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Abstract. Representing fractures explicitly using a discrete fracture network (DFN) approach is often necessary to model the

complex physics that govern thermo-hydro-mechanical-chemical processes (THMC) in porous media. DFNs find applications

in modelling geothermal heat recovery, hydrocarbon exploitation, and groundwater flow. It is advantageous to construct DFNs

from photogrammetry of fractured outcrop analogues as the DFNs would capture realistic, fracture network properties. Recent

advances in drone photogrammetry have greatly simplified the process of acquiring outcrop images, and there is a remarkable5

increase in the volume of image data that can be routinely generated. However, manually digitizing fracture traces is time-

consuming and inevitably subject to interpreter bias. Additionally, variations in interpretation style can result in different

fracture network geometries, which, may then influence modelling results depending on the use-case of the fracture study. In

this paper, an automated fracture trace detection technique is introduced. The method consists of ridge detection using the

complex shearlet transform coupled with post-processing algorithms that threshold, skeletonize, and vectorize fracture traces.10

The technique is applied to the task of automatic trace extraction at varying scales of rock discontinuities, ranging from 100-102

m. We present automatic trace extraction results from three different fractured outcrop settings. The results indicate that the

automated approach enables extraction of fracture patterns at a volume beyond what is manually feasible. Comparative analysis

of automatically extracted results with manual interpretations demonstrates that the method can eliminate the subjectivity that

is typically associated with manual interpretation. The proposed method augments the process of characterizing rock fractures15

from outcrops.

1 Introduction

Naturally fractured reservoir (NFR) modelling requires an explicit definition of fracture network geometry to accurately cap-

ture the effects of fractures on the overall reservoir behaviour. The National Research Council (1996) suggested the idea of

using geologically realistic outcrop fracture patterns to guide subsurface fracture modelling. In recent work, the use of de-20

terministic discrete fracture networks (DFNs) based on trace digitization from photogrammetry of outcrop analogues was

investigated by Bisdom et al. (2017) and Aljuboori et al. (2015) for reservoir fluid flow simulation and well testing. Outcrop

derived DFNs encapsulate 2D fracture network properties at a scale that cannot be characterized using either standard surface

approaches (scanlines and satellite imagery) or subsurface techniques (seismic imaging/borehole imagery/core sampling). Ukar
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et al. (2019) suggested a comprehensive set of protocols to select fractured outcrops that are representative of the subsurface.

Stochastic and geomechanical DFNs are alternatives to outcrop derived DFNs for fractured reservoir modeling. Stochastically

generated DFNs have the disadvantage that they cannot replicate the spatial organization of fracture network patterns observed

in nature (Thovert et al., 2017). Geomechanically derived DFNs are based on the physics of fracture propagation (for e.g.

Olson et al., 2009; Thomas et al., 2018) and can reproduce realistic fracture patterns provided the complex paleostress field5

and paleo rock properties are known; however, they are also computationally intensive and hence have limited applicability.

A carefully chosen fractured outcrop that is relatively free of noise (fractures resulting from exhumation and weathering and

not too much hidden by vegetation) may be used to interpret realistic fracture networks which are geometrical inputs used in

simulating various subsurface thermo-hydro-mechanical-chemical (THMC) processes.

10

Recent advances in Unmanned Aerial Vehicles (UAVs) and stereo-photogrammetry has dramatically simplified the acqui-

sition of georeferenced datasets of fractured outcrop images (for e.g. Bemis et al., 2014; Harwin and Lucieer, 2012; Turner

et al., 2012). Photogrammetry using the Structure from Motion (SfM) principle is a relatively inexpensive and rapid tech-

nique by which 3D outcrop models are built by identifying, extracting, and positioning common points in georeferenced

outcrop images (Donovan and Lebaron, 2009). Images are captured using a camera-equipped UAV that is capable of following15

pre-programmed flight missions where flight path, altitude, velocity, and overlap are specified. The images undergo further

processing steps that include generating sparse point clouds of common points, aligning the images, generating dense point

clouds (3D representation of outcrop geometry), and generating meshed surfaces (Bisdom et al., 2017). Interpreting fractures

on the image orthomosaics with conventional Geographic Information System (GIS) software completes the outcrop-based

DFN workflow.20

Manually interpreting fractures is time-consuming and forms a bottleneck in an outcrop-based DFN workflow. A manual

interpretation has a fair degree of associated subjectivity, and interpreter bias may take the form of specific scales of features

being inadvertently omitted or deliberately ignored (Bond et al., 2007; Scheiber et al., 2015). Manual interpretation also suffers

from a lack of repeatability owing to the level of expertise of the interpreter, and the interpretation criteria followed (Hillier25

et al., 2015; Sander et al., 1997). Reproducibility may not be guaranteed even with the same interpreter in multiple trials (Mabee

et al., 1994). According to Bond et al. (2015), quantifying the magnitude and impact of subjective uncertainty is difficult. Long

et al. (2018) conducted a study on variability of fracture interpretation in which geologists with varying levels of expertise in-

terpreted a single image. They found considerable variation in fracture topology, orientation, intensity, and length distributions

in the interpretations. Andrews et al. (2019) made a detailed quantification of subjective bias in scanlined-based fracture data30

collection, the associated effects on derived fracture statistics and suggested protocols for managing the variations. Peacock

et al. (2019) delved into the multiple reasons for bias and the resulting implications for modelling. Given the amount of data

generated in short UAV flight missions, man-hours spent in interpretation, and the need to de-bias interpretation as much as

possible, automatic feature detection techniques may be considered. Automated approaches can speed up the process, improve
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accuracy, and exploit the acquired data to the fullest possible extent.

In this paper, we apply an automated method to extract digitized fracture traces from images of fractured rocks. The method

utilizes the complex shearlet transform measure to extract fracture ridge realizations from images. Post-processing image

analysis algorithms are coupled with the ridge extraction process to vectorize fracture traces in an automated manner. The5

complex shearlet transform was introduced by Reisenhofer (2014) and King et al. (2015) and previously applied to problems

such as detecting coastlines from Synthetic Aperture Radar (SAR) images (King et al., 2015) and propagating flame fronts from

planar laser-induced fluorescence (PLIF) images (Reisenhofer et al., 2016). We present automatic fracture extraction results

from drone images of two carbonate outcrops (Parmelan, France and Brejões, Brazil) and station scale images of igneous dyke

swarms.10

2 Background

2.1 Review of automated and semi-automated fracture detection approaches

Rapid digitization of geological features from photogrammetry is challenging owing to issues like spatially varying image

resolution, inadequate exposure, the presence of shadows due to effects of topography on illumination conditions, and chro-

matic variations of essential features. False positives are non-geological features (such as trees, shrubbery, and human-made15

structures) that are detected using semi-automated / automated approaches (Vasuki et al., 2014). Removal of false positives is

time-consuming. On the other hand, essential features that are not detected at all (referred to as false negatives) by an algorithm,

further complicates the task of automated feature extraction. Automated methods, in general, detect more features than what is

present in the image (Abdullah et al., 2013). In this section, we review some approaches for automatic fracture detection based

on the class of algorithm used.20

Automated fracture detection utilizing higher dimensional data such as point clouds, digital elevation models (DEMs) and

digital terrain models (DTMs) have an advantage in that depth variations are captured and can be used to extract features. Thiele

et al. (2017) presented an approach based on a least cost function algorithm applicable to ortho-photographs of jointed fracture

sets and 3D point cloud data. Masoud and Koike (2017) introduced a software package to detect lineaments from composite25

grids derived from gravity, magnetic, DEMs, and satellite imagery. Bonetto et al. (2015) and Bonetto et al. (2017) presented

semi-automatic approaches that extract lineaments from DTMs utilizing the curvature of geological features. Hashim et al.

(2013) presented an edge detection and line linking method using Enhanced Thematic Mapping (ETM).

Colorimetry of an image can be used to detect features. By partitioning features in the image, e.g., matrix rock as lighter30

shades of gray and fractures as darker shades of gray, fracture pixels may be extracted separately from matrix rock using pixel

values. Vasuki et al. (2017) developed an interactive colour based image segmentation tool using superpixels (Ren and Malik,
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2003) which are groupings of pixels that are perceptually similar.

Edge detection techniques identify points in images where sharp changes in image intensity occur. Some of commonly used

edge detection techniques in image processing are Canny, Sobel, Prewitt, Robert, Kuwahara, and Laplacian of Gaussian filters.

