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Abstract: Residual pressure can be preserved in mineral inclusions, e.g. quartz-in-garnet, after exhumation due to 

differential expansion between inclusion and host crystals. Raman spectroscopy has been applied to infer the residual 

pressure and provides information on the entrapment temperature and pressure conditions. However, the amount of residual 10 

pressure relaxation cannot be directly measured. An underestimation/overestimation of residual pressure may lead to 

significant errors between calculated and actual entrapment pressure. This study focuses on three mechanisms responsible 

for the residual-pressure modification: 1) viscous creep; 2) plastic yield; 3) proximity of inclusion to thin-section surface. 

Criteria are provided to quantify how much of the expected residual pressure is modified due to these three mechanisms. An 

analytical solution is introduced to demonstrate the effect of inclusion depth on the residual pressure field when the inclusion 15 

is close to thin-section surface. It is shown that for quartz-in-garnet system, the distance between thin-section surface and 

inclusion centre needs to be at least three times the inclusion radius to avoid pressure release. In terms of viscous creep, 

representative case studies on quartz-in-garnet system show that viscous relaxation may occur from temperatures as low as 

600~700 °C depending on the particular pressure-temperature (P-T) path and various garnet compositions. For quartz 

entrapped along the prograde P-T path and subject to viscous relaxation at peak T above 600~700 °C, its residual pressure 20 

after exhumation may be higher than predicted from its true entrapment conditions. Moreover, such a viscous resetting effect 

may introduce apparent overstepping of garnet nucleation that is not related to reaction affinity.  



2 

 

1. Introduction 

During metamorphism, the growth of porphyroblasts often results in the entrapment of solid/fluid inclusions, which then 

provide important information about the rock’s history (e.g. Farber et al., 2014; Yardley and Bodnar, 2014; Ferrero and 25 

Angel, 2018). Due to the differences in the elastic compressibility and thermal expansion coefficient between the inclusion 

and host, residual inclusion pressures may be preserved after exhumation (e.g. Rosenfeld and Chase, 1961; Gillet et al., 1984; 

Zhang, 1998; Angel et al., 2015). The residual pressure can be inferred by Raman shift based on experimental calibrations, 

e.g. quartz inclusions (e.g. Liu and Mernagh, 1992; Schmidt and Ziemann, 2000). This allows the application of Raman-

thermobarometry to infer the entrapment pressure and temperature (P-T) conditions (e.g. Ashley et al., 2014; Bayet et al., 30 

2018; Enami et al., 2007; Izraeli et al., 1999; Kohn, 2014; Spear et al., 2014; Taguchi et al., 2019; Zhong et al., 2019). 

Existing models that link residual pressure and entrapment P-T conditions are based on elastic rheology and often assume 

infinite host radius (Rosenfeld and Chase, 1961; Van Der Molen and Van Roermund, 1986; Guiraud and Powell, 2006; 

Angel et al., 2017b). Despite these simplifications, recent experimental works have been successfully performed to compare 

the measured residual pressure with modelled residual pressure under well-controlled P-T conditions for synthetic samples 35 

with quartz-in garnet system (Thomas and Spear, 2018; Bonazzi et al., 2019).  

Although many studies using Raman spectroscopy reported maximal residual pressure close to the predictions from elastic 

model (e.g. Ashley et al., 2014; Enami et al., 2007; Zhong et al., 2019), a large amount of inclusion pressure estimates are 

lower than theoretically predicted by the elastic model (Korsakov et al., 2009; Kouketsu et al., 2016; Yamamoto et al., 2002). 

The modification of inclusion pressure can be due to various reasons and a systematic investigation is critical to better apply 40 

Raman-thermobarometry to natural samples. Meanwhile, Raman-thermobarometry has been employed to investigate the 

amount of overstepping for garnet growth by comparing the P-T constraints from phase equilibria and elastic 

thermobarometry (Spear et al., 2014; Castro and Spear, 2017; Wolfe and Spear, 2017). Particularly, when comparing the 

determined paleopressures based on phase equilibria and elastic barometry using quartz-in-garnet system, careful 

examination on the amount of residual quartz pressure modification due to the creep of garnet host becomes critical. 45 

When a mineral inclusion maintains residual pressure, differential stress is concomitantly developed around the inclusion on 

the host side to maintain mechanical equilibrium (e.g. Zhang, 1998; Tajčmanová et al., 2014). The host mineral may 



3 

 

experience viscous creep which is manifested by the dislocation structures (Chen et al., 1996; Yamamoto et al., 2002; 

Taguchi et al., 2019b). Furthermore, the host mineral may also experience rate-independent plastic yield when the 

differential stress exceeds the yield criterion (e.g. Zhang, 1998).  In the mechanics literature, plastic deformation is 50 

commonly considered as any inelastic deformation (time-dependent and time-independent) (e.g. Kachanov, 1971). In this 

work, we distinguish between viscous creep, i.e. the rate-dependent inelastic deformation and the rate-independent plastic 

flow. Mechanical models show that both viscous creep (dislocation or diffusion creep of host) and plastic flow during 

decompression and cooling can cause significant inclusion pressure drop (Dabrowski et al., 2015; Zhang, 1998). This would 

lead to an underestimate of residual inclusion pressure (Zhong et al., 2018b) (Fig. 1). Meanwhile, during the thin-section 55 

preparation, mineral inclusions are positioned into proximity towards the thin-section surface (Fig. 1). The thin-section 

surface is stress free and may elastically release the residual pressure (Mindlin and Cheng, 1950; Seo and Mura, 1979; 

Zhong et al., 2018a). It is of petrological interest to study how deep the inclusion needs to be in order to preserve the residual 

pressure. Experimental works and numerical simulations with finite element method have been performed to test the safe 

inclusion depth (inclusion radius less than one third of host radius) so that the residual inclusion pressure can be preserved 60 

for the application of Raman barometry (Campomenosi et al., 2018; Mazzucchelli et al., 2018).  

In this contribution, we systematically investigate the following mechanisms for residual inclusion pressure modification: 1) 

viscous creep of the host materials, 2) plastic yield within the host, and 3) pressure release due to the proximity of inclusion 

towards thin-section surface. For the first and second purposes, a 1D visco-elasto-plastic mechanical model is developed in 

radially symmetric spherical coordinate frame. The derived system of equations is nondimensionalized to extract the key 65 

parameters that control the amount of viscous relaxation and plastic yield. For the third mechanism, a simple analytical 

solution for the residual inclusion pressure field close to thin-section surface is introduced based on the existing work of Seo 

and Mura (1979). The analytical solution demonstrates the effect of the inclusion depth that controls the amount of pressure 

release. This solution applies to the case where the inclusion possesses the same elastic moduli as the host. The inclusion is 

initially subject to an arbitrary hydrostatic pressure in infinite host and its pressure is released as it moved towards a stress-70 

free thin-section surface. In comparison, for natural quartz-in-garnet system, numerical solutions are applied to investigate 

the safe distance that causes negligible pressure release due to the presence of thin-section surface (stress-free boundary). In 
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this study, both inclusion and host are treated as elastically isotropic as an assumption to put focus on the effect of these 

three mechanisms on preserved residual pressure. The effects of elastic anisotropy for commonly encountered quartz 

inclusion have been studied experimentally and theoretically by e.g. Murri et al. (2018) and Campomenosi et al. (2018) and 75 

are discussed in the end.  

