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Abstract: Residual pressure can be preserved in mineral inclusions, e.g. quartz-in-garnet, after exhumation due to differential 10 

expansion between inclusion and host crystals. Raman spectroscopy has been applied to infer the residual pressure and provides 

information on the entrapment temperature and pressure conditions. However, the amount of residual pressure relaxation 

cannot be directly measured. An underestimation/overestimation of residual pressure relaxation may lead to significant errors 

between calculated and actual entrapment pressure. This study focuses on three mechanisms responsible for the residual-

pressure relaxationmodification: 1) viscous creep; 2) plastic yield; 3) proximity of inclusion to thin-section surface. Criteria 15 

are provided to quantify how much of the expected residual pressure is relaxedmodified due to these three mechanisms. An 

analytical solution is introduced to demonstrate the effect of inclusion depth on the residual pressure field when the inclusion 

is close to thin-section surface. It is shown that for quartz-in-garnet system, the distance between thin-section surface and 

inclusion centre needs to be at least twothree times the inclusion radius to avoid pressure relaxationrelease. In terms of viscous 

creep, representative case studies on quartz-in-garnet system show that viscous relaxation may occur from temperatures as low 20 

as 600~700 °C depending on the particular pressure-temperature (P-T) path and various garnet compositions. For quartz 

entrapped along the prograde P-T path and subject to viscous resettingrelaxation at peak T above 600~700 °C, its residual 
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pressure after exhumation may be higher than predicted from its true entrapment conditions. Moreover, such a viscous resetting 

effect may introduce apparent overstepping of garnet nucleation that is not related to reaction affinity.  

1. Introduction 25 

During metamorphism, the growth of porphyroblasts often results in the entrapment of inclusions, e.g. quartz inclusion 

entrapped in garnet host.solid/fluid inclusions, which then provide important information about the rock’s history (e.g. Farber 

et al., 2014; Yardley and Bodnar, 2014; Ferrero and Angel, 2018). Due to the differences in the elastic compressibility and 

thermal expansion coefficient between the inclusion and host, residual inclusion pressures may be preserved after exhumation 

(e.g. Rosenfeld and Chase, 1961; Gillet et al., 1984; Zhang, 1998; Angel et al., 2015). The residual pressure can be inferred by 30 

Raman shift based on experimental calibrations, e.g. quartz inclusions (e.g. Liu and Mernagh, 1992; Schmidt and Ziemann, 

2000). This allows the application of Raman-thermobarometry to infer the entrapment pressure and temperature (P-T) 

conditions (e.g. Ashley et al., 2014; Bayet et al., 2018; Enami et al., 2007; Izraeli et al., 1999; Kohn, 2014; Spear et al., 2014; 

Taguchi et al., 2019; Zhong et al., 2019)(e.g. Ashley et al., 2014; Bayet et al., 2018; Enami et al., 2007; Izraeli et al., 1999; 

Kohn, 2014; Spear et al., 2014; Taguchi et al., 2019; Zhong et al., 2019). Existing models that link residual pressure and 35 

entrapment P-T conditions are based on elastic rheology and often assume infinite host radius (e.g. Rosenfeld and Chase, 1961; 

Van Der Molen and Van Roermund, 1986; Guiraud and Powell, 2006; Angel et al., 2017). Recent(Rosenfeld and Chase, 1961; 

Van Der Molen and Van Roermund, 1986; Guiraud and Powell, 2006; Angel et al., 2017b). Despite these simplifications, 

recent experimental works have been successfully performed to compare the measured residual pressure with modelled 

residual pressure under well-controlled P-T conditions for synthetic samples with quartz-in garnet system (Thomas and Spear, 40 

2018; Bonazzi et al., 2019).  

Although many studies using Raman spectroscopy reported maximal residual pressure close to the predictions from elastic 

model (e.g. Ashley et al., 2014; Enami et al., 2007; Zhong et al., 2019), a large amount of inclusion pressure estimates are 

lower than theoretically predicted by the elastic model (Korsakov et al., 2009; Kouketsu et al., 2016; Yamamoto et al., 2002). 

The relaxationmodification of inclusion pressure can be due to various reasons and a systematic investigation is critical to 45 

better apply Raman-thermobarometry to natural samples. Meanwhile, Raman-thermobarometry has been employed to 
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investigate the amount of overstepping for garnet growth by comparing the P-T constraints from phase equilibria and elastic 

thermobarometry (Spear et al., 2014; Wolfe and Spear, 2017). The relaxation of residual inclusion pressure may lead to errors 

in the calculated reaction affinities (e.g. Castro and Spear, 2017).(Spear et al., 2014; Castro and Spear, 2017; Wolfe and Spear, 

2017). Particularly, when comparing the determined paleopressures based on phase equilibria and elastic barometry using 50 

quartz-in-garnet system, careful examination on the amount of residual quartz pressure modification due to the creep of garnet 

host becomes critical. 

When a mineral inclusion maintains residual pressure, differential stress is concomitantly developed around the inclusion on 

the host side to maintain mechanical equilibrium (e.g. Zhang, 1998; Tajčmanová et al., 2014). The host mineral may experience 

viscous creep which is manifested by the dislocation structures (Chen et al., 1996; Yamamoto et al., 2002). Furthermore, the 55 

host mineral may also form radial/tangential (micro)-cracks due to plastic yield when the differential stress exceeds the yield 

criterion (Van Der Molen and Van Roermund, 1986; Whitney, 1991).(Chen et al., 1996; Yamamoto et al., 2002; Taguchi et 

al., 2019b). Furthermore, the host mineral may also experience rate-independent plastic yield when the differential stress 

exceeds the yield criterion (e.g. Zhang, 1998).  In the mechanics literature, plastic deformation is commonly considered as any 

inelastic deformation (time-dependent and time-independent) (e.g. Kachanov, 1971). In this work, we distinguish between 60 

viscous creep, i.e. the rate-dependent inelastic deformation and the rate-independent plastic flow. Mechanical models show 

that both viscous creep (dislocation or diffusion creep of host) and plastic yield (radial or tangential micro-cracks)flow during 

decompression and cooling can cause significant inclusion pressure relaxationdrop (Dabrowski et al., 2015; Zhang, 1998). 

This would lead to an underestimate of residual inclusion pressure (Zhong et al., 2018b) (Fig. 1). Meanwhile, during the thin-

section preparation, mineral inclusions are positioned into proximity towards the thin-section surface (Fig. 1). The thin-section 65 

surface is stress free and may elastically relaxrelease the residual pressure (Mindlin and Cheng, 1950; Seo and Mura, 1979; 

Zhong et al., 2018a). It is of petrological interest to study how deep the inclusion needs to be in order to preserve the residual 

pressure. Experimental works and numerical simulations with finite element method have been performed to test the safe 

inclusion depth (inclusion radius less than one halfthird of host radius) so that the residual inclusion pressure can be preserved 

for the application of Raman barometry (Campomenosi et al., 2018; Mazzucchelli et al., 2018).  70 
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In this contribution, we systematically investigate the following mechanisms for residual inclusion pressure 

relaxationmodification: 1) viscous creep of the host materials that causes viscous relaxation of residual pressure, 2) plastic 

yield that causes (micro)-cracks that relaxwithin the residual pressurehost, and 3) relaxationpressure release due to the 

proximity of inclusion towards thin-section surface. For the first and second purposes, a 1D visco-elasto-plastic mechanical 

model is developed in radially symmetric spherical coordinate frame to study the effect of viscous relaxation and plastic yield 75 

of the residual entrapment pressure.. The derived system of equations is nondimensionalized to extract the key parameters that 

control the amount of viscous relaxation and plastic yield of the residual pressure.. For the third purpose, anmechanism, a 

simple analytical solution for the entrapmentresidual inclusion pressure field close to thin-section surface is introduced as a 

simplified form based on the existing work of Seo and Mura (1979). The analytical solution demonstrates the effect of the 

inclusion depth that controls the amount of pressure relaxationrelease. This solution applies to the case where the inclusion 80 

possesses the same elastic moduli as the host, and the stress is generated due to the differential thermal expansion/contraction.. 

The inclusion is initially subject to an arbitrary hydrostatic pressure in infinite host and its pressure is released as it moved 

towards a stress-free thin-section surface. In comparison, for natural quartz-in-garnet system, numerical solutions are applied 

to investigate the safe distance that causes negligible pressure relaxationrelease due to the presence of thin-section surface. 

(stress-free boundary). In this study, both inclusion and host are treated as elastically isotropic as an assumption to put focus 85 

on the effect of these three mechanisms on preserved residual pressure. The effects of elastic anisotropy for commonly 

encountered quartz inclusion have been studied experimentally and theoretically by e.g. Murri et al. (2018) and Campomenosi 

et al. (2018) and are discussed in the end.  
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2. Methods1D mechanical model with visco-elasto-plastic rheology 

2.1 Visco-elasto-plastic mechanical model 90 

To investigate the effect of viscous creep and plastic yield on residual pressure, we2.1 Governing equations 

We develop a 1D mechanical model with spherical symmetry that is based on the conservation of mass and momentum, and 

it employs a Maxwell visco-elasto-plastic rheology.. In 1D radially symmetric spherical coordinate frame, mechanical 

equilibrium is expressed as follows:  

 𝜕𝜏𝑟𝑟

𝜕𝑟
+
3𝜏𝑟𝑟

𝑟
−
𝜕𝑃

𝜕𝑟
= 0,  (1) 

where 𝜏𝑟𝑟 is the radial component of deviatoric stress (Pa), 𝑃 is pressure (Pa) and 𝑟 is radial coordinate (m). We apply the 95 

Maxwell visco-elasto-plastic rheology to express stress-strain (rate) relation in the radial direction as follows: 

 �̇�𝑟𝑟 =
�̇�𝑟𝑟

2𝐺⏟
𝑒𝑙𝑎𝑠𝑡𝑖𝑐

+
𝜏𝑟𝑟

2𝜂⏟
𝑣𝑖𝑠𝑐𝑜𝑢𝑠

+ 𝜆 𝑠𝑖𝑔𝑛(𝜏𝑟𝑟)⏟      
𝑝𝑙𝑎𝑠𝑡𝑖𝑐

,�̇�𝑟𝑟 = �̇�𝑟𝑟
𝑒 + �̇�𝑟𝑟

𝑣 + �̇�𝑟𝑟
𝑝

, (2) 

where the dot above �̇�𝑟𝑟 denotes time derivative, �̇�𝑟𝑟 is the radial component of the deviatoric strain rate (s-1) that is composed 

of elastic, viscous and plastic counterparts, 𝐺 is shear modulus (𝑃𝑎), 𝜂 is viscosity (𝑃𝑎 ∙ 𝑠), 𝜆 is the plastic multiplier (s-1) 

which guarantees that the plastic yield criterion is not exceeded.where �̇�𝑟𝑟 is the radial components of the deviatoric strain rate 

(s-1) composed of elastic, viscous (rate-dependent) and plastic (rate-independent) parts. The elastic and viscous strain rates are 100 

expressed as: 

 �̇�𝑟𝑟
𝑒 =

�̇�𝑟𝑟

2𝐺
 ,  

�̇�𝑟𝑟
𝑣 =

𝜏𝑟𝑟

2𝜂
 , 

(3) 

where the dot above �̇�𝑟𝑟  denotes time derivative, 𝐺  is shear modulus (𝑃𝑎 ), 𝜂  is viscosity (𝑃𝑎 ∙ 𝑠 ). The non-Newtonian 

(effective) viscosity is expressed as follows: 

 The plastic strain rate is obtained by using the Tresca yield criterion (see e.g. Ranalli, 1995): 
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 𝐹 = |𝜏𝑟𝑟 − 𝜏𝑡𝑡| − 𝐶,𝜂 = 𝐴|𝜏𝑟𝑟|
1−𝑛, (43) 

where 𝐶  is plastic cohesion (Pa) that controls the occurrences of (micro)-cracks, and 𝜏𝑡𝑡  is the tangential component of 105 

deviatoric stress. Due to spherical symmetry, we alsowhere 𝐴 is the temperature dependent pre-factor and 𝑛 is the stress 

exponent (e.g. Dabrowski et al. 2015, eq. 10). The plastic strain rate is obtained by using the Tresca yield criterion (e.g. 

