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Abstract 

In source regions of magmatic systems the temperature is above solidus and melt ascent is assumed to 

occur predominantly by two-phase flow which includes a fluid phase (melt) and a porous deformable 25 

matrix. Since McKenzie (1984) introduced his equations for two-phase flow, numerous solutions have 

been studied one of which predicts the emergence of solitary porosity waves. By now most analytical 

and numerical solutions for these waves used strongly simplified models for the shear- and bulk viscosity 

of the matrix, significantly overestimating the viscosity or completely neglecting the porosity-

dependence of the bulk viscosity. Schmeling et al. (2012) suggested viscosity laws in which the viscosity 30 

decreases very rapidly for small melt fractions. They are incorporated into a 2D finite difference mantle 

convection code with two-phase flow (FDCON) to study the ascent of solitary porosity waves. The 

models show that, starting with a Gaussian shaped wave, they rapidly evolve into a solitary wave with 

similar shape and a certain amplitude. Despite the strongly weaker rheologies compared to previous 

viscosity laws the effect on dispersion curves and wave shape are only moderate as long as the 35 

background porosity is fairly small. The models are still in good agreement with semi-analytic solutions 

which neglect the shear stress term in the melt segregation equation. However, for higher background 

porosities and wave amplitudes associated with a viscosity decrease of 50% or more, the phase velocity 

and the width of the waves are significantly decreased. Our models show that melt ascent by solitary 

waves is still a viable mechanism even for more realistic matrix viscosities. 40 

 

1. Introduction 

Magmatic phenomena such as volcanic eruptions on the earth’s surface show, among others, that melt is 

able to ascend from partially molten regions in the earth’s mantle. The melt initially segregates through 

the partially molten source region and then ascends through the unmolten lithosphere until it eventually 45 

reaches the surface. Within supersolidus source regions at low melt fractions melt is assumed to slowly 

percolate by two-phase porous flow within a deforming matrix (McKenzie, 1984; Schmeling, 2000; 

Bercovici et al., 2001), followed by melt accumulation within rising high porosity waves (Scott and 

Stevenson, 1984; Spiegelman, 1993, Wiggins and Spiegelman, 1995; Richard et al., 2012) or focusing into 

channels which can possibly penetrate into subsolidus regions. Stevenson (1989) carried out a linear 50 

stability analysis and found conditions at which flow instabilities may arise, which may result in different 

3D shapes (Richardson, 1998; Wiggins and Spiegelman, 1995). Formation of 3D channels within a 

deforming matrix have been demonstrated in Omlin et al. (2018) or Räss et al. (2014). Here we focus on 
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the supersolidus source region, and in particular on the dynamics of porosity waves. An essential 

parameter controlling the width and phase velocity of porosity waves is the effective shear and bulk 55 

matrix viscosity (Simpson and Spiegelman, 2011; Richard et al., 2012). Most of the porosity wave model 

approaches used either equal bulk and shear viscosities, or simple laws in the form of 

𝜂𝑠 = 𝜂𝑠0(1 − 𝜑),     (1) 

𝜂𝑏 = 𝜂𝑠0𝐶
(1−𝜑)

𝜑𝑚      (2) 

where 𝜂𝑠 is the effective shear viscosity of the matrix, 𝜂𝑏  the bulk viscosity, 𝜂𝑠0 the intrinsic shear 60 

viscosity of the matrix,  𝐶 a constant of order 1, 𝜑 the porosity, and 𝑚 = 0 for equal shear and bulk 

viscosities or 𝑚 = 1 otherwise. There are also recent models that use more complex pressure 

dependent weakening viscosities but they still use the simplified equations mentioned above for the 

porosity dependence of the viscosity (Omlin et al., 2018; Yarushina et al., 2015). Schmeling et al. (2012) 

developed an effective viscosity model depending on a simplified geometry of the fluid phase within a 65 

viscous matrix. Possible melt geometries include flat, ellipsoid-shaped melt inclusions with an aspect 

ratio 𝛼 and melt tubes with circular or triangular cross sections with tapered edges. Comparison of the 

previous viscosity laws, (1) and (2), with the ones by Schmeling et al. (2012) clearly shows that for aspect 

ratio 1 and particularly for smaller 𝛼 the effective matrix viscosities are significantly weaker, and 

disaggregation of the solid occurs at melt fractions significantly smaller than 100% as predicted by laws 70 

(1) and (2).  Recent viscosity models based on microscopic diffusion through grains, grain faces and the 

melt phase confirm the significance of weakening with respect to equations (1) and (2) (Rudge, 2018). 

The aim of this study is to model 2D-porosity waves with the viscosity laws by Schmeling et al. (2012) and 

test the influence of the weaker rheology on their shape and ascent velocity in the absence of melting or 

freezing. 75 

2. Theoretical Approach 

2.1 Governing equations 

The mathematical formulation of differential movement between solid matrix and melt basically builds 

on that described in Schmeling (2000) and Schmeling et al. (2019) and is applied here to a porosity wave. 

