rae (0.1],]s| S 14ab, teR2); (A8)

20



10

15

20

25

V() = {Pune =a TH(AT8 T (—0) ae 0] |5/ <1+ad teR?. (A9)

Scaling matrix for vertical cones, A, is expressed as:
A, = (A10)

The cone adapted continuous shearlet transform is expressed as the mapping:
J = SH, 5 (W (a,5,), (@,5,0) = (. 9vsf, Yo fs Vasi) (AL1)
A3 The Discrete Cone Adapted Shearlet System
A discrete version of the cone adapted shearlet system may be defined with scaling parameter j, shearing parameter k, and

translation parameter m for a sampling factor of ¢ = (c1,c2) € (R4 )?. Similar to Eq.A6 this is a union of the generating

functions for vertical, horizontal, and low frequency central region.

SH(p,,;0) = (p;¢1) UT(yh;¢) UT(ic) (A12)
@(@;cl)z{wm:¢(~—clm) :meZQ}; (A13)
W (3¢) = {Wnm =2V (Skys - ~Mem) : j 2 0,Jk| < |2} ], me 72}, (Al4)
B (95¢) = {00 =200 (ST Aps - ML) j > 0,Jk] < [2%], me 22}, (Al3)
. cpt 0 ~ cz 0 ~ . . . .
with M, = s M. = ; (M, and M . are sampling matrices for horizontal and vertical cones)
C2 0

270 212 ] .
Ay = /2 s Aoy = | ; (Ays and A, are dyadic scaling matrices for horizontal and vertical cones)

0 27 0 27
S = (shearing matrix).

1

The discrete cone adapted shearlet transform associated with ¢, ¢ and 1[) is given by the mapping,

f_> SH‘P»@ZHTZ f(m/7(j7kam)7(3al%am) = (fa @m’afa ¢j,k,m7f7 1;37];7m) - (A16)
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A4 The Complex Discrete Cone Adapted Shearlet System

Taking the complex valued wavelet of a real valued even symmetric wavelet generator )U¢" € L? (RQ), using the Hilbert

transform operator (#), a complex valued shearlet generator is obtained (from Reisenhofer, 2014; King et al., 2015)
,(/)c _ ,(/)even +Z ’L/)Odd. (A17)

5 The complex valued function can be written in terms of a Hilbert transform pair of an even-symmetric real valued shearlet

and an odd-symmetric real valued shearlet: (from Reisenhofer, 2014; King et al., 2015)
,(/)C — ,(/)even +Z Hweven. (AlS)

The Hilbert transform operator is written as,

o (1)
H(f)(t)—all)ngo/tdeT. (A19)
10 The discrete cone adapted complex shearlet system is given as (Reisenhofer, 2014; King et al., 2015):
SH(p,1,%;¢) = ®(pie1) UV (¢5¢) UT(¢;c) (A20)
and
SHE(p,9,050) = (pic1) WP (30) UT(s0) (A21)
where,
15 @ (pic1) ={p, =@ (-—am):meZ*}, (A22)
\IJC(’L/);C) = {qbcj,k,m = wcj,k,m +Z (H(I,O)T w)mk’m : .7 Z 07 |k| S |_2%—|? me Z2}7 (A23)
U (Bi6) = {0 s =B 1 oy T, 5 520,k < 28], me 72}, (A24)

Correspondingly the discrete complex cone adapted shearlet transform is given by the mapping,

f — SHCSDJLHJ’ f(m/v (],k,m) ) (571;7771)) = (fa Spm/7f7 wcj,k’mvfu Z[;C-;)];?m) . (A25)

20 (A26)
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A5 Edge and Ridge Detection using the Complex Shearlet Transform

The behavior of the coefficients of the even symmetric and odd symmetric shearlets can be used to detect edges and ridges. An
edge measure for an image f € L?(R?), alocation z € R? and a shear parameter s is given as (Reisenhofer, 2014; King et al.,
2015),

_ ’ZaeA Im (-f’wca,s,m) | B ZaeA ‘Re (f7,¢)ca75,1) ‘

E
w(f,x,S) |A|ma1'aeA|Im(f7¢ca7s,x)| +e

(A27)

where A C RT is a set of scaling parameters, ¢ is a real valued symmetric shearlet and ¢ prevents division by zero. The
complex shearlet based edge measure can give approximations of the tangential directions of an edge. A line measure or ridge
measure is obtained by interchanging the role of the even symmetric and odd symmetric shearlets (Reisenhofer, 2014; King

et al., 2015),

_ ’ZaeA Re (fﬂl)ca,s,a:” - ZaeA |Im (f7ql)ca,s,a:) | ]

L b b
P (f x 8) |A| maxaeA ’Re(f"(/)ca,s,w)’ t+e

(A28)

Both the edge and ridge measures given above are inspired from the phase congruency measure of Kovesi (2000). The edge

and ridge measures are almost contrast invariant.
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Figure 6. Location of the Parmelan plateau in France within the Bornes Massif depicting drone flight base points for six drone missions
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Figure 15. Comparison of Benchmark Image 2 (a) Bingie Bingie Area 2 from Thiele et al. (2017) (b) Normalized ridge map using complex shearlet automatic
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Table 1. Shearlet System Parameters