2. 1D mechanical model with visco-elasto-plastic rheology 

2.1 Governing equations 

We develop a 1D mechanical model with spherical symmetry that is based on the conservation of mass and momentum. In 

1D radially symmetric spherical coordinate frame, mechanical equilibrium is expressed as follows:  80 

 𝜕𝜏𝑟𝑟

𝜕𝑟
+

3𝜏𝑟𝑟

𝑟
−

𝜕𝑃

𝜕𝑟
= 0,  (1) 

where 𝜏𝑟𝑟 is the radial component of deviatoric stress (Pa), 𝑃 is pressure (Pa) and 𝑟 is radial coordinate (m). We apply the 

Maxwell visco-elasto-plastic rheology as follows: 

 �̇�𝑟𝑟 = �̇�𝑟𝑟
𝑒 + �̇�𝑟𝑟

𝑣 + �̇�𝑟𝑟
𝑝

, (2) 

where �̇�𝑟𝑟 is the radial components of the deviatoric strain rate (s-1) composed of elastic, viscous (rate-dependent) and plastic 

(rate-independent) parts. The elastic and viscous strain rates are expressed as: 

 �̇�𝑟𝑟
𝑒 =

�̇�𝑟𝑟

2𝐺
 ,  

�̇�𝑟𝑟
𝑣 =

𝜏𝑟𝑟

2𝜂
 , 

(3) 

where the dot above �̇�𝑟𝑟  denotes time derivative, 𝐺  is shear modulus (𝑃𝑎), 𝜂  is viscosity (𝑃𝑎 ∙ 𝑠). The non-Newtonian 85 

(effective) viscosity is expressed as follows: 

 𝜂 = 𝐴|𝜏𝑟𝑟|1−𝑛, (4) 
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where 𝐴 is the temperature dependent pre-factor and 𝑛 is the stress exponent (e.g. Dabrowski et al. 2015, eq. 10). The plastic 

strain rate is obtained by using the Tresca yield criterion (e.g. Kachanov, 1971): 

 𝐹 = |𝜏𝑟𝑟 − 𝜏𝑡𝑡| − 𝐶, (5) 

where 𝐶 is plastic yield strength (Pa), and 𝜏𝑡𝑡 is the tangential component of deviatoric stress. Due to spherical symmetry, 

we have 𝜏𝑡𝑡 = −1/2𝜏𝑟𝑟. Applying the plastic flow law (e.g. Vermeer and De Borst, 1984), we get: 90 

 �̇�𝑟𝑟
𝑝

= 𝜆
𝜕𝐹

𝜕𝜏𝑟𝑟
= 𝜆 𝑠𝑔𝑛(𝜏𝑟𝑟) = 𝜆𝛿,   {

𝜆 = 0 for 𝐹 ≤ 0
𝜆 ≠ 0 for 𝐹 > 0

 
(6) 

where 𝜆 is the plastic multiplier (s-1), which provides the amount of plastic strain (rate) that guarantees the yield criterion is 

not exceeded, and 𝛿 is the sign of 𝜏𝑟𝑟. For isotropic materials, the pressure (negative mean stress) can be expressed as a 

function of volume and temperature via equation of state (EoS), and its time derivative is as follows: 

 �̇� = −휀�̇�𝑘/𝛽 + 𝛼�̇�/𝛽, (7) 

where 𝛽 is compressibility (1/𝑃𝑎), 𝛼 is the thermal expansion coefficient (1/𝐾), �̇� is the rate of temperature change (𝐾/𝑠). 

Temperature is treated as homogeneous within inclusion-host system. Einstein summation is used here for the volumetric 95 

strain rate (휀�̇�𝑘 = 휀�̇�𝑟 + 2휀�̇�𝑡, where due to spherical symmetry the two tangential strain rates are equal). No viscous or 

plastic volumetric strain is considered. This assumption is a good approximation for non-porous, crystalline materials (e.g. 

Moulas et al., 2019). 

Substituting Eq. 3 and Eq. 6 into Eq. 2 and applying first-order finite difference in time to Eq. 2 and Eq. 7 (i.e. �̇�𝑟𝑟 =
𝜏𝑟𝑟−𝜏𝑟𝑟

𝑜

Δ𝑡
 

and �̇� =
𝑃−𝑃𝑜

Δ𝑡
), we can explicitly express 𝜏𝑟𝑟 and 𝑃 as: 100 

 𝜏𝑟𝑟 = 2𝜂𝑍�̇�𝑟𝑟 + (1 − 𝑍)𝜏𝑟𝑟
𝑜 − 2𝜂𝑍𝜆𝛿, (8) 

 𝑃 = 𝑃𝑜 − Δ𝑡휀�̇�𝑘/𝛽 + 𝛼Δ𝑡�̇�/𝛽, (9) 

where 𝑍 =
Δ𝑡𝐺

Δ𝑡𝐺+𝜂
 is the viscoelastic coefficient, Δ𝑡 is the time increment, 𝜏𝑟𝑟

𝑜  is the radial component of deviatoric stress in 

the previous time step, 𝑃𝑜 is the pressure in previous time step. If the yield criterion in Eq. 5 is exceeded (𝐹 > 0), the plastic 
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multiplier must be adjusted to drive 𝐹 to zero. This can be achieved by substituting the deviatoric stress (Eq. 8) into Eq. 5 

and let 𝐹 = 0. Therefore, we obtain  𝜆 as follows: 

 𝜆 = 𝛿�̇�𝑟𝑟 +
(1−𝑍)𝛿

2𝜂𝑍
𝜏𝑟𝑟

𝑜 −
𝛿𝐶

3𝜂𝑍
,   if 𝐹 > 0 (otherwise 𝜆 = 0). (10) 

2.2 Nondimensionalization 105 

The variables in the above equations can be scaled to derive nondimensional parameters for better understanding the 

behaviour of the inclusion-host system. This is done by choosing the following six parameters to nondimensionalize the 

system of equations: the temperature drop of the host-inclusion system Δ𝑇, the inclusion radius 𝑅, the time of the 𝑃 − 𝑇 path 

𝑡∗, the host’s viscosity pre-factor 𝐴h, the host’s plastic yield strength 𝐶h, and the expected pressure perturbation 𝑃exp that is 

given as follows: 110 

 𝑃exp =
Δ𝑃(𝛽𝑖−𝛽ℎ)−Δ𝑇(𝛼𝑖−𝛼ℎ)

𝛽𝑖+3/4𝐺ℎ
, (11) 

where Δ𝑃, Δ𝑇 are the confining pressure and temperature drops from entrapment to the Earth’s surface, 𝛽𝑖 and 𝛽ℎ are the 

compressibility of inclusion and host, 𝛼𝑖 and 𝛼ℎ are the thermal expansion coefficients of inclusion and host, 𝐺ℎ is the shear 

modulus of host. The number 𝑃exp is the expected amount of residual inclusion pressure after exhumation assuming linear 

thermo-elasticity and infinite host (Zhang, 1998). It is noted that this is not the actual final residual inclusion pressure, but 

merely a scale to nondimensionalize the stress (and pressure). By choosing 𝑃exp as the stress scale, the inclusion residual 115 

pressure is expected to be between 0 and 1 for a case of cooling and decompression. This pressure scale allows convenient 

quantification for the amount of pressure modification due to viscous creep and plastic yield. The involved physical variables 

are scaled as shown below: 

