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Abstract. In seismotectonic studies, seismic reflection data are a powerful tool to unravel the complex deep architecture of 13 

active faults. Such tectonic structures are usually mapped at the surface through traditional geological surveying, whilst 14 

seismic reflection data may help to trace their continuation from the near-surface down to hypocentral depths. On seismic 15 

reflection data, seismic attributes are commonly used by oil and gas industry to aid exploration. In this study, we propose to 16 

use seismic attributes to seismotectonic research for the first time. The study area is a geologically complex region of Central 17 

Italy, struck during the 2016-2017 by a long-lasting seismic sequence, including a Mw 6.5 main-shock. Three vintage 18 

seismic reflection profiles are currently the only ones available at the regional scale across the epicentral zone. These 19 

represent a singular opportunity to attempt a seismic attribute analysis, by running attributes like the “Energy” and the 20 

“Pseudo Relief”. Our results are critical, as they provide information on the relatively deep structural setting, mapping a 21 

prominent, high amplitude regional reflector interpreted as the top of basement, which is an important rheological boundary. 22 

Complex patterns of high-angle discontinuities crossing the reflectors have also been identified by seismic attributes. These 23 

steeply dipping fabrics are interpreted as the expression of fault zones, belonging to the active normal fault systems 24 

responsible for the seismicity of the region. Such peculiar seismic signatures of faulting are consistent with the principal 25 

geological and tectonic structures exposed at surface. In addition, we also provide convincing evidence of an important 26 

primary tectonic structure currently debated in the literature (the Norcia antithetic fault) as well as several buried secondary 27 

fault splays. This work demonstrates that seismic attribute analysis, even if used on low-quality vintage 2D data, may 28 

contribute to improve the subsurface geological interpretation in areas characterized by limited and/or low-quality subsurface 29 

data but with potentially high seismic hazard. 30 

 31 
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1 Introduction 32 

Studying the connections between the earthquakes and the faults to which they are associated is a primary goal of 33 

seismotectonics (Allen et al., 1965; Schwartz and Coppersmith, 1984). Within this field, it is generally complex filling the 34 

gap between the exposed geology (including the active “geological faults”) and the seismological data (e.g. focal 35 

mechanisms, earthquake locations, etc...), indicators of the geometry and kinematics of the seismic source at hypocentral 36 

depth (“seismological faults”, sensu Barchi & Mirabella, 2008). The recovery of information on the seismogenic structures 37 

at depth is difficult, primarily due to the lack of high-resolution geophysical data and/or well stratigraphy. The lack of these 38 

data results in relatively high degrees of uncertainty, and drives to contrasting geological models and interpretations.  39 

Different geophysical methods (e.g. active/passive Seismic, Gravimetry, Magnetics, Electric and Electromagnetic such as 40 

Magnetotellurics and Ground Penetrating Radar) may contribute to define the stratigraphy and structural setting of the upper 41 

crust at different scales. The data provided by seismic reflection technique are poorly affected by well-known inversion 42 

problems typical of the potential methods (Snieder & Trampert, 1999), and are largely the most powerful tool able to 43 

produce high-resolution images of the subsurface. This type of data, if calibrated with deep well’s stratigraphy provides very 44 

strong constraints to the definition of subsurface geological architecture. These profiles are useful to unveil the deep 45 

geometry of active faults mapped in the field, and extend them down to hypocentral depths. Unfortunately, ex-novo 46 

acquisition (possibly 3D) of onshore deep seismic reflection data for research purposes, is hampered by high costs, 47 

environmental problems and complex logistics (e.g. prohibition of dynamite or vibroseis trucks in Natural Parks or urban 48 

areas). Significant exceptions are research projects for deep crustal investigations like BIRPS (Brewer et al., 1983), CoCORP 49 

(Cook et al., 1979), ECORS (Roure et al., 1989) and CROP (Barchi et al., 1998; Finetti et al., 2001), IBERSEIS (Simancas 50 

et al., 2003), ALCUDIA (Ehsan et al., 2014 and 2015) among others. In seismically active regions, old profiles (legacy data) 51 

acquired by the industry have been successfully used, to connect the active faults mapped at the surface with the earthquakes 52 

seismogenic sources depicted by seismological records (Boncio et al., 2000; Bonini et al., 2014; Carvalho et al., 2008; 53 

Beidinger et al., 2011; Maesano et al., 2015; Porreca et al., 2018). Legacy seismic lines have in fact some advantages: 1) 54 

they are already available from the oil companies, national archives 2) they represent a nice source of information in places 55 

where new data is difficult to acquire; 3) they can be used to build up and refine geological models. Moreover, such data are 56 

often the only one available. Therefore, this legacy data is very valuable and it’s worth to use them to constrain the 57 

subsurface geological setting and, to provide new data on active tectonic structures (see DISS database, Basili et al., 2008).  58 

Vintage profiles can therefore significantly contribute to seismo-tectonic researches, even if characterized by intrinsic 59 

limitations: i) their location, orientation and acquisition parameters were not specifically designed for this aim; ii) they were 60 

collected using relatively old seismic technologies and acquisition/processing strategies. Consequently, these produced data 61 

with relatively low signal/noise ratio (S/N) and low resolution, especially when compared to modern standards (Manning et 62 

al., 2019). In order to improve the image quality and increase the accuracy of the interpretation, two main strategies, 63 
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ordinarily used by the O&G industry, can be applied to legacy data: 1) reprocessing from raw data using modern processing 64 

strategies and newly designed algorithms and software; 2) use post-stack analysis techniques such as seismic attributes.  65 

An attribute analysis is, perhaps, one of the easiest, cheapest and fastest strategies to qualitatively emphasize the geophysical 66 

features and data properties of reflection seismic data sets, producing benefits particularly in complex geological areas. A 67 

seismic attribute is a quantity derived from seismic data (pre-stack and/or post-stack) commonly used to extract additional 68 

information that may be unclear in conventionally processed seismic lines. Examples of applications on dense 3D seismic 69 

volumes produced impressive results, including: the identification of ancient river channels; or, sets of faults at variable 70 

scales (Chopra & Marfurt, 2005; Chopra & Marfurt, 2007; Chopra & Marfurt, 2008; Marfurt et al., 2011; Hale, 2013; 71 

Barnes, 2016, Iacopini et al., 2016; Marfurt, 2018; Wrona et al., 2018; Di & AlRegib, 2019; Naeini & Prindle, 2019).  72 

