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Abstract. A shallow MW 5.3 earthquake near Lake Muir in the stable continental region (SCR) crust of southwest Western 

Australia on the 16th of September 2018 was followed on the 8th of November by a proximal MW 5.2 event. Focal mechanisms 10 

produced for the events suggest reverse and strike-slip rupture, respectively. Field mapping, guided by Sentinel-1 InSAR data, 

reveal that the first event produced an approximately 3 km-long and up to 0.4-0.6 m high west-facing surface rupture, consistent 

with reverse slip on a moderately east-dipping fault. The InSAR data also shows that the surface scarp relates to a sub-surface 

rupture ~5 km long, bound at its north and southern extremities by bedrock structures. The November event produced a surface 

deformation envelope that is spatially coincident with that of the September event, but did not result in discrete surface rupture. 15 

Almost nine hundred aftershocks were recorded by a temporary seismometer deployment. Hypocentre locations correlate 

poorly with the rupture plane of their respective main-shocks but correlate well with regions of increased coulomb stress. The 

spatial and temporal relationships between the MW > 5.0 events, and their aftershocks, reveals dependencies with implications 

for how other less well documented SCR earthquake sequences could be interpreted. Furthermore, the September MW 5.3 Lake 

Muir earthquake was the ninth event documented to have produced surface rupture in Australia in historical times. These nine 20 

ruptures are located exclusively in the Precambrian non-extended SCR rocks of central and western Australia, and none could 

have been identified and mapped using topographic signature prior to the historical event. Consistent, though fragmentary, 

evidence exists from analogous regions worldwide. Our analysis of the Lake Muir earthquake sequence therefore provides 

constraint on models describing mechanisms for strain accumulation and localized release as earthquakes in non-extended 

SRC crust. 25 
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1 Introduction 

Within the stable continental regions (SCRs) of the world, defined by Johnston et al. (1994) as “areas where the continental 

crust is largely unaffected by currently active plate boundary processes”, large and potentially damaging earthquakes are rare 

(Johnston, 1994b; Schulte and Mooney, 2005). Consequently, mechanisms for strain accumulation and localized release as 35 

earthquakes are poorly understood (Talwani, 2014; Calais et al., 2016; Craig et al., 2016; Liu and Stein, 2016; Salditch et al., 

2020) and the epistemic uncertainty associated with fault-displacement hazard (e.g. Moss and Ross, 2011; Moss et al., 2013), 

and the recurrence and fault-source model components of seismic-hazard assessments (e.g. Stein, 2007; Leonard et al., 2014; 

Griffin et al., 2020; Allen, 2020), is large. Constraint can be provided by the analysis of moderate-magnitude historical 

earthquake sequences supplemented by the paleoseismic record of large, surface-deforming events. Historical surface-40 

deforming earthquakes are particularly valuable in this respect in that they allow for more robust interpretation of the 

paleoseismic record (e.g. through calibration of scaling relationships between surface rupture length and earthquake 

magnitude; Wells and Coppersmith, 1994; Clark et al., 2014b), and a broad range of tools exist with which to characterize the 

surface deformation and so deduce source properties (e.g. interferometric synthetic aperture radar (InSAR), and pixel tracking 

techniques for determining vertical and horizontal co-seismic displacements; Massonnet et al., 1993; Klinger et al., 2018; Zhou 45 

et al., 2018; Gold et al., 2019). 

Broad agreement exists that SCR crust is not homogeneous with respect to seismogenic potential (Johnston, 1994a; Mooney 

et al., 2012; Clark et al., 2012). The majority of historical moment release in SCR settings is preferentially located in failed 

rifts of Cretaceous to Paleogene age (e.g. Johnston, 1994a; Schulte and Mooney, 2005; Bonini et al., 2012; Talwani, 2014), 

and associated with pronounced lateral gradients in lithospheric thickness such as at the boundaries of cratons (e.g. Mooney et 50 

al., 2012) (Table 1). The largest recorded historical SCR earthquakes have occurred in failed rift settings; within the Reelfoot 

Rift (Mueller and Pujol, 2001) and the Rann of Kachchh (Rajendran et al., 2008). While typically being characterized by a 

lack of significant neotectonic relief (White et al., 2009; Talwani, 2014; Goedhart and Booth, 2016; Hornsby et al., 2019), 

there are notable exceptions where evidence is preserved for strain localization over many seismic cycles; typically, but not 

exclusively associated with the bounding faults of the failed rifts. Examples include the Rann of Kachchh of India (Rajendran 55 

et al., 2008; Rastogi et al., 2014), the Tapti Fault in peninsular India (Copley et al., 2014), the Reelfoot Rift in the central 

United States (van Arsdale, 2000; Cox et al., 2013), and the Otway, Flinders and Strzelecki ranges of eastern Australia 

(Sandiford, 2003a, b; Celerier et al., 2005; Quigley et al., 2006; Hillis et al., 2008; Braun et al., 2009; Clark et al., 2012) (Figure 

1).  