 
𝑟 = 𝑅 �̅�  

𝛽 =
1

𝑃exp
�̅�  
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𝐺 = 𝑃exp�̅�  

𝛼 =
1

𝛥𝑇
�̅�  

𝑃 = 𝑃exp�̅�  

�̇� =
Δ𝑇

𝑡∗ �̅̇�  

𝜏𝑟𝑟 = 𝑃exp𝜏𝑟𝑟̅̅ ̅̅   

𝐶 = 𝐶h𝐶̅  

𝜂 = 𝑃exp𝑡∗�̅�  

𝐹 = 𝐶h�̅�  

Δ𝑡 = 𝑡∗Δ𝑡̅̅ ̅  

𝐴 = 𝐴h�̅�  

𝜆 =
1

𝑡∗ 𝜆̅  

𝑣𝑟 =
𝑅

𝑡∗ 𝑣�̅�  

 

 

 

(12) 

where the overhead bars indicate dimensionless properties. Substituting these scaling equations into Eq. 1, 8 and 9, we get:  

 𝜕𝜏𝑟𝑟̅̅ ̅̅ ̅

𝜕�̅�
+

3𝜏𝑟𝑟̅̅ ̅̅ ̅

�̅�
−

𝜕�̅�

𝜕�̅�
= 0, (13) 

 �̅� = 𝑃𝑜̅̅̅̅ +
1

�̅�
[−Δ𝑡̅̅ ̅ 𝜕�̅�2𝑣𝑟̅̅ ̅

�̅�2𝜕�̅�
+ �̅��̅̇�], (14) 

 𝜏𝑟𝑟̅̅ ̅̅ =
4

3
�̅��̅� (

𝜕𝑣𝑟̅̅ ̅

𝜕�̅�
−

𝑣𝑟̅̅ ̅

�̅�
) + (1 − �̅�)𝜏𝑟𝑟

𝑜̅̅ ̅̅ − 2�̅�𝜆̅𝛿�̅�, (15) 

where dimensionless viscosity, viscoelastic coefficient and plastic multiplier are expressed as: 120 

 �̅� = 𝐷𝑒 ∙ �̅�|𝜏𝑟𝑟
̅̅ ̅̅ ̅|1−𝑛, (16) 
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 �̅� =
Δ𝑡̅̅̅̅ �̅�

Δ𝑡̅̅̅̅ �̅�+�̅�
, (17) 

 𝜆̅ =
4

3
𝛿(

𝜕𝑣𝑟̅̅ ̅

𝜕�̅�
−

𝑣𝑟̅̅ ̅

�̅�
) +

(1−𝑍)𝛿

2�̅�𝑍
𝜏𝑟𝑟

𝑜̅̅ ̅̅ − 𝐶∗ 𝐶̅

3�̅�𝑍
 , if  �̅� > 0. (18) 

Two dominant dimensionless numbers emerge after nondimensionalization. They are Deborah number 𝐷𝑒  and 

dimensionless yield strength 𝐶∗ defined as follows: 

 𝐷𝑒 =
𝐴h/𝑃exp

𝑛

𝑡∗ , 
(19) 

 𝐶∗ =
𝐶h

𝑃exp
. (20) 

The Deborah number (𝐷𝑒) is the ratio between the characteristic viscous relaxation time (𝐴h/𝑃exp
𝑛 ) and model duration (𝑡∗) 

(Reiner, 1964). If 𝐷𝑒 > 1, the system behaves in an elastic manner, and if 𝐷𝑒 < 1, viscous creep becomes important. The 

pre-factor of viscosity is temperature dependent. By choosing the pre-factor 𝐴h at peak temperature, one can directly use 𝐷𝑒 125 

to estimate the maximal amount of viscous relaxation. This is especially suitable for the process of isothermal decompression 

in many high-pressure rocks.  

The dimensionless yield strength 𝐶∗ characterizes the ability of a host mineral to plastically yield and a high 𝐶∗ implies that 

the material is less prone to plastic yield given the amount of residual inclusion pressure 𝑃exp. The viscosity of different 

mineral phases may vary by orders of magnitude, and the plastic yield strength of different minerals may also vary by 130 

several factors. Therefore, these two dimensionless numbers have a dominant effect on the amount of inclusion pressure 

modification due to viscous relaxation and plastic yield. 

2.3 Numerical approach for visco-elasto-plastic model 

The dimensionless viscosity (Eq. 16), viscoelastic coefficient (Eq. 17) and plastic multiplier (Eq. 18) can be substituted into 

pressure equation (Eq. 14) and deviatoric stress equation (Eq. 15). Together with mechanical equilibrium equation (Eq. 13), 135 

they form a system of three equations with three unknowns, namely 𝑣�̅� , 𝜏𝑟𝑟̅̅ ̅̅  and �̅�. The numerical model is based on a finite-

difference scheme over 1D staggered grid (numerical stencil see e.g. Gerya (2010) chapter 7). The initial pressure �̅� is set at 
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the beginning of the numerical model. If upon entrapment, the inclusion and host possess the same hydrostatic pressure, the 

deviatoric stress 𝜏𝑟𝑟̅̅ ̅̅  is zero in the inclusion and host. If pressure heterogeneity exist upon entrapment, the deviatoric stress of 

the host (𝜏𝑟𝑟̅̅ ̅̅ ) needs to be pre-calculated with elastic model 𝜏𝑟𝑟̅̅ ̅̅ = −(𝑃inc − 𝑃host)/�̅�3 to ensure that mechanical equilibrium 140 

is satisfied at the beginning of the model (𝑃inc is the initial inclusion pressure and 𝑃host is the initial host pressure). 

For pre-defined P-T path, the inclusion-host system is loaded by the increment of confining pressure and temperature. Both 

temperature and far-field pressure are obtained directly from the P-T-t path as prescribed. Temperature is treated as 

homogeneous in the model and the new pressure is set as the outer boundary value. Because viscosity, viscoelastic 

coefficient and plastic multiplier are functions of deviatoric stress (viscosity is also a function of temperature as prescribed 145 

by the P-T path), the system of the mechanical equations is nonlinear. We solve for the three variables (𝑣�̅� , 𝜏𝑟𝑟̅̅ ̅̅  and �̅�) using 

an iterative (Picard) method. Within the iteration loop, an elastic test stress is first evaluated by letting 𝜆̅ = 0 so that the 

prediction for the yield function �̅� is obtained. If �̅� < 0, no plastic yield occurs and 𝜆̅ remains zero. Otherwise the prediction 

of the yield function is positive and 𝜆̅ is computed based on Eq.18. The calculated 𝜆̅ is then substituted back into Eq. 15 to 

adjust the amount of plastic strain rate. This will drive �̅� to zero (on the plastic yield surface). After the Picard iteration loop, 150 

the residuals of the three equations 13, 14 and 15 are minimized below ca. 10−12.  