There are several advantages in using 3D seismic data instead of 2D. Advantages of 3D and pitfalls of 2D are extensively 73 

discussed in Torvela et al. (2013) and Hutchinson (2016). 2D seismic data is more limited and 2D post-stack seismic 74 

attribute analysis may not provide the same quality of information as when using 3D (Marfurt & Alves, 2015; Ha et al., 75 

2019). However, the main point is that in the past, it was common to sample study areas inland by 2D grids of seismic 76 

profiles, being the full 3D seismic surveys rare.  Hence, it is relevant to extract as much information as possible from 2D 77 

data.  78 

In this work, the selected study area is located between the southeastern part of the Umbria‐Marche Apennines and the Laga 79 

Domain, in the outer Northern Apennines (central Italy) (e.g. Barchi et al., 2001). This area presents ideal characteristics to 80 

test the application of seismic attributes as a new approach in seismotectonics. In the past, several seismic profiles were 81 

acquired in this region for hydrocarbon exploration, and were later used to constrain subsurface geological structures (Bally 82 

et al., 1986; Barchi et al, 1991; Barchi et al., 1998; Ciaccio et al., 2005; Pauselli et al., 2006; Mirabella et al. 2008; Barchi et 83 

al., 2009; Bigi et al., 2011). After the 2016-2017 seismic sequence, Porreca et al. (2018) provided an updated regional 84 

geological model based on the interpretation of vintage seismic lines. However remarkable differences in the seismic data 85 

quality across the region, prevented a straightforward seismic interpretation. Therefore, the present work exploits the use of 86 

seismic attributes on three low-quality seismic profiles located close to the Mw 6.5 main-shock of the 2016-2017 seismic 87 

sequence. The main goal is to squeeze additional information from the 2D data obtaining as many constraints as possible on 88 

the geological structures responsible for the seismicity in the area, by defining: 89 

- geological/structural setting at depth (e.g. depth of the basement and its involvement) 90 

- trace of potentially seismogenic faults (connection between the active faults mapped at the surface and earthquake's foci). 91 

Any improvements achievable on the data quality and visualization, for example an increase of the resolution and/or an 92 

enhancement of the lateral extent or limits of the seismic reflectors, would represent a valuable contribution considering the 93 

limited amount of data available in this area. We think that this innovative approach to seismotectonic research can be 94 

extended to other on-shore seismically active areas in the world, especially if covered only by sparse vintage low-quality 95 

seismic surveys. In such cases, we think the seismotectonic research may benefit of the potential and improvements 96 

generated by the seismic attributes.  97 
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2 Geological framework and seismotectonics of the study area 98 

The study area is located in the southeastern part of the Northern Apennines fold and thrust belt. The area includes the 99 

Umbria-Marche Domain and the Laga Domain, which are separated by an important regional tectonic structure, known as 100 

the M. Sibillini thrust (MSt) (Fig. 1). The Umbria-Marche domain involves the rocks of the sedimentary cover, represented 101 

by three main units (top to bottom), characterized by different interval velocities (Bally et al., 1986; Barchi et al., 1998; 102 

Porreca et al., 2018): 103 

1) on top, the Laga sequence (Late Messinian – Lower Pliocene, up to 3000 m thick, average seismic velocity; Vav = 4000 104 

m/s). It consists of siliciclastic turbidites made by alternating layers of sandstones, marls and evaporites, deposited in marine 105 

depositional environment (Milli et al., 2007; Bigi et al., 2011); it outcrops in the eastern sector of the study area (i.e. Laga 106 

Domain); 107 

2) the carbonate formations (Jurassic-Oligocene, about 2000 m thick, Vav = 5800 m/s), formed by pelagic limestones 108 

(Mirabella et al., 2008) with subordinated marly levels overlying an early Jurassic carbonate platform (Calcare Massiccio 109 

Fm.). It outcrops mainly in the Umbria-Marche Domain; 110 

3) at the bottom the Late Triassic evaporites (1500–2500 m thick, Vav= 6400 m/s). They consist in alternated layers of 111 

anhydrites and dolomites (Anidriti di Burano Fm. and and Raethavicula Contorta beds; Martinis & Pieri, 1964), never 112 

outcropping and intercepted only by deep wells (Porreca et al., 2018 and references therein). 113 

For further details on the stratigraphic characteristics of the area, the reader can refer to the works by Centamore et al. (1992) 114 

and Pierantoni et al. (2013).  115 

These units rest on a basement with variable lithology (Permian-Late Triassic, Vav = 5100 m/s) that never crops out in the 116 

study area (Vai, 2001). It has only been intercepted by deep wells (Bally et al., 1986; Minelli & Menichetti, 1990; Anelli et 117 

al., 1994; Patacca & Scandone, 2001).  118 

This sedimentary sequence is involved in the Late Miocene fold and thrust belt including a set of N-S trending anticlines, 119 

formed at the hangingwall of the W-dipping arc shaped major thrusts. The most important compressional structure is the M. 120 

Sibillini thrust (MSt, Koopman, 1983; Lavecchia, 1985), where the Umbria-Marche Domain is overthrusted on the Laga 121 

Domain.  122 

This is a geologically complex region, where in the past the analysis of 2D seismic profiles have produced contrasting 123 

interpretations of the upper crust structural setting, i.e. thin- vs. thick-skinned tectonics, fault reactivation/inversion and 124 

basement depth (Bally et al., 1986; Barchi, 1991; Barchi et al., 2001; Bigi et al., 2011; Calamita et al., 2012). A review of the 125 

geological history of this area has recently been provided by Porreca et al. (2018). These authors propose a tectonic style 126 

characterized by coexistence of thick- and thin-skinned tectonics with multiple detachments localized at different structural 127 

levels.   128 

These compressional structures have been later disrupted by the extensional faults since the Late Pliocene (Fig.1) (Blumetti 129 

et al., 1993; Boncio et al., 1998; Brozzetti & Lavecchia, 1994; Calamita & Pizzi, 1994; Pierantoni et al., 2013). 130 
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The Late Pliocene-Quaternary extensional tectonic phase, characterized by NNW-SSE striking normal faults, is consistent 131 

with the present-day active strain field as deduced by geodetic data (e.g. Anderlini et al., 2016). The latter faults have high 132 

dip angles (50-70°) and can be synthetic or antithetic normal structures (WSW or ENE dipping, respectively). These faults 133 

were also responsible of the tectono-sedimentary evolution of intra-mountain continental basins (Calamita et al., 1994; 134 