We solve the equations for mass and momentum conservation for melt and solid. The formulation of the 80 

governing equations for the melt-in-solid two-phase flow dynamics is based on McKenzie (1984), 

Spiegelman & McKenzie (1987) and Schmeling (2000) and is valid for infinite Prandtl number (i.e. 
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neglecting inertia terms in the momentum equations), and small fluid to matrix viscosity ratios. In the 

following all variables associated with the fluid (melt) have the subscript 𝑓 and those associated with the 

solid have the subscript 𝑠. Without melting and freezing the equation for the conservation of the mass of 85 

the melt is  

𝜕𝜑

𝜕𝑡
+ ∇⃗⃗ ∙ (𝜑𝑣 𝑓) = 0,      (3) 

and the mass conservation of the solid is 

𝜕(1−𝜑)

𝜕𝑡
+ ∇⃗⃗ ∙ ((1 − 𝜑)𝑣 𝑠) = 0.     (4) 

𝑣 𝑓  and 𝑣 𝑠 are the fluid and solid velocities, respectively. The velocities are derived from the momentum 90 

equations, which is a generalized Darcy equation for the fluid separation flow  

𝑣 𝑓 − 𝑣 𝑠 = −
𝑘𝜑

𝜂𝑓 𝜑
(∇⃗⃗ 𝑃 − 𝜌𝑓𝑔 ),      (5) 

and the Stokes equation for the solid-fluid mixture in the limit of zero fluid viscosity 

𝜌𝑔 − ∇⃗⃗ 𝑃 +
𝜕𝜏𝑖𝑗

𝜕𝑥𝑗
= 0.       (6) 

𝑘𝜑 is the permeability that depends on the rock porosity (i.e. melt fraction) with the power 𝑛 95 

𝑘𝜑 = 𝑘0𝜑
𝑛 ,        (7) 

𝜂𝑓  is the dynamic melt viscosity, 𝑔  is the gravitational acceleration, 𝜌 is the density of the melt – solid 

mixture, 𝜌𝑓  is the density of the melt, 𝑃 is the fluid pressure, whose gradient is driving the motion, and 

𝜏𝑖𝑗 is the effective  viscous stress tensor of the matrix 

𝜏𝑖𝑗 = 𝜂𝑠 (
𝜕𝑣𝑠𝑖

𝜕𝑥𝑗
+

𝜕𝑣𝑠𝑗

𝜕𝑥𝑖
) + (𝜂𝑏 −

2

3
𝜂𝑠) 𝛿𝑖𝑗∇⃗⃗ ∙ 𝑣 𝑠    (8) 100 

with the effective shear viscosity 𝜂𝑠and the effective volumetric or bulk viscosity 𝜂𝑏  of the porous matrix. 

The term (𝜂𝑏 −
2

3
𝜂𝑠) ∇⃗⃗ ∙ 𝑣 𝑠 is often referred to as compaction pressure. The linearized equation of state 

for the mixture density is given as 

𝜌 = 𝜌𝑓𝜑 + 𝜌𝑠(1 − 𝜑)      (9)  

with the density of the matrix 𝜌𝑠.  105 
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The fluid pressure in equation (5) and (6) is the same and can be eliminated by merging the two 

equations. Inserting the density of the mixture, and using eq. (7), eq. (5) is recast into  

𝑣 𝑓 − 𝑣 𝑠 = −
𝑘0𝜑

𝑛−1

𝜂𝑓
(𝑔 (𝜌𝑠 − 𝜌𝑓)(1 − 𝜑) +

𝜕𝜏𝑖𝑗

𝜕𝑥𝑗
).   (10) 

This equation states that the velocity difference between fluid and solid phase (i.e. fluid separation flow, 

or the segregation velocity) is driven by the buoyancy of the fluid with respect to the solid, and the 110 

viscous stress in the matrix which includes the compaction pressure.  

Following Šrámek et al. (2007) the matrix velocity, 𝑣 𝑠, can be written as the sum of the incompressible 

flow velocity, 𝑣 1, and the irrotational (compaction) flow velocity, 𝑣 2, as follows: 

 𝑣 𝑠 = 𝑣 1  + 𝑣 2  = (
𝜕𝜓

𝜕𝑧

−
𝜕𝜓

𝜕𝑥

) + (
𝜕𝜒

𝜕𝑥
𝜕𝜒

𝜕𝑧

)    (11) 

with the incompressible velocity potential or stream function 𝜓 and the irrotational (compaction related) 115 

velocity potential, 𝜒. From eq. (11) it follows that the latter is given as the solution of the Poisson 

equation 

∇2𝜒 = ∇⃗⃗ ∙ 𝑣 𝑠        (12) 

The divergence term ∇⃗⃗ ∙ 𝑣 𝑠 can be derived from summing up eq. (3) and eq. (4) to give 

∇⃗⃗ ∙ �⃗� 𝑠  =  −∇⃗⃗ ∙ [𝜑(�⃗� 𝑓 − �⃗� 𝑠)]     (13) 120 

Eq. (12) represents a Poisson equation which can be solved for 𝜒 once the melt porosity and segregation 

velocity are known. As boundary condition the normal velocity of 𝑣 2, i.e. 𝑣2𝑛, can be prescribed which is 

equivalent to a normal derivative of 𝜒, i.e. a Neuman boundary condition. If the normal velocity is 

constant along the boundary, it automatically fulfills free slip. For sake of simplicity v2n = 0  was chosen. 