The elastic moduli are updated based on pressure and temperature conditions from tabulated look-up tables within the 

iteration. The look-up tables are pre-computed based on EoS. We used the EoS for quartz crystal from Angel et al. (2017a), 

and the EoS for pyrope, grossular and almandine crystals from Milani et al. (2015). The detailed expressions of EoS can be 

found in the EoSFit7c software documentation (Angel et al., 2014). The EoS for spessartine is from Gréaux and Yamada, 155 

(2014). The compressibility and thermal expansion coefficient for garnet are averaged based on the molar percentage of 

garnet endmembers. The shear moduli of garnet endmembers are from Bass (1995). The numerical model has been 

benchmarked using the analytical solution with elastic, non-Newtonian viscous rheology in Zhong et al., (2018). The 

numerical benchmark for elasto-plastic rheology is performed by using the analytical solution of Zhang, (1998) (see 

supplementary materials).  160 
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3. Inclusion pressure modification due to visco-plastic deformation of host 

3.1 Residual pressure affected by viscous/plastic flow 

The solutions of the system of equation (Eq. 13, 14, 15) are obtained using the elasticity of quartz-in-garnet system. The host 

radius is set to be 50 times the inclusion radius to make boundary effects negligible. Temperature is treated as homogeneous 

in space. At the beginning of the model, a pressure perturbation within the inclusion is prescribed, and the far-field host 165 

maintains zero confining pressure. The pre-factor of viscosity is fixed as temperature does not vary in this case. The amount 

of inclusion pressure relaxation is systematically investigated for the two inelastic deformation mechanisms (i.e. viscous 

creep and plastic yield) as a function of 𝐷𝑒 and 𝐶∗. The results are shown in Fig. 2 with the purpose of systematically 

demonstrating how much the initially prescribed residual pressure can be reduced due to viscous creep and plastic yield. This 

diagram may assist petrological investigations because 𝐷𝑒 and 𝐶∗ can be evaluated based on experimental rock deformation 170 

data for different minerals. The Deborah number can be evaluated using experimental flow law of single crystal, e.g. garnet 

(Karato et al., 1995; Wang and Ji, 1999) as given in the next section. The plastic yield strength is evaluated using 

microhardness test data (see Discussion below for details). The thickness of plastic yield region is plotted as contours. The 

thick grey contour represents the onset of plastic yield starting from the inclusion-host interface and propagating towards the 

host side (Fig. 2). Based on the amount of inclusion pressure relaxation, three regimes are distinguished. 175 

Elastic regime takes place when 𝐷𝑒 and 𝐶∗ are higher than one. Under these circumstances, no viscous relaxation and plastic 

yield occurs. The residual inclusion pressure is close to the expected residual pressure (𝑃inc ≈ 𝑃exp). This regime is the most 

suitable for the application of Raman-thermobarometry. 

Viscous regime dominates when 𝐷𝑒 is lower than one, and 𝐶∗ is above the plastic onset shown by the thick grey contour. In 

this case, the main mechanism responsible for the inclusion pressure relaxation is the viscous creep. The effect of stress 180 

exponent on the amount of viscous relaxation is also significant. In general, a higher stress exponent delays pressure 

relaxation (c.f. Dabrowski et al., 2015). As the viscosity of natural minerals is low at high temperature conditions, the 

viscous regime may be reached at high temperature which leads to the relaxation of residual pressure. 
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Plastic regime prevails when 𝐶∗ is lower than one and 𝐷𝑒 is above one. Under this circumstance, the residual pressure is not 

significantly relaxed by viscous creep, but by plastic yield. In general, the radius of plastic yield region is positively related 185 

to amount of residual pressure release. 

It is noted here that although viscous relaxation and plastic yield of the host mineral have the same effect in reducing the 

residual inclusion pressure after exhumation, there is a fundamental difference between them. Viscous relaxation is time-

dependent (De includes time), which means that the residual pressure will vanish given infinite amount of time. Plastic yield 

refers to a time-independent process and it will only limit the amount of deviatoric stress supported by the host mineral. If 190 

the yield criterion is reached, plastic strain (rate) in the host immediately occurs which leads to the inclusion pressure release. 

Both viscous relaxation and plastic yield are non-reversible, i.e. if the inclusion-host system is placed back to the original 

entrapment condition, the stress state would be different. 

3.2 Viscous relaxation of garnet host 

Assuming that the thin-section surface is sufficiently far away from a quartz inclusion and no plastic yield occurs around the 195 

quartz inclusion, only viscous creep may only contribute to the modification of residual pressure. Here, we show the effect of 

viscous relaxation, particularly influenced by the temperature, on the preserved residual pressure. Using De as a criterion to 

estimate the amount of viscous relaxation, we show the relationship between temperature, inclusion pressure, and relaxation 

time given De=1 (see Eq. 19) in Fig. 3.  The flow law of garnet from Wang and Ji (1999) is applied. The pre-factor 𝐴 of the 

effective viscosity (Eq. 4) is as follows: 200 

 𝐴 =
𝐺𝑛

2𝐵
exp (

𝑔∙𝑇𝑚

𝑇
), (21) 

where 𝐵 = exp(40.1)  in s-1, 𝑔 = 32 . The stress exponent 𝑛 = 3 . Geometric correction based on experimental setup 

(simple/pure shear) was not applied. The melting point 𝑇𝑚 of pyrope-rich garnet, grossular and spessartine are from the 

Table 1 in Karato et al. (1995). For almost pure almandine, the garnet melting point is found to be 1588 K from Mohawk 

Garnet Inc, which is slightly higher than 1570 K for almandine rich (Alm0.68Prp0.20Grs0.12) garnet in Karato et al. (1995).  
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As an example (Fig. 3), for a quartz inclusion possessing 0.5 GPa residual pressure maintained at 650 oC, significant viscous 205 

relaxation is expected during 1 Ma for almandine rich garnet host based on the applied flow law. This temperature becomes 

higher (700 oC) for pyrope rich garnet. If the residual pressure is used to recover the entrapment pressure given that the 

temperature experienced by the garnet-host system was higher than 650~700 oC, an underestimate of the entrapment pressure 

may potentially occur. 

In Fig. 4, synthetic retrograde P-T paths from eclogite and amphibolite-facies metamorphic conditions are prescribed with 210 

different peak temperature. The entrapment P-T conditions for the three synthetic P-T paths are along an elastic isomeke, 

which is the isopleth where no relative elastic interaction exists between inclusion and host. Thus, the residual inclusion 

pressure would be the same if the inclusions were entrapped along the same isomeke and they were purely elastic. By 

involving the viscous rheology of the garnet host, different residual inclusion pressures are predicted. For the P-T path 

starting at 800 oC, 2 GPa, the quartz inclusion pressure is predicted to be less than 0.2 GPa. This reduced value of the 215 

residual pressure is then used to determine the apparent entrapment pressure (Fig. 4b). In Fig. 4b, it is shown that for the 

entrapment pressure within eclogite-facies conditions at 700 oC, and by using a purely-elastic model, a value of entrapment 

pressure is inferred that is approximately 10% less than the actual value.  The amount of underestimation of entrapment 

pressure increases to 30% when the entrapment temperature reaches 800 oC. These values are conservative estimates since 

the total exhumation time is set as 1 Ma. Longer residence at high-temperature conditions would result to larger 220 

modifications of the residual pressure. 