While accounting for less than 10% of historical global SCR moment release (Schulte and Mooney, 2005), non-extended SCR 60 

crust accounts for more than two-thirds of the surface deforming earthquakes documented (Table 1), and is locally associated 

with a rich paleoseismic record (e.g. Crone and Machette, 1995; Rajendran et al., 1996; Crone et al., 2003; Wheeler, 2006; 

Clark et al., 2008; Estrada, 2009; Quigley et al., 2010; Clark, 2010; Clark et al., 2012; Clark et al., 2015; Zellman and Ostenaa, 

2016). Within the Australian SCR, Leonard et al. (2014) divided the non-extended part into Precambrian and Phanerozoic 
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elements based on differences in seismogenic potential implied by the character of neotectonic features (after Clark et al., 65 

2012; Figure 1). The older crust was associated with a lower seismogenic potential consistent with the hypothesis proposed by 

Mooney et al. (2012), that seismogenic potential is inversely proportional to lithospheric thickness. Perhaps counter-intuitively, 

the historical record of seismicity and of surface rupture is particularly rich in the Australian Precambrian non-extended SCR 

(Leonard, 2008; Clark, 2010; Leonard and Clark, 2011), which has hosted nine of the fifteen historical earthquakes documented 

to have produced surface ruptures in SCR crust globally (Table 1, Figure 1). 70 

In this paper we report on the geological setting and characteristics of the most recent of the nine surface rupturing earthquakes 

in the Australian Precambrian SCR crust; the 2018 MW 5.3 Lake Muir earthquake. The earthquake was followed by an extensive 

aftershock swarm, and a proximal MW 5.2 earthquake 51 days after the 16th September event, which deformed but did not break 

the surface. InSAR observations of surface deformation relating to both MW >5.0 events were validated using field 

observations, unmanned aerial vehicle (UAV)-acquired high resolution digital elevation data, and hypocentres calculated from 75 

a local seismic network deployed in the days following the first, MW 5.3, event. Analysis of the Lake Muir earthquake sequence 

provides guidance as to how other moderate to large magnitude SCR seismic sequences might be interpreted (e.g. Adams et 

al., 1992; Bent, 1994; Baumbach et al., 1994), and further constraint for models describing localized strain release as 

earthquakes in non-extended SCR crust worldwide. 

1.1 The Lake Muir Earthquake Sequence 80 

The ML 5.7 (MW 5.3) Lake Muir earthquake occurred at 04:56:24 (UTC) on 16th September 2018 in a rural area of southwest 

Western Australia, ~60 km east of the town of Manjimup, and a similar distance north of the town of Walpole (Figure 2). 

Approximately 20 km from the epicentre, relatively modest Modified Mercalli Intensity (MMI) values of VI were reported 

(Allen et al., 2019). With the exception of one unoccupied dwelling in the immediate epicentral area, which was extensively 

damaged, only minor damage and no injuries were reported. The event was widely felt throughout the Perth Basin, including 85 

the Perth metropolitan region, over 300 km away. Focal mechanisms suggest a reverse faulting mechanism, with a minor 

dextral transcurrent component, and moderately east and northwest dipping nodal planes (Figure 2, Table 2). Geoscience 

Australia recorded a magnitude ML 3.4 foreshock three days prior to the main shock. A protracted aftershock sequence, 

comprising hundreds of located events, was punctuated by a ML 4.6 event on 12th October at 16:31:30 (UTC) (Figure 3, Table 

2). Almost two months after the 16th September MW 5.3 event, a ML 5.4 (MW 5.2) event occurred on the 8th November at 90 

21:07:01 (UTC). Within the error estimates of the original hypocentral determinations, this event was co-located with the 16th 

September event (see weblinks in Table 2).  The focal mechanisms calculated for the November event indicate predominantly 

dextral strike-slip faulting, with steeply northwest and southwest dipping nodal planes. The percentage double-couple from 

the U.S. Geological Survey (USGS) W-phase moment tensor solution is 31% (Figure 2, Table 2). This event was felt much 

more strongly and widely than the slightly larger first event, with MMI of VII to VIII being recorded close to the epicentre. 95 

There are several factors that might explain the relatively greater number (and density) of felt reports from the 8th November 

earthquake, including: 1) the time of day, which was early morning, when people are more likely to be stationary and thus 
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more likely to perceive ground shaking; 2) differences in the ground motion radiation pattern and/or stress drop of the 

earthquake that may have yielded greater shaking in population centres at perceptible frequencies; and/or 3) greater community 

awareness of the earthquake sequence and where to find sources of further information.  Surface rupture relating to the 100 

September event was initially identified with InSAR (Figure 2), and has been subsequently verified by ground survey (this 

paper). 

1.2 Geological and seismotectonic setting of the Lake Muir earthquake sequence 

The Lake Muir earthquake sequence occurred within 1700-1600 Ma rocks of the Biranup Zone of the Proterozoic Albany 

Fraser Orogen (Fitzsimons and Buchan, 2005; Spaggiari et al., 2009) (Figure 2). During the Mesoproterozoic Albany Fraser 105 

Orogeny these rocks were thrust to the north over the 3000-2600 Ma rocks of the Northern Foreland of the Albany Fraser 

Orogen (the portion of the Archaean Yilgarn Craton that was reworked during the Albany–Fraser Orogeny) along moderately 

south-dipping faults. In the Lake Muir region, the dominant east to east-southeast striking structural grain is associated with 

the major structures bounding these thrust sheets.  East-striking structural and lithological trends relating to the Albany Fraser 

Orogen are transected by northwest trending structures related to Proterozoic to earliest Phanerozoic movement on the Darling 110 