Cavinato and De Celles, 1999). The most evident Quaternary basins of this part of the Apennines are the Castelluccio di 135 

Norcia and Norcia basins (Fig.1), located at 1270 and 700 m a.s.l., here named CNb and Nb respectively. A phase of 136 

lacustrine and fluvial sedimentation infilled both basins with hundred meters of deposits, characterized by fine clayey to 137 

coarse grained material (Blumetti et al., 1993; Coltorti and Farabollini, 1995). 138 

The area is affected by frequent moderate magnitude earthquakes (5 < Mw < 7) and has a high seismogenic potential 139 

revealed by both historical and instrumental data (e.g. Barchi et al., 2000; Boncio and Lavecchia, 2000; Basili et al., 2008; 140 

Rovida et al., 2016; DISS Working Group, 2018). The major seismogenic structures recognized in the area are the Norcia 141 

fault (Nf) and the M. Vettore fault (Vf). The Norcia fault (Nf, Fig.1) is associated to several historical events (Galli et al., 142 

2015; Pauselli et al., 2010; Rovida et al., 2016), probably including the 1979 earthquake (Nottoria-Preci fault, Deschamps et 143 

al., 1984; Brozzetti & Lavecchia, 1994; Rovida et al., 2016) and, the largest event in 1703 (Me = 6.8, Rovida et al., 2016). 144 

The Vettore fault (Vf) is part of the easternmost alignment whose historical and pre-historical activity was recognized by 145 

paleoseismological and shallow geophysical surveys (Galadini & Galli, 2003; Galli et al., 2008; Ercoli et al., 2013; Ercoli et 146 

al., 2014; Galadini et al., 2018; Galli et al., 2018; Cinti et al, 2019; Galli et al., 2019). This system was reactivated during the 147 

2016-2017 sequence, characterized by multi-fault ruptures occurred within few months (nine M>5 earthquakes at 148 

hypocentral depth < 12 km between August 2016 – January 2017) having characteristics comparable to previous seismic 149 

sequences in Central Italy (e.g. L’Aquila 2009 and Colfiorito 1997-1998, Valoroso et al., 2013 and Chiaraluce et al., 2005).  150 

The strongest mainshock of (Mw 6.5) occurred on 30th October 2016 (Chiaraluce et al., 2017; Chiarabba et al., 2018;  151 

Gruppo di Lavoro Sequenza Centro Italia, 2019; Improta et al., 2019; ISIDe working group, 2019), generating up to 2 m 152 

(vertical offset) co-seismic ruptures (Civico et al., 2018; Gori et al., 2018; Villani et al., 2018a; Brozzetti et al., 2019), 153 

mainly localized along the Mt. Vettore fault (blue thin lines in Fig. 1). 154 

Despite of the large amount of surface data collected (Livio et al., 2016; Pucci at al., 2017; Wilkinson et al., 2017; De Guidi 155 

et al., 2017; Brozzetti et al., 2019), the deep extension of the Norcia and Castelluccio antithetic and synthetic faults 156 

(particularly Nf and Vf), and the overall complex structure of the area are still debated (Lavecchia et al., 2016; Porreca et al., 157 

2018; Bonini et al., 2019, Cheloni et al., 2018, Improta et al. 2019, Di Giulio et al., 2020) and remains an open question. 158 

3 Data 159 

We have performed seismic attributes analysis on three W-E trending 2D seismic reflection data crossing the epicentral area 160 

between the Umbria and Marche regions (Central Italy, Fig.1). These seismic profiles are part of a much larger, unpublished 161 

dataset including 97 seismic profiles and, a few boreholes, drilled for hydrocarbon exploration by ENI in the period 1970-162 

1998. The data quality is extremely variable (medium/poor) with limited fold (generally < 60 traces / Common Mid-Point), 163 
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mainly due to environmental and logistical factors. Among the latter, we can list: the different acquisition technologies; a 164 

limited site access; the complex tectonic setting and, especially, the different (and contrasting) outcropping lithologies (e.g. 165 

Mazzotti et al., 2000, Mirabella et al., 2008). The eastern area, showing higher data quality, consists of siliciclastic units of 166 

the Laga foredeep sequence, located at the footwall of the MSt. On the other hand, the lowest S/N recordings coincide with 167 

outcropping carbonates formations and Quaternary deposits. 168 

The analysed lines include seismic reflection profiles NOR01 (stack, 14 km long) and NOR02 (time-migrated, 20 km long, 169 

partially parallel to NOR01 on the western sector) located west and east to the Nb, respectively; CAS01 (stack, 16 km long), 170 

located further to the south crossing the Cascia village (Fig. 1).  171 

 NOR01 and CAS01 were acquired using a Vibroseis source, while explosives were used for NOR02; all the lines are 172 

displayed in Two-Way-Travel-Time (TWT) limited to 4.5 s. The amplitude/frequency spectra (computed on the entire time 173 

window) of the processed lines show a bandwidth in a range of 10-50 Hz, with the NOR02 spectrum displaying a slightly 174 

higher frequency content (Tab.1). Assuming an average peak frequency of 20 Hz, a vertical resolution of ca. 80 m can be 175 

estimated (using an average carbonate velocity = 6 km/s; parameters in Table 1). Some processing artefacts are visible in 176 

NOR01 as a horizontal signal at ca. 1 s (yellow dashed line and label A in Fig. 2a), and another in CAS01 (Fig. 3a). As 177 

suggested in the introduction, we considered that the interpretation could benefit from the application of seismic attributes to 178 

the seismic images. However, different sets of parameters need to be tested to achieve relevant improvements. Therefore, we 179 

loaded the profiles into the software OpendTect (OdT, https://www.dgbes.com/index.php/software#free). A common seismic 180 

datum of 500 m was considered for the transect. Unfortunately, deep borehole stratigraphy is not available for the study area 181 

(all details about surrounding deep wells have been already summarized in Porreca et al., 2018). The OdT seismic project 182 

was enriched also by ancillary data, extracted by a complementary GIS project (QGis, https://www.qgis.org/it/site/). As 183 

visible in Fig. 1, we have included a detailed summary of the main normal faults and surface ruptures of the area (Civico et 184 

al., 2018; Villani et al., 2018a; Brozzetti et al., 2019), obtained after carefully checking the most important regional 185 

geological maps and fault patterns (Koopman, 1983; Centamore et al., 1993; Pierantoni et al., 2013; Carta Geologica 186 

