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We would like to thank both reviewers for the very thoughtful and detailed comments, which have helped to improve our 

manuscript. Please find below a point-to-point reply to both comments. The review comments are in black, our answers in red 

and the changes in the manuscript in green. 

 

Topical Editor Review 5 

Thank you for the revision of your manuscript 'The effect of effective rock viscosity on 2D magmatic porosity waves'. I have 

now read the manuscript and the replies to the reviews and in my opinion all concerns have been satisfactorily addressed. I am 

therefore pleased to accept your manuscript for publication in Solid Earth. When uploading your final files, i do ask that you 

please use that opportunity for the following technical corrections: 

 10 

 

1. Line 52, '... may result in different 3D shapes': please add shapes of what phenomenon (channels?) 

“like elongated pockets, channels or porosity waves” has been added. 

 

2. Please add labels a), b) etc to Figures 2, 5, 6 and 7 15 

The labels have been added. 

 

3. Non-dimensional parameters are indicated with a prime '. Are viscosities in equations 22-25 non-dimensional or 

dimensional? 

No, the viscosities in these equations are dimensional. 20 

I added “dimensional” to the manuscript to make it clear. 

 

4. Please add whether viscosity on the y-axis of Figure 1 is non-dimensional or not (in the latter case, please add the unit) 

I added “Non-dimensional” to the label in this figure to make it clear. 

 25 

5. Figure 2a, please label the x and y axes 

The axes have been labelled. 

 

6. Figure 7, is the matrix velocity on the y-axis dimensional or non-dimensional? Does the factor 1e-4 apply only to panel b or 

also to panel a? 30 

The velocity is non-dimensional. The factor 1e-4 applied just to panel b. 

I added “Non-dimensional” to the label to make it clear. I changed the ticks in panel b so that I don’t need the factor 1e-4 

anymore. 
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7. If the reviews were useful, you may want to consider an acknowledgement to the reviewers 35 

Acknowledgement was added: 

We would like to thank the reviewers Guillaume Richard and Viktoriya Yarushina for their detailed and thoughtful reviews, 

which helped to improve the manuscript. 

 

 40 

Thank you for submitting your work to Solid Earth. 

 

Review 1: Guillaume Richard 

 

The authors of the manuscript have used numerical modeling to tackles the question of the rheology of a two-phase magmatic 45 

mush. The question they want to answer is fully in the scope of Solid Earth. They built on their previous study on the question 

(Schmeling et al, 2012) and go further by testing the effects of the viscosity laws they have proposed on the propagation of 

solitary porosity waves in a 2D setting. They can conclude that even considering "realistic" rheologies, the transport of melt 

through porosity waves is a likely process in magmatic mushes. They well describe their methods and assumptions and in this 

framework their results seems sounds. I believe nevertheless that the manuscript could be improved by clarifying some parts 50 

and adding more developments (see my listing below). 

121. The chosen boundary conditions are neglecting the effect of the propagating wave. I agree that as long as the wave is far 

from the boundary this effect can be neglected but the question is always “how far is far enough ?”. A more developed 

paragraph on this point would improve the trust of the readers on the model results. 

 55 

Several sizes for the ascending wave in the model have been tested and it could be shown that if the wave is small enough the 

effect of the boundaries on the ascending velocity and size of the wave can be neglected. In the dispersion relation figure one 

can see that as the wave approaches the upper boundary the dispersion relation slightly deviates from the supposed line. This 

is the error due to the boundary and is smaller than 0.5% as long as the distance to the boundary is smaller than 1.5 times the 

10%-radius of the wave. 60 

The mirror side boundaries have just a minor influence. As long as these boundaries are further away than 3 times the 10%-

radius the error in velocity should be less than 1%. In our models the waves have a distance of 7-10 times the 10%-radius 

which leads to an error smaller than 0.2%. 

 

New paragraph: “The influence of the boundaries on the ascending wave was investigated and found to 65 

be fairly small. In Fig. 3 one can see the effect of the upper boundary on the phase velocity. At the end, 

as the waves approach the upper boundary, the dispersion curves slightly deviate from the supposed line. 
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This error is smaller than 0.5% as long as the distance of the center of the wave to the upper boundary is 

greater than 1.5 times its 10%-radius. This radius is defined as the radius at which the porosity has 

decreased to 10% of the amplitude of the wave. For the side boundaries this distance has to be larger. For 70 

distances greater than 3 times the 10%-radius this error is smaller than 1%. In our models the waves have 

distances of 7-10 times the 10%-radius which corresponds to errors between 0.2 and 0.05%." 

Maybe the comment “The upper part of the wave in this example fits very well while the lower part is slightly wider.” (line 

228) is related to boundary affects. 

 75 

It is hard to find the exact effect of the boundaries on the shape of the wave but as the effect on the velocity is fairly small I 

would expect this effect to be in the same order of magnitude. Anyways, I would suspect that the boundaries would concentrate 

the wave as it limits the area. 

 

Nothing has been changed. 80 

 

Sometimes the author has used the term "phase velocity" and sometimes he has used "wave velocity/velocity of the wave" . 

This makes the discussion more difficult to follow and should be clarified. 

 

This is correct and will be changed. 85 

 

All “wave velocity/velocity of the wave” have been changed to “phase velocity”. 

 

Line 405. It is stated that the effect of the background porosity is different from result of 1D model (Richard et al, 2012): high 

background porosity inducing narrower waves instead of larger ones. I don’t understand this difference and I think that this 90 

manuscript would be the right place to investigate this "dimensional" effect. 

 

Yes, I understand your concern but we do not fully understand it either. We were kind of surprised when we observed this 

contrary behavior and to better understand this one would have to carry out 1-D models in our code to prove that it is really a 

“dimensional” effect. But as the scope of this paper is not the comparison of 1 to 2-D porosity waves and it would not be easy 95 

to set up 1-D models in our code in such a short time we further have to suspect that it is a dimensional effect. Anyways, to 

better understand what the effect of the different scalings is we will add Fig. 8 with the scaling of Richard et al. (2012) to the 

supplementary. 

 

The difference in scaling is explained, Fig. 8 but with the scaling used in Richard et al. (2012) was added to the supplementary.  100 
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Lines 415 & 418. Results are discussed in terms of matrix disaggregation threshold. As seen in Schmeling et al. (2012) the 

disaggregation porosity is strongly model dependent and thus should be used carefully. In the conclusion, I would suggest to 

give more details on the input parameters and on the actual value of the disaggregation porosity of the cases that are discussed. 

 105 

Yes, it would be better to give some more information on the viscosities of the cases discussed. This could also help to make 

it better understandable.   

 

The corresponding paragraph has been partly rephrased: 

"Even though the rheologies used are much weaker than the simplified analytical ones the effect on dispersion curves and 110 

wave shape are only moderate as long as the shear viscosity does not drop below about 80% of the intrinsic shear viscosity. 

This value corresponds to a melt fraction of 5 %, equivalent to 20% of the disaggregation value. At this porosity the bulk 

viscosity is approximately 5-7 times the intrinsic shear viscosity. In this case the phase velocity changes just slightly for all 

cases, while the waves broaden in the absence of tubes with increasing aspect ratio. If the shear viscosity has been decreased 

to 50% of the intrinsic viscosity, which corresponds to melt fractions of 12% equivalent to 50% of the disaggregation values 115 

and to small bulk viscosities in the order of the intrinsic shear viscosity, our models predict significant narrowing of the porosity 

waves and slowing down of the phase velocities. For such conditions a strong discrepancy in solitary wave behavior between 

our viscosity law and the analytical ones is found." 

 

 120 

 

Review 2: Viktoriya Yarushina 

Bulk and shear viscosities of the porous rocks are dynamic quantities that change in response to pressure, temperature and 

porosity variations. Various laws for porosity dependence of the bulk viscosity on porosity were proposed in the literature. 