For amphibolite-facies entrapment conditions, the residual pressure that is preserved in the quartz inclusion is significantly 

lower compared to the case where the entrapment occurred at eclogites-facies conditions. As shown in Fig. 4D, ca. 5% and 

20 % underestimate of true entrapment pressure is predicted depending whether the entrapment occurred at 700 oC or 800 oC, 

respectively. Similarly, the amount of underestimation will be larger if the duration of exhumation is longer than 1Ma. 225 

3.3 Pressure relaxation along prograde P-T path and apparent overstepping 

The pressure relaxation problem becomes more complicated when the quartz inclusion is entrapped not at the peak P-T 

conditions, but along the prograde P-T path. In this case, viscous relaxation occurs also along the prograde P-T path and the 
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pressure difference between host and inclusion will relax with time and increasing temperature. This effect starts before the 

rock reaches the peak P-T conditions. Two synthetic P-T paths are illustrated in Fig. 5. In Fig. 5a, the quartz is entrapped in 230 

the almandine-garnet host at 400 oC, 1 GPa and further experiences eclogites-facies P-T conditions. During the prograde path, 

the quartz inclusion will develop underpressure (e.g. Angel et al., 2015, Fig. 5), which will also be subject to viscous 

relaxation over geological time. The quartz pressure starts to converge towards the garnet host pressure at T>600 oC. Nearly 

complete viscous resetting is observed when the system is brought up to 800 oC. The prograde time is set as 1 Ma or 10 Ma 

to compare the amount of viscous relaxation as a function of time in Fig. 5. 235 

An alternative scenario is considered where the rock may also stay at the peak P-T conditions before decompression occurs. 

A synthetic clockwise P-T path reaching eclogite facies metamorphic condition is constructed as shown in Fig. 6. The quartz 

inclusion is entrapped into the garnet host at 400 oC, 0.6 GPa, which is considered to be along the entrance of garnet stability 

field. Subsequently the system is brought to 700~750 oC, 1.8~1.9 GPa conditions and stays there for 5 Ma. Afterwards, the 

retrograde P-T path takes 10 Ma. Two different P-T paths of quartz inclusions are constructed based on the implemented 240 

elastic and visco-elastic rheologies. Interestingly, the residual pressure of the inclusion that was subject to viscous relaxation 

is significantly higher (by 0.2 GPa,) than the prediction of pure elastic model as shown by the black dashed curve (0.14 GPa). 

The apparent entrapment pressure is calculated using the predicted residual pressure for the inclusion whose host 

experienced viscous relaxation. A large discrepancy exists between the apparent entrapment pressure (ca. 1 GPa at the 

entrapment T 400 oC) and the true entrapment pressure (0.6 GPa). The overall overestimate of true entrapment pressure (0.6 245 

GPa) is about 0.3~0.4 GPa, which may potentially be interpreted as overstepping of the garnet growth/nucleation.  

4. Inclusion pressure modification due to proximity to thin-section surface 

Despite the importance of viscous/plastic relaxation in the post-entrapment modification of pressure, residual pressure 

measurements may be different when the inclusions are closer to the thin-section surface (Enami et al., 2007). When a 

pressurized mineral inclusion in infinite host under mechanical equilibrium is moved towards the thin-section surface, its 250 

pressure is released and the pressure distribution within the inclusion becomes heterogeneous. Mindlin and Cheng (1950) 

provided a closed-form analytical solution of stress field inside and outside a spherical inclusion with thermal strain in a 
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semi-infinite host. The analytical solution has been generalized to ellipsoidal inclusion (Seo and Mura, 1979). Substantial 

mathematical investigations have also been done in deriving the analytical solution of the elastic field for inclusion in half-

space (e.g. Tsuchida and Nakahara, 1970; Aderogba, 1976; Jasiuk et al., 1991). Although the analytical formulations for 255 

individual stress components of inclusion are non-trivial, here, we show that the formula for pressure distribution of a 

pressurized inclusion can be significantly simplified (detailed derivations are provided in the Appendix): 

 𝑃inc

𝑃ini
= 1 −

2

3

1+𝜈

�̅�2
3 (

3(�̅�+�̅�)2

�̅�2
2 − 1). (22) 

where 𝑃ini is the initial inclusion pressure in infinite host under mechanical equilibrium, �̅� is the scaled inclusion depth (�̅� =

𝐿/𝑅) and �̅�2 = √𝑥1
2 + 𝑥2

2 + (𝑥3 + 𝐿)2/𝑅 is a function of position in Cartesian coordinate system (Fig. 7), 𝜈 is the Poisson 

ratio of the inclusion and host. It is emphasized that in this situation the inclusion and host possess the same elastic moduli.  260 

The released inclusion pressure due to proximity to the thin-section surface is plotted in Fig. 7b and 7c using Eq. 22. 

Pressure release is concentrated at the top of the inclusion while the bottom of the inclusion is subject to minimal pressure 

releases (<10%). Interestingly, the top of the inclusion is subject to negative pressure (expansion) when the inclusion is very 

close to the thin-section surface (e.g. see the case of �̅� = 1.1). Based on the analytical solution, the safe inclusion depth to 

avoid residual pressure release is ca. �̅� = 2.5 (the amount of pressure release is less than 3% within the entire inclusion). 265 

Here, the simple analytical solution in Eq. 22 can precisely model the inclusion’s residual pressure due to stress release at 

thin-section surface, where the inclusion possesses the same elastic moduli as the host. In natural mineral inclusion-host 

system, the inclusion and host possess different elastic properties. As a case study, the stress fields of quartz-in-almandine 

and almandine-in-quartz systems are numerically modelled using a finite difference (FD) thermo-elastic model (model 

benchmark are provided in supplementary material). These examples are chosen to investigate two end-members: elastically 270 

stiffer host (quartz-in-almandine in Fig. 8a) and softer host (almandine-in-quartz in Fig. 8b). Pressures at three points within 

the inclusion (top, centre and bottom) are contoured as a function of �̅�. The pressures evaluated at these three localities based 

on the analytical solution in Eq. 22 are also shown by the dashed curves for comparison with numerical solutions. With 

decreasing distance to thin-section surface, the heterogeneity of pressure field increases. It is shown that the pressure release 

is less significant in elastically stiffer host (garnet) than in elastically softer host (quartz).  275 
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It is shown that the difference between analytical and numerical solution due to the difference of elastic moduli becomes 

significant when the inclusion depth is shallow. The analytical and solutions are similar when evaluated at the bottom point 

at any depth (Fig. 8). For quartz-in-garnet system, the analytical solution overestimates the amount of pressure release (Fig. 

8a). Assuming 3% pressure release as acceptable for the application of Raman barometry, the analytical solution yields safe 

distance ca. �̅�=2.0 for the bottom and centre point, while the numerical solution yields ca. �̅�=1.5. For the top point, the safe 280 

distance ca. �̅�=2.5 based on the analytical solution is again higher than the prediction of ca. �̅�=2.0 based on numerical 

solution. The difference of safe distance between analytical and numerical solution is due to the presence of elastically stiffer 

garnet host.  

Differential stress (|𝜎1 − 𝜎3|) is also shown in Fig. 8b. High differential stress at the host appears when the inclusion is close 

to thin-section surface. Differential stress may also exist inside the inclusion but it is in general smaller than that of the host. 285 

For quartz-in-garnet system, the differential stress forms a “ring” shaped pattern with a peak at the surface. The differential 

stress may reach up to three times the expected residual pressure. This may potentially trigger plastic failure at thin-section 

surface. However, for the garnet-in-quartz system, such pattern is not observed even if the inclusion depth is shallow.  