Fault Zone to the west (Janssen et al., 2003). The Boyagin dyke swarm cuts across much of the southwest, including the 

Yilgarn Craton and Albany–Fraser Orogen (Prider, 1948; Myers, 1990a; Harris and Li, 1995), and is subparallel to this 

structural trend. Minor north- and northeast-trending structures may relate to Gondwana breakup or later movement focused 

on the Darling Fault, parallel structures to the west thereof (e.g., the Dunsborough and Busselton faults), and associated oblique 

structures (Harris, 1996; Olierook et al., 2015). Eocene alluvial sediments (Werillup Formation) and marine siltstone and 115 

sandstone (Pallinup Formation) locally infill topography in the crystalline basement (Wilde and Walker, 1984). Deposits have 

been correlated to map a Paleogene paleo-channel system (Smith, 2010). These sediments, and ferricrete developed within 

them, are reported to be locally faulted by up to 5-7 m vertically based upon evidence from drill holes (Chakravartula and 

Street, 2000; Smith, 2010). The sparsity of boreholes precludes determination of fault orientation. 

The Lake Muir region lies near to the southern boundary of a broad band of relatively high seismicity crossing the southwest 120 

corner of Western Australia known as the Southwest Seismic Zone (SWSZ, Doyle, 1971), which is one of the most seismically 

active regions in Australia (e.g. Leonard, 2008; Allen et al., 2018). Earthquake activity in the SWSZ appears to have increased 

significantly since the 1940s (Leonard, 2008), and it has generated five of the nine known Australian historic surface ruptures 

(all associated with reverse faulting, Table 1). In addition to large shallow events and scattered smaller events, the SWSZ has 

produced several dozen earthquake swarms in the last 40 years, including the Burakin swarm of 2000-2002 during where 125 

~18,000 events of mixed focal mechanism (including six events in the magnitude range MW 4.0-4.6) were recorded in a period 

of only a few months (Leonard, 2002; Allen et al., 2006; Dent, 2016). While most swarm centres occur within the SWSZ, they 

have a broader distribution across the southwest of Western Australia (Dent, 2016); an essentially random pattern that is similar 

to fault scarps relating to pre-historical events (Clark, 2010; Clark et al., 2012). The relatively uniform spatial distribution of 

north-trending reverse fault scarps is consistent with scarp formation under conditions imposed by the contemporary east-west 130 
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oriented compressive crustal stress regime (e.g. Rajabi et al., 2017b), and suggests that seismogenic strain release is uniformly 

distributed over the Yilgarn Craton over the timescale recorded in the land surface (ca. 100 kyr or more) (Leonard and Clark, 

2011). 

1.3 Landscape context of the Lake Muir earthquake sequence 

Interrogation of a 2012 LiDAR dataset (see Supplementary Information) revealed the presence of an alignment of valleys and 135 

ridges that mimics structural trends evident in the continental- and regional-scale magnetic data (cf. Figures 2 and 3) 

(Chakravartula and Street, 2000; Milligan and Nakamura, 2015).  The main ridge-line, valley and drainage trends in the study 

area are broadly to the east-southeast and north, with a subordinate northwest trend (black double-ended arrows in Figure 3). 

Ridges are subdued, broad and undulating. Valley floors are flat-bottomed, and are locally occupied by lakes and swamps, 

implying the presence of significant sedimentary infill (cf. Commander et al., 2001; Smith, 2010). Lunettes are developed on 140 

the east and southeast sides of most lakes, often with evidence for minor remobilisation into parabolic dunes.  Knick-point 

retreat from a regional topographic low to the southwest occupied by Lake Muir is observed in several instances to be 

rejuvenating the drainage within flat-bottomed valleys, resulting in the removal of valley-fill sediments and the accentuation 

of structural trends evident in the alignment of adjacent linear ridges.  There is no landscape evidence for sharp vertical 

dislocations of valley floor sediments that might relate to Late Pleistocene or Holocene surface-rupturing seismic events. 145 

2 Methods 

2.1 InSAR processing method 

Since the 1992 MW 7.3 Landers earthquake (Massonnet et al., 1993), remote sensing techniques have been shown to be valuable 

tools for observing surface deformation and damage patterns relating to earthquakes in a range of tectonic settings (e.g. Livio 

et al., 2017; Klinger et al., 2018; Wang et al., 2019; Gold et al., 2019; Scott et al., 2019). Interferometric Synthetic Aperture 150 

Radar (InSAR) in particular has greatly improved the detectability of surface faulting, and surface deformation, especially 

relating to small to moderate sized earthquake sequences in remote or poorly instrumented areas, such as SCRs (Satyabala, 

2006; Dawson et al., 2008; Amarjargal et al., 2013; Livio et al., 2017; Gardonio et al., 2018). Surface deformation relating to 

eleven SCR earthquakes has been imaged using InSAR (Table 1). Following the launch of Sentinel-1A and Sentinel-1B 

missions in 2014 and 2016 respectively, there is now a near-global coverage of SAR acquisitions every 12 days 155 

(https://sentinel.esa.int/web/sentinel/missions/sentinel-1/overview). The availability of this rich data set has enabled global 

systematic studies of earthquake detectability in InSAR data (e.g. Barnhart et al., 2019; Funning and Garcia, 2019) and, for 

the first time in an SCR setting, has allowed us to construct coseismic interferograms for two events within the same SCR 

seismic sequence.  