Some of them differ significantly from each other and sometimes even show opposite trends [Yarushina and Podladchikov, 125 

2015] (Fig. 1). On the other hand, previous research showed that porosity waves change their properties significantly depending 

on the rock rheology and dependence of bulk viscosity on effective pressure [e.g., Connolly and Podladchikov, 2007; 

Yarushina et al., 2015]. Thus, it is very important to explore how various expressions for porosity dependence of effective 

viscosity influence propagation of porosity waves. Manuscript of Dohmen et al. addresses this issue. The authors investigate 

how porosity waves change their properties based on the effective viscosity relation previously proposed by the authors 130 

[Schmeling et al., 2012]. They compare results of 2D simulations with previously published 1D results for different types of 

the bulk viscosity with a conclusion that exact choice of porosity dependence of bulk and shear viscosities play a minor role 

on the speed of porosity wave propagation for the cases considered. The manuscript presents new concepts with interesting 

conclusions and, thus, deserves the publication in the journal. 

Some points for improvement: 135 
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- References in the manuscript do not sufficiently cover recent work and sometimes misleading. For example, lines 46-51 state 

“Within supersolidus source regions at low melt fractions melt is assumed to slowly percolate by two-phase porous flow within 

a deforming matrix (McKenzie, 1984; Schmeling, 2000; Bercovici et al., 2001), followed by melt accumulation within rising 

high porosity waves (Scott and Stevenson, 1984; Spiegelman, 1993, Wiggins and Spiegelman, 1995; Richard et al., 2012) or 

focusing into channels (Stevenson, 1989; Richardson, 1998) which have the potential to penetrate into subsolidus regions 140 

above to generate dykes.” However, the work of Scott and Stevenson [1984] does not present focusing of the melt into 

channels. It discusses linear stability analysis, which gives conditions at which flow instability may arise. Subsequently, it was 

shown by various authors that this instability may result in different 3D shapes including spherical blobs and sills [e.g. Wiggins 

and Spiegelman, 1995]. On the other hand, formation of 3D channels due to two-phase porous flow within a deforming matrix 

were demonstrated in [Omlin et al., 2018; Räss et al., 2014]. 145 

 

Yes, you are right. Thank you for the correction. The mentioned papers will be added and shortly discussed. 

 

The corresponding paragraph has been changed: 

“Within supersolidus source regions at low melt fractions melt is assumed to slowly percolate by two-phase porous flow within 150 

a deforming matrix (McKenzie, 1984; Schmeling, 2000; Bercovici et al., 2001), followed by melt accumulation within rising 

high porosity waves (Scott and Stevenson, 1984; Spiegelman, 1993, Wiggins and Spiegelman, 1995; Richard et al., 2012) or 

focusing into channels which can possibly penetrate into subsolidus regions. Thereby Stevenson (1989) did a linear stability 

analysis to find conditions at which flow instabilities may arise, which may result in different 3D shapes (Richardson, 1998; 

Wiggins and Spiegelman, 1995). Formation of 3D channels within a deforming matrix have been demonstrated in Omlin et al. 155 

(2018) or Räss et al. (2014).” 

 

- Similarly, lines 54 – 57 state that “So far most of the porosity wave model approaches used either equal bulk and shear 

viscosities, or simple laws in the form of [eqn (1) and (2)]”, where equations (1) and (2) represent simple porosity dependent 

quantities. This is an incorrect statement – most model approaches but not most recent ones. In fact, much more complicated 160 

relations for pressure-dependent weakening viscosity were considered in some recent works of [Omlin et al., 2018; Yarushina 

et al., 2015]. Moreover, Omlin et al. [2018] study the effect of the ratio of bulk and shear viscosities on the speed of wave 

propagation. The implication of this to magmatic systems can be important. 

 

The mentioned papers use a pressure dependent power law formulation for the viscosity but still use simplified laws for the 165 

porosity-dependence of the viscosities. But still, these papers should be mentioned and discussed. 

 

“There are also recent models that use pressure dependent weakening viscosities but still use the simplified equations 

mentioned above for the porosity dependence of the viscosity (Omlin et al., 2018; Yarushina et al., 2015).” was added. 
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 170 

The Equations (3) and (4). Do you really need to keep ρ f and ρ s here? 

 

Yes, you are right. We don’t need to keep the densities here and are just a relic due to the neglect of the source terms on the 

right-hand-side we usually solve. 

 175 

The densities in the equations (3) and (4) have been erased. 

 

- Lines 87 – 93. It is important to emphasize already here that P is the FLUID pressure and τ ij is the EFFECTIVE stress tensor 

to avoid possible confusion. In 2-phase system there are many different pressures and stress tensors, i.e. solid stress, total 

stress, effective stress. 180 

 

Yes, you are right. It would be better understandable to use these specifications. 

 

“effective viscous stress tensor of the matrix” and “fluid” was added. 

 185 

- Lines 94 – 101. As authors state earlier in line 84, solid and fluid densities are constant. Thus, it is a bit odd to read about 

linearized equation of state for fluid and mixture densities in lines 96-97. Mixture density is already linear with respect to 

porosity: ρ = ρ f φ + ρ s (1 − φ). The real meaning of equations (9) and (10) is introduction of new unknowns ρ 0 , which is 

nothing else than ρ s and c f . Introduction of these new parameters is unnecessary and complicates reading a paper, which is 

already mathematically heavy. 190 

 

Thank you for mentioning this. The rho_0 is just an artifact from the not isothermal models we usually solve. In this case, 

where the temperature has no influence on the density we do not need rho_0. We will change this part of the paper and adjust 

the equations. 

 195 

The equations of state for the densities were replaced by ρ = ρfφ + ρs(1 − φ). ρ0cfin now equation (10) has been replaced 

by (ρs − ρf). (ρ0 − ρ0f) in now equation (16) has been replaced by (ρs − ρf). ρs0 in now equation (17) has been changed to 

ρs. 

 

- Lines 102 – 103. Statement “Neglecting capillary pressure at the melt-solid interfaces, the pressure is equal in the melt phase 200 

and in the solid phase” is wrong. Difference between solid and fluid pressures does not stem from capillary forces. What 

authors might want to say here is that parameter P in equations (5) and (6) is the same and is the fluid pressure. This confusion 

may be avoided if authors will label variables as suggested before. 
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Yes, you are right. This sentence is wrong and will be corrected. 205 

 

The parameters have been labeled as shown before and the mentioned sentence has been changed to “The fluid pressure in 

equation (5) and (6) is the same and can be eliminated by merging the two equations.” 

 

- Equations (16), (17). Do you mean k 0 instead of k φ here? 210 

 

No, we mean  k φ at the reference state.  For the compaction length we use the specific permeability according to equation (7). 

There are many different ways to scale porosity waves and it is really confusing if you want to compare results. Some scalings 

even lead to opposite behaviors. Concerning the porosity dependency of the compaction length, there are many who use k_0 

(e.g. Connolly & Podladchikov, 2007; Yarushina et al., 2015; Sramek et al., 2007; Barcilon & Richter, 1986) but there are also 215 

many who use the porosity dependent one (Omlin et al., 2018; Richard et al., 2012; Cai & Bercovici, 2016; Rabinowicz et al., 

2002; Simpson & Spiegelman, 2011; Scott & Stevenson, 1986). We use the porosity dependent one like it was calculated by 

McKenzie (1984). 

 

We reformulate the scaling procedure in a more consistent way, emphasizing the reference state.   220 

 

- Lines 188-189. Unclear sentence. Please, rephrase. 

 

The sentence has been changed to “For the model we use a square box (1x1), which is initially partially molten to a certain 

degree, the background porosity. We place an initial porosity anomaly with a higher porosity centered at x_0=0.5 and z_0=0.2 225 

from which a porosity wave will develop.” 