Alternatively, edges may be detected using methods that are invariant to contrast and illumination in images. Phase symmetry5

and phase congruency algorithms (Kovesi, 1999, 2000) fall under this category. Phase symmetry is an edge detection technique

that is invariant to local signal strength. The method works identifies the axis of a feature by isolating pixels symmetric along

profiles that are sampled from all orientations except parallel to the feature. The axes of symmetry are regions where frequency

components either approach a maximum or minimum. The phase congruency method is another edge detection method that

detects features by identifying points where Fourier components are maximally in phase. This approach is also invariant to10

the magnitude of the signal. The property of invariance enables the identification of structures within the image even in the

presence of noise. Vasuki et al. (2014) utilized an edge detection algorithm using the phase congruency principle coupled with

a multi-stage linking algorithm for detection of fault maps.

The Hough transform (Duda and Hart, 1972) is another technique that has been used to detect lineaments in images. The15

Hough transform identifies pixels in binary images that are likely to represent rock fractures using a voting procedure. Each

pixel in a binary image is represented as a sinusoidal curve in a 2D parametric space (or a Hough space). The voting procedure

accumulates a vote for each curve in the parametric space corresponding to each non-zero pixel in the binary image. The curves

with the highest votes are selected as probable fractures since they correspond to the largest number of non-zero pixels. Results

by Callatay (2016) using the Hough transform for fracture detection report the following limitations. Firstly, the detection is20

limited to a given fracture orientation set owing to the definition of the Hough transform parameter space. Secondly, the issues

of false positive detection and discontinuities persisted. The method is also limited by the fact that it needs a binarized image

to start.

The development of wavelet theory in the field of harmonic analysis have led to applications in edge detection (Daubechies,25

1992; Heil et al., 2006). Mallat and Hwang (1992) proposed wavelet-based approaches for edge detection. Wavelet-based meth-

ods differ from gradient-based edge detection methods that searches for local maxima of the absolute value of the gradient.

Felsberg and Sommer (2001) introduced monogenic wavelets for the purpose. Tu et al. (2005) considered the use of magnitude

response of complex wavelet transforms. Wavelets, owing to their isotropic properties, cannot extract curve-like features due

to the lack of directional information (Labate et al., 2005). A number of wavelet-based approaches that have been proposed to30

overcome this lack of directional information such as curvelets (Candès and Donoho, 2005), ridgelets (Candès and Guo, 2002),

contourlets (Do and Vetterli, 2005), bandlets (Le Pennec and Mallat, 2005) , wedgelets (Donoho, 1999), shearlets (Guo et al.,

2005), and band-limited shearlets (Yi et al., 2009).
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2.2 The complex shearlet transform

In images of fractured outcrops, the presence of discontinuous gaps due to rupture within the rock mass, which occur naturally

and which maybe enlarged through weathering processes, are commonly used as defining criteria by interpreters to digitally

trace and classify as fractures within the rock mass. Fractures may also be partially or completely sealed by the presence of

infilling material that maybe mineralogically different from the adjacent rock material. In such a case, the contrast in colour5

and texture of the infill material provides an interpretative criterion for classification of these material regions as fractures. The

presence of such prominent discontinuities within otherwise smooth regions of rock images, can be exploited by the complex

shearlet transform to precisely identify position in the form of edges and ridges.

The basis of the complex shearlet transform applied to fracture extraction from images emanates from wavelet theory.10

Wavelets are rapidly decaying wavelike oscillations possessing a finite duration. Wavelet transforms are routinely used in dig-

ital signal processing applications which are often time-domain signals. They can also be applied to image data which can be

considered as 2D functions. Wavelet transforms are not able to detect directionality of structural features in image data since

they may only be dilated or translated. Shearlets that were introduced by Labate et al. (2005) as a new class of multidimensional

representation systems, overcame a major shortcoming of wavelets by enabling dilation, shear transformation, and translation15

operations. The isotropic dilation of wavelets was replaced with anisotropic dilation and shearing in the case of shearlets.

These modifications have resulted in shearlets possessing a number of properties that make them better suited to handle sparse,

geometric features in 2D image data compared to traditional wavelets (Kutyniok and Labate, 2012).

The complex shearlet transform is a complex-valued generalization of the shearlet transform that was developed by Labate20

et al. (2005) to handle geometric structures in 2D data. Reisenhofer (2014) and King et al. (2015) proposed the idea of creat-

ing complex shearlets by modifying the shearlet construction so that real parts of the generating function are even-symmetric

and imaginary parts of the generating function is odd-symmetric. They used the Hilbert transform to convert even-symmetric

functions into odd-symmetric and vice versa. The complex shearlet measure for ridge and edge detection implemented in

Reisenhofer (2014); King et al. (2015) and Reisenhofer et al. (2016) merged the ideas of phase congruency (Kovesi, 1999) and25

complex shearlets.

The complex shearlet measure first introduced by Reisenhofer (2014) and improved by King et al. (2015) was used for

applications like coastline detection King et al. (2015), flame front detection Reisenhofer et al. (2016), and feature extraction

from terrestrial LIDAR inside tunnels Bolkas et al. (2018). Karbalaali et al. (2018) used the complex shearlet transform for30

channel edge detection from synthetic and real seismic slices. Reisenhofer et al. (2016) presented a comprehensive compar-

ison of complex shearlet based feature detection compared with conventional edge detectors such as Canny (Canny, 1986),

Sobel (Sobel and Feldman, 1973), phase congruency (Kovesi, 1999), and another shearlet based edge detector (Yi et al., 2009).

Bolkas et al. (2018) also made specific comparisons between the performance of Canny, Sobel, Prewitt (Prewitt, 1970) edge
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detection methods versus space-frequency transform methods such as wavelets, contourlets, and shearlets. A detailed overview

of the complex shearlet transform is provided in Appendix.A for the interested reader.

3 Methods

3.1 The automatic detection process5

The automated fracture trace detection method that we present has five main steps (see Fig. 1). The first step of the method uses

the Complex Shearlet-Based Ridge and Edge Measure (CoShREM), a MATLAB implementation by Reisenhofer et al. (2016)

that utilizes functions from Shearlab3D developed by Kutyniok et al. (2016) and Yet Another Wavelet Toolbox (Jacques et al.,

2011). The first step, namely the ridge detection, is dependent on a number of input parameters tabulated in Table 1 and Table

2. Equation (A28) gives the expression for the ridge measure.10

An optimal set of deterministic parameter values which can extract features on all scales is not known a priori. Therefore,

we vary the input parameters corresponding to the construction of the shearlet system and the ridge detection parameters

within user-defined ranges to compute multiple ridge realizations. A ridge ensemble map is obtained by superposing the ridge

images and normalizing. A simple sigmoid function is applied on the normalized ridge ensemble to non-linearly scale and15

thereby isolate higher image intensities. A user-defined threshold is then applied to the intensity values of this non-linearly

scaled, normalized ridge ensemble image to extract a highly probable, binarized, ridge network. The threshold is set by a

visual comparison of the input image with the extracted ridges. The range for each parameter in Table 1 and Table 2 is as-

certained by first testing the effect of variation of each parameter with respect to a chosen base case image. This approach to

automated detection captures features of multiple scales and highlights regions of uncertain feature extraction within the image.20

The second step is the segmentation of the detected ridges using Otsu thresholding (Otsu, 1979). This operation removes

small, disconnected, and isolated ridge pixel clusters. The third step is a skeletonization procedure where clusters of pixels

representing the segmented ridges are thinned into single pixel representations. For intersecting fractures, the skeletonization

procedure preserves the topology of the fracture network by recognizing and splitting the frame at the branch point. This step25

ensures that in subsequent DFN representation, there is no further effort expended in manually connecting the detected seg-

ments.

The fourth step involves piecewise linear polyline fitting to the skeletonized clusters. By default, our code attempts to fit

polylines rather than lines to the pixel clusters. Polyline fitting retains geologically realistic, veering and curvature of fractures30

in the vectorized result. We use functions from the Geom2D toolbox (Legland, 2019) for the skeletonizing and polyline fitting.

The fifth step is a line simplification procedure applied to the piecewise linear polyline clusters. A large number of polyline

points would increase the size of vectorized files; hence, we use the Douglas-Peucker line simplification algorithm (Douglas
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and Peucker, 1973) implemented by Ahmadzadeh (2017). The algorithm simplifies a piecewise linear polyline into one which

has fewer segments. The number of polyline points assigned to each skeletonized cluster is set constant in the code, but this

may be modified to be a linear function of the cluster size measured in pixels. If the image is georeferenced or the image scale

is known, the code georeferences the simplified polylines and writes to a vectorized shapefile format.