For each of the two earthquake events we generated a coseismic interferogram from two Sentinel-1 interferometric wide swath 160 

SAR images (earthquake 1: 14th and 26th September 2018; earthquake 2: 1st and 13th November 2018) using a standard 

https://sentinel.esa.int/web/sentinel/missions/sentinel-1/overview
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interferometric SAR processing workflow implemented with the Gamma software (Wegmüller and Werner, 1997). The 

topographic component of the phase signal was removed using a 1-arc second SRTM digital elevation model (Geoscience 

Australia, 2011) and the orbital component was removed using Precise Orbital Ephemerides (POE) products. Each 

interferogram was sub-sampled (multi-looked) eight times in range and two times in azimuth to reduce phase noise. An 165 

adaptive spatial filter (Goldstein and Werner, 1998) with exponent 0.5 was applied to each interferogram to further reduce 

phase noise prior to automatic unwrapping using a minimum cost flow algorithm (Costantini, 1998). The automatically 

unwrapped interferogram for the September earthquake had significant errors due to poorer phase coherence around the surface 

rupture zone. A manual approach to unwrapping this interferogram was therefore applied using the branch-cut method 

(Goldstein et al., 1988). 170 

2.2 Field observation and UAV digital terrain models 

The epicentral region of the earthquakes were visited over three days (12-14th November 2018), less than a week after the 

November event.  The scarp produced by the September event was mapped, and evidence for rejuvenation of the scarp during 

the November event was assessed.  A hand trench was excavated across the central section of the September scarp to assess 

fault dip and displacement. 175 

Because InSAR captures a single displacement vector in the radar line of sight (LOS), and commonly decorrelates in regions 

close to earthquake surface ruptures where displacement gradients exceed the Nyquist sampling rate or cause pixels to no 

longer overlap (e.g. Hamling et al., 2017; Metzger et al., 2017; Gold et al., 2019), it is desirable to obtain independent validation 

data. In order to recover part of the surface vertical deformation envelope associated with the events, aerial photographs were 

acquired with a DJI Phantom 4 unmanned aerial vehicle (UAV) in an approximately 500 m-wide swath along a 2 km length 180 

of the September event scarp. An approximately 2 km-long cross-line was also flown, extending eastward from the scarp 

across the region of most significant surface deformation indicated in the InSAR imagery (Figure 3). Ground control was 

provided by an RTK GPS, with mean horizontal and vertical measurement uncertainties of 0.026±0.025 m and 0.056±0.055 m, 

respectively. A third mission covered the southern extent of surface deformation indicated in the InSAR imagery (Figure 3). 

The results of this mission are presented in the Supplementary Information (Figure S1). 185 

The image dataset was processed using a Structure-from-Motion (SfM) and multi-view stereo approach, implemented in the 

software Agisoft Photoscan Pro 1.4.3 (Agisoft LCC). The resulting dense point cloud achieved a standard deviation of the 

location differences between it and the control points of 0.09 m in the horizontal and 0.01 m in the vertical, which is comparable 

to other studies using similar ground control point (GCP) densities (e.g. Gindraux et al., 2017).  Several studies of factors 

impacting local photogrammetry-derived Digital Terrain Model (DTM) accuracy (e.g. Tonkin and Midgley, 2016; Gindraux 190 

et al., 2017) report a vertical accuracy decrease of ~0.1 m for every 100 m increase in the distance to the closest GCP. In our 

study the maximum distance from a control point is in the order of 200-300 m. A 6 cm-resolution DTM was produced from 

the dense point cloud. 
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The elevation values from a LiDAR dataset collected by the Western Australia Government Department of Biodiversity, 

Conservation and Attractions in 2012 were subtracted from the UAV DTM produced in this study, to produce a DTM of 195 

difference (DoD, Williams, 2012). The average magnitude of the uncertainties associated with the elevation values for the 

LiDAR dataset is reported as 0.063±0.074 m. The combined location uncertainty in the DoD might therefore be expected to 

be in the order of 0.1 - 0.2 m. Details of the processing steps are presented in the Supplementary Information.  

The focal mechanism computed for the September earthquake (Figure 2) indicates almost pure reverse motion. In this instance, 

the majority of landscape change would be expected to be vertical, and so detectable in the DoD. In contrast, the November 200 

earthquake was dominantly strike-slip (Figure 2). The deformation envelope detectible with the deployed technologies should 

therefore relate almost exclusively to the September reverse faulting event, with further deformation from the November event 

remaining largely undetected. To quantify vertical surface displacement associated with the September earthquake, we 

extracted swath profiles through the DoD (and the unwrapped InSAR images) parallel and perpendicular to the rupture using 

swath profiler tool for ESRI ArcGIS (Pérez-Peña et al., 2017). The swath profiles sample the topography perpendicular to the 205 

profile to a set distance either side of the profile line. A range of statistics (percentiles, quartiles, max/min/mean) might then 

be assessed in order to account for the noisy character of the UAV-derived DTM. 