 

- Line 196 – 198. “They show that after a short transient time the wave velocity and amplitude of the evolved porosity wave 

approach constant values in the limit of infinite resolution for all viscosity laws used.” You do not have infinite resolution, 

please rephrase. 230 

 

The meaning of this sentence is that if we would decrease dx and dz further, the change in amplitude and velocity would 

converge nearer to 0 and would finally reach 0 in the case of infinite small dx and dz. The sentence will be rephrased. 

 

“in the limit of infinite resolution” was changed to “for very high resolutions”. 235 
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- Lines 236-237. “In Fig. 3 the dispersion curves of a model with a larger initial width than the resulting solitary wave. . .” 

Initial width of what? Please, be clear. 

 

The initial width of the gaussian bell-shaped starting wave. The sentence will be rephrased. 240 

 

The sentence was rephrased to 

“In Fig. 3 the dispersion curves of a model with a starting wave width which is initially larger than the resulting solitary wave 

…” 

 245 

- Lines 246-248. Please, explain new variable m. Reading of the paper will be significantly easier if you would provide 

expressions for the bulk viscosity that was used for comparison with your simulations. 

 

Yes, you are right. m should have been already in equation (2) but it’s missing and will be added. 

 250 

m has been added to equation (2) and is now ηb = ηs0C
(1−φ)

φm  and an explanation has been added: "and m=0 for equal shear 

and bulk viscosities or m=1 otherwise". 

 

- Section 3.2. For each values of parameters that you discuss, it would be nice to see how far different bulk viscosities lie from 

each other. 255 

 

We don’t think that we learn much from plotting or mentioning the bulk viscosity for every model. Only for the models with 

different background porosity, i.e. large absolute porosities,  we see an interesting correlation between phase velocities and 

bulk viscosities. We now mention this: 

  260 

"If the shear viscosity has been decreased to 50% of the intrinsic viscosity, which corresponds to melt fractions of 12% 

equivalent to 50% of the disaggregation values and to small bulk viscosities in the order of the intrinsic shear viscosity, our 

models predict significant narrowing of the porosity waves and slowing down of the phase velocities".     

 

- Lines 267 – 275. Authors compare their numerical solution with published analytical solution obtained in a small porosity 265 

limit and conclude that there is a deviation from analytical solution at larger values of amplitude. There could be various 

reasons for this deviation, including numerical error and limitations of the analytical solution as porosity grows higher. To rule 

out the second reason for discrepancy, it would be useful to compare results of numerical simulations, which are free of the 

assumption of small porosity, with full analytical solutions such as in [eqn (38), Yarushina et al., 2015]. 
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 270 

We compared the 1-D solution of Simpson and Spiegelman (2011) with the full solution of Yarushina et al. (2015) and could 

observe a decreasing slope for the full solution compared to the simplified one, wich is quite similar to what we observe in our 

2-D models. 

 

“Comparison of the simplified semi-analytical 1-D solution of Simpson and Spiegelman (2011) with the full analytical 1-D 275 

solution of Yarushina et al. (2015) shows that for low porosities these solutions fit very well together. For higher porosities 

the full solution becomes slower than the simplified one. Tentatively transferring this result to 2D our decrease in the slope 

can probably be explained by the low porosity limitation of the Simpson and Spiegelman (2011) solution which overestimates 

the velocity at high porosities” was added. 

 280 

- Authors conclude that agreement with analytical solution is reasonable. However, comparison was made only for moderate 

porosity waves with amplitudes below 14, where porosity within the channel reached only 7%. Waves with higher amplitude, 

which bring more significant amount of melt, will deviate much stronger. The melt fraction in the mantle maybe mostly below 

7%. However, for results to have a more general application, the investigated porosity range could have been extended. 

 285 

Perhaps the reviewer has missed the section in which we discuss the models with higher porosity, which significantly deviate 

from the analytical viscosity law.  It was kind of hidden…We now emphasize this point by an additional statement, explicitly 

mention the higher porosities, and reorganize the conclusions.   

 

New sentence: "Thus, the half widths and phase velocities show a significant difference to the analytical viscosity law (Fig. 290 

8)."  

Conclusion reorganized: "In contrast, for higher melt fractions of about 12%, equivalent to 50% of the disaggregation values, 

the shear viscosity decreases to 50% of the intrinsic viscosity, and the bulk viscosities is of the order of the intrinsic shear 

viscosity. Then, our models predict significant narrowing of the porosity waves and slowing down of the phase velocities. For 

such conditions a strong discrepancy in solitary wave behavior between our viscosity law and the analytical ones is found." 295 

 

- Lines 403-406. “This can be explained by the different scaling which was used by Richard et al. (2012). If the same scaling 

is used, we get the same behavior. In contrast to Richard et al. (2012) we observe a narrowing effect of the waves for larger 

background porosities, which cannot be explained by scaling. As Richard et al. (2012) used a 1-D model”. Richard et al. used 

different expression for compaction length that contained porosity and thus, comparison, of course should take this into 300 

account. Please, be a bit more specific on what you mean by “different scaling”. It would be useful to show some illustration 

to what kind of differences you see between your solution and previous result of Richard et al. 
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Yes, we clarify what we mean with “different scaling” but the difference is not the porosity dependence as we also use a 

porosity dependent compaction length but Richard et al. (2012) uses just the shear viscosity and not the bulk viscosity in his 305 

compaction length. 

 

Additional sentence:“They used just the shear viscosity to calculate the compaction length and not the sum of shear and bulk 

viscosity. ”. Fig. 8 but with the Richard et al. (2012) was added to the supplementary. 

 310 

- Line 415. “exceed about 20% of the disaggregation values.” It is better to use exact values here. Your disaggregation values 

are internal model parameter. 

 

The disaggregation values are dependent on the used viscosity law and vary between 10 and 40%. 20% of these porosities 

would be therefore between 2 and 8%. 315 

 

The corresponding paragraph has been rephrased: 

“Even though the rheologies used are much weaker than the simplified analytical ones the effect on dispersion curves and 

wave shape are only moderate as long as the shear viscosity does not drop below about 80% of the intrinsic shear viscosity. 

This value corresponds to a melt fraction of 5 %, equivalent to 20% of the disaggregation value. At this porosity the bulk 320 

viscosity is approximately 5-7 times the intrinsic shear viscosity. In this case the phase velocity changes just slightly for all 

cases, while the waves broaden in the absence of tubes with increasing aspect ratio.  

   In contrast, for higher melt fractions of about 12%, equivalent to 50% of the disaggregation values, the shear viscosity 

decreases to 50% of the intrinsic viscosity, and the bulk viscosities is of the order of the intrinsic shear viscosity. Then, our 

models predict significant narrowing of the porosity waves and slowing down of the phase velocities. For such conditions a 325 

strong discrepancy in solitary wave behavior between our viscosity law and the analytical ones is found.  “ 
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Abstract. In source regions of magmatic systems the temperature is above solidus and melt ascent is assumed to occur 

predominantly by two-phase flow which includes a fluid phase (melt) and a porous deformable matrix. Since McKenzie (1984) 370 

introduced his equations for two-phase flow, numerous solutions have been studied one of which predicts the emergence of 

solitary porosity waves. By now most analytical and numerical solutions for these waves used strongly simplified models for 

the shear- and bulk viscosity of the matrix, significantly overestimating the viscosity or completely neglecting the porosity-

dependence of the bulk viscosity. Schmeling et al. (2012) suggested viscosity laws in which the viscosity decreases very 

rapidly for small melt fractions. They are incorporated into a 2D finite difference mantle convection code with two-phase flow 375 

(FDCON) to study the ascent of solitary porosity waves. The models show that, starting with a Gaussian shaped wave, they 

rapidly evolve into a solitary wave with similar shape and a certain amplitude. Despite the strongly weaker rheologies 

compared to previous viscosity laws the effect on dispersion curves and wave shape are only moderate as long as the 

background porosity is fairly small. The models are still in good agreement with semi-analytic solutions which neglect the 

shear stress term in the melt segregation equation. However, for higher background porosities and wave amplitudes associated 380 

with a viscosity decrease of 50% or more, the phase velocity and the width of the waves are significantly decreased. Our 

models show that melt ascent by solitary waves is still a viable mechanism even for more realistic matrix viscosities. 