5. Discussion 

5.1 What may cause the residual pressure modification? 290 

The mechanisms investigated here, i.e. visco-plastic flow of the host and proximity of inclusion to thin-section surface can 

all be responsible for the modification of the residual inclusion pressure. The amount of inclusion-pressure change due to 

these three mechanisms is controlled by Deborah number (𝐷𝑒), dimensionless yield strength (𝐶∗) and dimensionless depth 

(�̅�), respectively. In the examples of quartz-in-garnet systems, the residual pressure is considered to be sealed in perfectly 

elastic garnet host. Based on our study, the presence (radius) of plastic yield region and preserved residual inclusion pressure 295 

are dominated by dimensionless yield strength (𝐶∗ = 𝐶ℎ/𝑃exp) as shown in Fig. 2. Strength 𝐶ℎ  can be converted from 

hardness test data using the formula below (e.g. Evans and Goetze, 1979): 
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 𝐶ℎ = 𝐻/𝐶𝑔  (23) 

where 𝐻 is the measured microhardness and 𝐶𝑔  is a constant accounting for the indenter’s geometry in the experiment. 

Taking 𝐶𝑔 = 3 (Evans and Goetze, 1979), the yield strength of garnet host is between 4.4 and 5 GPa at room conditions 

(Whitney et al., 2007), which leads to 𝐶∗ = 4.4~5 given residual inclusion pressure 𝑃exp = 1 GPa. This suggests that plastic 300 

yield does not occur in an idealized scenario of isotropic, spherical quartz inclusion entrapped in infinite garnet host. 

However, such an ideal scenario is highly improbable in natural samples. Localized plastic yield may still occur due to 

following reasons: 1) elevated differential stress when the inclusion is close to thin-section surface (“ring” shaped pattern in 

Fig. 8); 2) stress concentration at the corners of quartz inclusion (Whitney et al., 2000); 3) anisotropic elastic deformation of 

the quartz inclusion (e.g. Murri et al., 2018); 4) pre-fractures/weakness in garnet host before the entrapment of quartz 305 

inclusions that leads to the localization of dislocations. Although our model does not predict exact conditions for plastic 

yield due to the above possibilities, it gives a lower bound for the strength and provides information on what type of host 

mineral phase cannot be used for Raman-barometry. Plastic yield strength of some common rock-forming minerals measured 

in hardness tests are compiled and provided in table 1. As an example, given 𝑃exp = 1 GPa, the dimensionless yield strength 

of calcite host is ca. 0.6, and dolomite is ca. 1.5 (Wong and Bradt, 1992). This implies that plastic flow will most likely 310 

affect the residual pressure 𝑃exp in the calcite host but not in dolomite host. 

After thin-section preparation, the inclusion pressure may be (partially) released. The dimensionless depth can be evaluated 

by performing depth-step scan analysis with Raman spectroscopy in order to observe if the pressure gradually decreases 

towards thin-section surface (Enami et al., 2007). For quartz-in-garnet system, to avoid significant pressure release (>3%) in 

the bottom half of inclusion, the dimensionless depth needs to be above at least 1.5 (Fig. 8). To avoid significant pressure 315 

release in the entire quartz inclusion, the dimensionless depth needs to be above ~2. Therefore, we recommend a safe 

dimensionless depth of 2~2.5 (from surface to the centre of inclusion) for quartz-in-garnet Raman-barometry (see also 

Mazzucchelli et al., 2018). For a 30 μm thick thin-section, the maximal radius of an inclusion is ca. 6 μm (12 μm in diameter) 

located at the mid-point of the thin-section. In practice, it is difficult to precisely measure the depth of an inclusion and it is 
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uncommon that an inclusion is located right in the middle of a thin-section. Therefore, it is ideal to choose smaller inclusions 320 

or prepare thicker thin-section for measurement (Campomenosi et al., 2018; Mazzucchelli et al., 2018). 

For commonly used quartz-in-garnet Raman-barometry, our results show that below 550~600 oC, the effect of viscous 

relaxation can be negligible. Above ca. 650~750 oC, the effect of viscous relaxation needs to be taken into account 

depending on particular P-T path, garnet composition and time scale (Fig. 3, Fig. 4). This is similar to the empirical estimate 

ca. 750 oC in Walters and Kohn (2014). It is also shown that the preserved residual pressure may even increase due to 325 

viscous relaxation if viscous resetting occurs at peak P condition (Fig. 6). This is simply because viscous creep does not only 

relax the overpressure in quartz inclusion, but also the underpressure that develops along prograde P-T path. Meanwhile, the 

amount of viscous relaxation is time-dependent (𝐷𝑒 is a function of the operating time of viscous relaxation). Thus, the 

above temperature criterion for Raman-barometry applies only for exhumation lasting at million years’ time scale. A higher 

temperature criterion for Raman-barometry (e.g. ~1000 oC for garnet host at high pressure close to coesite-quartz transition) 330 

is applicable for more rapid exhumation, e.g. xenolith ascent carried by magma (Zhong et al., 2018b) or garnet synthesis 

experiments that lasts hours/days (Thomas and Spear, 2018; Bonazzi et al., 2019). 

5.2 Implications to garnet overstepping  

Quartz-in-garnet Raman-barometry has been used to determine the entrapment pressure, i.e. garnet nucleation/growth 

conditions and compared to the P-T conditions determined based on phase equilibria/classical chemical thermobarometry 335 

(Castro and Spear, 2017; Spear et al., 2014). As has been shown in Fig. 6, viscous resetting occurs when the inclusion-host 

system is brought to high temperature (>600~700 oC). Even if the quartz inclusion is entrapped at lower P-T conditions, e.g. 

the garnet entrance conditions, the preserved residual inclusion pressure may still be significantly higher than predicted from 

the actual entrapment P-T conditions using pure elastic model. In this case, erroneous results may emerge if one uses the 

relaxed residual quartz inclusion pressure to determine the entrapment pressure. In case of significant viscous resetting at 340 

peak T conditions followed by decompression, as in the case of some HP rocks, apparent garnet growth overstepping will be 

inferred (see Fig. 6b). In that case, care must thus be taken to interpret the discrepancy between the results of quartz-in-

garnet Raman barometry and phase equilibria. As shown in the example with synthetic clockwise P-T path (Fig. 6), ca. 3~4 
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kbar apparent overstepping is predicted by considering viscous resetting at peak T condition. The amount of apparent 

overstepping will be even larger if the exhumation process happens faster (current model assumes 10 Ma decompression 345 

time).  

6. Conclusions 

We first presented a 1D visco-elasto-plastic model to study the inclusion-host system undergoing a prograde/retrograde P-T 

path. The nondimensionalization of the governing equations yields two controlling parameters, Deborah number (De) and 

dimensionless yield strength (𝐶∗) that control the amount of pressure drop due to viscous relaxation and plastic yield. Both 350 

De and 𝐶∗ must be higher than one to avoid underestimating the residual pressure. Subsequently, a simplified analytical 

solution for inclusion pressure (Eq. 22) close to stress-free thin-section surface is presented based on the existing analytical 

solution from Seo and Mura (1979). It is suggested that the distance between thin-section surface and inclusion must be 

higher than 2~3 times the inclusion radius to avoid stress release.  