Taking the curl of the matrix momentum eq. (6) eliminates the pressure. Inserting the viscous stress 125 

tensor (eq. 8), the density (eq. 9) and the matrix velocity (eq. 11) into the resulting equation gives the 

momentum equation in terms of the stream function 𝜓 and the irrotational velocity potential 𝜒  

(
𝜕2

𝜕𝑥2 −
𝜕2

𝜕𝑧2
) [𝜂𝑠 (

𝜕2𝜓

𝜕𝑥2 −
𝜕2𝜓

𝜕𝑧2
)] + 4

𝜕2

𝜕𝑥𝜕𝑧
[𝜂𝑠

𝜕2𝜓

𝜕𝑥𝜕𝑧
] = (𝜌𝑠 − 𝜌𝑓)𝑔

𝜕𝜑

𝜕𝑥
+ 𝐴(𝜒)  (14) 

with 
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𝐴(𝜒) = −2
𝜕2

𝜕𝑥𝜕𝑧
[𝜂𝑠 (

𝜕2𝜒

𝜕𝑥2 −
𝜕2𝜒

𝜕𝑧2
)] + 2 (

𝜕2

𝜕𝑥2 −
𝜕2

𝜕𝑧2
) [𝜂𝑠

𝜕2𝜒

𝜕𝑥𝜕𝑧
]    130 

The governing equations are non-dimensionalized by the compaction length, 𝛿𝑐0, (McKenzie, 1984) and a 

scaling separation velocity, 𝑣𝑠𝑐0, both of which are taken at a reference state which assumes a constant 

background porosity 𝜑0. The corresponding scaling viscosities and the scaling permeability are denoted 

by  𝜂𝑏0, 𝜂𝑠0, and 𝑘𝜑0, respectively. The compaction length is given by  

𝛿𝑐0 = (
𝜂𝑏0+

4

3
𝜂𝑠0

𝜂𝑓
𝑘𝜑0)

1

2

       (15) 135 

and is the length scale over which a variation in fluid flux gives a response on the compaction. The scaling 

separation velocity is given as 

𝑣𝑠𝑐0 =
𝑘𝜑0

𝜂𝑓𝜑0
(𝜌𝑠 − 𝜌𝑓)𝑔.    (16) 

This defines the scaling law, where the primes denote non-dimensional values and the subscript 0 refers 

to the background porosity 140 

𝑥 = 𝛿𝑐0 𝑥 ′  𝑣 = 𝑣𝑠𝑐0𝑣 
′  𝑡 =

𝛿𝑐0

𝑣𝑠𝑐0
𝑡′ 𝜏𝑖𝑗 = 𝜂𝑠0

𝑣𝑠𝑐0

𝛿𝑐0
𝜏𝑖𝑗

′  (17) 

𝜂 = 𝜂𝑠0𝜂
′   𝜌 = 𝜌𝑠𝜌

′ 𝜑 = 𝜑0𝜑
′  

 

The resulting governing equations for the mass are 

𝜕(1−𝜑′)

𝜕𝑡′ + ∇⃗⃗ ′ ⋅ ((1 − 𝜑′)𝑣 𝑠
′) = 0     (18) 145 

𝜕𝜑′

𝜕𝑡′ + ∇⃗⃗ ′ ⋅ (𝜑′𝑣 𝑓
′ ) = 0     (19) 

and for the momentum equations we get 

(
𝜕2

𝜕𝑥′2 −
𝜕2

𝜕𝑧′2
) [𝜂𝑠

′ (
𝜕2𝜓′

𝜕𝑥′2 −
𝜕2𝜓′

𝜕𝑧′2
)] + 4

𝜕2

𝜕𝑥′𝜕𝑧′ [𝜂𝑠
′ 𝜕2𝜓′

𝜕𝑥′𝜕𝑧′] = 𝜑0
2

𝜂𝑏0+
4

3
𝜂𝑠0

𝜂𝑠0

𝜕𝜑′

𝜕𝑥′ + 𝐴(𝜒′) (20) 

𝐴(𝜒′) = −2
𝜕2

𝜕𝑥′𝜕𝑧′ [𝜂𝑠
′ (

𝜕2𝜒′

𝜕𝑥′2 −
𝜕2𝜒′

𝜕𝑧′2
)] + 2 (

𝜕2

𝜕𝑥′2 −
𝜕2

𝜕𝑥′2
) [𝜂𝑠

′ 𝜕2𝜒′

𝜕𝑥′𝜕𝑧′]  



7 
 

𝑣 𝑓
′ − 𝑣 𝑠

′ = 𝜑′𝑛−1
((1 − 𝜑0𝜑

′)𝑒 𝑧 −
𝜂𝑠0

(𝜂𝑏0+
4

3
𝜂𝑠0)

1

𝜑0

𝜕𝜏𝑖𝑗′

𝜕𝑥𝑗′
)   (21) 150 

with 𝑒 𝑧 as unit vector in z- direction (positive upward). 