1 Introduction 

Magmatic phenomena such as volcanic eruptions on the earth’s surface show, among others, that melt is able to ascend from 

partially molten regions in the earth’s mantle. The melt initially segregates through the partially molten source region and then 385 

ascends through the unmolten lithosphere until it eventually reaches the surface. Within supersolidus source regions at low 

melt fractions melt is assumed to slowly percolate by two-phase porous flow within a deforming matrix (McKenzie, 1984; 

Schmeling, 2000; Bercovici et al., 2001), followed by melt accumulation within rising high porosity waves (Scott and 

Stevenson, 1984; Spiegelman, 1993, Wiggins and Spiegelman, 1995; Richard et al., 2012) or focusing into channels which 

can possibly penetrate into subsolidus regions. Stevenson (1989) carried out a linear stability analysis and found conditions at 390 

which flow instabilities may arise, which may result in different 3D shapes like elongated pockets, channels or porosity waves 

(Richardson, 1998; Wiggins and Spiegelman, 1995). Formation of 3D channels within a deforming matrix have been 

demonstrated in Omlin et al. (2018) or Räss et al. (2014). Here we focus on the supersolidus source region, and in particular 

on the dynamics of porosity waves. An essential parameter controlling the width and phase velocity of porosity waves is the 
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effective shear and bulk matrix viscosity (Simpson and Spiegelman, 2011; Richard et al., 2012). Most of the porosity wave 395 

model approaches used either equal bulk and shear viscosities, or simple laws in the form of 

𝜂𝑠 = 𝜂𝑠0(1 − 𝜑),       (1) 

𝜂𝑏 = 𝜂𝑠0𝐶
(1−𝜑)

𝜑𝑚        (2) 

where 𝜂𝑠 is the effective shear viscosity of the matrix, 𝜂𝑏 the bulk viscosity, 𝜂𝑠0 the intrinsic shear viscosity of the matrix,  𝐶 

a constant of order 1, 𝜑 the porosity, and 𝑚 = 0 for equal shear and bulk viscosities or 𝑚 = 1 otherwise. There are also recent 400 

models that use more complex pressure dependent weakening viscosities but they still use the simplified equations mentioned 

above for the porosity dependence of the viscosity (Omlin et al., 2018; Yarushina et al., 2015). Schmeling et al. (2012) 

developed an effective viscosity model depending on a simplified geometry of the fluid phase within a viscous matrix. Possible 

melt geometries include flat, ellipsoid-shaped melt inclusions with an aspect ratio 𝛼 and melt tubes with circular or triangular 

cross sections with tapered edges. Comparison of the previous viscosity laws, (1) and (2), with the ones by Schmeling et al. 405 

(2012) clearly shows that for aspect ratio 1 and particularly for smaller 𝛼 the effective matrix viscosities are significantly 

weaker, and disaggregation of the solid occurs at melt fractions significantly smaller than 100% as predicted by laws (1) and 

(2).  Recent viscosity models based on microscopic diffusion through grains, grain faces and the melt phase confirm the 

significance of weakening with respect to equations (1) and (2) (Rudge, 2018). The aim of this study is to model 2D-porosity 

waves with the viscosity laws by Schmeling et al. (2012) and test the influence of the weaker rheology on their shape and 410 

ascent velocity in the absence of melting or freezing. 

2 Theoretical Approach 

2.1 Governing equations 

The mathematical formulation of differential movement between solid matrix and melt basically builds on that described in 

Schmeling (2000) and Schmeling et al. (2019) and is applied here to a porosity wave. We solve the equations for mass and 415 

momentum conservation for melt and solid. The formulation of the governing equations for the melt-in-solid two-phase flow 

dynamics is based on McKenzie (1984), Spiegelman & McKenzie (1987) and Schmeling (2000) and is valid for infinite Prandtl 

number (i.e. neglecting inertia terms in the momentum equations), and small fluid to matrix viscosity ratios. In the following 

all variables associated with the fluid (melt) have the subscript 𝑓 and those associated with the solid have the subscript 𝑠. 

Without melting and freezing the equation for the conservation of the mass of the melt is  420 

𝜕𝜑

𝜕𝑡
+ ∇⃗⃗ ∙ (𝜑𝑣 𝑓) = 0,      (3) 

and the mass conservation of the solid is 

𝜕(1−𝜑)

𝜕𝑡
+ ∇⃗⃗ ∙ ((1 − 𝜑)𝑣 𝑠) = 0.     (4) 
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𝑣 𝑓 and 𝑣 𝑠 are the fluid and solid velocities, respectively. The velocities are derived from the momentum equations, which is a 

generalized Darcy equation for the fluid separation flow  425 

𝑣 𝑓 − 𝑣 𝑠 = −
𝑘𝜑

𝜂𝑓 𝜑
(∇⃗⃗ 𝑃 − 𝜌𝑓𝑔 ),      (5) 

and the Stokes equation for the solid-fluid mixture in the limit of zero fluid viscosity 

𝜌𝑔 − ∇⃗⃗ 𝑃 +
𝜕𝜏𝑖𝑗

𝜕𝑥𝑗
= 0.       (6) 

𝑘𝜑 is the permeability that depends on the rock porosity (i.e. melt fraction) with the power 𝑛 

𝑘𝜑 = 𝑘0𝜑
𝑛,        (7) 430 

𝜂𝑓 is the dynamic melt viscosity, 𝑔  is the gravitational acceleration, 𝜌 is the density of the melt – solid mixture, 𝜌𝑓 is the 

density of the melt, 𝑃 is the fluid pressure, whose gradient is driving the motion, and 𝜏𝑖𝑗  is the effective  viscous stress tensor 

of the matrix 

𝜏𝑖𝑗 = 𝜂𝑠 (
𝜕𝑣𝑠𝑖

𝜕𝑥𝑗
+

𝜕𝑣𝑠𝑗

𝜕𝑥𝑖
) + (𝜂𝑏 −

2

3
𝜂𝑠)𝛿𝑖𝑗 ∇⃗⃗ ∙ 𝑣 𝑠     (8) 

with the effective shear viscosity 𝜂𝑠 and the effective volumetric or bulk viscosity 𝜂𝑏  of the porous matrix. The term 435 

(𝜂𝑏 −
2

3
𝜂𝑠) ∇⃗⃗ ∙ 𝑣 𝑠 is often referred to as compaction pressure. The linearized equation of state for the mixture density is given 

as 

𝜌 = 𝜌𝑓𝜑 + 𝜌𝑠(1 − 𝜑)       (9)  

with the density of the matrix 𝜌𝑠.  