2.3 Rapid deployment aftershock kits 

Within five days of the 16th September event five seismic rapid deployment kits (RDKs) and three GPS kits were deployed in 

the epicentral region (Figure 2). The seismic sensors included four short-period Lennartz LE-3Dlite seismometers and one 210 

Trillium Compact seismometer. The short-period instruments were paired with Nanometrics Titan accelerometers recording 

at 200 Hz to capture any strong ground motions from the aftershock sequence. The RDK locations (prefixed LM on Figure 2) 

were selected to maximise azimuthal coverage of the study area taking into account the location of one permanent Australian 

National Seismic Network (ANSN) station near Rocky Gully (RKGY), fortuitously located 24 km from the epicentre of the 

16th September earthquake.  The network geometry also considered the capture of ground-motion data at a range of source-215 

receiver distances for subsequent attenuation studies.  One RDK (LM01) was deployed at the initial epicentral location of the 

16th September event.  Waveform data were telemetered in real-time to the National Earthquake Alerts Centre at Geoscience 

Australia to support real-time aftershock detection and analysis.  The RDK locations therefore required adequate connection 

to local 3G and 4G telecommunication networks.  Additional factors considered in the deployment configuration were the 

local site geology, availability of sunlight to power the sensors, and land access. 220 

The three GPS kits were deployed on existing survey marks within a broader network covering the SWSZ, one of which was 

last occupied in 2012. The survey marks used (SWSZ45, SWSZ46, SWSZ48) were approximately 36, 65 and 25 km away 

from the epicentral region, respectively (Figure 2). Processing of the acquired GPS data from the SWSZ46 site produced an 

anomalous vertical displacement signal indicating 12 mm of subsidence. This signal could not be reconciled with the surface 

deformation related to the earthquakes, which was constrained to a near-field region smaller than 10 km from the surface 225 

rupture (Figure 2), and so is not discussed any further here. 
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3 Results 

3.1 Field observations 

Initial reports from local residents following the September earthquake indicated the presence of west-facing fault scarps 

intersecting several farm tracks (e.g., Figure 4a), loss of tension in an east-west running fence line (GDA94/MGA50, 479590 230 

mE, 6192140 mN), and cracking in farm dam walls related to lateral spreading (Figure 4b).  Field investigation demonstrated 

that the track intersections could be linked to form an approximately 3 km-long, concave-to-the-east, west-facing crescentic 

scarp (Figure 3).  In detail, the scarp comprises a series of left and right stepping en echelon segments 100 – 200 m long. In 

the central 2 km of the scarp, each segment is associated with up to 20 – 40 cm of vertical displacement (Figure 4c, 4d). The 

morphology of individual scarp segments show little evidence for a strike-slip component to motion, varying between discrete 235 

thrust surface rupture with local fault-parallel folding and cracking, to discrete thrust surface rupture with mole tracks (cf. Lin 

et al., 2004) and extensional fissuring associated with topographic bulges. Where the scarp crossed drainage lines, presumably 

associated with metres of sandy alluvial sediments, it becomes a broad warp, often associated with extensional fissuring parallel 

to the warp-crest, and warp-perpendicular cracking at step-overs. 

A hand trench 2.3 m long and 1.2 m deep was excavated perpendicular to the scarp trace at a location where the vertical 240 

displacement was in the order of 0.3 – 0.4 m (Figures 4c & 5). Here, the scarp has an average trend of 25°, and scarp segments 

are right stepping (GDA94/MGA50, 479290 mE, 6191500 mN). The exposed stratigraphy consists of an approximately 0.10-

0.12 m thick organic-rich grey brown silty sand overlying ~0.4 m of pale grey medium sand that becomes pisolitic with depth 

(Figure 5b,c). This layer in turn overlies an orange/red mottled grey clayey sand to the bottom of the trench. We interpret the 

profile to reflect an in-situ weathering profile developed in Albany-Fraser Orogen bedrock. Approximately 0.18-0.20 m of the 245 

pre-event organic-rich sandy soil had been over thrust along a 20° east-dipping reverse fault that steepened to 30° towards the 

base of the trench (Figure 5c).  A vertical scarp-parallel tension fissure ~0.7 m east of the trench suggests that the fault dip 

steepens again at shallow depth (Figure 4c). Drag of layering in the hanging wall along the fault resulted in the formation of a 

prominent hanging-wall fold. The total vertical deformation at this site is shared approximately equally between discrete slip 

across the fault plane and folding. 250 

South of 479130 mE, 6191120 mN (GDA94/MGA50) the scarp steps 50 m to the west, the general scarp strike is 355°, and 

scarp segments become left-stepping. The scarp is associated with a 0.2 – 0.3 m vertical landscape step which extends some 

400 m south from this location, before entering dense pine plantation and becoming difficult to follow due to extensive 

landscape disturbance (e.g., furrowing), and a thick layer of organic matter cloaking the ground surface (Figure 4d).  Within 

the pine forest, the scarp maintains a vertical displacement of 0.2 – 0.4 m, before stepping again 50 m to the west at 479190 255 

mE, 6190050 mN (GDA94/MGA50). 