5

The DFN in the vectorized shapefile format may now be used for any application that requires explicit fracture network

geometry. An example of a fractured Posidonia shale micro CT (computed tomography) image slice from Dwarkasing (2016)

(see Fig. 2) illustrates the effects of each of the steps involved.

3.2 Sensitivity analysis of parameters on extraction results10

Since the detection results may vary owing to different parameter combinations, we conducted a sensitivity analysis to in-

vestigate the ridge extraction output with variation in parameter input. An example of a fractured image sample representing

Mesoproterozoic sandstone from the Tomkinson Province, Northern Territory, Australia (Fig.3a) is chosen to study the effect

of shearlet parameter variation. The image dimensions are 1313 x 1311 pixels and has four prominent fractures with two of

them forming an intersection. A subtler fracture is present towards the top-left and a thick fracture located at the bottom-left15

of the image. A base case set of parameters for constructing a shearlet system and for ridge identification is set up in the table

adjoining Fig.3a. We vary all parameters one by one with respect to this base case. Ridge extraction using the base case shearlet

system shows that the major intersecting fracture system is identified; however, the largest fracture is detected only partially

and that too, only at the peripheries. (see Fig.3b). The subtle fracture is detected but disconnected. A large amount of noise is

also present.20

The complex shearlet system is constructed by the tensorial product of a Mexican hat wavelet and a gaussian filter. The

first two parameters waveletEffSupp and gaussianEffSup refer to the pixel widths over which the wavelet amplitudes sharply

change from zero. The even- and odd-symmetric elements of constructed shearlet system using the base case parameters for the

siliclastic example is depicted in Fig.4(i) and Fig.4(ii). We chose to maintain a ratio of two between waveletEffSupp and gaus-25

sianEffSup. The effect of increasing the effective support on the complex shearlet system is shown in Fig.4(xvii) - Fig.4(xix).

Fig.4(xx) and Fig.4(xxi) indicate the effects of large ratios between the wavelet effective support and gaussian support. The

second parameter is the scalesperOctave which determines the number of intermediate scales per octave. An octave is the

interval between two frequency peaks. For example, we may consider a wavelet that is scaled by a factor of 2. Physically, this

means a stretching of the wavelet thereby decreasing the frequency. The base-2 logarithmic ratio of the reduced frequency with30

respect to the original frequency, is the number of octaves by which the frequency has reduced. We set the number of octaves

as a constant value of 3.5. This implies that there are 7 scales for the complex shearlet system as can be seen in Fig.4(iii) -

Fig.4(ix). The shearLevel parameter indicate the discrete number of orientations that the complex shearlet system can assume.

The selected value of 3 indicates that there are 23 + 2 (ten) orientations possible for the complex shearlet system (see Fig.4(x)
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- Fig.4(xvi)) and 2(23 + 2) (or 20 shearlets). For large images and large number of shearlets, computational effort is quite ex-

pensive. The alpha parameter is the degree of anisotropy induced by scaling with a null value of alpha maximizing the degree

of anisotropy. We vary alpha, shearLevel, and the scalesperOctave but the effects on the constructed complex shearlet system

are minimal as can be seen from Fig.4(xxii) - Fig.4(xxx).

5

The effects of variation of the parameters on ridge extraction is depicted in Fig.3(c) - Fig.3(p). Decreasing the value of the

support by half identifies finer features, but then the largest fracture is completely missed (Fig.3e). When the support is dou-

bled, the emphasis on larger features is more pronounced (Fig.3f). The effects of increasing and decreasing scalesperOctave

is depicted in Fig.3g and Fig.3h with a higher value resulting in a finer ridge map. The effect of increase and decrease in the

number of shear levels on the final ridge map is quite minimal as can be seen from Fig.3i and Fig.3j. The effect of aniostropy10

parameter alpha is depicted in Fig.3k and Fig.3l with minimal anisotropy resulting in a finer ridge map. The minContrast

parameter is a grayscale threshold (values from 0 - 255) applied to Eq.A28 to extract ridges. A larger value suppresses noisy

features as can be seen from the comparison between Fig.3m and Fig.3n. The offset parameter is a scaling offset between

odd-symmetric and even-symmetric shearlets quantified in octaves. Reducing the value of this parameter results in a coarser

ridge map with enhanced connectivity (Fig.3o) compared to the larger value which results in a finer map (Fig.3p).15

From an interpreter’s point of view, three different scales of fracturing need to be identified and false features also need to

be suppressed. From the sensitivity analysis, the parameters that are most important to generate high-probability ridge maps,

are the wavelet supports (required to capture multiple scales of fracture), grayscale contrast (suppressing noise and thereby

false features), and even-odd offset (which suppresses ridge detachments). This example illustrates the necessity of computing20

a ridge ensemble instead of searching for an ideal parameter combination.

3.3 Shearlet parameter selection

To decide upon the shearlet parameter space to generate multiple ridge realizations, we chose one sample image (see Fig. 5a).

Base case parameters are chosen based on recommendations underlined in Reisenhofer et al. (2016) for shearlet construction

and ridge detection and these are tabulated in Table 3. The use of these results in the overlay depicted in Fig. 5b. As can be25

observed from visual inspection of the overlay of the detected ridges over the original image, the automatic method can extract

a large number of fractures. However, there are still some false positives (features detected on the trees and inside the large

karstic cavities) and false negatives (undetected small scale fractures).

To select the parameter ranges, we vary parameters with respect to the base case ridge image, thereby generating multiple30

ridge images. We use the structural similarity measure (Wang et al., 2004) to quantify the difference between the base case

ridge image and other ridge images. Structural similarity (SSIM) is a measure commonly used in image quality assessment

that returns one value as a measure of similarity between two images, where one image is the reference image. The SSIM is

calculated for each ridge realization image corresponding to each parameter with respect to the base case ridge image. The
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SSIM for variation in scaling offset, anisotropy scaling α, Mexican hat wavelet support, gaussian filter support scales, mini-

mum contrast, scales per octave, and number of shear levels are depicted in Fig. A3 according to the range of parameters in

Table 4. From the analysis of the effects of parameters, we decided to vary the shearlet construction parameters so that we have

70 complex shearlet systems (see Table A1 for the parameters used to construct the 70 complex shearlet systems).

5

The total number of stochastic runs for the ridge detection is the number of combinations of shearlet systems and ridge

specification parameters. Using such an approach, a probability map of detected features may be obtained based on which cut-

off thresholds can be defined to remove false positives. The result of such a stochastic run with 1050 realizations is depicted in

Fig. 5. From this result, the utility of the method is evident wherein the features that are obscured by shadows and the shrubbery

has a low strength signal which can then be filtered away thus reducing the number of false positives. Another advantage is10

that both large scale and fine features are captured which may not be possible using a single set of shearlet parameters.

4 Results

4.1 Trace extraction results from Parmelan, France

4.1.1 Geological setting of the Parmelan plateau

We tested the automated fracture extraction method on an example from a carbonate outcrop from the Parmelan plateau in15

the Bornes Massif, France. The Bornes Massif is a northern subalpine chain in the western French Alps. The method was

applied on a photogrammetric orthomosaic derived from a 3D outcrop model. The outcrop model was built from source photos

acquired using a DJI Phantom 4 UAV. The image resolution is 18.6 mm/pixel. Processing of the drone images and generating

the orthomosaic was done using AgiSoft PhotoScan Professional (Version 1.2.6) (2016*) software. The Parmelan Anticline in

France (see Fig. 6) is situated in the frontal part of the Bornes Massif and consists of Upper Jurassic to Cretaceous rocks of the20

European passive margin (Huggenberger and Wildi, 1991; Gidon, 1996, 1998; Berio et al., 2018).

This NE – SW trending anticline consists of a wide, flat crestal plateau bounded by steeply dipping limbs. Carbonates form

the roof of a kilometre- scale box fold formed during the Alpine orogeny (Bellahsen et al., 2014). On the crestal plateau, a 1.7

km by 2.3 km large pavement of flat-lying shallow-water carbonates is exceptionally well exposed. The Parmelan outcrop is a25

good example of fracture patterns formed in a fold-and-thrust setting. We applied the automatic fracture detection technique on

an orthomosaic that has been stitched together from drone photogrammetry over six different drone missions over the Parmelan.

The combined extent of the six orthomosaics is depicted in Fig. 7a, and the areal extent of each orthomosaic is depicted in Fig.