The fluid pressure in equation (5) and (6) is the same and can be eliminated by merging the two equations. Inserting the density 440 

of the mixture, and using eq. (7), eq. (5) is recast into  

𝑣 𝑓 − 𝑣 𝑠 = −
𝑘0𝜑𝑛−1

𝜂𝑓
(𝑔 (𝜌𝑠 − 𝜌𝑓)(1 − 𝜑) +

𝜕𝜏𝑖𝑗

𝜕𝑥𝑗
).    (10) 

This equation states that the velocity difference between fluid and solid phase (i.e. fluid separation flow, or the segregation 

velocity) is driven by the buoyancy of the fluid with respect to the solid, and the viscous stress in the matrix which includes 

the compaction pressure.  445 

Following Šrámek et al. (2007) the matrix velocity, 𝑣 𝑠, can be written as the sum of the incompressible flow velocity, 𝑣 1, 

and the irrotational (compaction) flow velocity, 𝑣 2, as follows: 

 𝑣 𝑠 = 𝑣 1  + 𝑣 2  = (
𝜕𝜓

𝜕𝑧

−
𝜕𝜓

𝜕𝑥

) + (
𝜕𝜒

𝜕𝑥
𝜕𝜒

𝜕𝑧

)     (11) 

with the incompressible velocity potential or stream function 𝜓 and the irrotational (compaction related) velocity 

potential, 𝜒. From eq. (11) it follows that the latter is given as the solution of the Poisson equation 450 

∇2𝜒 = ∇⃗⃗ ∙ 𝑣 𝑠        (12) 
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The divergence term ∇⃗⃗ ∙ 𝑣 𝑠 can be derived from summing up eq. (3) and eq. (4) to give 

∇⃗⃗ ∙ 𝑣 𝑠  =  −∇⃗⃗ ∙ [𝜑(𝑣 𝑓 − 𝑣 𝑠)]     (13) 

Eq. (12) represents a Poisson equation which can be solved for 𝜒 once the melt porosity and segregation velocity are known. 

As boundary condition the normal velocity of 𝑣 2, i.e. 𝑣2𝑛, can be prescribed which is equivalent to a normal derivative of 𝜒, 455 

i.e. a Neuman boundary condition. If the normal velocity is constant along the boundary, it automatically fulfils free slip. For 

sake of simplicity v2n = 0  was chosen. 

Taking the curl of the matrix momentum eq. (6) eliminates the pressure. Inserting the viscous stress tensor (eq. 8), the density 

(eq. 9) and the matrix velocity (eq. 11) into the resulting equation gives the momentum equation in terms of the stream 

function 𝜓 and the irrotational velocity potential 𝜒  460 

(
𝜕2

𝜕𝑥2 −
𝜕2

𝜕𝑧2
) [𝜂𝑠 (

𝜕2𝜓

𝜕𝑥2 −
𝜕2𝜓

𝜕𝑧2
)] + 4

𝜕2

𝜕𝑥𝜕𝑧
[𝜂𝑠

𝜕2𝜓

𝜕𝑥𝜕𝑧
] = (𝜌𝑠 − 𝜌𝑓)𝑔

𝜕𝜑

𝜕𝑥
+ 𝐴(𝜒)  (14) 

with 

𝐴(𝜒) = −2
𝜕2

𝜕𝑥𝜕𝑧
[𝜂𝑠 (

𝜕2𝜒

𝜕𝑥2 −
𝜕2𝜒

𝜕𝑧2
)] + 2 (

𝜕2

𝜕𝑥2 −
𝜕2

𝜕𝑧2
) [𝜂𝑠

𝜕2𝜒

𝜕𝑥𝜕𝑧
]    

The governing equations are non-dimensionalized by the compaction length, 𝛿𝑐0, (McKenzie, 1984) and a scaling separation 

velocity, 𝑣𝑠𝑐0 , both of which are taken at a reference state which assumes a constant background porosity 𝜑0 . The 465 

corresponding scaling viscosities and the scaling permeability are denoted by  𝜂𝑏0, 𝜂𝑠0, and 𝑘𝜑0, respectively. The compaction 

length is given by  

𝛿𝑐0 = (
𝜂𝑏0+

4

3
𝜂𝑠0

𝜂𝑓
𝑘𝜑0)

1

2

        (15) 

and is the length scale over which a variation in fluid flux gives a response on the compaction. The scaling separation velocity 

is given as 470 

𝑣𝑠𝑐0 =
𝑘𝜑0

𝜂𝑓𝜑0
(𝜌𝑠 − 𝜌𝑓)𝑔.     (16) 

This defines the scaling law, where the primes denote non-dimensional values and the subscript 0 refers to the background 

porosity 

𝑥 = 𝛿𝑐0 𝑥 ′  𝑣 = 𝑣𝑠𝑐0𝑣 
′  𝑡 =

𝛿𝑐0

𝑣𝑠𝑐0
𝑡′ 𝜏𝑖𝑗 = 𝜂𝑠0

𝑣𝑠𝑐0

𝛿𝑐0
𝜏𝑖𝑗

′    (17) 

𝜂 = 𝜂𝑠0𝜂
′  𝜌 = 𝜌𝑠𝜌

′ 𝜑 = 𝜑0𝜑
′  475 

 

The resulting governing equations for the mass are 

𝜕(1−𝜑′)

𝜕𝑡′ + ∇⃗⃗ ′ ⋅ ((1 − 𝜑′)𝑣 𝑠
′) = 0      (18) 

𝜕𝜑′

𝜕𝑡′ + ∇⃗⃗ ′ ⋅ (𝜑′𝑣 𝑓
′) = 0      (19) 



16 
 

and for the momentum equations we get 480 

(
𝜕2

𝜕𝑥′2 −
𝜕2

𝜕𝑧′2
) [𝜂𝑠

′ (
𝜕2𝜓′

𝜕𝑥′2 −
𝜕2𝜓′

𝜕𝑧′2
)] + 4

𝜕2

𝜕𝑥′𝜕𝑧′
[𝜂𝑠

′ 𝜕2𝜓′

𝜕𝑥′𝜕𝑧′
] = 𝜑0

2
𝜂𝑏0+

4

3
𝜂𝑠0

𝜂𝑠0

𝜕𝜑′

𝜕𝑥′ + 𝐴(𝜒′)  (20) 

𝐴(𝜒′) = −2
𝜕2

𝜕𝑥′𝜕𝑧′
[𝜂𝑠

′ (
𝜕2𝜒′

𝜕𝑥′2 −
𝜕2𝜒′

𝜕𝑧′2
)] + 2 (

𝜕2

𝜕𝑥′2 −
𝜕2

𝜕𝑥′2
) [𝜂𝑠

′ 𝜕2𝜒′

𝜕𝑥′𝜕𝑧′
]     

𝑣 𝑓
′ − 𝑣 𝑠

′ = 𝜑′𝑛−1 ((1 − 𝜑0𝜑
′)𝑒 𝑧 −

𝜂𝑠0

(𝜂𝑏0+
4

3
𝜂𝑠0)

1

𝜑0

𝜕𝜏𝑖𝑗′

𝜕𝑥𝑗′
)   (21) 

with 𝑒 𝑧 as unit vector in z- direction (positive upward). 

2.2 The effective viscosity of a porous matrix 485 

The effective viscosity laws proposed by Schmeling et al. (2012) assume ellipsoidal melt inclusions, or melt films if the 

inclusions are flat, or melt tubules embedded within an effective viscous medium. This self-consistent assumption is able to 

predict viscous weakening of a solid matrix with a disaggregation melt porosity of the order of 50% or less depending on the 

assumed melt geometry. From their numerical models Schmeling et al. (2012) derive approximate formulas for the porosity 

dependence of the dimensional effective matrix shear and bulk viscosities for a melt network geometry consisting of 100% 490 

films 

𝜂𝑠 = 𝜂𝑠0 (1 −
𝜑

𝑐1
)
𝑘1

  for 𝜑 < 𝑐1     (22) 

𝜂𝑏 = 𝜂𝑠0𝑐2
(𝑐1−𝜑)𝑘2

𝜑
 for 𝜑 < 𝑐1      (23) 

with 𝑘1 = 𝑎1(𝑎2 + 𝛼(1 − 𝑎2)), 𝑐1 =
𝑏1𝛼

1+𝑏2𝛼𝑘3
, 𝑐2 =

4

3
𝛼𝑐1

−𝑘2 ∙ (𝑐3(1 − 𝛼) + 𝛼) where 𝑎1  = 0.97, 𝑎2  = 0.8, 𝑏1 = 2.2455, 𝑏2 = 

3.45, 𝑘2 = 1.25, 𝑘3 = 1.29, 𝑐3 = 2, and 𝛼 is the aspect ratio of the ellipsoidal inclusions. At the disaggregation threshold found 495 

as 𝜑 = 𝑐1 the partially molten material loses its cohesiveness and both viscosities approach zero.  