The segments south of the step-over strike ~340 – 350° and decrease in vertical displacement from ~0.3 m to ~0.1 m at the 

most southerly intersection of the scarp with a farm track (GDA94/MGA50, 479320mE, 6189440mN). At this track 

intersection, observed after the November event, the scarp comprises dominant southeast-trending elements which are locally 
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offset (left-stepping) across east-trending lineaments. These become tensional fissures on the eastern up-thrown side of the 260 

scarp. The vertical displacement across the scarp at this location is approximately 0.1 m.  Landowners report that there was a 

‘freshening’ [rejuvenation] of the scarp at this location following the November event. The presence of fine cracking details 

in November, given there were significant rainfall events in October, support these anecdotes.  The observations are consistent 

with a reverse oblique (sinistral) reactivation of this segment of the scarp.  South of the track intersection, the scarp is lost in 

bushland. However, heavy tree limb fall, and the occasional toppled tree, was observed along strike for a further ~ 400 m to 265 

the southeast, suggesting strong localised ground shaking during the September event (Figure 3). 

3.2 Wrapped and unwrapped Sentinel-1 interferograms for both events 

The wrapped interferogram for the September event shows an extent of surface deformation ~ 12 km in an east-west direction 

and ~ 8 km in a north-south direction (Figures 2, 6a). A linear surface deformation front relating to the rupture can be traced 

for approximately 5 km. The central ~3 km corresponds to the fault scarp mapped on the ground. The unwrapped interferogram 270 

(Figure 6b) shows a broad shallow lobe of negative line of sight (LOS) change that extends from the west to the surface scarp 

(equivalent to ~2.5 fringes in the wrapped image). From the east, a broad shallow lobe of positive LOS change (~2 fringes in 

the wrapped image) transitions to a tight (~1.5 km wide) band of negative LOS change characterised by at least 10 fringes. 

The images lose coherence in the 200 – 300 m east of the scarp, and in proximity to Lake Noobijup (cf. Figure 3). Coherence 

is also partly lost beneath an approximately 2 km wide (N-S) easterly trending band of pine forest (see Figures 3 and 6a for 275 

location).  

The unwrapped interferogram for the September event (Figure 6b) shows a maximum LOS displacement towards the satellite 

of approximately 0.20 – 0.24 m along the eastern side of the central ~1.5 – 2.0 km of the scarp. These values are approximately 

half the maximum scarp height recorded by UAV field measurement, and approximately one third the maximum magnitude 

of slip along the fault plane that might be calculated from the trench exposure (see also next section). The southern 1.3 km of 280 

scarp mapped on the ground occurs mainly beneath pine forest and the unwrapping algorithm failed to reproduce measured 

scarp heights of 20 – 40 cm in this area. Similarly, the unwrapping algorithm performed poorly in the swampy vegetated land 

proximal to Lake Noobijup.  

The hanging wall uplift diminishes to the east of the scarp and is fringed by a broad region of positive LOS change, 

corresponding to depression of the land surface. The deepest region of depression of the ground surface is centred on Lake 285 

Noobijup (~ 13 cm LOS increase). This area also corresponds to the highest density of aftershocks following the September 

mainshock (Figures 3 and 6b).  The depressed region has well-defined northern and southern extents, terminating at east and 

south-east trending structures, respectively. The areal extent of the depressed region is surprisingly large for a reverse fault 

rupture (cf. King et al., 1988; Ellis and Densmore, 2006). 

The InSAR images for the November event (Figures 6c & d) exhibit the classic quadrupole pattern of an almost pure strike-290 

slip rupture, and are consistent with a maximum of ~5 – 8 cm of right lateral slip having occurred at the surface relating to 

rupture of a northeast-trending, steeply northwest dipping fault. This contrasts with the focal mechanism for the event, which 
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suggests an oblique compressive rake (Figure 2).  Although the deformation pattern shows a sharp linear discontinuity for ~ 1 

km either side of the intersection of the November failure plane with the September rupture plane, simple forward modelling 

using a finite rectangular elastic dislocation model (Okada, 1985) suggests that a discrete surface rupture may not have been 295 

produced (i.e., the rupture tip remained buried) (Figure S4).  Indeed, structures unambiguously relating to the main rupture 

were not observed in the field. Potential evidence for secondary surface deformation relating to the main failure plane of this 

event was seen as a series of ‘fresh’ looking east-trending left-stepping dilatational cracks expressed in a boundary track at 

478970 mE, 6190390 mN (GDA94/MGA50). No vertical displacement was observed to be associated with these features. 

The deformation pattern relating to the November event is also seen to be influenced by the northwest trending structure that 300 

forms the southern termination of the September event. This lineament is discernible in the November event unwrapped InSAR 

from the intersection of the surface projection of the rupture planes to approximately 1.8 km southeast (Figure 6d). Minor 

reverse-oblique movement on this structure during the November event may have been responsible for the reports of a local 

‘freshening’ of the September scarp. 

3.3 Comparison of UAV-derived and InSAR-derived deformation surfaces 305 

Part of the vertical displacement envelope resulting from the September earthquake was recovered by differencing the DTM 

acquired by UAV and the 2012 LiDAR dataset (Figure 7; see Section 2.2 and Supplementary Information for methods). Scarp-

parallel and perpendicular profiles through the resulting DTM of difference (DoD) ubiquitously show a larger displacement 

magnitude than the InSAR-derived LOS displacement estimates (Figure 7b, c). However, the general form of the two 

deformation envelope estimates is consistent. A broad uplifted region to the east of the scarp trace in the DoD corresponds to 310 

the area of greatest uplift evident in the InSAR data (Figure 7a). Further, the InSAR LOS phase image indicates that the eastern 

end of the DoD profile is located in a broad region of topographic depression relative to the far field (~2 fringes), while the 

western end is raised relative to the far field (~2.5 fringes) (cf. Figure 7c blue line and Figures 6a and b). This is reflected in a 

~0.3 m vertical difference between eastern and western ends of the UAV DoD profile. 