The relevance of our presented visco-elasto-plastic model to quartz-in-garnet elastic barometry has been systematically 355 

studied. Although plastic yield is not expected for garnet host due to its high yield strength, the residual inclusion pressure 

preserved in quartz inclusion can be partially modified at high temperature due to time-dependent viscous creep. It is shown 

that above 650~700oC over Ma time scale, viscous creep of garnet host may partially reset the quartz pressure. This may 

have important implications for the determination of entrapment pressure of quartz inclusion. Additionally, this may also 

cause apparent overstepping of garnet growth, thus care must be taken when applying quartz-in-garnet barometry at rocks 360 

which experienced high temperatures (>600~700 oC). 

Code availability 

The MATLAB code to reproduce the results of quartz-in-garnet system is available upon request. 
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Appendix 

Here, we introduce a simplified formula for pressure distribution of an initially pressurized inclusion in infinite host moved 

toward a stress-free surface based on the existing analytical solution of Seo and Mura (1979). A Cartesian coordinate system 375 

is employed as shown in Fig. 7. The full stress tensor 𝜎𝑖𝑗 of inclusion loaded with eigenstrains is represented as follows (Seo 

and Mura, 1979). 

 
𝜎𝑖𝑗 =

∗(1+𝜈)𝐺

2𝜋(1−𝜈)
[−4𝜋𝛿𝑖𝑗 −

𝜕2𝜓

𝜕𝑥𝑖𝑥𝑗
+ 4𝜈𝛿𝑖𝑗

𝜕2𝜙

𝜕𝑥3𝑥3
+ (3 − 4𝜈)(𝛿3𝑗 + 𝛿3𝑗 − 1)

𝜕2𝜙

𝜕𝑥𝑖𝑥𝑗
−

(𝛿3𝑗 + 𝛿3𝑗)
𝜕2𝜙

𝜕𝑥𝑖𝑥𝑗
− 2𝑥3

𝜕3𝜙

𝜕𝑥3𝑥𝑖𝑥𝑗
]. 

(A1) 

While for the host, stresses are given below 

 
𝜎𝑖𝑗 =

∗(1+𝜈)𝐺

2𝜋(1−𝜈)
[−

𝜕2𝜓

𝜕𝑥𝑖𝑥𝑗
+ 4𝜈𝛿𝑖𝑗

𝜕2𝜙

𝜕𝑥3𝑥3
+ (3 − 4𝜈)(𝛿3𝑗 + 𝛿3𝑗 − 1)

𝜕2𝜙

𝜕𝑥𝑖𝑥𝑗
− (𝛿3𝑗 +

(A2) 
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𝛿3𝑗)
𝜕2𝜙

𝜕𝑥𝑖𝑥𝑗
− 2𝑥3

𝜕3𝜙

𝜕𝑥3𝑥𝑖𝑥𝑗
], 

where the indices of 𝑥𝑖 (𝑖 = 1,2,3) are in Cartesian coordinate frame following the order of x, y and z (see Fig. 7), and 휀∗ is 

the isotropic eigenstrain that is expressed as the difference of volumetric strain between inclusion and host assuming that 380 

they are not bounded by each other. The elliptic integrals 𝜓 and 𝜙 are expressed below: 

 
𝜓 = 𝜋𝑅3 ∫

1−
𝑅1

2

𝑅2+𝑠

(𝑅2+𝑠)
3
2

𝑑𝑠
∞

𝜆
, 

(A3) 

where 𝜆 = 𝑅1
2 − 𝑅2 for host, 𝜆 = 0 for inclusion, and 𝑅1 = √𝑥1

2 + 𝑥2
2 + (𝑥3 − 𝐿)2. 

 
𝜙 = 𝜋𝑅3 ∫

1−
𝑅2

2

𝑅2+𝑠

(𝑅2+𝑠)
3
2

𝑑𝑠
∞

𝜆
, 

(A4) 

where 𝜆 = 𝑅2
2 − 𝑅2 for both host and inclusion, and 𝑅2 = √𝑥1

2 + 𝑥2
2 + (𝑥3 + 𝐿)2. Here, we focus on the stress experienced 

by the inclusion and derive a simplified form for the pressure of inclusion. For the inclusion, the elliptic integrals are derived: 

 𝜓 = 2𝜋(𝑅2 −
1

3
𝑅1

2), (A5) 

 𝜙 =
4

3
𝜋𝑅3𝑅2

−1. (A6) 

The normal stresses in the inclusion are: 385 

 𝜎11 =
∗(1+𝜈)𝐺

2𝜋(1−𝜈)
[−4𝜋 −

𝜕2𝜓

𝜕𝑥1𝑥1
+ 4𝜈

𝜕2𝜙

𝜕𝑥3𝑥3
− (3 − 4𝜈)

𝜕2𝜙

𝜕𝑥1𝑥1
− 2𝑥3

𝜕3𝜙

𝜕𝑥3𝑥1𝑥1
], (A7) 

 𝜎22 =
∗(1+𝜈)𝐺

2𝜋(1−𝜈)
[−4𝜋 −

𝜕2𝜓

𝜕𝑥2𝑥2
+ 4𝜈

𝜕2𝜙

𝜕𝑥3𝑥3
− (3 − 4𝜈)

𝜕2𝜙

𝜕𝑥2𝑥2
− 2𝑥3

𝜕3𝜙

𝜕𝑥3𝑥2𝑥2
], (A8) 

 𝜎33 =
∗(1+𝜈)𝐺

2𝜋(1−𝜈)
[−4𝜋 −

𝜕2𝜓

𝜕𝑥3𝑥3
+ 4𝜈

𝜕2𝜙

𝜕𝑥3𝑥3
+ (3 − 4𝜈)

𝜕2𝜙

𝜕𝑥3𝑥3
− 2𝑥3

𝜕3𝜙

𝜕𝑥3
3 − 2

𝜕2𝜙

𝜕𝑥3
2]. (A9) 
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By substituting 𝜓 and 𝜙 into the equations above, the normal stresses can be obtained. In deriving the pressure, i.e. negative 

mean stress, many terms in Eq. A7~A9 can be cancelled out. A simplified form is obtained as follow: 

 𝑃inc =
4 ∗(1+𝜈)𝐺

3(1−𝜈)
[1 −

2

3

𝑅3

𝑅2
3 (1 + 𝜈) (

3(𝑧+𝐿)2

𝑅2
2 − 1)]. (A10) 

The pre-factor 
4 ∗(1+𝜈)𝐺

3(1−𝜈)
 is in fact the initial pressure of the inclusion in infinite host loaded by the eigenstrain 휀∗ under 

mechanical equilibrium. Therefore, we may simplify Eq. A10 as follows: 

 𝑃inc = 𝑃ini[1 −
2

3

𝑅3

𝑅2
3 (1 + 𝜈)(

3(𝑧+𝐿)2

𝑅2
2 − 1)]. (A11) 

where 𝑃ini is the inclusion pressure in infinite host loaded by eigenstrain 휀∗ under mechanical equilibrium before moving it 390 

close to the thin-section surface. The equation can be nondimensionalized by using 𝑅 as length scale shown below: 

 𝑃inc

𝑃ini
= 1 −

2

3

1+𝜈

�̅�2
3 (

3(�̅�+�̅�)2

�̅�2
2 − 1). (A12) 

The analytical solution for pressure in the mineral inclusion subject to an initial residual pressure 𝑃ini is obtained. When the 

inclusion is far from thin-section surface (�̅� → +∞, and �̅�2 → +∞), the actual residual pressure approaches the expected 

residual pressure based on classical elastic model (𝑃inc → 𝑃ini). Another potential application of the solution in Eq. A12 is 

for benchmarking numerical solutions. Due to the simplicity of the pressure expression, it is particularly suitable for quick 395 

validation of numerical models, e.g. finite-difference model presented in supplementary materials.  
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 535 

Table 

Table 1. Averaged plastic strength from microhardness tests for some minerals at room conditions. Strength is converted 

from microhardness based on 𝐶ℎ = 𝐻/𝐶𝑔 , where the geometry constant 𝐶𝑔  is taken as 3. Raw data are dependent on 

crystallographic orientation, composition and applied load that are examined in some of the involved references. 