Regionale 1:10’000 – Regione Marche, 2014; Carta Geologica Regionale 1:10’000 – Regione Umbria, 2016; Ithaca 187 

database, http://www.isprambiente.gov.it/it/progetti/suolo-e-territorio-1/ithaca-catalogo-delle-faglie-capaci;), as well as the 188 

most recent works published in literature (e.g. Brozzetti et al., 2019; Porreca et al., 2020). The topography was also included 189 

using a regional 10 meters resolution DTM data base (Tarquini et al., 2007; Tarquini et al., 2012). The other important 190 

external data-set consists of seismological data, i.e. inferred location and approximated fault geometry as suggested by the 191 

focal mechanisms of the mainshocks and, by the distribution of the aftershocks (Iside database, http://iside.rm.ingv.it/iside/ 192 

and Chiaraluce et al., 2017). The integration of such information in a pseudo-3D environment offered us a multidisciplinary 193 

platform to clearly display the seismic lines and establish links between surface data the interpreted deep geologic structures 194 

located at hypocentral depths. 195 

https://www.dgbes.com/index.php/software#free
https://www.qgis.org/it/site/
http://www.isprambiente.gov.it/it/progetti/suolo-e-territorio-1/ithaca-catalogo-delle-faglie-capaci
http://iside.rm.ingv.it/iside/
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4 Methods 196 

The seismic reflection data interpretation is generally accomplished by correlating specific signal characteristics (seismic 197 

signature), with the different geological domains identified within the study area. A standard seismic interpretation is 198 

affected by a certain degree of uncertainty/subjectivity (particularly in case of poor data quality), because is generally based 199 

on a qualitative analysis of amplitude, geometry and lateral continuity of the reflections. Over the last years, the introduction 200 

of seismic attributes and related automated/semi-automated procedures has had an important role in reducing the subjectivity 201 

of seismic interpretations and achieve quantitative results. A seismic attribute is a descriptive and quantifiable parameter that 202 

can be calculated on a single trace, on multiple traces, or 3D volumes and can be displayed at the same scale as the original 203 

data. Seismic data can be, therefore, considered a composition of constituent attributes (Barnes, 1999, Taner et al., 1979, 204 

Forte et al., 2012). Their benefits have been first appreciated in 2D/3D seismic reflection data (Barnes 1996; Taner et al., 205 

1979; Barnes, 1999; Chen and Sidney, 1997; Taner, 2001; Chopra and Marfurt, 2007; Chopra and Marfurt, 2008; Iacopini 206 

and Butler, 2011; Iacopini et al., 2012; McArdle et al., 2014; Botter et al., 2014; Hale, 2013 for a review; Marfurt and Alves, 207 

2015; Forte et al., 2016) and, more recently, also in other subsurface imaging techniques like Ground Penetrating Radar (e.g. 208 

McClymont et al., 2008; Forte et al., 2012; Ercoli et al., 2015, Lima et al., 2018). In this work, we have tested several post-209 

stack attributes on three 2D vintage seismic lines (original seismic data in the supplementary material in Fig.1s). We started 210 

our analysis by using first the well-known and widely used attributes like the instantaneous amplitude, phase, frequency, and 211 

their combinations. We also used composite multi-attribute displays (i.e. simultaneous overlay and display of different 212 

attributes e.g. primarily phase, frequency, envelope; Chopra and Marfurt, 2005; Chopra and Marfurt, 2011). Later on, we 213 

have also tested other attributes like coherency and similarity, which are generally more efficient on 3D volumes. These did 214 

not result in positive outcomes, due to the limited vertical and lateral resolution of our legacy data.  Among the tested 215 

attributes, we selected three ones that resulted in the best images (provided in Figs. s2, s3 and s4 of the supplementary 216 

material, without any line drawing or labels), aiding the detection of peculiar seismic signatures related to the regional 217 

seismogenic layers and fault zones. The attributes, computed using OdT software, are:  218 

 219 

“Energy” (EN): one of the RMS amplitude-based attributes, it is defined as the ratio between the squared sum of 220 

the samples amplitude values in a specified time-gate and the number of samples in the gate (Taner, 1979, 221 

Gersztenkorn & Marfurt, 1999, Chopra & Marfurt, 2005, Chopra & Marfurt, 2007, for a review of formulas see 222 

Appendix A in Forte et al., 2012). The Energy measures the reflectivity in a specified time-gate, so the higher the 223 

Energy, the higher is the reflection amplitude. In comparison to the original seismic amplitude, it is independent of 224 

the polarity of the seismic data being always positive, and in turn preventing the zero-crossing problems of the 225 

seismic amplitude (Forte et al., 2012, Ercoli et al., 2015, Lima et al., 2018, Zhao et al., 2018). This attribute is 226 

useful to emphasize the most reflective zones (e.g. characterization of acoustic properties of rocks). It may also 227 

enhance sharp lateral variations in seismic reflectors, highlighting discontinuities like fractures and faults. In this 228 
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work, we decided to use a 20 ms time window (i.e. close to the average wavelet length), obtaining considerable 229 

improvements in the visualization of higher acoustic impedance contrasts. 230 

“Energy gradient” (EG): it is the first derivative of the energy with respect to time (or depth). The algorithm 231 

calculates the derivative in moving windows and returns the variation of the calculated energy as a function of time 232 

or depth (Chopra & Marfurt, 2007; Forte et al., 2012). It is a simple and robust attribute, also useful for a detailed 233 

semi-automatic mapping of horizons with a relative low level of subjectivity. The attribute acts as an edge detection 234 

tool. It is effective in the mapping of the reflection patterns as well as the continuity of both steep discontinuities 235 

like faults and fractures, and channels, particularly in slices of 3D data (Chopra & Marfurt, 2007). In this work, we 236 

have selected for a time window of 20 ms. We have obtained considerable improvements in the visualization not 237 

only of the strong acoustic impedance reflectors, but particularly in the faults signature imaged in the shallowest 238 

part of the seismic sections.  239 

Pseudo-relief (PR): it is obtained in two steps: the energy attribute is first computed in a short time window, then 240 

followed by the Hilbert transform (phase rotation of -90 degrees). The Pseudo-relief is considered very useful in 2D 241 

seismic interpretation to generate “outcrop-like” images. It allows an easier detection of both faults and horizons 242 