Importantly, the UAV DoD captures deformation close to the scarp trace where the InSAR images lose coherence. For 315 

example, the InSAR data did not image a ~ 0.1 m deep foot-wall depression that occurs within ~100 m to the west of the scarp 

trace. Along the ~2 km length of scarp that was covered by the UAV DoD, the average height of the scarp, as measured along 

a 100 m-wide swath profile (Figure 7b), is 0.46 ± 0.11 m. The landscape dislocation is shown to be sharpest in the ~10-30 m 

east of the scarp trace, and consistent in magnitude with that measured by RTK GPS at the location of the trench (cf. Figures 

5 and 7c). The topography then continues rising at a lower rate to a maximum vertical displacement within ~200 m east of the 320 

scarp trace, before falling relatively smoothly over a kilometre (Figure 7c). The fact that uplift associated with the fault tip is 

distributed over the ~200 m east of the scarp trace suggests that the scarp-parallel DoD swath profile, spot measurements of 

scarp height (green dots in Figure 7b), and the 2-D UAV profiles (red dots in Figure 7b), all underestimate total vertical 

deformation to some degree. A similar result was derived for the 2018 Petermann Ranges earthquake surface rupture (Gold et 

al., 2019).  325 
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No surface expression or ground cracking was observed on the ground along the southeast-trending feature imaged in the 

InSAR-derived LOS displacement data at the southern end of the September rupture (cf. Figure 6b). However, a DoD 

constructed over the area (see Figure 7a for mission outline, and Figure S1 for results) revealed the presence of a very subtle 

(≤5 cm high) linear topographic feature, extending over ~560 m, which was coincident with the surface displacement implied 

by the InSAR data (Figure 7b).  330 

3.4 Mainshock and aftershock relocation 

In the period from 16th September to 23rd November, 884 earthquakes were recorded on stations from the permanent ANSN 

network and the five rapid-deployment aftershock kits temporarily installed in the epicentral region.  These events include the 

largest aftershock (12th October, ML 4.6), and the November MW 5.2 event. Initial locations for these events were computed 

using the SeisComP3 seismological software (Weber et al., 2007) and the LocSAT location algorithm (Bratt and Bache, 1988).  335 

P- and S-wave arrival times were manually picked and reviewed by Geoscience Australia seismic analysts. The mean location 

uncertainties in this dataset were found to be 3.39 km in the horizontal direction, and 2.33 km in the up direction. To better 

constrain the location and pattern of aftershocks, events from this dataset were input for relocation using the HypoDD double-

difference relative location algorithm (Waldhauser and Ellsworth, 2000), implemented in the software HypoDDpy (Krischer, 

2015) (see Supplementary Information for detail). The HypoDD algorithm minimizes errors in hypocentral locations that are 340 

commonly attributed to uncertainties in Earth structure along the event-station ray path. The final relocation included a subset 

of 470 events from this catalogue (Figures 3 and S2). The mean location uncertainties in the relocated dataset were found to 

be 63 m, 116 m, and 228 m in the east, north and up directions, respectively.  

Both the largest aftershock (ML 4.6) and the November MW 5.2 event did not meet criteria for relocation in HypoDD using 

nearby seismic stations.  However, both events were clearly recorded with good azimuthal coverage at regional and teleseismic 345 

distances. Based on waveforms from 19 stations in Australia, Antarctica, Kazakhstan, Mongolia and Thailand a separate 

relative location of these two events was calculated, together with the September MW 5.3 main shock, by manually aligning 

the distant waveforms and performing a Joint Hypocentre Determination (Pujol, 2000; Fisk, 2002; see Supplementary 

Information for detail). The September and November earthquakes were then anchored to the ML 4.6 aftershock location, which 

was well constrained in an absolute sense, as it occurred within ~0.6 km of the LM01 seismograph station.  In this way a better 350 

estimation of the absolute location of the point of initiation for both the September and November earthquakes was produced 

(Table 2). For calculations, the depths for all three events were fixed to 2 km. This is justified in that the calculations were 

performed using P phases from regional and teleseismic stations, so the epicentral solutions are fairly insensitive to depth. The 

depth estimates presented in Table 2 relate to the initial locations calculated using the permanent ANSN network, which was 

supplemented by the five rapid deployment aftershock kits for the latter two events.  355 

The relocated position of the September MW 5.3 epicentre is seen to coincide with the region of most prominent surface uplift 

imaged in the unwrapped InSAR image (Figure 6b), and the greatest scarp height (Figure 7a). Aftershock epicentres occurring 

in the interval between the September and November main shocks are located predominantly east of the line of the surface 