Kachanov, 1971): 

 𝐹 = |𝜏𝑟𝑟 − 𝜏𝑡𝑡| − 𝐶, (5) 

where 𝐶 is plastic yield strength (Pa), and 𝜏𝑡𝑡 is the tangential component of deviatoric stress. Due to spherical symmetry, we 

have 𝜏𝑡𝑡 = −1/2𝜏𝑟𝑟. Applying the plastic flow law (e.g. Vermeer and De Borst, 1984), we get: 110 

 �̇�𝑟𝑟
𝑝
= 𝜆

𝜕𝐹

𝜕𝜏𝑟𝑟
= 𝜆 𝑠𝑖𝑔𝑛(𝜏𝑟𝑟),𝑠𝑔𝑛(𝜏𝑟𝑟) = 𝜆𝛿,   {

𝜆 = 0 for 𝐹 ≤ 0
𝜆 ≠ 0 for 𝐹 > 0

. 
(64) 

where 𝜆 is the plastic multiplier (s-1), which provides the amount of plastic strain (rate) that guarantees the yield criterion is 

not exceeded, and 𝛿 is the sign of 𝜏𝑟𝑟. For isotropic materials, the pressure (negative mean stress)The non-Newtonian (effective) 

viscosity is expressed as follows: 

 𝜂 = 𝐴|𝜏𝑟𝑟|
1−𝑛, (5) 

where 𝐴 is the temperature-dependent pre-factor for viscosity (𝑃𝑎𝑛 ∙ 𝑠), 𝑛 is the stress (power-law) exponent. The pressure 

can be expressed as a function of volume and temperature via equation of state (EoS), and its time derivative is as follows: 115 

 �̇� = −𝜀�̇�𝑘/𝛽 + 𝛼�̇�/𝛽, (76) 

where 𝛽 is compressibility (1/𝑃𝑎), 𝛼 is the thermal expansion coefficient (1/𝐾), �̇� is the rate of temperature change (𝐾/𝑠). 

Temperature is treated as homogeneous within inclusion-host system. Einstein summation is used here for the volumetric strain 

rate (𝜀�̇�𝑘 = 𝜀�̇�𝑟 + 2𝜀�̇�𝑡)., where due to spherical symmetry the two tangential strain rates are equal). No viscous or plastic 

volumetric strain is considered. This assumption is a good approximation for non-porous, crystalline materials (e.g. Moulas et 

al., 2019). 120 
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BySubstituting Eq. 3 and Eq. 6 into Eq. 2 and applying first-order finite difference in time to Eq. 2 and Eq. 76 (i.e. �̇�𝑟𝑟 =

𝜏𝑟𝑟−𝜏𝑟𝑟
𝑜

Δ𝑡
 and �̇� =

𝑃−𝑃𝑜

Δ𝑡
), we can explicitly express 𝜏𝑟𝑟 and 𝑃 as: 

 𝜏𝑟𝑟 = 2𝜂𝑍�̇�𝑟𝑟 + (1 − 𝑍)𝜏𝑟𝑟
𝑜 − 2𝜂𝑍𝜆 𝑠𝑖𝑔𝑛(𝜏𝑟𝑟),−2𝜂𝑍𝜆𝛿, (87) 

 𝑃 = 𝑃𝑜 − Δ𝑡𝜀�̇�𝑘/𝛽 + 𝛼Δ𝑡�̇�/𝛽, (98) 

where 𝑍 =
𝛥𝑡𝐺

𝛥𝑡𝐺+𝜂

Δ𝑡𝐺

Δ𝑡𝐺+𝜂
 is the viscoelastic coefficient, 𝜏𝑟𝑟

𝑜  is the radial component of deviatoric stress in the previous time step, 

𝑃𝑜 is the pressure in previous time step. If the yield criterion in Eq. 53 is exceeded (𝐹 > 0), the plastic multiplier must be 

correctly chosenadjusted to drive 𝐹 to zero. This can be achieved by substituting the deviatoric stress (Eq. 87) into Eq. 53 and 125 

let 𝐹 = 0. Therefore, we obtain  𝜆 as follows: 

 𝜆 = 𝛿�̇�𝑟𝑟 +
(1−𝑍)𝑠𝑖𝑔𝑛(𝜏𝑟𝑟)

2𝜂𝑍
𝜏𝑟𝑟
𝑜 −

𝐶

3𝜂𝑍

(1−𝑍)𝛿

2𝜂𝑍
𝜏𝑟𝑟
𝑜 −

𝛿𝐶

3𝜂𝑍
,   if 𝐹 > 0 (otherwise 𝜆 = 0). (109) 

2.2 Nondimensionalization 

The variables in the above equations can be scaled to derive nondimensional parameters for better understanding the behaviour 

of the inclusion-host system. This is done by choosing the following independent scales:six parameters to nondimensionalize 

the system of equations: the temperature drop of the host-inclusion system Δ𝑇, the inclusion radius 𝑅,  temperature change Δ𝑇, 130 

the time of the 𝑃 − 𝑇 path 𝑡∗, the host’s viscosity pre-factor 𝐴ℎ of𝐴h, the host,’s plastic cohesionyield strength 𝐶ℎ of host,𝐶h, 

and the expected pressure perturbation 𝑃𝑒𝑥𝑝exp that is given as follows: 

 𝑃𝑒𝑥𝑝 =
𝛥𝑃(𝛽𝑖−𝛽ℎ)−Δ𝑇(𝛼𝑖−𝛼ℎ)

𝛽𝑖+3/4𝐺ℎ
,𝑃exp =

Δ𝑃(𝛽𝑖−𝛽ℎ)−Δ𝑇(𝛼𝑖−𝛼ℎ)

𝛽𝑖+3/4𝐺ℎ
, (1110) 

where 𝛥𝑃, 𝛥𝑇 are the confining pressure and temperature drops from entrapment to the Earth’s surface, 𝛽𝑖  and 𝛽ℎ  are the 

compressibility of inclusion and host, 𝛼𝑖 and𝛼ℎ are the thermal expansion coefficients of inclusion and host, 𝐺ℎ is the shear 

modulus of host.  135 

By choosing 𝑃𝑒𝑥𝑝  as the scale, residual pressure will vary around zero to one. This pressure scale allows convenient 

quantification for viscous and plastic relaxation. 
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The involved physical variables are scaled as shown below: 

where Δ𝑃, Δ𝑇 are the confining pressure and temperature drops from entrapment to the Earth’s surface, 𝛽𝑖  and 𝛽ℎ  are the 

compressibility of inclusion and host, 𝛼𝑖 and 𝛼ℎ are the thermal expansion coefficients of inclusion and host, 𝐺ℎ is the shear 140 

modulus of host. The number 𝑃exp is the expected amount of residual inclusion pressure after exhumation assuming linear 

thermo-elasticity and infinite host (Zhang, 1998). It is noted that this is not the actual final residual inclusion pressure, but 

merely a scale to nondimensionalize the stress (and pressure). By choosing 𝑃exp as the stress scale, the inclusion residual 

pressure is expected to be between 0 and 1 for a case of cooling and decompression. This pressure scale allows convenient 

quantification for the amount of pressure modification due to viscous creep and plastic yield. The involved physical variables 145 

are scaled as shown below: 

 𝑟 = 𝑅 �̅�  

𝛽 =
1

𝑃𝑒𝑥𝑝

1

𝑃exp
�̅�  

𝐺 = 𝑃𝑒𝑥𝑝𝑃exp�̅�  

𝛼 =
1

𝛥𝑇
�̅�  

𝑃 = 𝑃𝑒𝑥𝑝𝑃exp�̅�  

�̇� =
𝛥𝑇

𝑡∗
=

Δ𝑇

𝑡∗
�̅̇�  

𝜏𝑟𝑟 = 𝑃𝑒𝑥𝑝𝑃exp𝜏𝑟𝑟̅̅ ̅̅   

𝐶 = 𝐶ℎ𝐶h𝐶̅  

𝜂 = 𝑃𝑒𝑥𝑝𝑃exp𝑡
∗�̅�  

𝐹 = 𝑃𝑒𝑥𝑝𝐶h�̅�  

Δ𝑡 = 𝑡∗Δ𝑡̅̅ ̅  

 

 

 

 

 

 

(1211) 
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𝐴 = 𝐴ℎ𝐴h�̅�  

𝜆 =
1

𝑡∗
𝜆̅  

𝑣𝑟 =
𝑅

𝑡∗
𝑣�̅�  

where the overhead bars indicate dimensionless properties. Substituting these scaling equations into Eq. 1, 87 and 98, we get:  

 𝜕𝜏𝑟𝑟̅̅ ̅̅ ̅

𝜕�̅�
+
3𝜏𝑟𝑟̅̅ ̅̅ ̅

�̅�
−
𝜕�̅�

𝜕�̅�
= 0, (1312) 

 �̅� = 𝑃𝑜̅̅̅̅ +
1

�̅�
[−𝛥𝑡̅̅ ̅

𝜕�̅�2𝑣𝑟̅̅ ̅

�̅�2𝜕�̅�
+ �̅��̅̇�] [−Δ𝑡̅̅ ̅

𝜕�̅�2𝑣𝑟̅̅ ̅

�̅�2𝜕�̅�
+ �̅��̅̇�], (1413) 

 𝜏𝑟𝑟̅̅ ̅̅ =
4

3
�̅��̅� (

𝜕𝑣𝑟̅̅ ̅

𝜕�̅�
−
𝑣𝑟̅̅ ̅

�̅�
) + (1 − �̅�)𝜏𝑟𝑟

𝑜̅̅ ̅̅ − 2�̅�𝜆̅𝛿�̅�, (1514) 

where dimensionless viscosity, viscoelastic coefficient and plastic multiplier are expressed as: 

 �̅� = 𝐷𝑒 ∙ �̅�|𝜏𝑟𝑟̅̅ ̅̅ ̅|1−𝑛, (1615) 

 �̅� =
𝛥𝑡̅̅ ̅�̅�

𝛥𝑡̅̅ ̅�̅�+�̅�
=

Δ𝑡̅̅̅̅ �̅�

Δ𝑡̅̅̅̅ �̅�+�̅�
, (1716) 

 �̅� =
4

3
𝛿(
𝜕𝑣𝑟̅̅ ̅

𝜕�̅�
−
𝑣𝑟̅̅ ̅

�̅�
) +

(1−𝑍)𝛿

2�̅�𝑍
𝜏𝑟𝑟
𝑜̅̅ ̅̅ − 𝐶∗ ∙

𝐶̅

3�̅�𝑍

𝐶̅

3�̅�𝑍
 , if  

3

2
𝛿𝜏𝑟𝑟̅̅ ̅̅ − 𝐶

∗ ∙ 𝐶̅�̅� > 0. (1817) 

Two dominant dimensionless numbers emerge after nondimensionalization. They are Deborah number 𝐷𝑒  and Cohesion 

numberdimensionless yield strength 𝐶∗ defined as follows: 150 

 𝐷𝑒 =
𝐴ℎ/𝑃𝑒𝑥𝑝

𝑛

𝑡∗

𝐴h/𝑃exp
𝑛

𝑡∗
, 

(1918) 

 𝐶∗ =
𝐶ℎ

𝑃𝑒𝑥𝑝

𝐶h

𝑃exp
. (2019) 

where 𝐴ℎ  is the pre-factor of viscosity of the host, 𝑛 is stress exponent, 𝑡∗ is the duration of viscous relaxation, 𝐶ℎ  is the 

cohesion of host. 
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The Deborah number (𝐷𝑒) is the ratio between the characteristic viscous relaxation time (𝐴ℎ/𝑃𝑒𝑥𝑝
𝑛 ) and model duration 

(𝑡∗).The Deborah number (𝐷𝑒) is the ratio between the characteristic viscous relaxation time (𝐴h/𝑃exp
𝑛 ) and model duration 

(𝑡∗) (Reiner, 1964). If 𝐷𝑒 > 1, the system behaves in an elastic manner, and if 𝐷𝑒 < 1, viscous creep becomes important. The 155 

pre-factor of viscosity is temperature dependent. By choosing the pre-factor 𝐴ℎ𝐴h at peak temperature, one can directly use 

𝐷𝑒  to estimate the maximal amount of viscous relaxation. This is especially suitable for the process of isothermal 

decompression in many high-pressure rocks.  