For a melt network consisting of 50% tubes and 50% films the following approximate equations have been derived from the 

model of Schmeling et al. (2012)  

𝜂𝑠 = 𝜂𝑠0 ⋅ (1 −
𝜑

𝜑𝑚𝑎𝑥
)
𝑘

      (24) 

𝜂𝑏 = 𝜂𝑠0𝑎2 (
𝜑𝑚𝑎𝑥−𝜑

𝜑
)
𝑏2

      (25) 500 

The parameters needed to calculate these viscosities for different aspect ratios between 0.2 and 0.5 are given in Tab. 1. k is 

given by 𝑘 = 𝑎1𝜑 + 𝑏1. 

Figure 1 shows the effective shear and bulk viscosities for different aspect ratios together with the simplified previous laws 

(1) and (2).  
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Takei and Holtzman (2009) and Rudge (2018) suggest that in the presence of an infinitesimal amount of connected melt the 505 

effective viscosity undergoes a finite drop of the order of a few 10% of the intrinsic matrix viscosity. In our approach we 

always have a finite melt porosity, thus we may identify the zero porosity viscosity 𝜂𝑠0 in our formulation with the initially 

weakened value of Takei and Holtzman (2009) or Rudge (2018).   

2.3 Methods and model setup 

For the model we use a square box (1x1), which is initially partially molten to a certain degree, the background porosity. We 510 

place an initial porosity anomaly with a higher porosity centered at 𝑥0 = 0.5 and 𝑧0 = 0.2 from which a porosity wave will 

develop. As the shape and width of a solitary wave with a certain rheology law and amplitude is not known a priori we use a 

Gaussian wave of the form 

𝜑 = 𝐴 ⋅ exp ((
𝑥 − 𝑥0

𝑤
)
2

− (
𝑧 − 𝑧0

𝑤
)
2

) 

for the perturbation and vary the initial width 𝑤 of the wave.  515 

At the sides of the box symmetric boundaries and at the top and the bottom free slip boundaries are used. The in- and outflow 

velocities of matrix and melt at the top and bottom are prescribed in terms of the analytical solution of the background porosity. 

The influence of the boundaries on the ascending wave was investigated and found to be fairly small. In Fig. 3 one can see the 

effect of the upper boundary on the phase velocity. At the end, as the waves approach the upper boundary, the dispersion 

curves slightly deviate from the supposed line. This error is smaller than 0.5% as long as the distance of the center of the wave 520 

to the upper boundary is greater than 1.5 times its 10%-radius. This radius is defined as the radius at which the porosity has 

decreased to 10% of the amplitude of the wave. For the side boundaries this distance has to be larger. For distances greater 

than 3 times the 10%-radius this error is smaller than 1%. In our models the waves have distances of 7-10 times the 10%-

radius which corresponds to errors between 0.2 and 0.05%. 

The equations are solved on a 201x201 grid by finite differences using the code FDCON (e.g. Schmeling et al., 2019). 525 

Resolution tests have been made with grids varying from 101x101 to 401x401. They show that after a short transient time the 

phase velocity and amplitude of the evolved porosity wave approach constant values for very high resolutions for all viscosity 

laws used. The subsequently observed slow variations of the phase velocity and amplitude of the wave along a quasi-steady 

state dispersion curve can be attributed to numerical diffusion at finite grid resolution. The resolution test shows that 1) the 

quasi-steady state phase velocity and amplitude of the wave are of error order 1, and 2) the dispersion curves obtained on a 530 

201x201 grid overestimate the extrapolated phase velocity values by about 10%. Time step resolution tests show that the long-

term temporal behavior of the porosity waves is significantly improved if the time steps are chosen smaller than approximately 

0.2 times the Courant criterion. 

The amplitude and phase velocity of the evolving porosity wave is obtained at every time step by quadratic interpolation of 

the porosity values on the FD grid and determining the value and velocity of the position of the maximum of the quadratic 535 

function. The resulting phase velocity shows small oscillations in time, which are probably due to the interaction of the 1st 
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order error in time when solving equation (3) and (4) and the 2nd order error of the interpolation. These oscillations are 

smoothed by applying a moving average including 50 neighboring points. The resulting time series of porosity amplitude and 

phase velocity can be plotted as a curve with time as curve parameter in an amplitude – phase velocity plot. This curve can be 

understood as a dispersion curve because the phase velocity depends on amplitude and thus implicitly on the width or 540 

wavelength of the porosity wave. 

For the model series presented below the width and the amplitude of the initial wave, the background porosity and the rheology 

law have been varied. All models were carried out using n=2 and n=3 in the permeability-porosity law. 

3 Results 

3.1 Dispersion curves for varied widths and amplitudes 545 

As the shape of a two-dimensional porosity wave for a certain wave amplitude is not known, the initial width is varied. In Fig. 

2a we show a porosity wave of amplitude 8 initially positioned at x = 0.5 and z = 0.2 (left) as it rises through the model box. 

In Fig. 2b a horizontal cross section through the maximum of an initial wave and the resulting solitary wave at a late stage is 

shown. During the early stage the wave gains some amplitude as the volume of an equivalent solitary wave with the same 

amplitude would be smaller for this example. Then the amplitude of the ascending wave slowly decreases again due to 550 

numerical diffusion and the evolving phase velocity – amplitude curve describes the quasi-steady state dispersion relation. At 

this point the wave is expected to be a solitary wave. The shape of this wave resembles a Gaussian bell curve quite well but 

does not fit exactly. The upper part of the wave in this example fits very well while the lower part is slightly wider. 

To analyze the evolution of the ascending solitary wave the phase velocity and the amplitude is tracked over the full rising 

time and plotted into a dispersion diagram. In Fig. 3 the dispersion curves of a model with a starting wave width which is 555 

initially larger than the resulting solitary wave, a model with a similar width, and a model with a smaller initial width are 

shown. The curves start with high velocities for the Gaussian bell shaped wave and then rapidly slow down until they approach 

a specific point visible as a sharp kink from which they slowly follow a line. For the bigger and optimal width models, after 

this kink the wave is expected to have reached the solitary wave stage. For the bigger initial width this stage is reached at a 

higher amplitude than initially assumed. It is important to note that, independent of the initial wave width, after reaching a 560 

solitary wave stage the velocities and shapes of waves of a certain amplitude are always equal, i.e. the three curves merge on 

one dispersion curve. For comparison with semi-analytic 2-D solitary porosity wave solutions the dashed curves in Fig. 3 and 

later Figures show dispersion curves with different power law n of the permeability-porosity relation and different bulk 

viscosity laws with m=0 assuming a constant bulk viscosity, and m=1 for a 1/𝜑 proportionality (c.f. equ. 2) (Simpson and 

Spiegelman, 2011). In contrast to our models these solutions a) use a stiff rheology ("analytic viscosity" in Fig 1), b) neglect 565 

solid shear (first term of the right hand side of equ. 8) which is responsible for 𝑣 1 (c.f. equ. 12) in the matrix momentum 

equation, and for an important contribution in the separation flow (equ. 11), and c) apply the small porosity limit. 
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Based on this result one can carry out many models with different initial wave widths and different initial amplitudes and get 

one empirical steady state solitary wave dispersion curve for one viscosity law for a wide range of amplitudes. 

Fig. 4 shows the time-dependent dispersion curves of models with 4 different initial amplitudes (4 to 10), and 11 different 570 

initial widths each. Depending on the initial widths they either gain amplitudes as they approach the solitary wave stage or 

they monotonously loose amplitude. Depending on the initial amplitude and width each case is characterized by a certain total 

melt volume, corresponding to a specific steady state solitary wave with a specific amplitude. Therefore the 44 models finally 

reach one steady state solitary wave dispersion curve at different amplitudes. As discussed in section 2, the amplitude of the 

waves slowly continue to decrease due to some small amount of numerical diffusion. Yet, they continue following the steady 575 

state solitary wave dispersion curve.  