Minerals Yield strength (GPa) 

calcite2 

 

0.6 

zircon4 1.2 

dolomite2 

 

1.5 

orthoclase1 

 

2.3 

andalusite1 

 

2.3 

diopside3 2.7 

sillimanite1 

 

3.7 

quartz1 

 

4.0 

kyanite1 

 

4.0 

spinel5 4.1 

grossular1 

 

4.4 

almandine-pyrope1 

 

5.0 

1Data reported in Whitney et al. (2007).  540 

2Data reported in Wong and Bradt (1992). The reported data for calcite and dolomite are averaged from the applied load and 

azimuthal angle from [101̅1̅]. 

3Data reported in Smedskjaer et al. (2008). 

4Data reported in Yuan et al. (2017) 

5Data reported in Dekker and Rieck (1974). The reported data are averaged from the applied load at [110] and [100]. 545 
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Figures 

 

Fig. 1. Schematic illustration for the residual pressure. The grey and black curves are retrograde P-T paths for host and 

inclusion, respectively. Pressure drop is possibly due to following reasons: 1) viscous relaxation preferentially occurs at high 550 

temperature conditions; 2) plastic yield commonly occurs at low confining pressures where residual pressure is high; 3) thin-

section preparation that drives inclusion close to thin-section surface. Note that this illustration refers to systems where the 

inclusion is elastically softer than its host (e.g. quartz in garnet). 
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 555 

 

 

Fig. 2. Inclusion pressure as a function of Deborah number and dimensionless yield strength given different stress exponents. 

The contours denote the radius of plastic yield region 𝑅𝑦𝑖𝑒𝑙𝑑  scaled by inclusion radius. The thick grey contour represents the 

onset of plastic yield. Three regimes are labelled: 1) elastic (𝐷𝑒 > 1, 𝐶∗ > 1); 2) viscous (𝐷𝑒 < 1 and 𝐶∗ is above the onset 560 

of plastic yield); 3) plastic (𝐶∗ < 1, 𝐷𝑒 is above the onset of plastic yield). To obtain the results, a residual pressure is 

prescribed at the beginning and the confining pressure and temperature are fixed, i.e. no temporal variations of P-T 

conditions.  
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 565 

Fig. 3. Viscous relaxation time (in years) of different garnet host as functions of temperature and inclusion overpressure. The 

viscous relaxation time is calculated based on the expression of Deborah number (De=1) in Eq. 19. The viscosity’s pre-factor 

is T dependent and is obtained using the flow law from Wang and Ji (1999). The melting temperature is from Karato et al. 

(1995) (the melting temperature of almost pure almandine is taken from the data of Mohawk Garnet Inc. to be 1588K). Shear 

modulus is from Bass (1995). The flow law is given in the main text (Wang and Ji, 1999). The four garnet endmembers are 570 

almandine (Alm), grossular (Grs), pyrope (Prp) and spessartine (Sps). 
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Fig. 4. (a) Synthetic retrograde P-T paths from eclogite facies metamorphic conditions. The quartz inclusions are entrapped 

within almandine at different peak P-T conditions along the same isomeke, thus a purely-elastic model would predict the 575 

same value for the residual inclusion P. Due to viscous relaxation, the residual P is lower than the pressure predicted by an 

elastic model. In (b), the apparent entrapment P is calculated based on the relaxed residual inclusion pressure given different 

entrapment T along the elastic isomeke that is given in (a). Pressure relaxation is manifested by lower values of apparent 

entrapment P and it becomes more significant if the host experiences high temperatures with time. (c) and (d) are the same 

plots for amphibolite-facies entrapment conditions. The amount of viscous relaxation is less compared to eclogite facies due 580 

to the lower magnitude of inclusion overpressure and the stress dependent viscosity of garnet host. Pure almandine garnet is 

used as host and its flow law is from Wang and Ji (1999). 
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Fig. 5. Prograde P-T path for inclusion (dashed curve) and host (solid curve). (a) is for rocks that experienced eclogite-facies 

peak P-T conditions. The quartz inclusion is entrapped at 400 oC and 1 GPa. Along the given prograde P-T path, viscous 585 

relaxation becomes significant at >600 oC. The duration of prograde P-T path is illustrated with different colour (1 Ma and 

10 Ma, see legend). At 800 oC, the quartz inclusion pressure is reset to the confining pressure (host). For rocks that 

experienced amphibolite-facies peak P-T conditions (b), viscous relaxation becomes significant at ca. 650~700 oC and the 

quartz inclusion pressure is partially reset at 700 oC. Pure almandine garnet is used as host and its flow law is from Wang 

and Ji (1999). 590 
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Fig. 6. (a) Clockwise P-T path of inclusion (dashed curve) and host (solid curve). The dashed black curve shows the 

inclusion P-T path based on pure elastic model and the blue dashed curve is based on visco-elastic model. The quartz 595 

inclusion is entrapped into almandine garnet at 400 oC, 0.6 GPa. The prograde P-T path lasts 5 Ma, and the rock stays at peak 

P for 5 Ma before retrograde P-T path, which lasts 10 Ma. The residual pressure preserved by the quartz inclusion that was 

subject to viscous relaxation is in fact higher than the elastic limit. Therefore, the apparent entrapment pressure, calculated 

using elastic isomeke, is higher than the actual entrapment pressure as shown in (b). This may lead to ca. 3~4 kbar apparent 

overstepping effect. The almandine flow law is from Wang and Ji (1999).  600 
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Fig. 7. (a) Analytical model configuration of a mineral inclusion close to the thin-section surface. The distance between the 

surface to inclusion centre is denoted by 𝐿. (b) Pressure distribution on x-z plane. The pressure is scaled by the initial 605 

inclusion pressure (𝑃ini). The initial inclusion pressure is under force equilibrium in infinite host. The analytical model 

describes the amount of pressure release when the inclusion approaches the thin-section surface. (c) Pressure at three 

localities (inclusion top, centre and bottom) as a function of dimensionless depth L/R. The analytical solution of Eq. 22 is 

used for the pressure plot. 
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Fig. 8. Dimensionless pressure and differential stress plotted on x-z plane, or as a function of dimensionless depth. (a) 

Quartz-in-pyrope system; (b) Pyrope-in-quartz system. For the profiles, pressure and differential stress are measured at 

different locations denoted by the coloured dots. In the top panel, the dashed curves in the pressure plot are based on the 

analytical solution in Eq. 22 considering the same elastic moduli between inclusion and host, while the solid curves are 615 

based on finite difference results. The discrepancy between the solid (numerical solution) and dashed (analytical solution) 

curves in (a) is due to the fact that the host elasticity is different than the inclusion. 

 