(Bulhões, 1999; Barnes et al., 2011; Vernengo et al. 2017, Lima et al., 2018). In this work, considerable 243 

improvements have been obtained by computing the Pseudo-relief using a window length of 20 ms. In comparison 244 

to the standard amplitude image, it highlights the reflection patterns and thus the continuity/discontinuity of 245 

reflectors, enhancing steep discontinuities and fault zones. 246 

5 Results 247 

The Figs. 2, 3 and 4 show the comparison between the original seismic lines in amplitude and, the images obtained after the 248 

attribute analysis, revealing significant improvements in the visualization and interpretability of the geophysical features. In 249 

the profiles NOR01, CAS01 and NOR02 we focus our analysis on three types of geophysical features highlighted by the 250 

attributes: sub-horizontal deep reflectors, low-angle and high-angle discontinuities. The main faults known at the surface 251 

(Fig.1) have been also plotted on top of each seismic line.  252 

In the original seismic line NOR01 (Fig. 2a), the overall low S/N ratio hampers the detection of clear and continuous 253 

reflectors. At ca. 1 s, a horizontal processing artefact is visible (label A, yellow dots), possibly related to a windowed filter. 254 

The most prominent sub-horizontal reflections (labelled H) are located in the central portion between 2-3 s (TWT) (strong 255 

reflectors in the black box i). Shallower and less continuous reflectors are also visible in the eastern side of the profile, 256 

beneath the Nb (black box ii). The EN attribute (Fig. 2b) enhances the reflectivity contrast, better focusing the high-257 

amplitude, gently W-dipping reflector H (blue arrows) and also outlining its lateral extension. In this image most of the 258 

reflected energy is concentrated on its top, at ca. 2.5 s: it is readily apparent that H separates two seismic facies, with higher 259 

(top) and lower (bottom) amplitude response, respectively. The EG and PR attributes of NOR01 (Figs. 2c, 2d) better display 260 

the geometry of horizon H, characterized by a continuous, ca. 8 km long, package of reflectors (ca. 200 ms thick) having 261 
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common characteristics in terms of reflection strength and period. In the eastern part of the profile, below the Nb, the EG and 262 

PR attributes also enhance two major opposite-dipping high-angle geophysical features (red arrows in fig. 2c and 2d), 263 

crossing and disrupting the shallower reflectors. The W-dipping lineament propagates down to ca. 2.5 s, intercepting the 264 

eastern termination of the reflector H. The two discontinuities define a relatively transparent, shallow seismic facies, 265 

corresponding to the area where the Nb outcrops. In the same sector, the reflectors are pervasively disrupted by many other, 266 

minor discontinuities.  267 

The original seismic reflection line CAS01 (Fig. 3a) displays a generalized high-frequency noise content. As in NOR01, a 268 

shallow processing artefact (A, yellow dots) is visible and possibly related to the application of a windowed filter. 269 

Fragmented packages of high-amplitude reflectors (H) are visible at the same time interval observed in NOR01 (ca. 2.5 s), in 270 

both the western (black box i, in Fig. 3a) and, more discontinuous, in eastern part of the line (black box ii, in Fig. 3a). The 271 

EN attribute (Fig. 3b) emphasizes the presence of the H reflector, better focusing its reflectivity (blue arrows). Both the EG 272 

and PR attributes (Figs. 3c and 3d) further help to delineate the reflector H. The steeper discontinuities have been analysed 273 

mainly in the western part of the profile, closer to the 2016-2017 seismically active area. A major high-angle, east-dipping 274 

discontinuity has been traced at about 13 km (alignment of red arrows in Fig. 3c and 3d). 275 

The original seismic line NOR02 (Fig. 4a), displays geophysical features similar to the ones detected in NOR01 and CAS01. 276 

This seismic profile shows a generalized poor/limited lateral continuity of the reflectors, with the exception of the eastern 277 

side. In this sector, a set of west-dipping coherent reflections can be recognized: the higher S/N ratio correlates with the 278 

outcropping turbidites of the Laga sequence, which are known to favour the seismic energy penetration and reflection, in 279 

comparison to carbonates (e.g. Bally et al., 1986; Barchi et al., 1998).  The prominent reflection H, gently east-dipping and 280 

relatively continuous for more than 8 km (black box in Fig 4a), is located in the centre of the line, at greater depth (3.2–3.5 s 281 

TWT), respect to the previously described NOR01 and CAS01 profiles. As in the previous cases, the EN attribute (Fig. 4b) 282 

effectively focuses the horizons reflectivity, emphasising the high amplitude of the reflector H (blue arrows). The EG and PR 283 

attributes (Figs. 4c and 4d) improve the overall visualization of the reflection patterns, aiding the detection of the low-angle 284 

and high-angle discontinuities. A major westward low-angle discontinuity T (green dots in Figs.4c and 4d) crosses the entire 285 

profile, descending from ca. 2 s (East) to ca. 4 s (West), where it intersects the reflector H.  Several high-angle 286 

discontinuities have been traced along the section, marked by the alignments of red arrows in Figs. 4c and 4d.  The most 287 

relevant alignments have been recognised beneath the two major Quaternary basins (i.e. Nb and CNb) crossed by the profile: 288 

in both cases, major W-dipping alignments can be traced from the near surface, where they correspond to the eastern border 289 

of the above mentioned basins, down to a depth of ca. 4 s TWT. Other discontinuities, W and E dipping, have been traced in 290 

the hanging-wall of these two major alignments.  In the seismic line sector bounded by these features, many secondary 291 

(minor) discontinuities pervasively cross-cut the set of reflectors, producing a densely fragmented pattern. Unfortunately, the 292 

limited resolution and data quality in the deeper part of the section hampers a univocal interpretation of the cross-cutting 293 

relationships between the low-angle discontinuity T and the W-dipping high-angle discontinuity: two alternative 294 

interpretations are possible, that will be discussed in detail in the next paragraph 6. 295 
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The global improvement in the dataset interpretability can be better appreciated in a 3D visualization of the seismic 296 

attributes, also using multi-attribute displays (Fig. 5). Such images reveal the deep geometry of the main reflectors and the 297 

location of the geophysical discontinuities, later interpreted in the light of known and debated tectonic structures on the study 298 

area. In Fig. 5a we report a 3D perspective of the seismic line NOR02, after combining in transparency the EN attribute with 299 

the PR attribute (EN+PR). The reflectors characteristics and a pattern of discontinuities are clearly visible at different levels 300 

of detail, and the link with the faults at surface is again proposed (red segments on the top). The two boxes (blue and black 301 

colours in Fig.5a, respectively) point out the most representative seismic facies described above. The Fig. 5b and 5c display 302 

a comparison of the signature of reflector H in the standard amplitude image line (SA) (Fig. 5b) and, in a version including 303 