2.2. The effective viscosity of a porous matrix 

The effective viscosity laws proposed by Schmeling et al. (2012) assume ellipsoidal melt inclusions, or 

melt films if the inclusions are flat, or melt tubules embedded within an effective viscous medium. This 

self-consistent assumption is able to predict viscous weakening of a solid matrix with a disaggregation 155 

melt porosity of the order of 50% or less depending on the assumed melt geometry. From their 

numerical models Schmeling et al. (2012) derive approximate formulas for the porosity dependence of 

the effective matrix shear and bulk viscosities for a melt network geometry consisting of 100% films 

𝜂𝑠 = 𝜂𝑠0 (1 −
𝜑

𝑐1
)
𝑘1

  for 𝜑 < 𝑐1     (22) 

𝜂𝑏 = 𝜂𝑠0𝑐2
(𝑐1−𝜑)𝑘2

𝜑
 for 𝜑 < 𝑐1      (23) 160 

with 𝑘1 = 𝑎1(𝑎2 + 𝛼(1 − 𝑎2)), 𝑐1 =
𝑏1𝛼

1+𝑏2𝛼
𝑘3

, 𝑐2 =
4

3
𝛼𝑐1

−𝑘2 ∙ (𝑐3(1 − 𝛼) + 𝛼) where 𝑎1 = 0.97, 𝑎2 = 

0.8, 𝑏1 = 2.2455, 𝑏2 = 3.45, 𝑘2 = 1.25, 𝑘3 = 1.29, 𝑐3 = 2, and 𝛼 is the aspect ratio of the ellipsoidal 

inclusions. At the disaggregation threshold found as 𝜑 = 𝑐1 the partially molten material loses its 

cohesiveness and both viscosities approach zero.  

For a melt network consisting of 50% tubes and 50% films the following approximate equations have 165 

been derived from the model of Schmeling et al. (2012)  

𝜂𝑠 = 𝜂𝑠0 ⋅ (1 −
𝜑

𝜑𝑚𝑎𝑥
)
𝑘

      (24) 

𝜂𝑏 = 𝜂𝑠0𝑎2 (
𝜑𝑚𝑎𝑥−𝜑

𝜑
)
𝑏2

      (25) 

The parameters needed to calculate these viscosities for different aspect ratios between 0.2 and 0.5 are 

given in Tab. 1. k is given by 𝑘 = 𝑎1𝜑 + 𝑏1. 170 

Tab. 1: Parameters to calculate the viscosities for a melt network consisting of 50% tubes and 50% 

films using (25) and (26) 
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𝜶 a1 a2 b1 b2 𝝋𝒎𝒂𝒙 

0.2 0.8074 2.595 0.7009 1.276 0.2428 

0.3 0.7435 2.622 0.7082 1.278 0.2629 

0.4 0.6958 2.645 0.7145 1.281 0.2730 

0.5 0.6692 2.664 0.7182 1.284 0.2785 

 

Figure 1 shows the effective shear and bulk viscosities for different aspect ratios together with the 

simplified previous laws (1) and (2).  175 

Takei and Holtzman (2009) and Rudge (2018) suggest that in the presence of an infinitesimal amount of 

connected melt the effective viscosity undergoes a finite drop of the order of a few 10% of the intrinsic 

matrix viscosity. In our approach we always have a finite melt porosity, thus we may identify the zero 

porosity viscosity 𝜂𝑠0 in our formulation with the initially weakened value of Takei and Holtzman (2009) 

or Rudge (2018).   180 

 

 

Fig. 1.  Shear (solid) and bulk (dashed) viscosity for several aspect ratios as a function of the melt 

fraction. Left: The viscosities are calculated for a melt network consisting of 50% tubes and 50% films. 

Right: The network consists of 100% films. The red lines show the simplified analytical viscosities (Equ. 185 

(1) and (2)). 

2.3 Methods and model setup 
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For the model we use a square box (1x1), which is initially partially molten to a certain degree, the 

background porosity. We place an initial porosity anomaly with a higher porosity centered at 𝑥0 = 0.5 

and 𝑧0 = 0.2 from which a porosity wave will develop. As the shape and width of a solitary wave with a 190 

certain rheology law and amplitude is not known a priori we use a Gaussian wave of the form 

𝜑 = 𝐴 ⋅ exp ((
𝑥 − 𝑥0

𝑤
)
2

− (
𝑧 − 𝑧0

𝑤
)
2

) 

for the perturbation and vary the initial width 𝑤 of the wave.  

At the sides of the box symmetric boundaries and at the top and the bottom free slip boundaries are 

used. The in- and outflow velocities of matrix and melt at the top and bottom are prescribed in terms of 195 

the analytical solution of the background porosity. 

The influence of the boundaries on the ascending wave was investigated and found to be fairly small. In 

Fig. 3 one can see the effect of the upper boundary on the phase velocity. At the end, as the waves 

approach the upper boundary, the dispersion curves slightly deviate from the supposed line. This error is 

smaller than 0.5% as long as the distance of the center of the wave to the upper boundary is greater 200 

than 1.5 times its 10%-radius. This radius is defined as the radius at which the porosity has decreased to 

10% of the amplitude of the wave. For the side boundaries this distance has to be larger. For distances 

greater than 3 times the 10%-radius this error is smaller than 1%. In our models the waves have 

distances of 7-10 times the 10%-radius which corresponds to errors between 0.2 and 0.05%. 