The Cohesion numberdimensionless yield strength 𝐶∗ characterizes the ability of a host mineral to plastically yield and a high 

Cohesion number𝐶∗ implies that the material is less prone to plastic yield. given the amount of residual inclusion pressure 160 

𝑃exp. The viscosity of different mineral phases may vary by orders of magnitude, and the cohesion of difference mineralplastic 

yield strength of different minerals may also vary by many several factors, potentially orders of magnitude. Therefore, these 

two dimensionless numbers have a dominant effect on the amount of inclusion pressure modification due to viscous relaxation 

and plastic yield. 

2.3 Numerical approach for visco-elasto-plastic model 165 

The dimensionless viscosity (Eq. 1615), viscoelastic coefficient (Eq. 1716) and plastic multiplier (Eq. 1817) can be substituted 

into pressure equation (Eq. 1413) and deviatoric stress equation (Eq. 1514). Together with mechanical equilibrium equation 

(Eq. 1312), they form a system of three equations with three unknowns, namely 𝑣�̅� , 𝜏𝑟𝑟̅̅ ̅̅  and �̅�.𝜏𝑟𝑟̅̅ ̅̅  and �̅�. The numerical model 

is based on a finite-difference scheme over 1D staggered grid (numerical stencil see e.g. Gerya (2010) chapter 7). The initial 

pressure �̅�  is set at the beginning of the numerical model. If upon entrapment, the inclusion and host possess the same 170 

hydrostatic pressure, the deviatoric stress 𝜏𝑟𝑟̅̅ ̅̅  is zero in the inclusion and host. If pressure heterogeneity exist upon entrapment, 

the deviatoric stress of the host (𝜏𝑟𝑟̅̅ ̅̅ ) needs to be pre-calculated with elastic model 𝜏𝑟𝑟̅̅ ̅̅ = −(𝑃inc − 𝑃host)/�̅�
3 to ensure that 

mechanical equilibrium is satisfied at the beginning of the model (𝑃inc is the initial inclusion pressure and 𝑃host is the initial 

host pressure). 

For pre-defined P-T path, the inclusion-host system is loaded by the increment of confining pressure and temperature. Both 175 

temperature and far-field pressure are obtained directly from the P-T-t path as prescribed. Temperature is treated as 
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homogeneous in the model and the new pressure is set as the outer boundary value. Because viscosity, viscoelastic coefficient 

and plastic multiplier are functions of deviatoric stress, (viscosity is also a function of temperature as prescribed by the P-T 

path), the system of the mechanical equations is nonlinear. We solve for the three variables (𝑣�̅� , 𝜏𝑟𝑟̅̅ ̅̅  and �̅�) using an iterative 

(Picard) method. Within the iteration loop, an elastic test stress is first evaluated by letting 𝜆̅ = 0 so that the prediction for the 180 

yield function �̅� is computedobtained. If �̅� < 0, no plastic yield occurs and 𝜆̅ is remains zero. Otherwise the prediction of the 

yield function is positive and 𝜆̅ is computed based on Eq.1817 to drive �̅� back to zero. . The calculated 𝜆̅ is then substituted 

back into Eq. 15 to adjust the amount of plastic strain rate. This will drive �̅� to zero (on the plastic yield surface). After the 

Picard iteration loop, the residuals of the three equations 13, 14 and 15 are minimized below ca. 10−12.  

The elastic moduli are updated based on pressure and temperature conditions from tabulated look-up tables within the iteration. 185 

The look-up tables are pre-computed based on EoS. We used the EoS for quartz crystal from Angel et al. (2017a), and the EoS 

for pyrope, grossular and almandine crystals from Milani et al. (2015). The detailed expressions of EoS can be found in the 

EoSFit7c software documentation (Angel et al., 2014). The EoS for spessartine is from Gréaux and Yamada, (2014). The 

compressibility and thermal expansion coefficient for garnet are averaged based on the molar percentage of garnet endmembers. 

The shear moduli of garnet endmembers are from Bass (1995). The host radius is set to be 10The numerical model has been 190 

benchmarked using the analytical solution with elastic, non-Newtonian viscous rheology in Zhong et al., (2018). times the 

inclusion radius to make boundary effects negligible. Temperature is treated as homogeneous in space. After the iteration loop, 

the residuals of the three equations 12, 13 and 14 are minimized below ca. 10−12. The numerical model has been benchmarked 

using the analytical solution with elastic, non-Newtonian viscous rheology in Zhong et al., 2018. The numerical benchmark 

for elasto-plastic rheology is performed by using the analytical solution of Zhang, (1998) (see supplementary materials).  195 

2.4 Analytical solution of inclusion 3. Inclusion pressure closemodification due to thin-section surfacevisco-plastic 

deformation of host 

Pressure relaxation takes place when the inclusion is brought into proximity to a stress-free thin-section surface. Mindlin and 

Cheng (1950) provided a closed-form analytical solution of stress field inside and outside a spherical inclusion with thermal 

strain in a semi-infinite host. The analytical solution has been generalized to ellipsoidal inclusion (Seo and Mura, 1979). 200 
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Substantial mathematical investigations have also been done in deriving the analytical solution of the elastic field for inclusion 

in half-space (e.g. Tsuchida and Nakahara, 1970; Aderogba, 1976; Jasiuk et al., 1991). In this work, a simplified analytical 

formulation of pressure field within a spherical inclusion 𝑃𝑖𝑛𝑐  close to thin-section surface is given. It is emphasized that in 

this situation the inclusion and host possess the same elastic moduli and the residual pressure is caused only by thermal 

expansion/contraction. The goal here is to analytical demonstrate the effect of inclusion’s proximity to the thin-section surface. 205 

Cartesian coordinate system is employed as shown in Fig. 2. The full stress tensor 𝜎𝑖𝑗 of inclusion loaded with eigenstrains is 

represented as follows (Seo and Mura, 1979). 

 
𝜎𝑖𝑗 =

𝜀∗(1+𝜈)𝐺

2𝜋(1−𝜈)
[−4𝜋𝛿𝑖𝑗 −

𝜕2𝜓

𝜕𝑥𝑖𝑥𝑗
+ 4𝜈𝛿𝑖𝑗

𝜕2𝜙

𝜕𝑥3𝑥3
+ (3 − 4𝜈)(𝛿3𝑗 + 𝛿3𝑗 − 1)

𝜕2𝜙

𝜕𝑥𝑖𝑥𝑗
− (𝛿3𝑗 +

𝛿3𝑗)
𝜕2𝜙

𝜕𝑥𝑖𝑥𝑗
− 2𝑥3

𝜕3𝜙

𝜕𝑥3𝑥𝑖𝑥𝑗
]. 

(20) 

While for the host, stresses are given below 

 
𝜎𝑖𝑗 =

𝜀∗(1+𝜈)𝐺

2𝜋(1−𝜈)
[−

𝜕2𝜓

𝜕𝑥𝑖𝑥𝑗
+ 4𝜈𝛿𝑖𝑗

𝜕2𝜙

𝜕𝑥3𝑥3
+ (3 − 4𝜈)(𝛿3𝑗 + 𝛿3𝑗 − 1)

𝜕2𝜙

𝜕𝑥𝑖𝑥𝑗
− (𝛿3𝑗 +

𝛿3𝑗)
𝜕2𝜙

𝜕𝑥𝑖𝑥𝑗
− 2𝑥3

𝜕3𝜙

𝜕𝑥3𝑥𝑖𝑥𝑗
], 

(21) 

where the indices of 𝑥𝑖 (𝑖 = 1,2,3) are in Cartesian coordinate frame following the order of x, y and z (see Fig. 2), and 𝜀∗ is the 

isotropic eigenstrain that is expressed as the difference of volumetric strain between inclusion and host assuming that they are 210 

not bounded by each other. As the inclusion and host possess the same elastic moduli, the difference of volumetric strain is 

only caused by the thermal expansion coefficient difference. 

 𝜀∗ = −
Δ𝑇(𝛼𝑖−𝛼ℎ)

3
. (22) 

The elliptic integrals 𝜓 and 𝜙 are expressed below: 
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𝜓 = 𝜋𝑅3 ∫

1−
𝑅1
2

𝑅2+𝑠

(𝑅2+𝑠)
3
2

𝑑𝑠
∞

𝜆
, 

(23) 

where 𝜆 = 𝑅1
2 − 𝑅2 for host, 𝜆 = 0 for inclusion, and 𝑅1 = √𝑥1

2 + 𝑥2
2 + (𝑥3 − 𝐿)

2. 

 
𝜙 = 𝜋𝑅3 ∫

1−
𝑅2
2

𝑅2+𝑠

(𝑅2+𝑠)
3
2

𝑑𝑠
∞

𝜆
, 

(24) 

where 𝜆 = 𝑅2
2 − 𝑅2 for both host and inclusion, and 𝑅2 = √𝑥1

2 + 𝑥2
2 + (𝑥3 + 𝐿)

2. Here, we focus on inclusion and derive a 215 

simplified form for the pressure of inclusion. For the inclusion, the elliptic integrals are derived: 

 𝜓 = 2𝜋(𝑅2 −
1

3
𝑅1
2), (25) 

 𝜙 =
4

3
𝜋𝑅3𝑅2

−1. (26) 

The normal stresses in the inclusion are: 

 𝜎11 =
𝜀∗(1+𝜈)𝐺

2𝜋(1−𝜈)
[−4𝜋 −

𝜕2𝜓

𝜕𝑥1𝑥1
+ 4𝜈

𝜕2𝜙

𝜕𝑥3𝑥3
− (3 − 4𝜈)

𝜕2𝜙

𝜕𝑥1𝑥1
− 2𝑥3

𝜕3𝜙

𝜕𝑥3𝑥1𝑥1
], (27) 

 𝜎22 =
𝜀∗(1+𝜈)𝐺

2𝜋(1−𝜈)
[−4𝜋 −

𝜕2𝜓

𝜕𝑥2𝑥2
+ 4𝜈

𝜕2𝜙

𝜕𝑥3𝑥3
− (3 − 4𝜈)

𝜕2𝜙

𝜕𝑥2𝑥2
− 2𝑥3

𝜕3𝜙

𝜕𝑥3𝑥2𝑥2
], (28) 

 𝜎33 =
𝜀∗(1+𝜈)𝐺

2𝜋(1−𝜈)
[−4𝜋 −

𝜕2𝜓

𝜕𝑥3𝑥3
+ 4𝜈

𝜕2𝜙

𝜕𝑥3𝑥3
+ (3 − 4𝜈)

𝜕2𝜙

𝜕𝑥3𝑥3
− 2𝑥3

𝜕3𝜙

𝜕𝑥3
3 − 2

𝜕2𝜙

𝜕𝑥3
2]. 

(29) 

By substituting 𝝍 and 𝝓 into the equations above, the normal stresses can be obtained. In deriving the pressure, i.e. 

negative mean stress, many terms in Eq. 27-29 can be cancelled out. 3.1 Residual pressure affected by viscous/plastic 

flow 220 

The solutions of the system of A simplified form is obtained as follow: 
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 𝑃𝑖𝑛𝑐 =
4𝜀∗(1+𝜈)𝐺

3(1−𝜈)
[1 −

2

3

𝑅3

𝑅2
3 (1 + 𝜈) (

3(𝑧+𝐿)2

𝑅2
2 − 1)]. (30) 

Substituting the eigenstrain ε∗ and the expression of 𝑃𝑒𝑥𝑝 in Eq. 10 into pressure, we obtain: 

 𝑃𝑖𝑛𝑐 = 𝑃𝑒𝑥𝑝[1 −
2

3

𝑅3

𝑅2
3 (1 + 𝜈)(

3(𝑧+𝐿)2

𝑅2
2 − 1)]. (31) 

The equation can be nondimensionalized by(Eq. 13, 14, 15) are obtained using the elasticity of quartz-in-garnet system. The 

host radius is set to be 50 times the inclusion radius to make boundary effects negligible. Temperature is treated as 

homogeneous in space. 𝑅 as length scale shown below: 225 

 𝑃𝑖𝑛𝑐

𝑃𝑒𝑥𝑝
= 1 −

2

3

1+𝜈

�̅�2
3 (

3(�̅�+�̅�)2

�̅�2
2 − 1). (32) 

The analytical solution for pressure in the mineral inclusion subject to an initial residual pressure 𝑃𝑒𝑥𝑝 is obtained. When the 

inclusion is far from thin-section surface (�̅� → +∞, and �̅�2 → +∞), the actual residual pressure approaches the expected 

residual pressure based on classical elastic model (𝑃𝑖𝑛𝑐 → 𝑃𝑒𝑥𝑝). The pressure field of an inclusion in half space based on Eq. 