7b.
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4.1.2 Automatic extraction results on the Parmelan orthomosaic

Considering memory requirements and for faster computation, the image domain was divided into georeferenced sub-tiles

using the Grid Splitter plugin in QGIS software. Visual filtering was carried out to remove tiles that did not have exposed rock,

had a large degree of shrubbery, and which were at the orthomosaic edges where image resolution is poor. A total of 1000 tiles

were chosen for the automated interpretation process. The areal extent of the orthomosaic covered 0.589 km2, and this region5

is depicted in Fig. 7. The region covered by the tiles amounts to 0.379 km2 and this is shown as an overlay of the selected tiles

in Fig. 8a. Structural measurements were recorded at four small scale stations (around 2-5 sq.m per station) depicted in Fig. 8c-f.

An ensemble of 1050 ridges was computed using a set of shearlet parameters. A threshold for the ridge intensity was chosen

to filter out the false positives. The threshold was determined by a visual examination of the overlay of detected ridges over the10

original images. The subsequent post-processing steps yielded features in each tile. These were geo-referenced and stitched

back into a single vectorized file representation. Around 3 million features were extracted from the Parmelan orthomosaic. The

P21 fracture intensity was computed using the box-counting method by dividing the tile into a 25 x 25 (pixels) regular grid. The

P21 fracture intensity plot highlights the spatial variation of fracturing over the Parmelan plateau (see Fig. 8b). The vectorized

fracture shape files along with the Parmelan basemap are presented as a public dataset (see Prabhakaran et al., 2019a).15

4.1.3 Comparison with manual Interpretation and structural observations

To compare results of the automated approach to a manual interpretation, we chose a sub-region within the Parmelan ortho-

mosaic. The selected subregion depicted in Fig. 9a consists of a 24 m x 24 m tile of the Parmelan orthomosaic. The image

indicates fractures that seem to be isolated, without a well-connected topology, and which are predominantly aligned along an

NW-SE direction. The fracturing intensity is variable across the tile. The contrast between fractures and the host rock fabric20

is intensified by the karstification of the fractures, which can be attributed to weathering and dissolution. Fig. 9b depicts an

overlay of the automatically interpreted fractures overlain over the original tile. A total of 2910 features was extracted in this

tile. This example highlights some of the technical challenges associated with automated fracture trace detection. Shrubbery is

present in the image which obscures certain relevant features. The north-western corner of the image is blurred since it forms

the extent of the orthomosaic.25

The image also depicts open cavities or blobs, which could be the result of localized weathering. The effect of the cavities

on the feature extraction is that only an edge is detected. Overall the fracture extraction efficiency is quite dependent on the

resolution and quality of images. In the case of the Parmelan data acquisition, the UAV was flown at an altitude of 50-70

metres above the pavement; therefore, features such as closed veins, and slightly open fractures are below the resolution of the30

drone camera. A higher image resolution is necessary to extract such features. In our specific case study, good lighting and

exposure during the UAV flight mission prevented shadows from obscuring the imagery. Fig. 9c depicts a manually performed

interpretation at a zoom level of 1:2000 on the raster image with a total of 341 features. P21 fracture intensity comparisons
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of both automatic and manual traces are shown in Fig. 9d and Fig. 9e. The difference between the automatic and manual

interpretation highlights the inclination of the interpreter to neglect small scale features. Based on geological experience and

prior knowledge of the field area, there is a tendency to interpret and link together disconnected features from the original raster

image. The closest small-scale station to the sub-tile depicted in Fig. 9a is station 2. There is agreement between the rose plots

of station 2 (see Fig. 8c) and the interpretations (Fig. 9e and Fig. 9f). The observed fractures in both cases are predominantly5

sub-vertical.

4.1.4 Application to mineralized fractures

We now showcase an example of a close-range image containing mineralized veins that are invisible to photogrammetry

at altitudes of 40 - 70 m . The resolution of this image is 0.18 mm/pixel and was taken using a handheld DSLR camera.

In this high-resolution image, the fracture infill has similar colour as the host rock as can be seen in Fig. 10a. A manual10

interpretation of the veins (at a zoom of 1:750) is depicted in Fig. 10b. Using a well-tuned set of parameters with reduced

wavelet effective supports, it is possible to extract the much thinner and subtle features as depicted in Fig. 10c. It can be

observed from comparison between Fig. 10b and Fig. 10c, that a large number of false features are also highlighted alongside

the features of interest. The main contributors to the extraction of these non-fracture features are the natural rugosity of the

rock face, presence of pebbles, pockmarks, and erosion features. The arrangement of these artefacts display a very different15

pattern; small lines with random direction compared to the fractures which are consistently oriented and quite continuous. The

veins are also of different thicknesses, with a few veins anastomosing and some branching in a horsetail manner. Some of the

thicker veins also exhibit microstructure within the mineral infill. Further tuning of parameters in order to capture all the veins

while also suppressing false features is quite challenging and hence we do not explore this in further detail. Despite the noise,

the automated method is not limited to capturing only open fractures but can also extract closed fractures.20

4.2 Trace extraction results from Brejões, Brazil

4.2.1 Geological setting of the Brejões pavement

The second case study for the automated extraction method is a carbonate outcrop from the Irecê Basin, Central Bahia, Brazil

(see Fig. 11a, Fig. 11b). The Irecê Basin is located within the northern region of the São Francisco Craton. The Brejões

pavement study area is within the Irecê Basin and consists of Neoproterozoic platform carbonates of the Salitre Formation25

(750-650 Ma). The Neoproterozoic cover was affected by the Brasiliano Orogeny (750-540 Ma) in two separate folding events

resulting in fold belts around edges of the São Francisco Craton (Ennes-Silva et al., 2016). The Brejões pavement UAV imagery

that we used for our analysis was acquired by Boersma et al. (2019). Structural measurements from Boersma et al. (2019)

is shown in Fig. 11c. The orthomosaic covers an area of 0.81 km2 and consists of fractured, black oolitic limestones that

correspond to Unit A1 of the Salitre stratigraphy (Guimarães et al., 2011). The resolution of the Brejões orthomosaic is 20.330

mm/pixel.
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4.2.2 Automatic extraction results on the Brejões orthomosaic

The Brejões orthomosaic is split into 222 tiles for the analysis and this region is shown in Fig. 11d. The Brejões example

has a different fracturing style than the Parmelan and consists of an intricate pattern of multi-scale conjugate fractures. The

shearlet combinations utilized in the case of the Parmelan was insufficient to capture this variation in scales. Specifically, in

the Brejões case, the large scale features were not captured. A visual inspection of the ridges was necessary to identify the5

shearlet combinations that amplified the large scale features. The contribution of these ridges was increased (factor of 8) in the

ridge ensemble to highlight these large deformation features. Fig. 11e depicts the P21 fracturing intensity computed using the

box-counting method by dividing each tile into a 25 x 25 (pixel) regular grid. The vectorized fracture shape files along with the

Brejões basemap are presented as a public dataset (see Prabhakaran et al., 2019b).

4.2.3 Comparison with manual interpretation and structural observations10

The automatically extracted features from the Brejões image data was compared with manual interpretations performed by and

obtained from Boersma et al. (2019) at seven stations. The automatic interpretations were trimmed to the peripheries of the

manual interpretations for a fair comparison between both vectorizations. The location of these stations alongside the auto-

matic versus manual interpretations are shown in Fig.12. A comparison of the rose plots and cumulative length distributions of

the manual and automatic interpretations is depicted in Fig.13. A few observations can be made from the comparison. Firstly,15

similar to the Parmelan case, the interpreter picks a lesser number of features. Secondly, there is a tendency to extend fractures

across image regions where there is no real evidence of rock failure. Thirdly, there is an inconsistency in specifying the con-

necting topologies between the interpreted traces.

In some stations (see Mid #2, Mid #3 and North in Fig.12), the automated interpretation suffers from a large number of false20

positives. A close examination indicates that the presence of shadows and eroded, undulating topography of the rocks are the

main reasons for these false positives. In the Brejões case, the drone was flown at around 10.00 AM, and hence the exposure of

the outcrop face was not optimal. The inclined illumination enhances shadows on the rugged topography, which are then seen

as false positives in the automatic interpretation. False positives due to shrubbery are minimal in the station regions considered.

4.3 Benchmarking with data from Thiele et al. (2017)25

We further tested the automated trace detection on a recently published case study from Thiele et al. (2017). The images se-

lected are orthophotographs of two 10 x 10 m areas from Bingie Bingie Point, New South Wales, Australia (see Fig. 14a and

Fig. 15a). The exposed rocks are Cretaceous to Paleogene dykes, intruding diorites, and tonalities cross-cut by joint sets (Thiele

et al. 2017). The images are complex as they contain both open and closed fractures of different scales, distributed between

multiple lithological layers. The images also contain water, shadows, and debris, which makes it even more challenging. We30

chose this dataset to benchmark the quality of our results with those presented using the semi-automatic cost function based
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trace mapping approach of Thiele et al. (2017).