The equations are solved on a 201x201 grid by finite differences using the code FDCON (e.g. Schmeling et 205 

al., 2019). Resolution tests have been made with grids varying from 101x101 to 401x401. They show that 

after a short transient time the phase velocity and amplitude of the evolved porosity wave approach 

constant values for very high resolutions for all viscosity laws used. The subsequently observed slow 

variations of the phase velocity and amplitude of the wave along a quasi-steady state dispersion curve 

can be attributed to numerical diffusion at finite grid resolution. The resolution test shows that 1) the 210 

quasi-steady state phase velocity and amplitude of the wave are of error order 1, and 2) the dispersion 

curves obtained on a 201x201 grid overestimate the extrapolated phase velocity values by about 10%. 

Time step resolution tests show that the long-term temporal behavior of the porosity waves is 

significantly improved if the time steps are chosen smaller than approximately 0.2 times the Courant 

criterion. 215 
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The amplitude and phase velocity of the evolving porosity wave is obtained at every time step by 

quadratic interpolation of the porosity values on the FD grid and determining the value and velocity of 

the position of the maximum of the quadratic function. The resulting phase velocity shows small 

oscillations in time, which are probably due to the interaction of the 1st order error in time when solving 

equation (3) and (4) and the 2nd order error of the interpolation. These oscillations are smoothed by 220 

applying a moving average including 50 neighboring points. The resulting time series of porosity 

amplitude and phase velocity can be plotted as a curve with time as curve parameter in an amplitude – 

phase velocity plot. This curve can be understood as a dispersion curve because the phase velocity 

depends on amplitude and thus implicitly on the width or wavelength of the porosity wave. 

For the model series presented below the width and the amplitude of the initial wave, the background 225 

porosity and the rheology law have been varied. All models were carried out using n=2 and n=3 in the 

permeability-porosity law. 

3. Results 

3.1 Dispersion curves for varied widths and amplitudes 

As the shape of a two-dimensional porosity wave for a certain wave amplitude is not known, the initial 230 

width is varied. In Fig. 2a we show a porosity wave of amplitude 8 initially positioned at x = 0.5 and z = 

0.2 (left) as it rises through the model box. In Fig. 2b a horizontal cross section through the maximum of 

an initial wave and the resulting solitary wave at a late stage is shown. During the early stage the wave 

gains some amplitude as the volume of an equivalent solitary wave with the same amplitude would be 

smaller for this example. Then the amplitude of the ascending wave slowly decreases again due to 235 

numerical diffusion and the evolving phase velocity – amplitude curve describes the quasi-steady state 

dispersion relation. At this point the wave is expected to be a solitary wave. The shape of this wave 

resembles a Gaussian bell curve quite well but does not fit exactly. The upper part of the wave in this 

example fits very well while the lower part is slightly wider. 
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 240 

 

Fig. 2. a) Non-dimensional melt fraction at 4 different time steps during the ascent of a solitary wave 

with an initial amplitude of 8. The model was carried out for a melt network geometry consisting of 

100% films and an aspect ratio of 0.1. The background porosity is 0.005 and n = 3. b) Horizontal cross 

section through the center of the initial wave and the solitary wave at a later time.  245 

To analyze the evolution of the ascending solitary wave the phase velocity and the amplitude is tracked 

over the full rising time and plotted into a dispersion diagram. In Fig. 3 the dispersion curves of a model 

with a starting wave width which is initially larger than the resulting solitary wave, a model with a similar 

width, and a model with a smaller initial width are shown. The curves start with high velocities for the 

Gaussian bell shaped wave and then rapidly slow down until they approach a specific point visible as a 250 

sharp kink from which they slowly follow a line. For the bigger and optimal width models, after this kink 

the wave is expected to have reached the solitary wave stage. For the bigger initial width this stage is 

reached at a higher amplitude than initially assumed. It is important to note that, independent of the 

initial wave width, after reaching a solitary wave stage the velocities and shapes of waves of a certain 
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amplitude are always equal, i.e. the three curves merge on one dispersion curve. For comparison with 255 

semi-analytic 2-D solitary porosity wave solutions the dashed curves in Fig. 3 and later Figures show 

dispersion curves with different power law n of the permeability-porosity relation and different bulk 

viscosity laws with m=0 assuming a constant bulk viscosity, and m=1 for a 1/𝜑 proportionality (c.f. equ. 

2) (Simpson and Spiegelman, 2011). In contrast to our models these solutions a) use a stiff rheology 

("analytic viscosity" in Fig 1), b) neglect solid shear (first term of the right hand side of equ. 8) which is 260 

responsible for 𝑣 1 (c.f. equ. 12) in the matrix momentum equation, and for an important contribution in 

the separation flow (equ. 11), and c) apply the small porosity limit. 