32 is shown in Fig. 2 using the Poisson ratio 𝜈 of pyrope crystal.  

3. Results 230 

3.1 Systematic investigation on Deborah number and Cohesion number 

At the beginning of the model, a pressure perturbation within the inclusion is prescribed, and the far-field host maintains zero 

confining pressure. The pre-factor of viscosity is fixed as temperature does not vary in this case. The amount of inclusion 

pressure relaxation is systematically investigated for the two inelastic deformation mechanisms (i.e. viscous creep and plastic 

yield) as a function of 𝐷𝑒 and 𝐶∗. At the beginning of the model, a residual pressure with the inclusion is prescribed, and the 235 

far-field host maintains zero confining pressure. The pre-factor of viscosity is fixed as temperature does not vary. TheThe 

results are shown in Fig. 2 with the purpose of this diagram in Fig. 3 is to systematically demonstratedemonstrating how much 
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the initially prescribed residual pressure can be relaxedreduced due to viscous creep and plastic yield as controlled by 𝐷𝑒 and 

𝐶∗.. This diagram may assist petrological investigations because 𝐷𝑒 and 𝐶∗ can be evaluated based on experimental rock 

deformation data for different minerals, and they can be used with the diagram to check if viscous relaxation and plastic yield 240 

are expected or not. 

The computed residual inclusion pressure is shown in Fig. 3.. The Deborah number can be evaluated using experimental flow 

law of single crystal, e.g. garnet (Karato et al., 1995; Wang and Ji, 1999) as given in the next section. The plastic yield strength 

is evaluated using microhardness test data (see Discussion below for details). The thickness of plastic yield region is plotted 

as contours. The thick grey contour represents the onset of plastic yield starting from the inclusion-host interface and 245 

propagating towards the host side (Fig. 32). Based on the amount of inclusion pressure relaxation, three regimes are 

distinguished. 

Elastic regime takes place when 𝐷𝑒 and 𝐶∗ are higher than one. Under these circumstances, no viscous relaxation and plastic 

yield occurs. The residual inclusion pressure is close to the expected residual pressure (𝑃𝑖𝑛𝑐𝑃inc ≈ 𝑃𝑒𝑥𝑝𝑃exp). This regime is 

the most suitable for the application of Raman-thermobarometry. 250 

Viscous regime dominates when 𝐷𝑒 is lower than one, and 𝐶∗ is above the plastic onset shown by the thick grey contour. In 

this case, the main mechanism responsible for the inclusion pressure relaxation is the viscous creep. The effect of stress 

exponent on the amount of viscous relaxation is also significant. In general, a higher stress exponent delays pressure relaxation 

(c.f. Dabrowski et al., 2015). As the viscosity of natural minerals is low at high temperature conditions, the viscous regime 

may be reached at high temperature thatwhich leads to the relaxation of residual pressure. 255 

Plastic regime prevails when 𝐶∗ is lower than one, and 𝐷𝑒 is located above the plastic onsetone. Under this circumstance, the 

residual pressure is not significantly relaxed by viscous creep, but by plastic yield. In general, the radius of plastic yield region 

is positively related to amount of residual pressure relaxationrelease. 
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3.2 Pressure relaxation due to free surface 

As a case study, the stress fields of quartz-in-almandine and almandine-in-quartz systems are numerically modelled using a 260 

finite difference (FD) thermo-elastic model (governing equations and model benchmark are provided in supplementary 

material). These examples are chosen to investigate two end-members: elastically stiffer host (quartz-in-almandine in Fig. 4a) 

and softer host (almandine-in-quartz in Fig. 4b). Pressures at three points within the inclusion (top, centre and bottom) are 

contoured as a function of �̅� (see Fig. 4). The pressures evaluated at these three localities based on the analytical solution in 

Eq. 32 are also shown by the dashed curves for comparison with numerical solutions. With decreasing distance to thin-section 265 

surface, the heterogeneity of pressure field increases. The pressure at the top point relaxes the most. Meanwhile, non-negligible 

pressure relaxation also takes place at the centre and bottom points. It is shown that pressure relaxation is less significant in 

elastically stiffer host (garnet) than in elastically softer host (quartz).  

It is shown that the difference between analytical and numerical solution due to the difference of elastic moduli becomes 

significant when the inclusion depth is shallow. The analytical solution and numerical solution are similar when evaluated at 270 

the bottom point at any depth. For quartz-in-garnet system, the analytical solution overestimates the amount of pressure 

relaxation (Fig. 4a). Assuming 3% pressure relaxation as acceptable for the application of Raman barometry, the analytical 

solution yields safe distance ca. �̅�=2.0 for the bottom and centre point, while the numerical solution yields ca. �̅�=1.5. For the 

top point, the safe distance ca. �̅�=2.5 based on the analytical solution is again higher than the prediction of ca. �̅�=2.0 based on 

numerical solution. The difference of safe distance between analytical and numerical solution is due to the presence of 275 

elastically stiffer garnet host. 

Differential stress is also shown in Fig. 4b. High differential stress at the host appears when the inclusion is close to thin-

section surface. Differential stress may also exist inside the inclusion but it is in general smaller than that of the host. For 

quartz-in- garnet system, the differential stress forms a “ring” shaped pattern with a peak at the surface. The differential stress 

may reach up to three times the expected residual pressure. This may potentially trigger plastic failure at thin-section surface. 280 

However, for the garnet-in-quartz system, such pattern is not observed even if the inclusion depth is shallow.  
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3.3 Viscous relaxation of quartz-in-garnet system 

It is noted here that although viscous relaxation and plastic yield of the host mineral have the same effect in reducing the 

residual inclusion pressure after exhumation, there is a fundamental difference between them. Viscous relaxation is time-

dependent (De includes time), which means that the residual pressure will vanish given infinite amount of time. Plastic yield 285 

refers to a time-independent process and it will only limit the amount of deviatoric stress supported by the host mineral. If the 

yield criterion is reached, plastic strain (rate) in the host immediately occurs which leads to the inclusion pressure release. Both 

viscous relaxation and plastic yield are non-reversible, i.e. if the inclusion-host system is placed back to the original entrapment 

condition, the stress state would be different. 

3.2 Viscous relaxation of garnet host 290 

Assuming that the thin-section surface is sufficiently far away from a quartz inclusion and no microcracks appearplastic yield 

occurs around the quartz inclusion, only viscous creep may only contribute to the relaxationmodification of residual pressure. 

Here, we show the effect of viscous relaxation, particularly influenced by the temperature, on the preserved residual pressure. 

Using De as a criterion to estimate the amount of viscous relaxation (Fig. 3),, we show the relationship between temperature, 

inclusion pressure, and relaxation time given De=1 (see Eq. 1918) in Fig. 53.  The flow law of garnet from Wang and Ji (1999) 295 

is applied. The flow law parameters are givenpre-factor 𝐴 of the effective viscosity (Eq. 4) is as follows: 

 𝐴 =
𝐺𝑛

2𝐵
exp (

𝑔∙𝑇𝑚

𝑇
), (21) 

where 𝐵 = exp(40.1)  in the figure caption.s-1, 𝑔 = 32 . The stress exponent 𝑛 = 3 . Geometric correction based on 

experimental setup (simple/pure shear) was not applied. The melting point 𝑇𝑚 of pyrope-rich garnet, grossular and spessartine 

are from the Table 1 in Karato et al. (1995). For almost pure almandine, the garnet melting point is found to be 1588 K from 

Mohawk Garnet Inc, which is slightly higher than 1570 K for almandine rich (Alm0.68Prp0.20Grs0.12) garnet in Karato et al. 300 

(1995).  

As an example, (Fig. 3), for a quartz inclusion possessing 0.5 GPa residual pressure maintained at 650 oC, significant viscous 

relaxation will occuris expected during 1 Ma for almandine rich garnet host based on the applied flow law. This temperature 
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becomes higher (700 oC) for pyrope rich garnet. If the residual pressure is used to recover the entrapment pressure given that 

the temperature experienced by the garnet-host system was higher than 650~700 oC, an underestimate of the entrapment 305 

pressure may potentially occur. 

In Fig. 64, synthetic retrograde P-T paths from eclogite and amphibolite-facies metamorphic conditions are prescribed with 

different peak temperature. The entrapment P-T conditions for the three synthetic P-T paths are along an elastic 

isomekesisomeke, which areis the isopleths of residualisopleth where no relative elastic interaction exists between inclusion 

pressure as a function of entrapment P-T conditions. Thereforeand host. Thus, the residual inclusion pressure shouldwould be 310 

the same if viscous relaxation is not considered.the inclusions were entrapped along the same isomeke and they were purely 

elastic. By involving the viscous rheology of the garnet host, different residual inclusion pressures are predicted. For the P-T 

path starting at 800 oC, 2 GPa, the quartz inclusion pressure is predicted to be less than 0.2 GPa. The This reduced value of the 

residual inclusion pressure subject to viscous relaxation isis then used to determine the apparent entrapment pressure (Fig. 

6b4b). In Fig. 6b4b, it is shown that for the entrapment pressure within eclogite-facies conditions at 700 oC, and by using only 315 

the a purely-elastic model, a value of entrapment pressure is inferred that is approximately 10% less than the actual value.  The 

amount of underestimateunderestimation of entrapment pressure increases to 30% when the entrapment temperature reaches 

800 oC. TheThese values are conservative estimates since the total exhumation time is set as 1 Ma. Longer residence at high-

temperature conditions would result to larger modifications of the residual pressure. 

For amphibolite-facies entrapment conditions, the residual pressure that is preserved in the quartz inclusion is significantly 320 

lower compared to the case where the entrapment occurred at eclogites-facies conditions. In this case, the amount of 

underestimate is less as well due to the fact that the viscosity of garnet host is stress dependent (see Eq. 5). As shown in Fig. 

6DAs shown in Fig. 4D, ca. 5% and 20 % underestimate of true entrapment pressure is predicted depending whether the 

entrapment occurred at 700 oC or 800 oC, respectively. Similarly, the amount of underestimation will be larger if the duration 

of exhumation is longer than 1Ma. 325 
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3.43 Pressure relaxation along prograde P-T path and apparent overstepping 

The pressure relaxation problem isbecomes more complicated when the quartz inclusion is entrapped not at the peak P-T 

conditions, but along the prograde P-T path. In this case, viscous relaxation occurs also along the prograde P-T path and the 

pressure difference between host and inclusion will relax with time and increasing temperature. This effect starts before the 

rock reaches the peak P-T conditions. Two synthetic P-T paths are illustrated in Fig. 75. In Fig. 7a5a, the quartz is entrapped 330 

in the almandine-garnet host at 400 oC, 1 GPa and further experiences eclogites-facies P-T conditions. During the prograde 

path, the quartz inclusion will develop underpressure, (e.g. Angel et al., 2015, Fig. 5), which will also be subject to viscous 

relaxation over geological time. The quartz pressure starts to converge towards the garnet host pressure at T>600 oC. Nearly 

complete viscous resetting is observed when the system is brought up to 800 oC. The prograde time is set as 1 Ma or 10 Ma to 

compare the amount of viscous relaxation as a function of time in Fig. 75. 335 

TheAn alternative scenario is considered where the rock may also stay at the peak P-T conditions before decompression occurs. 