PR attribute in transparency with SA. Again, in the inserts Figs. 5d and 5e, an analogous data comparison shows the scarce 304 

detectability of the dense pattern of steep discontinuities in the original seismic profile. The Fig.5e displays the enhancement 305 

obtained by plotting the PR attribute plus SA in transparency; this image greatly improves the visualization of the 306 

fragmentation of the reflectors. 307 

An analogous 3D multi-display of attributes EN and PR is proposed in Fig. 6a for the seismic line NOR01. The comparison 308 

between the original line (blue box in Fig. 6b) and the EN+PR (Fig. 6c) shows the improved and peculiar signature of the 309 

strong reflector H. The black box again reports the original plot vs. the PR+SA, which clearly boost the visualization of the 310 

high-angle discontinuities. 311 

6 Data Interpretation: new elements and insights on the deep geological structure of the study area. 312 

The comparison between the original seismic data and the images obtained by the attribute analysis ensures an easier and 313 

more detailed interpretation of the geophysical features, allowing to extend the surface geological data in depth. The 314 

geological interpretation of these features requires a thoughtful comparison and, a calibration with other data available in the 315 

area, e.g. geological and structural maps, co-seismic ruptures, high-resolution topography and main shocks hypocentres. The 316 

seismic attributes provide a multiple view of the original data through the enhancement of different physical quantities. 317 

Therefore, peculiar geophysical signatures have been detected delineating interpretative criteria (e.g. high amplitude 318 

reflectors, phase discontinuities, fragmented reflectors patterns etc…). Such geophysical features, after a first order 319 

interpretation, correlate well with the main outcropping geologic structures. Using the same interpretation criteria, other 320 

surface-uncorrelated discontinuities, poorly visible in the original images (amplitude lines), are apparent at a more detailed 321 

scale after the attribute analysis. In addition, deep reflectors showing a common signature have also been recognized, 322 

revealing a regional character. The geological meaning and the relation of such geophysical features with the surface 323 

geology and, with the hypocentre location of the main earthquakes are hereafter discussed. 324 

Fig. 7 reports a global pseudo-3D view of the study region summarizing all the data analysed across the area, together with 325 

all the faults mapped at surface (Fig. 7a) and the location of Mw 6.5 mainshock (30th October 2016). The two seismic 326 

images in Figs. 7b and 7c have been obtained using again a multi-attributes visualization, overlapping the PR and EN 327 

attributes in transparency plots with the original seismic lines NOR01 and NOR02, following the same procedure used for 328 
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the images in Figs. 5 and 6. The Figs. 7d and 7e propose an interpretation of the geophysical features being associated to the 329 

faults highlighted after an accurate analysis of the discontinuities of attributes signatures, as shown in fig. s5. Regarding the 330 

deeper parts of the sections, reflector H (blue arrows and dashed line) highlighted in NOR01 (and in CAS01), presents a 331 

seismic character and an attribute signature compatible with the deeper reflector in NOR02 beneath CNb. This set of 332 

reflectors is interpreted as a high acoustic impedance contrast, possibly related to an important velocity inversion occurring 333 

between the Triassic Evaporites (anhydrites and dolostones, Vp ≈ 6 km/s, e.g. Trippetta et al., 2010) and the underlying 334 

acoustic Basement (metasedimentary rocks, Vp ≈ 5 km/s, sensu Bally et al., 1986). Comparable deep and prominent 335 

reflectors were detected also in other legacy data across adjacent regions of the Umbria-Marche Apennines (e.g. Barchi et 336 

al., 1998; Mirabella et al., 2008). This fact confirms its regional importance, particularly because it represents a lithological 337 

control indicating a seismicity cutoff (Chiaraluce et al., 2017; Mirabella et al., 2008; Porreca et al., 2018; Mancinelli et al., 338 

2019).  339 

As already pointed out in the previous figures, the continuity of the deep reflector H is interrupted in the western edge by the 340 

low-angle west-dipping discontinuity T crossing NOR02 (Fig. 7e), and not identified in the interpretation by Porreca et al. 341 

(2018). This deep discontinuity can be interpreted as a regional thrust emerging at the footwall of the MSt, in an easternmost 342 

sector of the region, and corresponding to the Acquasanta thrust (Centamore et al., 1993).  343 

In NOR01, the most visible high-angle seismic discontinuity is marked by an E-dipping fault, bordering the western area of 344 

Nb (Fig. 7d). The location and geometry of this fault, whose presence is still debated in literature, perfectly correlates with 345 

its supposed position at surface (Blumetti et al., 1993; Pizzi et al., 2002; Galadini et al., 2018; Galli et al., 2018). Therefore, 346 

it may represent the first clear geophysical evidence at depth of the antithetic normal fault of Norcia (aNf), suggested by 347 

morphological studies (Blumetti et al., 1990) and paleoseismological records (Borre et al., 2003) and, belonging to a 348 

conjugate tectonic system (Brozzetti & Lavecchia, 1994; Lavecchia et al., 1994). 349 

The other principal structure is a synthetic (W-dipping) high-angle, normal fault bordering the eastern flank of Nb 350 

(“Nottoria-Preci fault” – Nf, Calamita et al., 1982; Blumetti et al., 1993; Calamita & Pizzi, 1994). The Nf in NOR02 is 351 

marked by a downward propagation of a steep alignment (continuous red line in Fig. 7d). This area is also fragmented by 352 

several minor strands parallel to the main faults (dashed lines in Fig. 7d). In particular, several west-dipping minor faults are 353 

observed in Fig. s5a, where the shallower high-amplitude reflectors of the PR attribute are clearly disrupted. 354 

Another discontinuity interpretable as a deep fault is visible slightly eastward, close to the mainshock hypocentral location 355 

(Fig. 7e). This E-dipping discontinuity, emphasized by the attribute analysis, does not reach the surface. The presence of this 356 

blind fault has been suggested by several authors in relation to the occurrence of an aftershock (Mw 5.4), which “ruptured a 357 

buried antithetic normal fault on eastern side of Nb, parallel to the western bounding fault of CNb” (Chiaraluce et al., 2017, 358 