 

Fig. 3. Dispersion curves for three models with an initial width bigger, smaller and approximately equal 

to the resulting solitary wave. Each model was carried out for a melt network geometry consisting of 265 

100% films and an aspect ratio of 0.1. The background porosity is 0.005 and n = 3. 

Based on this result one can carry out many models with different initial wave widths and different initial 

amplitudes and get one empirical steady state solitary wave dispersion curve for one viscosity law for a 

wide range of amplitudes. 

Fig. 4 shows the time-dependent dispersion curves of models with 4 different initial amplitudes (4 to 10), 270 

and 11 different initial widths each. Depending on the initial widths they either gain amplitudes as they 

approach the solitary wave stage or they monotonously loose amplitude. Depending on the initial 
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amplitude and width each case is characterized by a certain total melt volume, corresponding to a 

specific steady state solitary wave with a specific amplitude. Therefore the 44 models finally reach one 

steady state solitary wave dispersion curve at different amplitudes. As discussed in section 2, the 275 

amplitude of the waves slowly continue to decrease due to some small amount of numerical diffusion. 

Yet, they continue following the steady state solitary wave dispersion curve.  

Although we use a different rheology law and do not apply the simplifications mentioned above, the 

steady state dispersion curve of our model is in general agreement with the n = 3, m=1 dispersion curve 

determined semi-analytically by Simpson and Spiegelman (2011) (Fig. 4, dashed curve). However, given 280 

the 10% numerical overestimation of phase velocities of our models (c.f. section 2.2), for high amplitudes 

our dispersion curve shows a significantly smaller slope and correspondingly smaller phase velocities 

than the semi-analytical curve by Simpson and Spiegelman (2011). Comparison of the simplified semi-

analytical 1-D solution of Simpson and Spiegelman (2011) with the full analytical 1-D solution of 

Yarushina et al. (2015) shows that for low porosities these solutions fit very well together. For higher 285 

porosities the full solution becomes slower than the simplified one. Tentatively transferring this result to 

2D our decrease in the slope can probably be explained by the low porosity limitation of the Simpson 

and Spiegelman (2011) solution which overestimates the velocity at high porosities. 

 

Fig. 4. Dispersion curves for 44 models with 4 different initial amplitudes (4 to 10) and 11 different 290 

initial widths each. All models were carried out for a melt network geometry consisting of 100% films 

and an aspect ratio of 0.1. The background porosity is 0.005 and n = 3. 
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3.2 Effect of different viscosity laws for n=2 and 3 on dispersion curves 

To investigate the effect of different viscosity laws, two melt network geometries are chosen. The first 

one consists of 50% films/ellipsoidal melt pockets and 50% tubes, the second of 100% films/ellipsoidal 295 

melt pockets. Furthermore the aspect ratio α is varied, whereby a higher aspect ratio corresponds to 

compact melt pockets and leads to stronger viscosities and to a higher disaggregation threshold (c.f. Fig. 

1). 

Waves with these different viscosity laws give only minor differences in the dispersion curves (Fig. 5a, b). 

Especially with the films & tubes case the curves for different aspect ratios (Fig. 5a) are not 300 

distinguishable, both during the transient and final stage. In contrast, the analytic viscosity case (equ. 1 

and 2) propagates along a different path and converges to a 4 – 6 % higher final phase velocity curve.   

With 100% Films the differences among curves with the different viscosity laws in the final velocity are 

higher and lie in the order of 6 %. These differences are surprisingly small if compared to the actual 

differences in effective shear viscosities of about 13% and bulk viscosity of about a factor 4 (at 4 % melt 305 

corresponding to a porosity amplitude 8). It is also to be noted that the steady state part of our 

dispersion curve calculated with the analytical viscosity (eq. 1 and 2) excellently agrees with the semi-

analytical solution (dashed) by Simpson and Spiegelman (2011) for the same viscosity law, if we account 

for the 10 % numerical overestimation of our model phase velocity (c.f. section 2.2). Thus, their neglect 

of shear stresses and other simplifications have only a very minor effect compared to the effect of 310 

different viscosity laws. The overall effect of weakening of matrix viscosity due to decreasing aspect ratio 

is to slow down the phase velocity slightly. 

Changing n of the permeability-porosity relation to 2 decreases the wave velocities significantly (Fig.5c, 

d). This drop is consistent with the simplified semi-analytical solitary wave solutions (n=2, m=1, dashed 

curves). In contrast to the n=3 cases, the n=2 velocities are above the Simpson and Spiegelman (2011) 315 

solutions even if the numerical 10 % overestimation is considered. As for the n=3 case, porosity waves 

with the stronger analytical viscosity case (equ. 1 and 2) are slightly faster than the new weaker viscosity 

cases. 