The variation in fracture scales implied that similar to Brejões, a different set of shearlet combinations were needed. We

generated 2700 ridge realizations which were used to construct a normalized ridge ensemble map for both images (see Fig.

14b and Fig. 15b). A simple, non-linear sigmoid function was applied to the normalized ridge intensity to enhance ridge5

strength (see Fig. 14c and Fig. 15c) and a threshold was chosen based on visual comparison with the source image to yield

highly probable, binarized ridge images (see Fig. 14d and Fig. 15.d). The subsequent workflow steps, as described in Sect. 3.1

were followed to obtain vectorized traces (see Fig. 14e and Fig. 15e). The vectorized traces were used to render assisted inter-

pretations depicted in Fig. 14f and Fig. 15f which are comparable in quality to the assisted interpretation of Thiele et al. (2017).

10

In the published results of Thiele et al. (2017), assisted interpretations of both areas are achieved in 37 minutes and 34

minutes, respectively. We can report better performances of 27 and 32 minutes for the same areas. The time does not include

computing of the ridge realizations. Once the high probability trace map was generated, the subsequent steps of the automated

detection workflow took around 3 minutes. The remainder of the time was used to perfect the assisted interpretation. The post-

processing tasks performed in this second step were the removal of false positives owing to shadows, water, and debris and15

joining of segments which were disjointed due to poor resolution within the image. Though we have performed a benchmarking

exercise with the data from Thiele et al. (2017) and also compared our results with manual interpretation, it would be useful

to compare with more manual interpretations to further validate the accuracy of the technique. Such comparison, however, can

be done only on networks which are either limited in their spatial extent or in the number of features interpreted. For large

orthomosaics, a benchmarking exercise can be challenging as few manually rendered datasets are comparable in network size.20

5 Discussion

Extraction of fracture traces from photogrammetric data is a necessary processing step to construct DFN representations.

DFNs created using fracture patterns that are directly extracted from rock images, are advantageous as they honour the spatial

architecture of fracture networks. Automated extraction methods reduce the human component in data processing, and we have

achieved this using the complex shearlet transform ridge detection method accompanied by post-processing steps. The complex25

shearlet method can detect both edges as well as ridges in fractured rock images. We find that the ridge measure works very

well for extraction of fractures, and we use the ridge measure in all our case studies. Though the method performs very well

and can extract much more traces than is possible manually while reducing interpreter bias, there are some issues that need to

be mentioned. In this section, we discuss on the validity and limitations of the technique, areas where there is scope for further

development, and also describe some potential extended applications of the method.30
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5.1 Validity and limitations

– Detection of mineralized features The method works well when the features of interest are barren and a prominent.

When fractures are closed and filled then they are generally harder to detect and require high resolution images (< 1

mm/pixel) which can be recorded only at very close ranges at very-low UAV flight altitudes. Recent outcrop studies

(Ukar et al., 2019) indicate that many of the barren features in outcrop are absent within the same subsurface lithological5

unit while maintaining good correspondence between mineralized features in both outcrop and subsurface. When mineral

fill has a marked colour contrast with respect to the host rock (as in vein data published recently by Meng et al., 2019),

then superpixel segmentation algorithms can be successful (Vasuki et al., 2017). In the case of poor contrast, the complex

shearlet transform would require a great deal of manual tuning of detection parameters to extract reliable results. At such

close ranges, as is needed for veins extraction, it is also likely that many more noisy features un-related to fracturing10

would arise.

Since mineral-fill of fractures can provide a clearer picture into evolution, timing, and stress history of fractures, identi-

fying them on an outcrop scale is important. This is doubly significant, when the goal is to directly extrapolate fracture

patterns from a particular outcropping to the same subsurface target. In such a case, close range UAV-mounted hyper-

spectral data acquisition would be better suited than conventional imaging and image processing methods. With hyper-15

spectral imaging, data is collected in near-continuous spectral bands. The spectral response of minerals constituting the

rock, owes to atomic-molecular level processes triggered on interaction with a light source (active or passive) and this

may be utilized to identify mineral composition. Since mineral fill of veins are likely to have a different spectral response

from the mineralogy of the host rock, this variation may be used to isolate the pixels that correspond to veins.

A recent review on close range hyperspectral imaging for mineral identification identifies various previous studies per-20

formed for specific minerals (Krupnik and Khan, 2019). It would be interesting to observe, identify, and distinguish

between mineralized sequences based on the differences in spectral response of the fracture infill material. Since hyper-

spectral data is much more voluminous and with significantly more complex image processing than conventional pho-

togrammetry, such analysis could be confined to selected regions within the outcrop. In conjunction with conventional

UAV photogrammetry that covers larger spatial area, laboratory based geochemical studies, and outcrop observations25

(scanline sampling, abutting relations etc.), a more detailed fracture characterization may be conducted.

– Detection of large cavities and false features Both the Parmelan and Brejões pavements exhibit karstification with

the Parmelan containing many more collapsed karstic regions. The presence of such low-aspect ratio discontinuities are

quite rare in siliciclastic and volcanic outcrops but can prove problematic to the application of the method in carbonate

outcrops where karstification is severe. Both the ridge and edge measures would fail in identifying such blobs or would30

at best, extract the periphery of the cavity. In recent work by Reisenhofer and King (2019), blob detection measures have

been developed within the shearlet framework and could potentially solve this issue.
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Another issue is the effect of undulating topography and shrubbery in generating false positives. False positives gener-

ally appear when there is shrubbery, shadows, very rugged terrain, and non-fracture bedding planes. In the case of the

Parmelan, the use of multiple ridges was successful in suppressing the false positives owing to shrubbery. However, in

Brejões, false positives due to underbrush were more difficult to suppress because they shared the same scale as that of

the fractures. In Brejões, shrubbery was also present within some of the wider fractures causing false negatives. In such5

cases, manual interference is necessary to either mask the regions of shrubbery before the automatic extraction or to

remove (or connect) the vectorized traces after the automated extraction. Additionally, carbonate outcrops are prone to

widespread erosion owing to exposure to meteoric water from precipitation cycles and air corrosion. Geomorphological

features owing to these erosive processes may also play a role in generation of false positives.

– Parameter selection10

A significant difference in fracture scales within an image of interest can prove problematic for the method. In such

a case, a vast number of ridge detection runs and associated increase in computational time is needed to construct a

ridge ensemble that takes into account all scales of discontinuities and yields a satisfactory result. When such variation

is localized, the image could be segmented into regions that correspond to varying fracture intensities and processed

separately. This may be difficult to assess a priori and in such cases, would require trial runs. In the Brejões outcrop15

example and the close range Parmelan vein example, this difference in fracture scales was ubiquitous throughout the

exposure and more pronounced than the Parmelan outcrop. Using visual comparison with the original image, the effect

of ridges resulting from certain shearlet parameter combinations was enhanced, so that the ridge ensemble is improved.

In Brejões, it was the large scale features that needed to be strengthened while in the case of the Parmelan vein ex-

ample, the smaller features needed sharpening. Since parameter selection is still done manually, a more comprehensive20

way of arriving at the optimal shearlet combination is desirable. An algorithm that automatically optimizes for shearlet

parameters corresponding to each individual scale of fracture is worthy of attention.

– Artificial fragmentation of traces

Manual fracture interpretation from images often involve the step of classifying fracture traces into separate sets based

on ground truth observations or with respect to fracture strike. The automated method described here in its current form25

can only extract traces and cannot distinguish / classify traces as belonging to separate sets. When fractures intersect each

other, the issue of artificial fragmentation of seemingly continuous traces arises. If an image consists of two orthogonally

intersecting fractures, the automated method would result in four traces intersecting at a single branch point, even though

a manual interpretation would only identify two fracture traces belonging to two different geometric sets. This type of

fragmentation would result in different length distributions as observed in (insert figures that compare automatic and30

manual interpretations). This kind of fragmentation is not an issue if such an outcrop DFN is used for geometric input for

flow / geomechanics simulation. This is because the process of meshing models with explicitly specified DFN geometry

would, in any case, require the specification of all intersection points (or forced fragmentation of long intersecting
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fractures). Therefore, the practioner must exercise caution when using cumulative length distributions derived from

outcrop DFNs that are automatically extracted.