Although we use a different rheology law and do not apply the simplifications mentioned above, the steady state dispersion 

curve of our model is in general agreement with the n = 3, m=1 dispersion curve determined semi-analytically by Simpson and 

Spiegelman (2011) (Fig. 4, dashed curve). However, given the 10% numerical overestimation of phase velocities of our models 

(c.f. section 2.2), for high amplitudes our dispersion curve shows a significantly smaller slope and correspondingly smaller 580 

phase velocities than the semi-analytical curve by Simpson and Spiegelman (2011). Comparison of the simplified semi-

analytical 1-D solution of Simpson and Spiegelman (2011) with the full analytical 1-D solution of Yarushina et al. (2015) 

shows that for low porosities these solutions fit very well together. For higher porosities the full solution becomes slower than 

the simplified one. Tentatively transferring this result to 2D our decrease in the slope can probably be explained by the low 

porosity limitation of the Simpson and Spiegelman (2011) solution which overestimates the velocity at high porosities. 585 

3.2 Effect of different viscosity laws for n=2 and 3 on dispersion curves 

To investigate the effect of different viscosity laws, two melt network geometries are chosen. The first one consists of 50% 

films/ellipsoidal melt pockets and 50% tubes, the second of 100% films/ellipsoidal melt pockets. Furthermore the aspect ratio 

α is varied, whereby a higher aspect ratio corresponds to compact melt pockets and leads to stronger viscosities and to a higher 

disaggregation threshold (c.f. Fig. 1). 590 

Waves with these different viscosity laws give only minor differences in the dispersion curves (Fig. 5a, b). Especially with the 

films & tubes case the curves for different aspect ratios (Fig. 5a) are not distinguishable, both during the transient and final 

stage. In contrast, the analytic viscosity case (equ. 1 and 2) propagates along a different path and converges to a 4 – 6 % higher 

final phase velocity curve.   With 100% Films the differences among curves with the different viscosity laws in the final 

velocity are higher and lie in the order of 6 %. These differences are surprisingly small if compared to the actual differences 595 

in effective shear viscosities of about 13% and bulk viscosity of about a factor 4 (at 4 % melt corresponding to a porosity 

amplitude 8). It is also to be noted that the steady state part of our dispersion curve calculated with the analytical viscosity (eq. 

1 and 2) excellently agrees with the semi-analytical solution (dashed) by Simpson and Spiegelman (2011) for the same 

viscosity law, if we account for the 10 % numerical overestimation of our model phase velocity (c.f. section 2.2). Thus, their 

neglect of shear stresses and other simplifications have only a very minor effect compared to the effect of different viscosity 600 
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laws. The overall effect of weakening of matrix viscosity due to decreasing aspect ratio is to slow down the phase velocity 

slightly. 

Changing n of the permeability-porosity relation to 2 decreases the wave velocities significantly (Fig.5c, d). This drop is 

consistent with the simplified semi-analytical solitary wave solutions (n=2, m=1, dashed curves). In contrast to the n=3 cases, 

the n=2 velocities are above the Simpson and Spiegelman (2011) solutions even if the numerical 10 % overestimation is 605 

considered. As for the n=3 case, porosity waves with the stronger analytical viscosity case (equ. 1 and 2) are slightly faster 

than the new weaker viscosity cases. 

While the ascending phase velocity of the wave is only slightly affected by the different viscositiy laws, the width of the wave 

changes more strongly. In Figure 6 the half-widths of the solitary waves of amplitude of 8 are plotted against the corresponding 

wave velocities for the different viscosity laws. For n=2 (Fig. 6a) and 100% films the wave gets wider for higher aspect ratios, 610 

while for the mixed geometry the widths stay more or less constant. The velocity increases only slightly with the aspect ratio. 

For n=3 (Fig. 6b) and 100% films the width increases with aspect ratio but in contrast to n=2 the phase velocity decreases with 

increasing aspect ratio. For the mixed geometry the velocity and half-width variations are minor again. These results show that 

as long as melt tubes represent a significant portion of the total melt volume (here 50%) they control the porosity wave 

dynamics and keep the porosity wave properties rather fixed. Only in the absence of tubes compact melt pockets with large 615 

aspect ratios significantly broaden the waves. For the stiff case of analytical viscosity (equ. 1 and 2) the half width of the wave 

is comparable to the weaker 0.2 films, but the velocities are larger (Fig. 6a,b, light brown symbols). 

Another interesting phenomenon to observe is the matrix velocity in the center of the wave, which increases for all geometries 

with aspect ratio (Fig. 7). While for 100% films this increase is stronger, for both geometries the velocities are approximately 

equal at an aspect ratio between 0.2 and 0.3. For n = 2 (Fig. 7a) the matrix velocities are always positive, meaning that despite 620 

a slow negative background velocity of the matrix, it rises in the center of the wave (together with the melt). Interestingly, for 

n=3 (Fig. 7b) and small aspect ratios (0.1 and 0.2, i.e. weaker effective matrix viscosities) the direction of flow of the matrix 

is changed and matrix in the center flows downwards, i.e. against the direction of melt flow. Assuming constant matrix shear 

and bulk viscosities, Scott (1988) observed a similar switch from negative to positive matrix velocities in the center of a 2D 

solitary wave when the ratio of the bulk to shear viscosity was increased from 1 to 9 for n = 3. We see this switch around  = 625 

0.25 corresponding to a bulk to shear viscosity at the center of the porosity wave of about 16, and higher elsewhere. Such a 

switch can be explained by an increasing role of diapiric flow, which is 𝑣 1-related, incompressible, and upward in the center 

of the wave, with respect to the compaction flow, which is 𝑣 2-related, irrotational, and downward in the center of the wave 

(c.f. equ. 12). Weakening of the bulk viscosity within the porosity wave relative to the shear viscosity allows stronger 

decompaction and compaction rates which amplify the downward compaction flow with respect to the upward diapiric flow. 630 

In the previous models the scaling background porosity of 0.005 and maximum wave amplitudes of 10 to 12 imply maximum 

melt fractions of 5 to 6 %. Thus, the matrix shear viscosity decrease was only small, of order 10% for e.g. the aspect ratio 0.1 

models and of order 5% for the stiffer analytical viscosity laws (1), (2). This explains the rather mild rheology effect when 

comparing the effect of the different viscosity laws. With the aim to reach higher maximum melt fractions associated with 
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stronger rheological effects we carried out a model series with increased background porosities, both applying the analytical 635 

viscosity law (m=1) and our weaker matrix viscosities with 100% films with an aspect ratio 0.1 (Fig. 8).  The increase in the 

background porosity from 0.5 % to 1.5% has only a minor influence on the behavior of the solitary wave for models which 

use the analytical viscosity law (m=1): The half width of the wave is almost completely unaffected (by ~ 1%), while the phase 

velocity is increased by only approximately 2.5%. Using a viscosity law based on a melt geometry consisting of 100% films 

and an aspect ratio of 0.1 the differences become significant. The half width decreases to ~70% of its initial value and the 640 

phase velocity decreases by up to 20% with increasing background porosity, i.e. with an increased maximum porosity within 

the wave. Thus, the half widths and phase velocities show a significant difference to the analytical viscosity law (Fig. 8). In 

fact, the phase velocities show the opposite behavior to the analytical viscosity law (see Fig. 8b). These models suggest that 

the high melt fractions within the waves which are associated with a significant local matrix weakening, both for shear and 

bulk viscosity, lead to effectively shortened compaction lengths within the wave, i.e. to a narrowing and focusing of the wave. 645 

Such narrower waves contain less melt than broader waves of same amplitude, i.e. less buoyancy, which slows down the rising 

phase velocity.    