While the ascending phase velocity of the wave is only slightly affected by the different viscositiy laws, 

the width of the wave changes more strongly. In Figure 6 the half-widths of the solitary waves of 320 

amplitude of 8 are plotted against the corresponding wave velocities for the different viscosity laws. For 

n=2 (Fig. 6a) and 100% films the wave gets wider for higher aspect ratios, while for the mixed geometry 

the widths stay more or less constant. The velocity increases only slightly with the aspect ratio. For n=3 
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(Fig. 6b) and 100% films the width increases with aspect ratio but in contrast to n=2 the phase velocity 

decreases with increasing aspect ratio. For the mixed geometry the velocity and half-width variations are 325 

minor again. These results show that as long as melt tubes represent a significant portion of the total 

melt volume (here 50%) they control the porosity wave dynamics and keep the porosity wave properties 

rather fixed. Only in the absence of tubes compact melt pockets with large aspect ratios significantly 

broaden the waves. For the stiff case of analytical viscosity (equ. 1 and 2) the half width of the wave is 

comparable to the weaker 0.2 films, but the velocities are larger (Fig. 6a,b, light brown symbols). 330 

Another interesting phenomenon to observe is the matrix velocity in the center of the wave, which 

increases for all geometries with aspect ratio (Fig. 7). While for 100% films this increase is stronger, for 

both geometries the velocities are approximately equal at an aspect ratio between 0.2 and 0.3. For n = 2 

(Fig. 7a) the matrix velocities are always positive, meaning that despite a slow negative background 

velocity of the matrix, it rises in the center of the wave (together with the melt). Interestingly, for n=3 335 

(Fig. 7b) and small aspect ratios (0.1 and 0.2, i.e. weaker effective matrix viscosities) the direction of flow 

of the matrix is changed and matrix in the center flows downwards, i.e. against the direction of melt 

flow. Assuming constant matrix shear and bulk viscosities, Scott (1988) observed a similar switch from 

negative to positive matrix velocities in the center of a 2D solitary wave when the ratio of the bulk to 

shear viscosity was increased from 1 to 9 for n = 3. We see this switch around  = 0.25 corresponding to 340 

a bulk to shear viscosity at the center of the porosity wave of about 16, and higher elsewhere. Such a 

switch can be explained by an increasing role of diapiric flow, which is 𝑣 1-related, incompressible, and 

upward in the center of the wave, with respect to the compaction flow, which is 𝑣 2-related, irrotational, 

and downward in the center of the wave (c.f. equ. 12). Weakening of the bulk viscosity within the 

porosity wave relative to the shear viscosity allows stronger decompaction and compaction rates which 345 

amplify the downward compaction flow with respect to the upward diapiric flow. 
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Fig. 5. Dispersion curves of solitary waves with a) n=3, films & tubes, b) n=3, films, c) n=2, films & 

tubes, d) n=2, films for different aspect ratios. 

 350 

Fig. 6. Non-dimensional half-width, plotted against non-dimensional phase velocity for a porosity 

wave of amplitude 8 for different viscosity laws. The numbers give the aspect ratios of the films/melt 

pockets. The background porosity is 0.5 %. a) Permeability-porosity exponent n = 2, b) n = 3 
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Fig. 7. Matrix velocity in the center of a wave with an amplitude of 8 as a function of the aspect ratio 355 

of the films for a) n = 2, b) n = 3. The background porosity for all models was 0.005. 

In the previous models the scaling background porosity of 0.005 and maximum wave amplitudes of 10 to 

12 imply maximum melt fractions of 5 to 6 %. Thus the matrix shear viscosity decrease was only small, of 

order 10% for e.g. the aspect ratio 0.1 models and of order 5% for the stiffer analytical viscosity laws (1), 

(2). This explains the rather mild rheology effect when comparing the effect of the different viscosity 360 

laws. With the aim to reach higher maximum melt fractions associated with stronger rheological effects 

we carried out a model series with increased background porosities, both applying the analytical 

viscosity law (m=1) and our weaker matrix viscosities with 100% films with an aspect ratio 0.1 (Fig. 8).  

The increase in the background porosity from 0.5 % to 1.5% has only a minor influence on the behavior 

of the solitary wave for models which use the analytical viscosity law (m=1): The half width of the wave is 365 

almost completely unaffected (by ~ 1%), while the phase velocity is increased by only approximately 

2.5%. Using a viscosity law based on a melt geometry consisting of 100% films and an aspect ratio of 0.1 

the differences become significant. The half width decreases to ~70% of its initial value and the phase 

velocity decreases by up to 20% with increasing background porosity, i.e. with an increased maximum 

porosity within the wave. Thus, the half widths and phase velocities show a significant difference to the 370 

analytical viscosity law (Fig. 8). In fact, the phase velocities show the opposite behavior to the analytical 

viscosity law (see Fig. 8b). These models suggest that the high melt fractions within the waves which are 

associated with a significant local matrix weakening, both for shear and bulk viscosity, lead to effectively 

shortened compaction lengths within the wave, i.e. to a narrowing and focusing of the wave. Such 

narrower waves contain less melt than broader waves of same amplitude, i.e. less buoyancy, which 375 

slows down the rising phase velocity.    



18 
 

 

Fig. 8. a) Horizontal profiles through ascending waves and b) dispersion curves with different 

background porosities but the same non-dimensional amplitude of 7. The dot-dashed curves were 

calculated with the simplified analytical viscosity law (m=1). The solid lines were calculated with a 380 

viscosity law based on 100% films and an aspect ratio of 0.1.   