Porreca et al., 2018 and Improta et al., 2019). 359 

The central portion of NOR02, corresponding to CNb, shows a peculiar reflection fabric, dominated by high-angle 360 

discontinuities, it is interpreted as two opposite-dipping normal faults bordering the basin, correlating with their positions 361 

mapped at the surface (cfr. Pierantoni et al., 2013). The main fault is here represented by the W-dipping Vf, reactivated 362 
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during the 2016 earthquake (e.g. Villani et al., 2018a) which can be traced from its surface expression downward to 363 

hypocentre location. Parallel to the Vf, several high-angle seismic discontinuities representing minor normal faults cross-cut 364 

the gently W-dipping reflectors (Fig. 7e, further details in Fig. s5).  365 

Analogous considerations can be extended to a multitude of E-dipping steep discontinuities at the westward side of CNb.  366 

These may represent the evidence of an antithetic fault (aVf), and several minor fault strands characterized by high-angle dip 367 

at shallow depths (Villani et al., 2018b). Such a fault appears connected at about 2-3 s to the W-dipping master Vf, 368 

producing a conjugate system geometry like observed at Nb (Fig. 8e). At depth of 3.2 s, Vf fault clearly interrupts the 369 

continuity of the top basement reflector H, whilst the relationships with the Acquasanta thrust (low-angle discontinuity T) is 370 

more ambiguous.  Two alternative interpretations can be proposed, schematically represented in Fig. 8. In Fig. 8a, we 371 

propose a model in which Vf merges into the deep Acquasanta thrust, suggesting a negative inversion, as a mechanism 372 

proposed by other authors (e.g. Calamita and Pizzi, 1994; Pizzi et al., 2017; Scognamiglio et al., 2018). In Fig. 8b, Vf cuts 373 

and displaces the Acquasanta thrust, following a steeper trajectory (ramp) (Lavecchia et al., 1994 and Porreca et al., 2018). 374 

For both Norcia and Castelluccio di Norcia basins, the interpreted data suggest two slightly asymmetric fault systems. These 375 

are due to conjugate sets of seismogenic master faults (Ramsay & Huber, 1987) producing a “basin-and-range” morphology 376 

(Serva at al., 2002), progressively lowering the topography from east to west, and producing two major topographic steps, 377 

corresponding to the CNb and Nb, respectively. Such fault systems control the evolution of the continental basins, and are 378 

associated with several complex sets of secondary strands building up complex fault zones. Such fault strands are able to 379 

produce surface ruptures in future earthquakes, as occurred in the 2016-2017 seismic swarm, and would require further 380 

studies through high-resolution geophysical investigations (e.g. Bohm et al., 2011 and Villani et al. 2019).  381 

The results of the seismic interpretation proposed in this work, supported by the attribute analysis, suggests that such 382 

synthetic and antithetic tectonic structures at the Norcia and Castelluccio di Norcia basins cannot be actually simplified as a 383 

unique fault plane, but they could be interpreted as complex and fractured fault zones, as conceived by Ferrario and Livio 384 

(2018) as “distributed faulting and rupture zones”.  385 

Conclusions  386 

Taking into account the important role that seismic attributes play in the O&G industry, their usage might be of high interest 387 

and impact also for improving the geological interpretation of vintage seismic data, aimed to other scientific objectives.  388 

When applied to seismically active areas, this analysis may contribute to constrain the buried geological setting. Legacy data 389 

powered by seismic attributes, when combined with seismological data (i.e. focal mechanisms and accurate earthquake 390 

locations), may have high potential impact for the identification and characterization of possible seismogenic structures 391 

(sources) and, eventually on earthquakes hazard assessment. This contribution presents one of the first case studies in which 392 

a seismic attribute analysis is used for seismotectonic purposes, specifically on legacy seismic reflection data, in this case 393 

collected more than 30 years ago in Central Italy. Such industrial data, nowadays irreproducible in regions where the seismic 394 
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exploration is forbidden or difficult to acquire, represent, despite the limited/poor quality, a unique source of information on 395 

the geological setting at depth.   396 

This contribution reveals that the use of seismic attributes can improve the interpretation for the subsurface assessment and 397 

structural characterization. Certainly, the overall low quality of the data sets did neither allow to extract rock petrophysical 398 

parameters, nor more quantitative information. However, the attributes aid the seismic interpretation to better display the 399 

reflection patterns of interest and provided new and original details on a complex tectonic region in Central Italy. Our 400 

attribute analysis considerably improved the overall interpretability of the vintage seismic lines crossing the epicentral area 401 

of the 2016-2017 Norcia-Amatrice seismic sequence. In particular, we detected peculiar seismic signatures of a deep horizon 402 

of regional importance, corresponding, most probably, to the base of the seismogenic layer, and to the location and geometry 403 

of the complex active fault zones. Those consists of several secondary synthetic and antithetic splays in two Quaternary 404 

basins. These fabrics correlate with the mapped main structures at the surface. But our interpretation also reveals the 405 

existence of several faults with no clear surface outcrop, issue currently much debated in the literature. The analysis and 406 

integration of the seismic attributes allowed the determination of the deep continuation of the (known and supposed) faults 407 

and, the recently mapped co-seismic ruptures at surface, providing a pseudo-3D picture of the buried structural setting of the 408 

area. The seismic attributes may help to reduce the gap between the surface geology and deep seismological data, also 409 

revealing a high structural complexity at different scales, which cannot generally be detected only by using traditional 410 

interpretation techniques. This approach has shown the potential of the attribute analysis, that even when applied on 2D 411 

vintage seismic lines, may significantly increase the data value. For all these reasons, we strongly encourage its application 412 

for seismotectonic research, aimed to provide new information and additional constraints across seismically active regions 413 

around the world, thus contributing to hazard analysis. 414 
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Table 1 762 

Parameters NOR01 NOR02 CAS01 

Source Vibroseis Explosive  Vibroseis  

Length (km) 14 20 16 

Number of 

traces 

938 825 1069 

Samples/trace 1600 1750 1600 

Time window 

(ms) 

6400 7000 6400 

Sampling 

interval (ms) 

4 4 4 

Trace 

interval (m) 

15 25 15 

Mean 

Spectral 

amplitude 

(dB)    

 763 

  764 
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Figures and Tables captions: 765 

Figure 1: Simplified geological map of the study area (modified after Porreca et al., 2018), showing the location of the 766 