A synthetic clockwise P-T path reaching eclogite facies metamorphic condition is constructed as shown in Fig. 86. The quartz 

inclusion is entrapped into the garnet host at 400 oC, 0.6 GPa, which is considered to be along the entrance of garnet stability 

field. Subsequently the system is brought to 700~750 oC, 1.8~1.9 GPa conditions and stays there for 5 Ma. Afterwards, the 

retrograde P-T path takes 10 Ma. Two different P-T paths of quartz inclusions are constructed based on the implemented elastic 340 

and visco-elastic rheologies. Interestingly, the residual pressure of the inclusion that was subject to viscous relaxation is 

significantly higher (by 0.2 GPa,) than the prediction of pure elastic model as shown by the black dashed curve (0.14 GPa). 

The apparent entrapment pressure is calculated using the predicted residual pressure for the inclusion whose host experienced 

viscous relaxation. A large discrepancy exists between the apparent entrapment pressure (ca. 1 GPa at the entrapment T 400 

oC) and the true entrapment pressure (0.6 GPa). The overall overestimate of true entrapment pressure (0.6 GPa) is about 0.3~0.4 345 

GPa, which may potentially be interpreted as overstepping of the garnet growth/nucleation.  

4. DiscussionInclusion pressure modification due to proximity to thin-section surface 

Despite the importance of viscous/plastic relaxation in the post-entrapment modification of pressure, residual pressure 

measurements may be different when the inclusions are closer to the thin-section surface (Enami et al., 2007). When a 
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pressurized mineral inclusion in infinite host under mechanical equilibrium is moved towards the thin-section surface, its 350 

pressure is released and the pressure distribution within the inclusion becomes heterogeneous. Mindlin and Cheng (1950) 

provided a closed-form analytical solution of stress field inside and outside a spherical inclusion with thermal strain in a semi-

infinite host. The analytical solution has been generalized to ellipsoidal inclusion (Seo and Mura, 1979). Substantial 

mathematical investigations have also been done in deriving the analytical solution of the elastic field for inclusion in half-

space (e.g. Tsuchida and Nakahara, 1970; Aderogba, 1976; Jasiuk et al., 1991). Although the analytical formulations for 355 

individual stress components of inclusion are non-trivial, here, we show that the formula for pressure distribution of a 

pressurized inclusion can be significantly simplified (detailed derivations are provided in the Appendix): 

 𝑃inc

𝑃ini
= 1 −

2

3

1+𝜈

�̅�2
3 (

3(�̅�+�̅�)2

�̅�2
2 − 1). (22) 

where 𝑃ini is the initial inclusion pressure in infinite host under mechanical equilibrium, �̅� is the scaled inclusion depth (�̅� =

𝐿/𝑅) and �̅�2 = √𝑥1
2 + 𝑥2

2 + (𝑥3 + 𝐿)
2/𝑅 is a function of position in Cartesian coordinate system (Fig. 7), 𝜈 is the Poisson 

ratio of the inclusion and host. It is emphasized that in this situation the inclusion and host possess the same elastic moduli.  360 

The released inclusion pressure due to proximity to the thin-section surface is plotted in Fig. 7b and 7c using Eq. 22. Pressure 

release is concentrated at the top of the inclusion while the bottom of the inclusion is subject to minimal pressure releases 

(<10%). Interestingly, the top of the inclusion is subject to negative pressure (expansion) when the inclusion is very close to 

the thin-section surface (e.g. see the case of �̅� = 1.1). Based on the analytical solution, the safe inclusion depth to avoid residual 

pressure release is ca. �̅� = 2.5 (the amount of pressure release is less than 3% within the entire inclusion). Here, the simple 365 

analytical solution in Eq. 22 can precisely model the inclusion’s residual pressure due to stress release at thin-section surface, 

where the inclusion possesses the same elastic moduli as the host. In natural mineral inclusion-host system, the inclusion and 

host possess different elastic properties. As a case study, the stress fields of quartz-in-almandine and almandine-in-quartz 

systems are numerically modelled using a finite difference (FD) thermo-elastic model (model benchmark are provided in 

supplementary material). These examples are chosen to investigate two end-members: elastically stiffer host (quartz-in-370 

almandine in Fig. 8a) and softer host (almandine-in-quartz in Fig. 8b). Pressures at three points within the inclusion (top, centre 

and bottom) are contoured as a function of �̅�. The pressures evaluated at these three localities based on the analytical solution 



 

21 

 

in Eq. 22 are also shown by the dashed curves for comparison with numerical solutions. With decreasing distance to thin-

section surface, the heterogeneity of pressure field increases. It is shown that the pressure release is less significant in elastically 

stiffer host (garnet) than in elastically softer host (quartz).  375 

It is shown that the difference between analytical and numerical solution due to the difference of elastic moduli becomes 

significant when the inclusion depth is shallow. The analytical and solutions are similar when evaluated at the bottom point at 

any depth (Fig. 8). For quartz-in-garnet system, the analytical solution overestimates the amount of pressure release (Fig. 8a). 

Assuming 3% pressure release as acceptable for the application of Raman barometry, the analytical solution yields safe 

distance ca. �̅�=2.0 for the bottom and centre point, while the numerical solution yields ca. �̅�=1.5. For the top point, the safe 380 

distance ca. �̅�=2.5 based on the analytical solution is again higher than the prediction of ca. �̅�=2.0 based on numerical solution. 

The difference of safe distance between analytical and numerical solution is due to the presence of elastically stiffer garnet 

host.  

Differential stress (|𝜎1 − 𝜎3|) is also shown in Fig. 8b. High differential stress at the host appears when the inclusion is close 

to thin-section surface. Differential stress may also exist inside the inclusion but it is in general smaller than that of the host. 385 

For quartz-in-garnet system, the differential stress forms a “ring” shaped pattern with a peak at the surface. The differential 

stress may reach up to three times the expected residual pressure. This may potentially trigger plastic failure at thin-section 

surface. However, for the garnet-in-quartz system, such pattern is not observed even if the inclusion depth is shallow.  

45. Discussion 

5.1 What may cause the residual pressure relaxationmodification? 390 

The three mechanisms investigated here, i.e. viscous creep, visco-plastic yieldflow of the host and proximity of inclusion to 

thin-section surface can all be responsible for the relaxationmodification of the residual inclusion pressure. The amount of 

inclusion-pressure relaxationchange due to these three mechanisms is controlled by Deborah number (𝐷𝑒 ), Cohesion 

numberdimensionless yield strength (𝐶∗) and dimensionless depth (�̅�), respectively. These three numbers are recommended to 

be examined beforehand.  395 
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In the examples of quartz-in-garnet systems, the residual pressure is considered to be sealed in creak-free garnet host. However, 

cracks have been observed around some quartz inclusions but those inclusions are often avoided (e.g. Ashley et al., 2014; 

Kouketsu et al., 2016).perfectly elastic garnet host. Based on our study, the presence (radius) of plastic yield region and 

preserved residual inclusion pressure are dominated by Cohesion numberdimensionless yield strength (𝐶∗ = 𝐶ℎ/𝑃𝑒𝑥𝑝𝑃exp) as 

shown in Fig. 3. Cohesion2. Strength 𝐶ℎ can be converted from hardness test data using the formula below (e.g. Evans and 400 

Goetze, 1979): 

 𝐶ℎ = 𝐻/𝐶𝑔  (232333) 

where 𝐻 is the measured microhardness and 𝐶𝑔 is a constant accounting for the indenter’s geometry in the experiment. Taking 

𝐶𝑔 = 3 (Evans and Goetze, 1979), the cohesionyield strength of garnet host is between 4.4 and 5 GPa at room conditions 

(Whitney et al., 2007), which leads to a Cohesion number 𝐶∗ = 4.4~5 given residual inclusion pressure 𝑃𝑒𝑥𝑝𝑃exp = 1 GPa. 

This suggests that plastic yield does not occur in an idealized scenario of isotropic, spherical quartz inclusion entrapped in 405 

infinite garnet host. However, such an ideal scenario is highly improbable in natural samples. The observed cracks in garnet 

hostLocalized plastic yield may be formedstill occur due to potentialfollowing reasons including: 1) elevated differential stress 

when the inclusion is close to thin-section surface (“ring” shaped pattern in Fig. 4a8); 2) stress concentration at the corners of 

quartz inclusion (Whitney et al., 2000); 3) anisotropic elastic deformation of the quartz inclusion (e.g. Murri et al., 2018); 4) 

pre-fractures/weakness in garnet host before the entrapment of quartz inclusions. that leads to the localization of dislocations. 410 

Although our model does not predict exact conditions for plastic yield due to the above possibilities, it gives a lower bound 

for the cohesionstrength and provides information on what type of host mineral phase cannot be used for Raman-barometry. 

Cohesion dataPlastic yield strength of some common rock-forming minerals measured in hardness tests are compiled and 

provided in table 1. As an example, given 𝑃𝑒𝑥𝑝𝑃exp = 1 GPa, the Cohesion numberdimensionless yield strength of calcite host 

is ca. 0.6, and dolomite is ca. 1.5 (Wong and Bradt, 1992). This implies that calcite will partially relax the residual pressure 415 

𝑃𝑒𝑥𝑝 and dolomite has the potential to preserve 𝑃𝑒𝑥𝑝. Care must be taken to check the potential presence of microcracks around 

inclusions when using host minerals with low Cohesion number for Raman-barometry, e.g. zircon, dolomite. Minerals such as 
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calcite should be avoided to be used as the host material for the application of Raman barometry. This implies that plastic flow 

will most likely affect the residual pressure 𝑃exp in the calcite host but not in dolomite host. 

After thin-section preparation, the inclusion pressure may be (partially) relaxedreleased. The dimensionless depth can be 420 

evaluated by performing depth-step scan analysis with Raman spectroscopy in order to observe if the pressure gradually 

decreases towards thin-section surface (Enami et al., 2007; Campomenosi et al., 2018). For quartz-in-garnet system, to avoid 

significant pressure relaxation(Enami et al., 2007). For quartz-in-garnet system, to avoid significant pressure release (>3%) in 

the bottom half of inclusion, the dimensionless depth needs to be above at least 1.5 (Fig. 48). To avoid significant pressure 

relaxationrelease in the entire quartz inclusion, the dimensionless depth needs to be above ~2. Therefore, we recommend a 425 

safe dimensionless depth of ~22~2.5 (from surface to the centre of inclusion) for quartz-in-garnet Raman-barometry (see also 

Mazzucchelli et al., 2018). For a 30 μm thick thin-section, the maximal radius of an inclusion is ca. 6 μm (12 μm in diameter) 

located at the mid-point of the thin-section. In practice, it is difficult to precisely measure the depth of an inclusion and it is 

uncommon that an inclusion is located right in the middle of a thin-section. Therefore, it is ideal to choose smaller inclusions 

or prepare thicker thin-section for measurement (Campomenosi et al., 2018; Mazzucchelli et al., 2018). 430 

For commonly used quartz-in-garnet Raman-barometry, our results show that below 550~600 oC, the effect of viscous 

relaxation can be negligible. Above ca. 650~750 oC, the effect of viscous relaxation needs to be taken into account depending 

on particular P-T path, garnet composition and time scale (Fig. 53, Fig. 64). This is similar to the empirical estimate ca. 750 

oC in Walters and Kohn (2014). It is also shown that the preserved residual pressure may even increase due to viscous relaxation 

if viscous resetting occurs at peak P condition (Fig. 86). This is simply because viscous creep does not only relax the 435 

overpressure in quartz inclusion, but also the underpressure that develops along prograde P-T path. Meanwhile, the amount of 

viscous relaxation is time-dependent (𝐷𝑒 is a function of the operating time of viscous relaxation). Thus, the above temperature 

criterion for Raman-barometry applies only for exhumation lasting at million years’ time scale. A higher temperature criterion 

for Raman-barometry (e.g. ~1000 oC for garnet host at high pressure close to coesite-quartz transition) is applicable for more 

rapid exhumation, e.g. xenolith ascent carried by magma (Zhong et al., 2018b) or garnet synthesis experiments that lasts 440 

hours/days (Thomas and Spear, 2018; Bonazzi et al., 2019). 
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45.2 Implications to garnet overstepping  

Quartz-in-garnet Raman-barometry has been used to determine the entrapment pressure, i.e. garnet nucleation/growth 

conditions and compared to the P-T conditions determined based on phase equilibria/classical chemical thermobarometry 

(Castro and Spear, 2017; Spear et al., 2014). As has been shown in Fig. 86, viscous resetting occurs when the inclusion-host 445 

system is brought to high temperature (>600~700 oC). Even if the quartz inclusion is entrapped at lower P-T conditions, e.g. 

the garnet entrance conditions, the preserved residual inclusion pressure may still be significantly higher than predicted from 

the actual entrapment P-T conditions using pure elastic model. In this case, erroneous results may emerge if one uses the 

relaxed residual quartz inclusion pressure to determine the entrapment pressure. In case of significant viscous resetting at peak 

T conditions followed by decompression, as in the case of some HP rocks, apparent garnet growth overstepping will be inferred 450 

(see Fig. 8b). Care6b). In that case, care must thus be taken to interpret the discrepancy between the results of quartz-in-garnet 

Raman barometry and phase equilibria. As shown in the example with synthetic clockwise P-T path (Fig. 86), ca. 3~4 kbar 

apparent overstepping is yieldedpredicted by considering viscous resetting at peak T condition. The amount of apparent 

overstepping will be even larger if the exhumation process happens faster (current model assumes 10 Ma decompression time).  