Parameter

Description

waveletEffSupp
gaussianEffSupp
scalesPerOctave
shearLevel
alpha

octaves

Length of the effective support in pixels of the wavelet
Length of the effective support in pixels of the Gaussian filter
Number of intermediate scales for each octave

Number of differently oriented shearlets on each scale
Degree of anisotropy introduced via scaling

Number of octaves spanned by the shearlet system

Table 2. Detection Parameters

Parameter

Description

DetectionType

minContrast

offset

Specification of detection measure (edge/ridge)
Specification of the level of contrast for edge/ridge detection

Scaling offset between the even- and odd- symmetric shearlets
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Table 3. Shearlet system and detection parameters used to extract ridges for the base case

Base Case Parameters

waveletEffSupp 125
gaussianEffSup 63
scalesPerOctave 2
shearLevel 3
alpha 0.5
octaves 3.5
minContrast 10
detection negative
ridges
even/odd offset 1
Table 4. Ensemble for Parameter Variation
Parameter Values

waveletEffSupp Original image size in pixels divided by 5, 8, 10, 12 and 15
gaussianEffSupp  Original image size in pixels divided by 5, 8, 10, 12 and 15
scalesPerOctave  1,2,3 and 4

shearLevel 2,3 and 4
alpha 0,0.25,0.5,0.75, 1
minContrast 1,5, 10, 15, 20

even/odd offset 0.001, 0.01,0.1, 1,2
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Figure Al. (a). Isotropic elements capturing a discontinuity curve (b). Sheared, anisotropic elements capturing a discontinuity curve (modi-

fied from Kutyniok and Labate, 2012)
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Figure A2. The cone adapted continuous shearlet system (a) Bias in directions is handled by dividing the frequency plane into 4 cones C1,
C», C3, C4 and a square low frequency box region in the centre R (b) Trapezoidal shaped wedge tiling of the frequency induced domain

induced by the shearlet transform (modified after Kutyniok and Labate 2012)
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vs Shearlevels

49



Table A1. Shearlets

Shearlet System  waveletEffSupp  gaussianEffSupp  scalesPerOctave  shearLevel scales nShearlets alpha
1 200 100 1 2 1 36 0
2 125 63 1 2 1 36 0
3 84 42 1 2 1 36 0
4 67 34 1 2 1 36 0

5 200 100 2 2 7 12 0
6 125 63 2 2 7 12 0
7 84 42 2 2 7 12 0
8 67 34 2 2 7 12 0
9 200 100 3 2 10.5 12 0
10 125 63 3 2 10.5 12 0
11 84 42 3 2 10.5 12 0
12 67 34 3 2 10.5 12 0
13 200 100 4 2 14 12 0
14 125 63 4 2 14 12 0
15 84 42 4 2 14 12 0
16 67 34 4 2 14 12 0
17 200 100 1 3 35 20 0
18 125 63 1 3 35 20 0
19 84 42 1 3 35 20 0
20 67 34 1 3 35 20 0
21 200 100 2 3 7 20 0
22 125 63 2 3 7 20 0
23 84 42 2 3 7 20 0
24 67 34 2 3 7 20 0
25 200 100 3 3 10.5 20 0
26 125 63 3 3 10.5 20 0
27 84 42 3 3 10.5 20 0
28 67 34 3 3 10.5 20 0
29 200 100 4 3 14 20 0
30 125 63 4 3 14 20 0
31 84 42 4 3 14 20 0
32 67 34 4 3 14 20 0
33 200 100 1 4 35 36 0
34 125 63 1 4 35 36 0
35 84 42 1 4 35 36 0
36 67 34 1 4 35 36 0
37 200 100 2 4 7 36 0
38 125 63 2 4 7 36 0
39 84 42 2 4 7 36 0
40 67 34 2 4 7 36 0
41 200 100 3 4 10.5 36 0
42 125 63 3 4 10.5 36 0
43 84 42 3 4 10.5 36 0
44 67 34 3 4 10.5 36 0
45 200 100 4 4 14 36 0
46 125 63 4 4 14 36 0
47 84 42 4 4 14 36 0
48 67 34 4 4 14 36 0
49 200 100 1 2 35 12 0.5
50 125 63 1 2 35 12 0.5
51 84 42 1 2 35 12 0.5
52 67 34 1 2 35 12 0.5
53 200 100 2 2 7 12 0.5
54 125 63 2 2 7 12 0.5
55 84 42 2 2 7 12 0.5
56 67 34 2 2 7 12 0.5
57 200 100 3 2 10.5 12 0.5
58 125 63 3 2 10.5 12 0.5
59 84 42 3 2 10.5 12 0.5
60 67 34 3 2 10.5 12 0.5
61 200 100 4 2 14 12 0.5
62 125 63 4 2 14 12 0.5
63 84 42 4 2 14 12 0.5
64 67 34 4 2 14 12 0.5
65 200 100 1 3 35 20 0.5
66 125 63 1 3 35 20 0.5
67 84 42 1 3 35 20 0.5
68 67 34 1 3 35 20 0.5
69 200 100 2 3 7 20 0.5
70 125 63 2 3 7 20 0.5
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