 

4. Discussion 

It is interesting to note that although the semi-analytic solutions of Simpson and Spiegelman (2011) 

neglect the shear term in the matrix momentum equation and in the separation flow equation they are 385 

in good agreement with the low 𝜑0 models which include this term. To understand this we made a test 

with a model with 100% films and aspect ratio 0.1 and found that in the separation flow equation (11) 

the shear term has a significant amplitude of about 50% compared to the compaction term. We then 

switched off this term in the separation flow equation (11), which is equivalent to assuming zero shear 

viscosity. Surprisingly it turned out that separation velocity changed only insignificantly while the 390 

amplitudes of matrix divergence and convergence increases by about 25%, and the compaction related 

term driving the separation velocity in equation (11) increases by about 50%, i.e. by the same amount 

the shear term had before. Obviously the buoyancy forces of the solitary wave are partitioned between 

the decompaction pressure controlled by the bulk viscosity and the shear stresses, namely the vertical 

normal shear stresses. If these stresses are neglected by assuming a zero shear viscosity, the buoyancy 395 

forces are balanced by the compaction pressure alone, and the shear contribution of the downward 

segregation flow is taken over by the increased compaction contribution.  
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Recently, Rudge (2018) developed a diffusion creep model based on microscopic diffusion calculations in 

the presence of melt in textural equilibrium with truncated octahedrons. Assuming infinite diffusivity in 

the melt phase he obtains a somewhat stronger weakening of the shear viscosity at smaller melt 400 

fractions than in our model, but comparable disaggregation porosities as in Fig 1. However, due to the 

infinite diffusivity assumption, the bulk viscosity remains finite (=5/3 of the effective shear viscosity) 

even at very small melt porosities, while in our model it increases infinitely in the limit of zero porosity. 

We expect that our results with increased weakening effect (𝜑0 increased to 1.5%) might be applicable 

also to the rheology based on Rudge’s (2018) analyses.     405 

It should be noted that in our study the viscosity law has been varied by assuming various melt 

geometries of melt films and films/melt pockets superimposed with tubes, while the permeability-

porosity has been varied independently between 𝑛 = 2 corresponding to the ideal case of only 

interconnected tubes and 𝑛 = 3 corresponding to the ideal case of interconnected thin films. Three-

dimensional melt distributions of partially molten mantle rocks have been studied e.g. by serial 410 

sectioning (Garapić et al. 2013) identifying a network of melt tubes and films, and by microtomography 

(Zhu et al., 2011) suggesting the predominance of melt tubes along grain edges. Yet, at higher melt 

fractions the latter distributions are characterized by tapered edges of the melt tubes partly or 

completely wetting grain faces between adjacent grains. From the latter experiments Miller et al. (2014) 

determined the permeability by 3D-fluid flow modelling and found an exponent of 2.6. Thus, our 415 

simplified melt viscosities and permeabilities cover quite well observed partially molten olivine-basalt 

systems in textural equilibrium. 

In Richard et al. (2012) it was observed that with increasing background porosities the waves will widen 

and the phase velocities will slow down. In our models we observe faster velocities with increasing 

background porosity if the analytical viscosity is used. This can be explained by the different scaling 420 

which was used by Richard et al. (2012). They used just the shear viscosity to calculate the compaction 

length and not the sum of shear and bulk viscosity. If the same scaling is used, we get the same behavior 

for the phase velocity (Fig. 1b, Suppl. Mat.). In contrast to Richard et al. (2012) we observe a narrowing 

effect of the waves for larger background porosities, which cannot be explained by scaling (Fig. 1a, Suppl. 

Mat.). As Richard et al. (2012) used a 1-D model, we suspect that 2-D effects such as including the 425 

incompressible flow velocity, 𝑣 1, are responsible for the different shapes of the wave at different 

background porosities.  

5. Conclusion 
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As the shape of a solitary wave in our models cannot be described analytically, we start with a Gaussian 

wave, which develops quite rapidly into a solitary wave with a similar shape and a certain amplitude, 430 

depending on the initial width of the wave. 

Even though the rheologies used are much weaker than the simplified analytical ones the effect on 

dispersion curves and wave shape are only moderate as long as the shear viscosity does not drop below 

about 80% of the intrinsic shear viscosity. This value corresponds to a melt fraction of 5 %, equivalent to 

20% of the disaggregation value. At this porosity the bulk viscosity is approximately 5-7 times the 435 

intrinsic shear viscosity. In this case the phase velocity changes just slightly for all cases, while the waves 

broaden in the absence of tubes with increasing aspect ratio.  

In contrast, for higher melt fractions of about 12%, equivalent to 50% of the disaggregation values, the 

shear viscosity decreases to 50% of the intrinsic viscosity, and the bulk viscosities is of the order of the 

intrinsic shear viscosity. Then, our models predict significant narrowing of the porosity waves and 440 

slowing down of the phase velocities. For such conditions a strong discrepancy in solitary wave behavior 

between our viscosity law and the analytical ones is found.  

For low melt fractions our models are in good agreement with semi-analytic solutions which neglect the 

shear stress term, because the matrix shear contribution of the downward segregation flow is taken over 

by the increase of the compaction contribution. 445 
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