2D seismic reflection lines. The location of the 2016-2017 mainshock are indicated by beachballs including the 767 

earthquakes magnitude. The surface ruptures and the known master faults are also highlighted. Norcia basin (Nb), 768 

Castelluccio di Norcia basin (CNb), Monti Sibillini Thrust (MSt), Mt. Vettore fault (Vf), antithetic (aVf), Norcia fault 769 

(Nf), antithetic Norcia fault (aNf). 770 

Figure 2: Conventional stack image of the NOR01 transect; a) image generated by a conventional seismic reflection 771 

amplitude line (no attributes applied). Standard amplitude image refers to this conventional processing flow. The top 772 

inset depicts the main faults mapped at surface. “A” underlines a processing artefact. Boxes i) and ii) indicate the 773 

clearest reflectors; b) Energy attribute enhancing a strong reflectivity contrasts (H); c) Energy Gradient, improving 774 

the detection of dipping alignments and continuity of reflectors; d) Pseudo-Relief attribute that enhances the 775 

reflection patterns cross-cut by steep discontinuities. Nf Norcia fault, aNf antithetic Norcia fault at surface, yellow 776 

dots = A, blue arrows = H, red arrows = indication of the main lineaments and areas with major discontinuities, 777 

features are highlighted by the attributes. 778 

Figure 3: Conventional stack image of CAS01: a) standard reflection amplitude image line. The top insert emphasizes 779 

the main faults mapped at surface. The label A indicates a processing artefact. Boxes i) and ii) indicate the main 780 

visible reflectors; b) Energy attribute image c) Energy Gradient attribute image; d) Pseudo-Relief image, showing the 781 

strong regional reflector H. A high-angle discontinuity on the western margin corresponds with the southern 782 

extension of aNf inferred at surface.  aNf antithetic Norcia fault map at the surface, yellow dots = A, blue arrows = H, 783 

red arrows = emphasize the main lineaments and main signal discontinuities enhanced by the attribute’s analysis. 784 

Figure 4: Time migrated image of NOR02 profile; a) standard reflection amplitude image of the profile., The inset  785 

indicates the main faults mapped at surface; Box i) points out the most visible reflector b) Energy attribute image 786 

displaying the reflector H and a possible low angle discontinuity (T); c) Energy Gradient attribute image, showing the 787 

main lineaments detected; d) Pseudo-Relief attribute image, improving the reflectors continuity/discontinuity and the 788 

display of the areas with main signal discontinuities (red polygon) after the attribute computation. Nf Norcia fault, 789 

aNf antithetic Norcia fault; Vf Mt. Vettore fault, aVf antithetic Mt. Vettore fault at surface, yellow dots = A, blue 790 

arrows = H, green dots = T, red arrows = indication of the main lineaments  791 

Figure 5: Composite multi-attribute display of NOR02, displaying the position of the main faults at surface in relation 792 

to their deep seismic attribute signature; a) Energy+Pseudo-Relief attributes, the seismic facies in the blue box is 793 

compared with the original amplitude image of the transect (b) and Energy+Pseudo-Relief (c) for comparison; the 794 

same plot for the black box is reported in figures d) and e) (original line and Pseudo-Relief+Standard Amplitude, 795 

respectively). 796 

Figure 6: Composite multi-attribute rendering of NOR01, displaying the position of the main faults at surface in 797 

relation to their deep seismic attribute signature. a) Energy+Pseudo-Relief attributes, the seismic facie in the blue box 798 

shows a strong set of deep reflectors compared with the original amplitude image of the seismic profile. b) and 799 

Energy+Pseudo-Relief c). An analogous plot of the black box reported in figures d) and e) the original amplitude 800 

image of the line and the combination Pseudo-Relief+Standard Amplitude. 801 

Figure 7: Integration of the surface and subsurface data; a) 3D-view (DTM by Tarquini et al., 2012) of a W-E section 802 

crossing the Norcia and Castelluccio di Norcia basins (Nb and CNb), and the main-shock locations (ISIDe working 803 

group, 2016). Surface and deep data allow to correlate the master faults and coseismic ruptures mapped at the 804 

surface. The composite multi-attribute display of NOR01 (b) and NOR02 (c), is obtained overlapping the reflection 805 

amplitude in a transparency mode with the Pseudo-Relief and Energy attributes (red palette). The black boxes 806 

centred on Nb and CNb have been magnified. An important improvement of the subsurface images provides 807 

additional details on the seismogenic fault zones: the sketches d) and e) show an interpretation reporting two 808 

conjugate basins, showing master faults along the borders and several minor synthetic and antithetic splays. 809 
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Figure 8: The figure proposes two alternative interpretations of the relation between the normal Vf, the deep 810 

Acquasanta thrust (T) and, the Top- Basement reflector (H). Fig. 8a reports a model in which Vf merges into the deep 811 

Acquasanta thrust, suggesting a negative inversion, similar to the models proposed by some authors (e.g. Calamita 812 

and Pizzi, 1994; Pizzi et al., 2017 Scognamiglio et al., 2018). In Fig. 8b, Vf cuts and displaces the Acquasanta thrust, 813 

following a steeper trajectory (ramp) as proposed by other researchers (Lavecchia et al., 1994 and Porreca et al., 814 

2018; 2020). 815 

--- 816 

Table 1: List of some parameters extracted from SEG-Y headers and, the three mean frequency spectra of the three 817 

seismic lines. An approximate vertical resolution equal to 75 m has been estimated using a v=6 km/s. 818 

--- 819 

Fig.s1: Figure summarizing the three original seismic reflection profiles in standard amplitude images are used in 820 

this work. 821 

Fig.s2: Figure 2 reporting the computed seismic attributes without any line drawing and labels. 822 

Fig.s3: Figure 3 reporting the computed seismic attributes without any line drawing and labels. 823 

Fig.s4: Figure 4 reporting the computed seismic attributes without any line drawing and labels. 824 

Fig.s5: The image is a magnified version of two portions of NOR01 and NOR02 profile, they are focused on the two 825 

basins of Norcia and Castelluccio di Norcia. This images  aim to better display the discontinuities enhanced by the 826 

Pseudo Relief; a) PR on the Nb and, the interpretation of the primary (continuous lines) and secondary faults (dashed 827 

lines); b) PR on the CNb and interpretation of the primary (continuous lines) and secondary (dashed lines) faults 828 

bordering the basin. The continuous red lines indicate the primary normal faults bounding Nb, while the dashed red 829 

segments compose a pattern of possible secondary splays within the basin. 830 