A single fracture could also be fragmented without being cut by other intersecting fractures. This may happen in the

case of false negatives (due to shadows falling over part of fracture, debris or shrubbery within an open fracture, and

when fracture opening is very thin at some regions along fracture length) that cause fragmentation of fractures with gaps5

in between them. This kind of fragmentation affects the topology of the network in addition to depressing the height

cumulative length distribution. It maybe noted that, specification of fracture endpoints manually is also fraught with bias

(Peacock et al., 2019). A solution would be to use a range of linking thresholds to connect traces and study the effects of

threshold values on network topology and length distribution.

5.2 Recommendations for future work10

– Link between extractable P21, drone flying altitude, and camera resolution

From the P21 analysis on the Parmelan and the Brejões automatically extracted fractures, the maximum value P21 was

around eight m-1. The same drone model was used in both cases (DJI Phantom 4), and the flying altitude was also similar

(between 40 and 70 metres). Although such a conjecture needs further verification, there could be a relation between

the resolution of imagery and maximum extractable fracture intensity. Often flight altitudes are chosen by drone pilots15

depending upon considerations such as local topography, weather conditions, and presence of impediments (such as

trees, electricity poles, and telecommunications towers). A detailed analysis of the relation between flying altitude (and

consequently image resolution) and extracted fracture intensity could provide drone pilots with insights and guidelines

for UAV-based outcrop analysis. The ideal flying resolution to identify features of interest may be ascertained by carrying

out a series of acquisitions at a location where ground truth is known.20

– Generating data for fractured reservoir modelling workflows

Fractured reservoir characterization workflows in the oil and gas industry have traditionally used stochastic techniques

that attempt to extrapolate averaged fracture statistics (either from borehole imagery, core data, or outcrop analysis) to

reservoir volumes. The use of Multiple Point Statistics (MPS) for fracture network generation was highlighted by Bruna

et al. (2019) as an alternative approach to DFN modelling. MPS uses training images of realistic fracture networks to25

learn patterns and then generate non-stationary fractured reservoir models. Corrected for false positives and noise, the

automated method can produce accurate, geologically realistic, and unbiased training images that can feed into the MPS

workflow. Since our method can extract large scale fracture networks (millions of features from sub- square kilometre

regions), it is also well suited to provide training data for deep learning workflows. Recently, the use of Generative

Adversarial Networks (GANs) for geological modelling at the reservoir scale was proposed by Dupont et al. (2018),30

Zhang et al. (2019) as an alternative to conventional geostatistics, MPS, and object-based modelling. GANs form a

subset of deep learning architectures that are used for generative modelling (Goodfellow et al., 2014). GANs that are

trained on realistic data can then generate geologically realistic, non-stationary models.
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– Deep learning methods for trace extraction

Deep learning methods have revolutioned computer vision applications. Various neural architectures have documented

high degrees of accuracy in machine vision tasks such as overall image classification, identification and classification

of objects within an image images, localization of objects, extraction of regions of interest (semantic segmentation),

and extraction of regions corresponding to individual objects (instance segmentation). The problem of fracture trace5

extraction falls within the problem category of region extraction of individual objects and hence may be attempted using

techniques such as mask Regional Convolutional Neural Networks (He et al., 2017). Deep learning methods, in general,

require large amounts of labelled data to train. In the case of a mask RCNN, the library of training images must contain

marked regions (or overlays) indicating pixels of interest that correspond to individual fractures. The automated method

described in this manuscript can be used to rapidly generate a large number of overlay images that can be used as training10

data for mask RCNN architectures.

6 Conclusions

This paper presents a method to automatically detect and digitize fracture traces from images of rock fractures using the

complex shearlet transform. The technique replaces the task of manually interpreting fractures, which is time-consuming, prone

to interpreter bias, and which suffers from a lack of repeatability. The case studies that are presented highlight the utility of15

the complex shearlet based measure for automatically detecting fracture traces from 2D images. The automatic trace detection

method combines the complex shearlet ridge measure with a series of post-processing steps that include image segmentation,

skeletonization, polyline fitting, and polyline simplification. We tested the method at different scales of rock displacement, at

outcrop scale (∼ 102 m) and station-scale (< 10 m), using two orthomosaics reconstructed from drone photogrammetry and

two rock pavement images. We have considered carbonate and igneous rock lithologies in the case studies. Using the method,20

we have extracted millions of 2D features from outcrop-scale drone orthophotos. The processing time of the technique depends

upon the intensity of fracturing and the complexity of the fracture networks contained within the image. The automatic trace

extraction results are quantitatively compared with manually interpreted fractures on selected sub-samples of the image domain

using fracture trace density metrics. The automated technique is capable of extracting a much larger number of features, with a

marked reduction in bias. The method outlined in this paper greatly simplifies the process of generating deterministic, outcrop-25

based DFNs. The automatically extracted, fracture patterns can be used by structural geologists to link deformation features to

tectonic history and by geomodellers in sub-surface NFR modelling.

Code and data availability.

. MATLAB code that was used to generate the results in this manuscript is available on Github

https://github.com/rahulprabhakaran/Automatic-Fracture-Detection-Code (see Prabhakaran 2019)30
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. Fracture and image data correponding to the Parmelan and Brejões outcrops are available at the 4TU Centre for Research Data repository

(https://researchdata.4tu.nl/en/)

– Fracture Network Patterns from the Brejões Outcrop, Irecê Basin, Brazil (see Prabhakaran et al. 2019a)

– Fracture Network Patterns from the Parmelan Anticline, France (see Prabhakaran et al. 2019b)
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Appendix A: Overview of the Complex Shearlet Transform

A1 The Continuous Shearlet System

A shearlet generating function consists of an anisotropic scaling matrix and a shear matrix. Let the shearlet generating function

be:

ψ ∈ L2
(
R2
)

(A1)5

The admissibility criteria for the shearlet generating function is :

∫
R2

∣∣∣ψ̂(ξ1ξ2)
∣∣∣

ξ1
2

2

dξ2dξ1 <∞ (A2)

where ψ̂ is the 2D fourier transform of ψ.

A shearlet satisfying Eq.A2 is an admissible shearlet or a continuous shearlet (Kutyniok and Labate, 2012). The admissibil-10

ity condition implies that a reconstruction formula exists for the associated continuous shearlet transform. In order to achieve

an optimally sparse approximation of an image that possesses anisotropic singularities, the analysing elements must consist of

waveforms that range over several scales, orientations, and locations with the ability to become very elongated. To this end, a

combination of a scaling operator to generate elements at different scales, an orthogonal operator to change orientations, and a

translation operator to displace elements over the 2D plane, is used. The scaling matrix Aa is defined as (Labate et al., 2005):15

Aa =

a 0

0 aα

 , α ∈ [0,1]

The value of α controls the degree of anisotropy. (For more information on the anisotropy scaling molecules or α –molecules

see Grohs et al. 2016.) The scaling matrix is parabolic when α= 1
2 .20

An orthogonal transformation to change the orientations of waveforms. Rotation operators are not preferred as they destroy

the structure of the integer lattice Z2 whenever the rotation angle is different from 0,±π2 ,±π,±
3π
2 . Changes in the structure

of integer lattice is problematic when transitioning from continuum to digital setting. Hence, a shearing transformation is used

where the anisotropic shearing transformation matrix Ss are defined as:25

Ss =

1 s

0 1

 where the parameters a ∈ R+,s ∈ R

The shearing matrix Ss preserves the structure of the integer grid for any s ∈ N. The shearing matrix parametrizes orien-

tations using the variable s associated with slopes rather than angles and leaves the integer lattice invariant, provided s is an30
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integer. The difference between isotropic and anisotropic dilation with shearing is depicted in Fig. A1a and Fig. A1b).