56. Conclusions 455 

We first presented a 1D visco-elasto-plastic model to study the inclusion-host system undergoing a prograde/retrograde P-T 

path. NondimensionalizationThe nondimensionalization of the governing equations yields two controlling parameters, 

Deborah number (De) and cohesion numberdimensionless yield strength (𝐶∗) that control the amount of pressure drop due to 

viscous relaxation and plastic relaxation of the residual pressure of inclusion.yield. Both De and 𝐶∗ must be higher than one 

to avoid relaxation due to viscous creep and plastic yield. Aunderestimating the residual pressure. Subsequently, a simplified 460 

analytical solution for inclusion pressure (Eq. 3222) close to stress-free thin-section surface is derived.presented based on the 

existing analytical solution from Seo and Mura (1979). It is suggested that the distance between thin-section surface and 

inclusion must be higher than 2~3 times the inclusion radius to avoid stress relaxationrelease.  

The relevance of our presented visco-elasto-plastic model to quartz-in-garnet elastic barometry has been systematically studied. 

Although plastic yield is not expected for garnet host due to its high yield strength, the residual inclusion pressure preserved 465 
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in quartz inclusion can be partially modified at high temperature due to time-dependent viscous creep. It is shown that above 

650~700oC over Ma time scale, viscous creep of garnet host may partially reset the quartz pressure. This may have important 

implications for the determination of entrapment pressure of quartz inclusion. Additionally, this may also cause apparent 

overstepping of garnet growth, thus care must be taken when applying quartz-in-garnet barometry at rocks which experienced 

high temperatures (>600~700 oC). 470 
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Appendix 

Here, we introduce a simplified formula for pressure distribution of an initially pressurized inclusion in infinite host moved 

toward a stress-free surface based on the existing analytical solution of Seo and Mura (1979). A Cartesian coordinate system 
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is employed as shown in Fig. 7. The full stress tensor 𝜎𝑖𝑗 of inclusion loaded with eigenstrains is represented as follows (Seo 485 

and Mura, 1979). 

 
𝜎𝑖𝑗 =

𝜀∗(1+𝜈)𝐺

2𝜋(1−𝜈)
[−4𝜋𝛿𝑖𝑗 −

𝜕2𝜓

𝜕𝑥𝑖𝑥𝑗
+ 4𝜈𝛿𝑖𝑗

𝜕2𝜙

𝜕𝑥3𝑥3
+ (3 − 4𝜈)(𝛿3𝑗 + 𝛿3𝑗 − 1)

𝜕2𝜙

𝜕𝑥𝑖𝑥𝑗
− (𝛿3𝑗 +

𝛿3𝑗)
𝜕2𝜙

𝜕𝑥𝑖𝑥𝑗
− 2𝑥3

𝜕3𝜙

𝜕𝑥3𝑥𝑖𝑥𝑗
]. 

(A1) 

While for the host, stresses are given below 

 
𝜎𝑖𝑗 =

𝜀∗(1+𝜈)𝐺

2𝜋(1−𝜈)
[−

𝜕2𝜓

𝜕𝑥𝑖𝑥𝑗
+ 4𝜈𝛿𝑖𝑗

𝜕2𝜙

𝜕𝑥3𝑥3
+ (3 − 4𝜈)(𝛿3𝑗 + 𝛿3𝑗 − 1)

𝜕2𝜙

𝜕𝑥𝑖𝑥𝑗
− (𝛿3𝑗 +

𝛿3𝑗)
𝜕2𝜙

𝜕𝑥𝑖𝑥𝑗
− 2𝑥3

𝜕3𝜙

𝜕𝑥3𝑥𝑖𝑥𝑗
], 

(A2) 

where the indices of 𝑥𝑖 (𝑖 = 1,2,3) are in Cartesian coordinate frame following the order of x, y and z (see Fig. 7), and 𝜀∗ is the 

isotropic eigenstrain that is expressed as the difference of volumetric strain between inclusion and host assuming that they are 

not bounded by each other. The elliptic integrals 𝜓 and 𝜙 are expressed below: 490 

 
𝜓 = 𝜋𝑅3 ∫

1−
𝑅1
2

𝑅2+𝑠

(𝑅2+𝑠)
3
2

𝑑𝑠
∞

𝜆
, 

(A3) 

where 𝜆 = 𝑅1
2 − 𝑅2 for host, 𝜆 = 0 for inclusion, and 𝑅1 = √𝑥1

2 + 𝑥2
2 + (𝑥3 − 𝐿)

2. 

 
𝜙 = 𝜋𝑅3 ∫

1−
𝑅2
2

𝑅2+𝑠

(𝑅2+𝑠)
3
2

𝑑𝑠
∞

𝜆
, 

(A4) 

where 𝜆 = 𝑅2
2 − 𝑅2 for both host and inclusion, and 𝑅2 = √𝑥1

2 + 𝑥2
2 + (𝑥3 + 𝐿)

2. Here, we focus on the stress experienced 

by the inclusion and derive a simplified form for the pressure of inclusion. For the inclusion, the elliptic integrals are derived: 

 𝜓 = 2𝜋(𝑅2 −
1

3
𝑅1
2), (A5) 
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 𝜙 =
4

3
𝜋𝑅3𝑅2

−1. (A6) 

The normal stresses in the inclusion are: 

 𝜎11 =
𝜀∗(1+𝜈)𝐺

2𝜋(1−𝜈)
[−4𝜋 −

𝜕2𝜓

𝜕𝑥1𝑥1
+ 4𝜈

𝜕2𝜙

𝜕𝑥3𝑥3
− (3 − 4𝜈)

𝜕2𝜙

𝜕𝑥1𝑥1
− 2𝑥3

𝜕3𝜙

𝜕𝑥3𝑥1𝑥1
], (A7) 

 𝜎22 =
𝜀∗(1+𝜈)𝐺

2𝜋(1−𝜈)
[−4𝜋 −

𝜕2𝜓

𝜕𝑥2𝑥2
+ 4𝜈

𝜕2𝜙

𝜕𝑥3𝑥3
− (3 − 4𝜈)

𝜕2𝜙

𝜕𝑥2𝑥2
− 2𝑥3

𝜕3𝜙

𝜕𝑥3𝑥2𝑥2
], (A8) 

 𝜎33 =
𝜀∗(1+𝜈)𝐺

2𝜋(1−𝜈)
[−4𝜋 −

𝜕2𝜓

𝜕𝑥3𝑥3
+ 4𝜈

𝜕2𝜙

𝜕𝑥3𝑥3
+ (3 − 4𝜈)

𝜕2𝜙

𝜕𝑥3𝑥3
− 2𝑥3

𝜕3𝜙

𝜕𝑥3
3 − 2

𝜕2𝜙

𝜕𝑥3
2]. 

(A9) 

By substituting 𝜓 and 𝜙 into the equations above, the normal stresses can be obtained. In deriving the pressure, i.e. negative 495 

mean stress, many terms in Eq. A7~A9 can be cancelled out. A simplified form is obtained as follow: 

 𝑃inc =
4𝜀∗(1+𝜈)𝐺

3(1−𝜈)
[1 −

2

3

𝑅3

𝑅2
3 (1 + 𝜈) (

3(𝑧+𝐿)2

𝑅2
2 − 1)]. (A10) 

The pre-factor 
4𝜀∗(1+𝜈)𝐺

3(1−𝜈)
 is in fact the initial pressure of the inclusion in infinite host loaded by the eigenstrain 𝜀∗  under 

mechanical equilibrium. Therefore, we may simplify Eq. A10 as follows: 

 𝑃inc = 𝑃ini[1 −
2

3

𝑅3

𝑅2
3 (1 + 𝜈)(

3(𝑧+𝐿)2

𝑅2
2 − 1)]. (A11) 

where 𝑃ini is the inclusion pressure in infinite host loaded by eigenstrain 𝜀∗ under mechanical equilibrium before moving it 

close to the thin-section surface. The equation can be nondimensionalized by using 𝑅 as length scale shown below: 500 

 𝑃inc

𝑃ini
= 1 −

2

3

1+𝜈

�̅�2
3 (

3(�̅�+�̅�)2

�̅�2
2 − 1). (A12) 

The analytical solution for pressure in the mineral inclusion subject to an initial residual pressure 𝑃ini is obtained. When the 

inclusion is far from thin-section surface (�̅� → +∞, and �̅�2 → +∞), the actual residual pressure approaches the expected 
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residual pressure based on classical elastic model (𝑃inc → 𝑃ini). Another potential application of the solution in Eq. A12 is for 

benchmarking numerical solutions. Due to the simplicity of the pressure expression, it is particularly suitable for quick 

validation of numerical models, e.g. finite-difference model presented in supplementary materials.  505 
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Table 

Table 1. Averaged cohesionplastic strength from microhardness tests for some minerals at room conditions. CohesionStrength 

is converted from microhardness based on 𝐶ℎ = 𝐻/𝐶𝑔, where the geometry constant 𝐶𝑔 is taken as 3. Raw data are dependent 

on crystallographic orientation, composition and applied load that are examined in some of the involved references. 

Minerals CohesionYield 

strength (GPa) 
calcite2 

 

0.6 

zircon4 1.2 

dolomite2 

 

1.5 

orthoclase1 

 

2.3 

andalusite1 

 

2.3 

diopside3 2.7 

sillimanite1 

 

3.7 

quartz1 

 

4.0 

kyanite1 

 

4.0 

spinel5 4.1 

grossular1 

 

4.4 

almandine-pyrope1 

 

5.0 

1Data reported in Whitney et al. (2007).  645 

2Data reported in Wong and Bradt (1992). The reported data for calcite and dolomite are averaged from the applied load and 

azimuthal angle from [101̅1̅]. 

3Data reported in Smedskjaer et al. (2008). 

4Data reported in Yuan et al. (2017) 

5Data reported in Dekker and Rieck (1974). The reported data are averaged from the applied load at [110] and [100]. 650 
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Fig. 1. Schematic illustration for the residual pressure development and relaxation.. The grey and black curves are retrograde 

P-T paths for host and inclusion, respectively. Pressure relaxationdrop is possibly due to following reasons: 1) viscous 

relaxation preferentially occurs at high temperature conditions; 2) plastic yield commonly occurs at low confining pressures 

where residual pressure is high; 3) thin-section preparation that drives inclusion close to thin-section surface. Note that this 660 

illustration refers to systems where the inclusion is elastically softer than its host (e.g. quartz in garnet). 
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 665 

 

Fig. 2. A: Model configuration of mineral inclusion close to thin-section surface. The distance between the surface to inclusion 

centre is denoted by 𝐿. B: Pressure distribution on x-z plane (𝐿 = 1.5𝑅). Initially the inclusion contains 1GPa residual pressure 

and is relaxed when brought next to the stress-free surface. The analytical solution of Eq. 32 is used for the pressure plot. 