4 Discussion 

It is interesting to note that although the semi-analytic solutions of Simpson and Spiegelman (2011) neglect the shear term in 

the matrix momentum equation and in the separation flow equation they are in good agreement with the low 𝜑0 models which 650 

include this term. To understand this we made a test with a model with 100% films and aspect ratio 0.1 and found that in the 

separation flow equation (11) the shear term has a significant amplitude of about 50% compared to the compaction term. We 

then switched off this term in the separation flow equation (11), which is equivalent to assuming zero shear viscosity. 

Surprisingly it turned out that separation velocity changed only insignificantly while the amplitudes of matrix divergence and 

convergence increases by about 25%, and the compaction related term driving the separation velocity in equation (11) increases 655 

by about 50%, i.e. by the same amount the shear term had before. Obviously, the buoyancy forces of the solitary wave are 

partitioned between the decompaction pressure controlled by the bulk viscosity and the shear stresses, namely the vertical 

normal shear stresses. If these stresses are neglected by assuming a zero shear viscosity, the buoyancy forces are balanced by 

the compaction pressure alone, and the shear contribution of the downward segregation flow is taken over by the increased 

compaction contribution.  660 

Recently, Rudge (2018) developed a diffusion creep model based on microscopic diffusion calculations in the presence of melt 

in textural equilibrium with truncated octahedrons. Assuming infinite diffusivity in the melt phase he obtains a somewhat 

stronger weakening of the shear viscosity at smaller melt fractions than in our model, but comparable disaggregation porosities 

as in Fig 1. However, due to the infinite diffusivity assumption, the bulk viscosity remains finite (=5/3 of the effective shear 

viscosity) even at very small melt porosities, while in our model it increases infinitely in the limit of zero porosity. We expect 665 
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that our results with increased weakening effect (𝜑0  increased to 1.5%) might be applicable also to the rheology based on 

Rudge’s (2018) analyses.     

It should be noted that in our study the viscosity law has been varied by assuming various melt geometries of melt films and 

films/melt pockets superimposed with tubes, while the permeability-porosity has been varied independently between 𝑛 = 2 

corresponding to the ideal case of only interconnected tubes and 𝑛 = 3 corresponding to the ideal case of interconnected thin 670 

films. Three-dimensional melt distributions of partially molten mantle rocks have been studied e.g. by serial sectioning 

(Garapić et al. 2013) identifying a network of melt tubes and films, and by microtomography (Zhu et al., 2011) suggesting the 

predominance of melt tubes along grain edges. Yet, at higher melt fractions the latter distributions are characterized by tapered 

edges of the melt tubes partly or completely wetting grain faces between adjacent grains. From the latter experiments Miller 

et al. (2014) determined the permeability by 3D-fluid flow modelling and found an exponent of 2.6. Thus, our simplified melt 675 

viscosities and permeabilities cover quite well observed partially molten olivine-basalt systems in textural equilibrium. 

In Richard et al. (2012) it was observed that with increasing background porosities the waves will widen and the phase 

velocities will slow down. In our models we observe faster velocities with increasing background porosity if the analytical 

viscosity is used. This can be explained by the different scaling which was used by Richard et al. (2012). They used just the 

shear viscosity to calculate the compaction length and not the sum of shear and bulk viscosity. If the same scaling is used, we 680 

get the same behavior for the phase velocity (Fig. 1b, Suppl. Mat.). In contrast to Richard et al. (2012) we observe a narrowing 

effect of the waves for larger background porosities, which cannot be explained by scaling (Fig. 1a, Suppl. Mat.). As Richard 

et al. (2012) used a 1-D model, we suspect that 2-D effects such as including the incompressible flow velocity, 𝑣 1 , are 

responsible for the different shapes of the wave at different background porosities.  

4 Conclusion 685 

As the shape of a solitary wave in our models cannot be described analytically, we start with a Gaussian wave, which develops 

quite rapidly into a solitary wave with a similar shape and a certain amplitude, depending on the initial width of the wave.  

Even though the rheologies used are much weaker than the simplified analytical ones the effect on dispersion curves and wave 

shape are only moderate as long as the shear viscosity does not drop below about 80% of the intrinsic shear viscosity. This 

value corresponds to a melt fraction of 5 %, equivalent to 20% of the disaggregation value. At this porosity the bulk viscosity 690 

is approximately 5-7 times the intrinsic shear viscosity. In this case the phase velocity changes just slightly for all cases, while 

the waves broaden in the absence of tubes with increasing aspect ratio.  

In contrast, for higher melt fractions of about 12%, equivalent to 50% of the disaggregation values, the shear viscosity 

decreases to 50% of the intrinsic viscosity, and the bulk viscosities is of the order of the intrinsic shear viscosity. Then, our 

models predict significant narrowing of the porosity waves and slowing down of the phase velocities. For such conditions a 695 

strong discrepancy in solitary wave behavior between our viscosity law and the analytical ones is found.  
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For low melt fractions our models are in good agreement with semi-analytic solutions which neglect the shear stress term, 

because the matrix shear contribution of the downward segregation flow is taken over by the increase of the compaction 

contribution. 
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Tab. 1: Parameters to calculate the viscosities for a melt network consisting of 50% tubes and 50% films using (24) and 

(25) 750 

𝜶 a1 a2 b1 b2 𝝋𝒎𝒂𝒙 

0.2 0.8074 2.595 0.7009 1.276 0.2428 

0.3 0.7435 2.622 0.7082 1.278 0.2629 

0.4 0.6958 2.645 0.7145 1.281 0.2730 

0.5 0.6692 2.664 0.7182 1.284 0.2785 
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Fig. 1.  Shear (solid) and bulk (dashed) viscosity for several aspect ratios as a function of the melt fraction. Left: The 

viscosities are calculated for a melt network consisting of 50% tubes and 50% films. Right: The network consists of 

100% films. The red lines show the simplified analytical viscosities (Equ. (1) and (2)). 755 

 

Fig. 2. a) Non-dimensional melt fraction at 4 different time steps during the ascent of a solitary wave with an initial 

amplitude of 8. The model was carried out for a melt network geometry consisting of 100% films and an aspect ratio 

of 0.1. The background porosity is 0.005 and n = 3. b) Horizontal cross section through the center of the initial wave 

and the solitary wave at a later time.  760 
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Fig. 3. Dispersion curves for three models with an initial width bigger, smaller and approximately equal to the resulting 

solitary wave. Each model was carried out for a melt network geometry consisting of 100% films and an aspect ratio 

of 0.1. The background porosity is 0.005 and n = 3. 

 765 
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Fig. 4. Dispersion curves for 44 models with 4 different initial amplitudes (4 to 10) and 11 different initial widths each. 

All models were carried out for a melt network geometry consisting. 

 

Fig. 5. Dispersion curves of solitary waves with a) n=3, films & tubes, b) n=3, films, c) n=2, films & tubes, d) n=2, films 

for different aspect ratios. 770 
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Fig. 6. Non-dimensional half-width, plotted against non-dimensional phase velocity for a porosity wave of amplitude 8 

for different viscosity laws. The numbers give the aspect ratios of the films/melt pockets. The background porosity is 0.5 

%. a) Permeability-porosity exponent n = 2, b) n = 3 

 775 

Fig. 7. Matrix velocity in the center of a wave with an amplitude of 8 as a function of the aspect ratio of the films for a) 

n = 2, b) n = 3. The background porosity for all models was 0.005. 

 

Fig. 8. a) Horizontal profiles through ascending waves and b) dispersion curves with different background porosities 

but the same non-dimensional amplitude of 7. The dot-dashed curves were calculated with the simplified analytical 780 

viscosity law (m=1). The solid lines were calculated with a viscosity law based on 100% films and an aspect ratio of 0.1.   

 

 