A shearlet system is defined as (Kutyniok and Labate, 2012):

SH (ψ) =
{
ψa,s,t = a

−3/4ψ
(
Aa
−1Ss

−1 (· − t)
)
a ∈ R+,s ∈ R, t ∈ R2

}
(A3)

where (· − t) denotes the translation by a point t.5

The corresponding shearlet transform for mapping a function f ∈ L2
(
R2
)

into coefficients, SHψ f (a,s, t) specified by

scaling a, shearing s and translation t is given by:

f → SHψ f (a,s, t) = f, ψa,s,t (A4)

A2 Cone Adapted Continuous Shearlet Systems

Equation A4 renders horizontal shearlets elongated at very fine scales, which is problematic in digital implementations. Because10

the shearing operator can range over a non-bounded interval, directions are not treated uniformly. To overcome this drawback

of shearing, the cone adapted shearlet system was introduced in which the frequency plane is split into a horizontal and vertical

cone that restricts the shear parameter to bounded intervals (see Fig. A2 a). Dividing the frequency plane in such a manner

ensures uniform treatment of directions (Guo et al., 2005; Kutyniok and Labate, 2012). A cone adapted shearlet system can be

tiled by further division of the frequency domain. Such a tiling configuration (see Fig.A2 b) ensures that all directions are treated15

"almost equally" (Kutyniok and Labate, 2012). There is still small, but controllable bias in the coordinate axes directions). The

cone adapted shearlet systems can therefore be expressed as the union of a horizontal cone, a vertical cone, and a low-frequency

centre component. The frequency plane is thus split into four horizontal and vertical cones with a low-frequency square region

in the centre. The low-frequency region is given by the relation (Kutyniok and Labate, 2012):

R= {(ξ1, ξ1) : |ξ1| , |ξ2| ≤ 1} (A5)20

Inside each cone, the shearing variable s is only allowed to vary over a finite range. This produces elements with uni-

formly distributed orientations. The union of the generating functions for the horizontal cones ψ ∈ L2
(
R2
)
, vertical cones

ψ̃ ∈ L2
(
R2
)

and for the square low frequency region ϕ ∈ L2
(
R2
)

is expressed as (Kutyniok and Labate, 2012):

SH(ϕ,ψ,ψ̃) = Φ(ϕ) ∪Ψ(ψ) ∪ Ψ̃(ψ̃) (A6)

where25

Φ (ϕ) =
{
ϕt = ϕ(· − t) : t ∈ R2

}
; (A7)

Ψ̃ (ψ) =
{
ψ̃a,s,t = a−

3
4 ψ̃
(
Ãa
−1
Ss
−1 (· − t)

)
: a ∈ (0,1] , |s| ≤ 1 + a

1
2 , t ∈ R2

}
; (A8)
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Ψ̃(ψ) =
{
ψ̃a,s,t = a−

3
4 ψ̃
(
Ãa
−1
Ss
−1(· − t)

)
: a ∈ (0,1] , |s| ≤ 1 + a

1
2 , t ∈ R2

}
. (A9)

Scaling matrix for vertical cones, Ãa is expressed as:

Ãa =

aα 0

0 a

 (A10)

The cone adapted continuous shearlet transform is expressed as the mapping:

f → SHϕ,ψ,ψ̃ f (t′,(a,s, t) ,
(
ã, s̃, t̃

)
) =

(
f, ϕt′ ,f, ψa,s,t,f, ψ̃ã,s̃,t̃

)
(A11)5

A3 The Discrete Cone Adapted Shearlet System

A discrete version of the cone adapted shearlet system may be defined with scaling parameter j, shearing parameter k, and

translation parameter m for a sampling factor of c= (c1, c2) ∈ (R+)
2. Similar to Eq.A6 this is a union of the generating

functions for vertical, horizontal, and low frequency central region.

SH(ϕ,ψ,ψ̃;c) = Φ(ϕ;c1) ∪Ψ(ψ;c) ∪ Ψ̃(ψ̃;c) (A12)10

Φ (ϕ;c1) =
{
ϕm = ϕ(· − c1m) :mεZ2

}
; (A13)

Ψ (ψ;c) =
{
ψj,k,m = 2

3
4 jψ (SkA2j · −Mcm) : j ≥ 0, |k| ≤

⌈
2

j
2

⌉
, m ∈ Z2

}
; (A14)

15

Ψ̃
(
ψ̃;c
)

=
{
ψ̃j,k,m = 2

3
4 jψ̃

(
Sk

T Ã2j · −M̃cm
)

: j ≥ 0, |k| ≤
⌈
2

j
2

⌉
, m ∈ Z2

}
; (A15)

with Mc =

c1 0

0 c2

 ; M̃ c =

c2 0

0 c1

 ; (Mc and M̃ c are sampling matrices for horizontal and vertical cones)

A2j =

2j 0

0 2j/2

 ; Ã2j =

2j/2 0

0 2j

 ; (A2j and Ã2j are dyadic scaling matrices for horizontal and vertical cones)20

Sk =

1 k

0 1

 (shearing matrix).

25

The discrete cone adapted shearlet transform associated with φ, ψ and ψ̃ is given by the mapping,

f → SHϕ,ψ,ψ̃ f (m′,(j,k,m) ,(j̃, k̃, m̃) =
(
f, ϕm′ ,f, ψj,k,m,f, ψ̃j̃,k̃,m̃

)
. (A16)
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A4 The Complex Discrete Cone Adapted Shearlet System

Taking the complex valued wavelet of a real valued even symmetric wavelet generator ψeven ∈ L2
(
R2
)
, using the Hilbert

transform operator (H), a complex valued shearlet generator is obtained (from Reisenhofer, 2014; King et al., 2015)

ψc = ψeven + i ψodd. (A17)

The complex valued function can be written in terms of a Hilbert transform pair of an even-symmetric real valued shearlet5

and an odd-symmetric real valued shearlet: (from Reisenhofer, 2014; King et al., 2015)

ψc = ψeven + iHψeven. (A18)

The Hilbert transform operator is written as,

H (f)(t) = lim
a→∞

a∫
−a

f (τ)

t− τ
dτ. (A19)

The discrete cone adapted complex shearlet system is given as (Reisenhofer, 2014; King et al., 2015):10

SH(ϕ,ψ,ψ̃;c) = Φ(ϕ;c1) ∪Ψ(ψ;c) ∪ Ψ̃(ψ̃;c) (A20)

and

SHc(ϕ,ψ,ψ̃;c) = Φ(ϕ;c1) ∪Ψc(ψ;c) ∪ Ψ̃c(ψ̃;c) (A21)

where,

Φ (ϕ;c1) =
{
ϕt = ϕ(· − c1m) :m ∈ Z2

}
, (A22)15

Ψc (ψ;c) =
{
ψcj,k,m = ψcj,k,m + i (H(1,0)T ψ)

j,k,m
: j ≥ 0, |k| ≤ d2

j
2 e, m ∈ Z2

}
, (A23)

Ψ̃
c
(
ψ̃;c
)

=
{
ψ̃
c

j,k,m = ψ̃
c

j,k,m + i (H(0,1)T ψ̃)
j,k,m

: j ≥ 0, |k| ≤ d2
j
2 e, m ∈ Z2

}
. (A24)

Correspondingly the discrete complex cone adapted shearlet transform is given by the mapping,

f → SHc
ϕ,ψ,ψ̃ f (m′,(j,k,m) ,(j̃, k̃, m̃)) =

(
f, ϕm′ ,f, ψ

c
j,k,m,f, ψ̃

c

j̃,k̃,m̃

)
. (A25)

(A26)20
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A5 Edge and Ridge Detection using the Complex Shearlet Transform

The behavior of the coefficients of the even symmetric and odd symmetric shearlets can be used to detect edges and ridges. An

edge measure for an image f ∈ L2(R2), a location x ∈R2 and a shear parameter s is given as (Reisenhofer, 2014; King et al.,

2015),

5

Eψ (f,x,s) =

∣∣∑
aεA Im

(
f,ψca,s,x

)∣∣−∑aεA

∣∣Re(f,ψca,s,x)∣∣
|A|maxaεA

∣∣Im(f,ψca,s,x)
∣∣+ ε

, (A27)

where A⊂ R+ is a set of scaling parameters, ψ is a real valued symmetric shearlet and ε prevents division by zero. The

complex shearlet based edge measure can give approximations of the tangential directions of an edge. A line measure or ridge

measure is obtained by interchanging the role of the even symmetric and odd symmetric shearlets (Reisenhofer, 2014; King10

et al., 2015),

Lψ (f,x,s) =

∣∣∑
aεARe

(
f,ψca,s,x

)∣∣−∑aεA

∣∣Im(f,ψca,s,x)∣∣
|A|maxaεA

∣∣Re(f,ψca,s,x)
∣∣+ ε

. (A28)

Both the edge and ridge measures given above are inspired from the phase congruency measure of Kovesi (2000). The edge15

and ridge measures are almost contrast invariant.
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Figure 1. The Automated Fracture Trace Detection Workflow

31



Figure 2. Illustration of the steps involved in the automatic fracture extraction using a 40 x 34 mm fractured shale core image (a) CT scan

core image from Dwarkasing (2016) (b) Normalized ridge ensemble (c) Segmentation applied on the ridge ensemble (d) Skeletonization

applied to the segmented ridge (e) Vectorized polylines fitted to the skeletonized clusters (f) Effect of line simplification applied to a single

vectorized segment 32



Figure 3. Effects of variation of ridge parameters on extracted ridges and the corresponding vectorizations using a fractured siliclastic

example. A constant grayscale threshold is applied to the ridge map and all other parameters with respect to post processing are kept constant