  670 
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Fig. 3. Inclusion pressure as a function of Deborah number and Cohesion numberdimensionless yield strength given different 

stress exponents. The contours denote the radius of plastic yield region 𝑅𝑦𝑖𝑒𝑙𝑑  scaled by inclusion radius. The thick grey 

contour represents the onset of plastic yield. Three regimes are labelled: 1) elastic (𝐷𝑒 > 1, 𝐶∗ > 1); 2) viscous (𝐷𝑒 < 1 and 675 

𝐶∗ is above the onset of plastic yield); 3) plastic (𝐶∗ < 1, 𝐷𝑒 is above the onset of plastic yield). To obtain the results, a residual 

pressure is prescribed at the beginning and the confining pressure and temperature are fixed, i.e. no temporal variations of P-

T conditions.  
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Fig.  

Fig. 4. Dimensionless pressure and differential stress plotted on x-z plane, or as a function of dimensionless depth. A: Quartz-

in-pyrope system; B: Pyrope-in-quartz system. 3For the profiles, pressure and differential stress are measured at different 

locations denoted by the coloured dots. In the top panel, the dashed curves in the pressure plot are based on the analytical 

solution in Eq. 32 considering the same elastic moduli between inclusion and host, while the solid curves are based on finite 685 

difference results. The discrepancy between the solid (numerical solution) and dashed (analytical solution) curves in A is due 

to the fact that the host elasticity is different than the inclusion. 
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Fig. 5. Viscous relaxation time (in years) of different garnet host as functions of temperature and inclusion overpressure. The 

viscous relaxation time is calculated based on the expression of Deborah number (De=1) in Eq. 1918. The viscousviscosity’s 690 

pre-factor (A) is T dependent and is obtained using the flow law from Wang and Ji (1999). The melting temperature is from 

Karato et al. (1995) (the melting temperature of almost pure almandine is taken from the data of Mohawk Garnet Inc. to be 

1588K). Shear modulus is from Bass (1995). Viscosity pre-factor 𝐴 is calculated as: 
𝐺𝑛

2𝐵
exp (

𝑔∙𝑇𝑚

𝑇
), where 𝐵 = exp(40.1) in s-

1, 𝑔 = 32 and the stress exponent n=3The flow law is given in the main text (Wang and Ji, 1999). The four garnet endmembers 

are almandine (Alm), grossular (Grs), pyrope (Prp) and spessartine (Sps). 695 
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Fig. 6. A.4. (a) Synthetic retrograde P-T paths from eclogite facies metamorphic conditions. The quartz inclusions are 

entrapped within almandine at different peak P-T conditions along the same isomeke., thus a purely-elastic model would 700 

predict the same value for the residual inclusion P. Due to viscous relaxation, the residual P is lower than the pressure predicted 

by an elastic model. In B,(b), the apparent entrapment P is calculated based on the relaxed residual inclusion pressure given 

different entrapment T along the elastic isomeke that is given in A.(a). Pressure relaxation is manifested by lower values of 

apparent entrapment P and it becomes more significant if the host experiences high temperatures with time. C(c) and D(d) are 

the same plots for amphibolite-facies entrapment conditions. The amount of viscous relaxation is less compared to eclogite 705 

facies due to the lower magnitude of inclusion overpressure and the stress dependent viscosity of garnet host. Pure almandine 

garnet is used as host and its flow law is from Wang and Ji (1999). 
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Fig. 75. Prograde P-T path for inclusion (dashed curve) and host (solid curve). A(a) is for rocks that experienced eclogite-710 

facies peak P-T conditions. The quartz inclusion is entrapped at 400 oC and 1 GPa. Along the given prograde P-T path, viscous 

relaxation becomes significant at >600 oC. The duration of prograde P-T path is illustrated with different colour (1 Ma and 10 

Ma, see legend). At 800 oC, the quartz inclusion pressure is reset to the confining pressure (host). For rocks that experienced 
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amphibolite-facies peak P-T conditions, (b), viscous relaxation becomes significant at ca. 650~700 oC and the quartz inclusion 

pressure is partially reset at 700 oC. Pure almandine garnet is used as host and its flow law is from Wang and Ji (1999). 715 
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Fig. 8. A.6. (a) Clockwise P-T path of inclusion (dashed curve) and host (solid curve). The dashed black curve shows the 

inclusion P-T path based on pure elastic model and the blue dashed curve is based on visco-elastic model. The quartz inclusion 720 

is entrapped into almandine garnet at 400 oC, 0.6 GPa. The prograde P-T path lasts 5 Ma, and the rock stays at peak P for 5 

Ma before retrograde P-T path, which lasts 10 Ma. The residual pressure preserved by the quartz inclusion that was subject to 

viscous relaxation is in fact higher than the elastic limit. Therefore, itsthe apparent entrapment pressure, calculated using elastic 

isomeke becomes, is higher than the actual entrapment pressure as shown in B.(b). This may lead to ca. 3~4 kbar apparent 

overstepping effect. The almandine flow law is from Wang and Ji (1999).  725 
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Fig. 7. (a) Analytical model configuration of a mineral inclusion close to the thin-section surface. The distance between the 

surface to inclusion centre is denoted by 𝐿. (b) Pressure distribution on x-z plane. The pressure is scaled by the initial inclusion 730 

pressure (𝑃ini). The initial inclusion pressure is under force equilibrium in infinite host. The analytical model describes the 

amount of pressure release when the inclusion approaches the thin-section surface. (c) Pressure at three localities (inclusion 

top, centre and bottom) as a function of dimensionless depth L/R. The analytical solution of Eq. 22 is used for the pressure 

plot. 

 735 



 

49 

 

 

Fig. 8. Dimensionless pressure and differential stress plotted on x-z plane, or as a function of dimensionless depth. (a) Quartz-

in-pyrope system; (b) Pyrope-in-quartz system. For the profiles, pressure and differential stress are measured at different 

locations denoted by the coloured dots. In the top panel, the dashed curves in the pressure plot are based on the analytical 

solution in Eq. 22 considering the same elastic moduli between inclusion and host, while the solid curves are based on finite 740 

difference results. The discrepancy between the solid (numerical solution) and dashed (analytical solution) curves in (a) is due 

to the fact that the host elasticity is different than the inclusion. 

 



General reply to reviewer 1 

We thank the reviewer for the very careful examination of our work and helpful comments that have 

greatly improved the quality of our paper. All the comments from the reviewer have been carefully 

considered and point-by-point replies have been provided in this letter. The original comments from 

the reviewer are in “regular black” and our replies are in “italic blue”. 

Comments from Reviewer 1 

Presented manuscript discusses pressure variations around inclusions in the homogeneous rock matrix 

and their implications for the accuracy of Raman-thermobarometry measurements. Authors study two 

different processes that might lead to stress changes around a single inclusion: stress relaxation on a 

geological time scale due to visco-plastic stress relaxation and proximity of the free surface to the 

mineral inclusion during sample preparation in the lab. Authors show that both stress relaxation and 

presence of free surface might alter stresses inside inclusion and in the host matrix. Hence, they might 

lead to erroneous estimations during Raman-thermobarometry.  

While this is an interesting paper, its logic and presentation could be improved. Authors are using two 

different problem setups and switch in the text from one of them to another without much mentioning 

of it. I would recommend revising the manuscript and clearly separate results related to sample 

preparation (i.e., setup with elastic solution for half-space) and results related to stress relaxation on a 

geological time scale.  

This is a very helpful comment. Indeed, our previous structure mix the two main parts of the model. 

We have re-structured the entire manuscript to clearly separate the two different models and 

corresponding results/discussions. We hope our revised structure will be clearer for readers.  

Throughout the manuscript, use of term “relaxation” with respect to changes in stress due to the 

presence of free boundary as in sample preparation setup and due to plastic effects is incorrect and 

confusing. See e.g. original paper by Zhang (1998) where he states that “Plastic yielding does not 

relax the stress but does limit the deviatoric stress”. I would call these processes rather “stress release”. 

Besides, authors consider visco-elasto-plastic model for stress relaxation where plasticity contributes 

simultaneously with viscosity, i.e. purely plastic (or elastoplastic) stress release is not considered.  

We agree with the reviewer’s comment and we have followed the reviewer’s suggestion to change 

“stress relaxation” in plastic yield situation and proximity to surface situation into “stress release”.  

We also added new paragraphs (in “Introduction” and “Residual pressure affected by viscous/plastic 

flow” sections) to make clarification that in our case, we refer to viscous relaxation as a time-

dependent process and plastic yield as time-independent process that limits the deviatoric stress in the 

host, thus also limits the residual inclusion pressure. Both of them are irreversible.  

Lines 48-50. Authors state that “Mechanical models show that both viscous creep (dislocation or 

diffusion creep of host) and plastic yield (radial or tangential micro-cracks) can cause significant 



pressure relaxation (Dabrowski et al., 2015; Zhang, 1998).” While cited references indeed present 

viscous relaxation models, none of them presents mechanical model that shows plastic yield or radial 

and tangential microcracks. Care with references is needed.  

We agree that in Dabrowski et al. 2015, plastic yielding was not studied. But in Zhang 1998, he 

showed the effect of plastic yield on the stress distribution (Fig. 2B). Due to the limited differential 

stress in the host upon plastic yield, the stress state in the inclusion will be changed. In his section 4.3, 

Zhang (1998) focused on the radial cracks formed during decompression. Although he did not 

quantitatively show the amount of pressure release but he did mention about the fractures formed 

around various mineral inclusions depending on the bulk modulus of the inclusion and host. 

Section 2.1. Logic of this section can be improved. Equation (2) uses results of equation (4), which is 

further in the text. It is better to introduce plastic flow law (4) first and then give summary equation for 

total strain rate (2). 

This part is now clarified. We thank the reviewer for pointing it out. 

Lines 84 and 86. The choice of references for classical Tresca yield criterion and associated plastic 

flow law is a bit odd. There are much older, standard and very good textbooks that introduced those, 

e.g. [Hill, 1950; Kachanov, 1971]. 

Reference is updated, we added Kachanov (1971) as suggested. 

Lines 85 – 89 and throughout the text. Parameter C in the Tresca yield condition is not cohesion. It is a 

half of the yield limit for simple tension of the host matrix in the case of spherical inclusions [Hill, 

1950; Kachanov, 1971]. This is important to note because later in the text (in the discussion section) 

authors make estimations of this parameter based on the experimental data for cohesion and make 

conclusions for Raman-thermobarometry. Also, I would want to mention that Tresca criterion 

represents yielding due to dislocation sliding in crystalline materials at high pressures and thus cannot 

be taken as a proxy for fracturing. You need a more thorough discussion on the deformation 

mechanisms in the host rock to justify the choice of yield function and viscosity (Eq. 5). There are 

various deformation mechanism maps for viscosity can be found in the literature. 

This is a valid point and we agree with the reviewer. We have updated the reference based on the 

reviewer’s suggestion and carefully checked the entire manuscript to adjust “cohesion” into “yield 

strength”. We have also removed the parts for “fracturing” and replace them by plastic yield. 

Line 83. Wrong statement: “lambda is the plastic multiplier (s-1) which guarantees that the plastic yield 

criterion is not exceeded”. Plastic multiplier provides the amount of the plastic deformation. However, 

in the numerical codes it is indeed calculated from yield criterion and consistency conditions. 

This sentence has been adjusted as suggested. 

Equation (9). Explain parameter delta. 

Clarified as suggested. 



Lines 102-105. Authors write that “This is done by choosing the following independent scales: the 

inclusion radius, temperature change, time, viscosity pre-factor of host, plastic cohesion of host, and 

the expected pressure perturbation that is given as follows” Again, be careful with your statements. 

These scales are not independent. You can have only one independent scale of pressure, time, 

temperature, length. Thus, viscosity factor and cohesion would be already dependent parameters. 