(a) 5 x 5 cm fractured rock image and base case parameters in table (b) ridge maps and vectorized traces for base case (c) effect of a higher

gaussian effect support compared to wavelet support (d) effect of a large difference in wavelet effective support with respect to gaussian

support (e),(g),(i),(k),(m),(o) lower bounds of parameters with respect to base case, corresponding ridge maps and traces (f),(h),(j),(l),(n),(p)

upper bounds of parameters with respect to base case, corresponding ridge maps and traces

33



Figure 4. Effects of parameter variation on the constructed complex shearlet system for the fractured siliclastic example (i) Even-symmetric

elements of the complex shearlet system constructed using the base case parameters in Fig. 3. Full system is 1313 x 1318 pixels. (ii) Odd-

symmetric elements of the complex shearlet system using the base case parameters in Fig. 3 (iii) - (ix) depiction of seven scales (x) - (xvi)

depiction of seven orientations (out of possible 10) for the odd-symmetric elements of the complex shearlet system (xvii) - (xix) effect

of wavelet effective support and gaussian effective support on the even-symmetric elements of the complex shearlet system (xx) effect of

gaussian effective support double that of wavelet effective support (xxi) effect of wavelet effective support very large than gaussian effective

support (xxii) - (xxiv) effect of scales per octave on the even-symmetric elements (xxv) - (xxvii) effect of anisotropy parameter on the

even-symmetric elements (xxviii) - (xxx) effect of shear levels on the even-symmetric elements
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Figure 6. Location of the Parmelan plateau in France within the Bornes Massif depicting drone flight base points for six drone missions.

This map was generated using satellite imagery obtained from ESRI World Imagery (https://services.arcgisonline.com/ArcGIS/rest/services/

World_Imagery/MapServer) and modified using ArcGIS 10.3, ArcMap 10.3 software by ESRI (http://www.esri.com/). Service Layer Credits:

ESRI, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community.
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Figure 9. Comparison between automatic and manual interpretation on a tile from the Parmelan (a) Tile from the Parmelan orthomosaic

(Prabhakaran et al., 2019b) depicting intense fracturing with an organization along the NW-SE corridors (b) Overlay of fractures traced

using the automatic detection method (c) Overlay of fractures manually traced for the tile at a zoom of 1:2000 (d) P21 Fracture intensity for

automatic extracted fractures (e) P21 Fracture intensity for manually extracted fractures (f) Length weighted rose plot and cumulative trace

length frequency distribution for the automated result (g) Length weighted rose plot and cumulative trace length frequency distribution for

the manual result. The Parmelan dataset is available at https://doi.org/10.4121/uuid:3f5e255f-edf7-441f-89f2-1adc7ac2f7d1 under a CC-BY-

NC-SA license
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Figure 13. Comparison of trace length weighted rose plots and cumulative trace length distributions for automatic and

manual trace interpretations from Brejões outcrop stations.The Brejões dataset is available at https://doi.org/10.4121/uuid:

67cde05c-9e99-4cc4-8cec-9f2666457d1f under a CC-BY-NC-SA license
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Table 1. Shearlet System Parameters

Parameter Description

waveletEffSupp Length of the effective support in pixels of the wavelet

gaussianEffSupp Length of the effective support in pixels of the Gaussian filter

scalesPerOctave Number of intermediate scales for each octave

shearLevel Number of differently oriented shearlets on each scale

alpha Degree of anisotropy introduced via scaling

octaves Number of octaves spanned by the shearlet system

Table 2. Detection Parameters

Parameter Description

DetectionType Specification of detection measure (edge/ridge)

minContrast Specification of the level of contrast for edge/ridge detection

offset Scaling offset between the even- and odd- symmetric shearlets
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Table 3. Shearlet system and detection parameters used to extract ridges for the base case

Base Case Parameters

waveletEffSupp 125

gaussianEffSup 63

scalesPerOctave 2

shearLevel 3

alpha 0.5

octaves 3.5

minContrast 10

detection negative

ridges

even/odd offset 1

Table 4. Ensemble for Parameter Variation

Parameter Values

waveletEffSupp Original image size in pixels divided by 5, 8, 10, 12 and 15

gaussianEffSupp Original image size in pixels divided by 5, 8, 10, 12 and 15

scalesPerOctave 1,2,3 and 4

shearLevel 2,3 and 4

alpha 0, 0.25, 0.5, 0.75, 1

minContrast 1, 5, 10, 15, 20

even/odd offset 0.001, 0.01, 0.1, 1, 2
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Figure A1. (a). Isotropic elements capturing a discontinuity curve (b). Sheared, anisotropic elements capturing a discontinuity curve (modi-

fied from Kutyniok and Labate, 2012)

(a) (b)

Figure A2. The cone adapted continuous shearlet system (a) Bias in directions is handled by dividing the frequency plane into 4 cones C1,

C2, C3, C4 and a square low frequency box region in the centre R (b) Trapezoidal shaped wedge tiling of the frequency induced domain

induced by the shearlet transform (modified after Kutyniok and Labate 2012)
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Figure A3. Variation of the Structural Similarity Index of of base case ridges with shearlet and detection parameters (a) SSIM vs Anisotropy

Exponent (b) SSIM vs MinContrast (c) SSIM vs Wavelet Effective Support (d) SSIM vs Scaling Offset (e) SSIM vs Scales / Octave (f) SSIM

vs Shearlevels
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Table A1. Shearlets

Shearlet System waveletEffSupp gaussianEffSupp scalesPerOctave shearLevel scales nShearlets alpha

1 200 100 1 2 1 36 0
2 125 63 1 2 1 36 0
3 84 42 1 2 1 36 0
4 67 34 1 2 1 36 0
5 200 100 2 2 7 12 0
6 125 63 2 2 7 12 0
7 84 42 2 2 7 12 0
8 67 34 2 2 7 12 0
9 200 100 3 2 10.5 12 0
10 125 63 3 2 10.5 12 0
11 84 42 3 2 10.5 12 0
12 67 34 3 2 10.5 12 0
13 200 100 4 2 14 12 0
14 125 63 4 2 14 12 0
15 84 42 4 2 14 12 0
16 67 34 4 2 14 12 0
17 200 100 1 3 3.5 20 0
18 125 63 1 3 3.5 20 0
19 84 42 1 3 3.5 20 0
20 67 34 1 3 3.5 20 0
21 200 100 2 3 7 20 0
22 125 63 2 3 7 20 0
23 84 42 2 3 7 20 0
24 67 34 2 3 7 20 0
25 200 100 3 3 10.5 20 0
26 125 63 3 3 10.5 20 0
27 84 42 3 3 10.5 20 0
28 67 34 3 3 10.5 20 0
29 200 100 4 3 14 20 0
30 125 63 4 3 14 20 0
31 84 42 4 3 14 20 0
32 67 34 4 3 14 20 0
33 200 100 1 4 3.5 36 0
34 125 63 1 4 3.5 36 0
35 84 42 1 4 3.5 36 0
36 67 34 1 4 3.5 36 0
37 200 100 2 4 7 36 0
38 125 63 2 4 7 36 0
39 84 42 2 4 7 36 0
40 67 34 2 4 7 36 0
41 200 100 3 4 10.5 36 0
42 125 63 3 4 10.5 36 0
43 84 42 3 4 10.5 36 0
44 67 34 3 4 10.5 36 0
45 200 100 4 4 14 36 0
46 125 63 4 4 14 36 0
47 84 42 4 4 14 36 0
48 67 34 4 4 14 36 0
49 200 100 1 2 3.5 12 0.5
50 125 63 1 2 3.5 12 0.5
51 84 42 1 2 3.5 12 0.5
52 67 34 1 2 3.5 12 0.5
53 200 100 2 2 7 12 0.5
54 125 63 2 2 7 12 0.5
55 84 42 2 2 7 12 0.5
56 67 34 2 2 7 12 0.5
57 200 100 3 2 10.5 12 0.5
58 125 63 3 2 10.5 12 0.5
59 84 42 3 2 10.5 12 0.5
60 67 34 3 2 10.5 12 0.5
61 200 100 4 2 14 12 0.5
62 125 63 4 2 14 12 0.5
63 84 42 4 2 14 12 0.5
64 67 34 4 2 14 12 0.5
65 200 100 1 3 3.5 20 0.5
66 125 63 1 3 3.5 20 0.5
67 84 42 1 3 3.5 20 0.5
68 67 34 1 3 3.5 20 0.5
69 200 100 2 3 7 20 0.5
70 125 63 2 3 7 20 0.5
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