This is correct. We thank the reviewer for this point. We have corrected this sentence. The parameters 

we used to nondimensionalize the system are not independent, which has been noted in the revised 

manuscript by deleting “independent”.  

Line 109. It is not entirely clear why Pexp is chosen as a scale. Please explain this parameter, where it 

comes from.  

This is a good point. We missed the explanation for Pexp. It comes from the paper of Zhang (1998) 

which described the amount of residual pressure assuming constant bulk modulus and thermal 

expansivity. Using it as a pressure scale is advantageous as the inclusion pressure will vary from 0 to 

1. Now this is clarified in the text. 

Also check Eq. 11. It is not logical to scale yield function F and cohesion to different scales. 

We thank the reviewer for this point. We have changed the scale for F with the yield strength of the 

host. This does not influence the other equations as F does not appear in other equations. 

Lines 123-127. Again, C is not cohesion. Please rewrite this para. Statements on the range of viscosity 

and yield limit must be supplemented with references and even better if with realistic numbers. I doubt 

that one can expect orders of magnitude variation in yield strength of minerals as it is stated by authors: 

“the cohesion of difference mineral may also vary by many several factors, potentially orders of 

magnitude”. 

We have removed all “cohesion” words following the suggestion. We have removed the statement of 

“several orders of magnitude”.  

Section 2.3. Given that there is no reference for the numerical approach, I assume itis original. Or was 

it previously reported somewhere? In general, there is a different level of detail in the paper. E.g. there 

is too much focus on standard non-dimensional analysis and almost nothing on non-trivial visco-

elasto-plastic numerical scheme or on the elastic numerical solution for half-space in the following 

sections. 

We agree with the reviewer that the numerical approach is relatively short compared to other parts. 

We have added some new descriptions and references on this part. We would not say the numerical 

approach we presented as original, where we use finite difference method (staggered grid stencil) and 

iteratively solve for the three unknowns from three equations. The numerical stencil (staggered grid 

finite difference, mostly in 2D/3D) has been used widely (e.g. Gerya 2010, now cited in the text) and 

the iterative solver (Picard iteration) is also relatively common in numerical modelling. 



Section 2.4. It is hard to see the value of this section in the paper. Authors present analytical solution 

previously derived by Seo and Mura [1979]. However, no meaningful analysis or conclusions for the 

topic of the paper (i.e. Raman-thermobarometry) were derived from this solution. Its use for 

benchmarking of numerical code is also limited as analytical and numerical results are different due to 

various assumptions about material properties of inclusion. On the other hand, other analytical 

solutions used for benchmarking in section 2.3 are not resented at all. If authors choose to keep this 

solution, I would recommend discussing carefully boundary, initial conditions and its relation to the 

Raman-thermobarometry. For example, is it an incremental solution and does it show changes in stress 

from a specific initial condition? Or does it show stress distribution in an inclusion-host system 

without initial pre-stress? What do we learn from this solution? 

This is a very valid comment. A similar point has also been raised by the second reviewer. We have 

now reduced the focus of the “half-space” problem by moving all the derivations into appendix and 

we only left the final analytical formula for pressure distribution in the main text (which is a new 

result). We have added a new section discussing the application of the presented formula together with 

an updated figure (Fig. 3 in the revised version) to show the results of the analytical formula for 

pressure distribution of inclusion in half-space.  

We agree that the application for numerical benchmark is limited by the fact that the presented 

formula is only applicable to homogeneous inclusion. However, due to the simplicity (compared to the 

analytical formulas of e.g Mindlin, and Seo & Mura) we argue that it is still useful. This we have 

discussed it in a new paragraph for a benchmarking purpose in the appendix.  

Line 172. Why Pexp is referred to as “initial residual pressure”? As this solution is presented now, 

there is no process in it, only static force equilibrium. 

Pexp is the initial overpressure that is already under force equilibrium in infinite host. As the 

inclusion approaches the thin-section surface, the inclusion pressure gets smaller than Pexp. This is 

now explained at the beginning of the new section of “Inclusion pressure modification due to 

proximity to thin-section surface”. 

Section 3.1. Switch from one problem setup to another comes very abrupt here. Please document your 

simulation setup (geometry, boundary and initial conditions, properties of the host and inclusion) and 

state which problem you address (i.e. stress relaxation or sample preparation). The title of this section 

is inconsistent with the following sections. 

We have restructured the whole manuscript and clearly separate the results of the presented two 

models. Now this section directly continue from the visco-elasto-plastic 1D model so there should be 

no confusion on which model we refer to. We also added a short paragraph before it to clarify the 

simulation setup. 



Line 183. “This diagram may assist petrological investigations because De and C* can be evaluated 

based on experimental rock deformation data for different minerals...”Please discuss how De and C* 

can be evaluated based on experimental data. Which data is available? 

We have added new sentences in the following text to clarify it, e.g. using flow law to evaluate De and 

using microhardness test data to evaluate C*. 

Line 196. Awkward phrase: “...and De is located above the plastic onset...” Please reformulate. 

Done. We have changed it to De above one to describe the plastic dominant regime. 

Section 3.2. Describe problem setup, boundary and initial conditions. Given that you have two 

different problem setups in the paper it is confusing. Governing equations and a little bit info about 

numerical implementation would also fit here rather than supplementary materials in the same way as 

you present another model. Without such descriptions, it is hard to see the relevance to sample 

preparation problem. Do you consider just an equilibrium stress state, or do you have an incremental 

formulation that considers initial condition?  

This is a valid point. We have restructured the whole manuscript to split the two models. Also we have 

added new text here to elaborate the model setup. This we have clarified in new section 4.2 (place has 

been changed due to restructuring). 

Check for use of word “relaxation” here and rather use “release”. Check also for consistent use of 

“quartz-in-almandine” and “quartz-in-garnet” terms. 

This has been pointed out before by the reviewer and we completely agree. We have checked the word 

“relaxation” in the entire manuscript to carefully split it with “release” due to different rheology. 

Line 210-216. What are the implications for sample preparation, e.g. in terms of thickness etc? 

As this is the results part, we do not discuss any implications for sample preparation. But we did 

follow the reviewer’s suggestion by adding new text in Section 5.1 (Discussion) about sample 

preparation and inclusion picking procedure to avoid pressure release due to proximity to thin section 

surface. 

Line 223. “Assuming that the thin-section surface is sufficiently far away from a quartz inclusion and 

no microcracks appear around quartz inclusion...” I recommend replacing “microcracks” with “yield” 

as your solution does not consider microcracks and there is a discussion on microfracture later. 

Done. 

Line 227. “The flow law of garnet from Wang and Ji (1999) is applied”. Please describe briefly this 

law. 

This is a good point that we have previously missed. Now a new equation has been added for Wang 

and Ji’s flow law with numbers. (Eq. 21) 

Line 272. “The three mechanisms investigated here, i.e. viscous creep, plastic yield and proximity of 

inclusion...” Plastic yield was studied only together with creep, i.e. on a geological time scale. Plastic 



yield without creep as might occur e.g. during sample preparation was not studied. Thus, I think it is 

more appropriate here to use term visco-plastic flow instead of plastic yield. 

Done. We thank the reviewer for pointing that out. 

Section 4.1. C is not cohesion, please check relevant values and your estimations for C. 

This point has been raised by the reviewer before and we agree. We have adjusted the terminology 

used here. We now refer C as the plastic yield strength. We have checked the entire manuscript to 

change cohesion into yield strength. 

Lines 283-289. “This suggests that plastic yield does not occur in an idealized scenario of isotropic, 

spherical quartz inclusion entrapped in infinite garnet host. However, such an ideal scenario is highly 

improbable in natural samples. The observed cracks in garnet host may be formed due to potential 

reasons including: 1) elevated differential stress when the inclusion is close to thin-section surface 

(“ring” shaped pattern in Fig.4a); 2) stress concentration at the corners of quartz inclusion (Whitney et 

al., 2000); 3) anisotropic elastic deformation of the quartz inclusion (e.g. Murri et al., 2018); 4) pre-

fractures/weakness in garnet host before the entrapment of quartz inclusions.”  

While I agree with the possibility of elevated differential stress and stress concentrations at the corners, 

I would like to emphasize that this statement is based on the solution for materials obeying Tresca 

criterion, which does not describe fracturing. To make conclusions about fractures around inclusion, 

one needs to consider other failure criteria such as Griffith or Mohr-Coulomb, where cohesion and 

tensile strength play major role. Solutions for plasticity onset and failure pattern in elastoplastic and 

visco-plastic rocks with these failure criteria are available in the literature. They would give other 

estimations for pressure necessary to induce fractures. 

We agree with the reviewer on this point. Here, we have deleted the words related to cracks. The point 

is that we may still have localized stress due to the following reason stated above, hence localized 

dislocation around a non-spherical, anisotropic inclusion. Therefore, a statement on localized plastic 

yield around natural mineral inclusion is valid, just that we do not involve cracks in our discussion. 

Conclusions. “We presented a 1D visco-elasto-plastic model to study the inclusion-host system 

undergoing prograde/retrograde P-T path” There are at least two different models in this paper. 

We added “first” and “then” before the two sentences for the two models to separate them. 

“A simplified analytical solution for inclusion pressure (Eq. 32) close to stress-free thin-section 

surface is derived.” The solution presented by authors was not new, it was re-derived after original 

paper by Seo and Mura [1979]. 

We have rephrased this sentence so that it is clear that the solution was not original. The derivations 

were moved to the appendix. 

Please also make some statements on the implications for Raman-thermobarometry and how to use 

your results. 



This is a helpful comment. We have added some text in “Conclusions” about the petrological 

implications of our model and summarize what we have found about the determination of entrapment 

pressure of quartz inclusion and the application of garnet overstepping model.  

In the end, we again thank the reviewer for all the detailed comments that greatly improved the quality 

and technical correctness of the manuscript. 



General reply to reviewer 2 

We thank the very positive feedback from the reviewer and helpful comments in the review 

letter. We have carefully considered all the comments given by the reviewer and made 

corresponding changes to the manuscript. In this reply letter, the original comments from the 

reviewer are in “regular black” and our replies are in “italic blue” 

I apologize for the delay of the review process but I had too many administrative issues to 

deal with first. The manuscript is actually one of those that make the review process very easy. 

It is well-written, it has well organized structure and the addresses a timely topic with a novel 

approach. On top what referee #1 has been already mentioned, I only have suggestions, 

basically no real criticism. I like the way the authors explain the methods in chapter 2. And 

finally discuss the most important findings of the study in a reasonable detail. I would only 

suggest to spent less words on the “distance to surface” issue (chapter 3.2) as this is not really 

new, but focusing more on the “over-“ and “underestimation” of the pressure depending on 

the PT paths the samples take. This is really exciting and should be highlighted even more. 

We totally agree with the reviewer that the “distance to surface” issue has been studied in 

several papers cited in the manuscript. We took the advice and move the previous derivation 

part into the appendix. However, we would like to highlight that the new thing that we present 

is this very simple form of pressure distribution (now in Eq. 22). Compared to the 

cumbersome formulas of stress components in e.g. Seo and Mura (1979) and Mindlin and 

Cheng (1950), the pressure distribution can be simplified to a concise closed form. This is 

particularly relevant in studying the residual pressure distribution and pressure release due 

to proximity to thin-section surface. Also, when performing numerical model benchmark, this 

is particularly helpful because of its simplicity. If one wants to perform a fast validation on 

the numerical solution, our Eq. 22 can be easily used to compare with the pressure calculated 

with numerical code. Therefore, we leave the final equation for pressure distribution (Eq. 22) 

in the main text and most of the derivations in the appendix. The “distance to surface” part 

has been revised accordingly to clarify these points. 

To me the authors could consider to keep the inclusion-host relationship a bit broader in the 



begin of the introduction, such as considering inclusions in a bit broader context (see Farber 

et al 2014 CMP, for instance), but this may result in a less sharp structure. 

We agree with the reviewer’s point to make the text of wider appeal to general readers in 

petrology. Therefore, we have added several references including the suggested one at the 

beginning of the text to reach a broader audience.  

 