12 
 

rupture (Figure 6a, b). The associated hypocentres occur between ~1.5 km and 4 km depth, and below a plane extending from 

the trailing edge of the surface rupture dipping at 50° to the east (Figure 8).  Considerations of the preservation of seismic 360 

moment (i.e. M0 = shear modulus x fault area x average displacement, Hanks and Kanamori, 1979) suggest that the September 

rupture is unlikely to have extended beyond ~ 1 km depth, implying that few if any of the aftershocks nucleated on the rupture 

plane. This is particularly the case for the largest aftershock (ML 4.6) – the uncertainty ellipse for this event occurs almost 

entirely below the depth of other aftershocks. A linear cluster of hypocentres is located directly below the south-eastern end 

of the rupture, parallel to the northwest-southeast oriented southern terminal structure at the surface (Figure 6b). Similarly, a 365 

loose cluster of hypocentres, including the ML 4.6 aftershock, underlies the east-west trending valley bounding the northern 

end of the reverse rupture imaged in the InSAR data (Figures 3 and 6a). Steep dips for terminal structures at the northern and 

southern ends of the reverse rupture are consistent with their orientation at a low angle to the easterly maximum horizontal 

compression direction (SHmax) of the extant crustal stress field (cf. Rajabi et al., 2017b). 

The central ~5 km of the September rupture, where the most significant surface displacement was observed, was modelled for 370 

Coulomb stress changes (e.g. Lin and Stein, 2004; Toda et al., 2005) (Figure 8, see Supplementary Information for detail of 

method and parametrisation). A dip of 50° to the east was assigned to the rupture for modelling purposes, consistent with the 

USGS focal mechanism for the event (Table 2), and with field data and modelling of the compressional reactivation of reverse 

faults (Sibson et al., 2012). The value is significantly different to the 30° dipping rupture plane exposed in the trench. We 

reconcile the two values in that the near surface may not be a good indicator of the fault dip at depth (cf. King et al., 2019, 375 

Figure 4). This is supported by the prominent tension fissure east of the scarp at the trench location, which indicates a steeper 

rupture dip at depth at least locally (Figure 4c). As the focal mechanism of the aftershocks are not known, results are presented 

with stresses resolved for both reverse and strike-slip (Figures 8a and 8b, respectively). In both cases, increases in Coloumb 

stress are modelled to have occurred down dip of the trailing edge of the rupture plane, and to a lesser degree in the footwall 

block at depth. The majority of aftershock hypocentre locations show excellent correlation with the volume of increased 380 

Coulomb stress down-dip of the rupture plane. Hypocentres in the footwall block only occur in regions of increased Coulomb 

stress if it is resolved for optimal strike-slip faults (Figure 8b). A broad region of shallow stress relief above the trailing edge 

of the rupture corresponds with landscape depression imaged in the InSAR (cf. Figure 6b). 

As mentioned in section 3.2, simple forward modelling using a finite rectangular elastic dislocation model (Okada, 1985) 

(Figure S4) suggests that a discrete surface rupture may not have been produced during the November strike-slip event. Based 385 

upon the InSAR surface deformation envelope (cf. Figure 6c), a rupture ~ 4 km-long and extending from 1.0 - 2.5 km-depth 

is preferred (Figures S3 and S4). If Coloumb stress changes resulting from the September rupture are resolved for optimally 

oriented strike slip receiver faults, the plane of the November rupture is seen to be positively stressed over more than half of 

its area (Figure S4b). The case might then be made that the November event was triggered by static stress changes associated 

with the September event (cf. Mohammadi et al., 2019). However, additional factors may be involved as the stress increase is 390 

only in the order of 0.1-0.2 MPa in the region of nucleation of the November earthquake.  
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The November MW 5.2 main shock is located within a diffuse elongated cluster of dependant aftershock hypocentres at ~3 - 4 

km depth which trends parallel to the northeast-southwest orientation of the surface deformation front imaged in the InSAR 

data, offset to the southeast by 0.25-1.5 km (Figures 6c, d).  Hypocentres predominantly occur at a greater depth than the 

preferred November event rupture plane (Figure S4b). 395 

4 Discussion 

4.1 Characteristics of the Lake Muir surface rupture sequence 

The comparison of field observations, InSAR imagery, and aftershock earthquake catalogue has permitted exploration of the 

surface and sub-surface deformation field related to the Lake Muir earthquake sequence in unprecedented resolution.  The 

September rupture, as mapped using traditional paleoseismological means, is revealed to be part of a more extensive deformed 400 

region, involving both uplift and depression of broad areas proximal to the surface rupture. Furthermore, the spatial and 

temporal relationship between September and November MW > 5.0 events reveals a dependency with implications for how 

other earthquake swarms could be interpreted. 

4.1.1 Reconciling UAV vertical displacement and InSAR LOS displacement measurements 

InSAR measures displacement in the one-dimensional LOS of the SAR sensor. Three dimensional displacements of the ground 405 

surface are therefore mapped into a one-dimensional geometry. If InSAR data from different viewing geometries (e.g., 

ascending and descending orbital passes of the SAR satellite) is available, then vertical and horizontal components of 

displacement can be resolved (Fuhrmann and Garthwaite, 2019). Unfortunately, this is not the case for the Lake Muir 

earthquake, where only descending-pass Sentinel-1 SAR data is available. Displacement measurements derived from InSAR 

analysis of this data must therefore be interpreted in the LOS, and horizontal and vertical signals cannot be unambiguously 410 

separated.  

This is problematic when attempting to reconcile the single-geometry InSAR LOS data with the absolute elevation changes 

captured by the UAV (e.g., Figures 7b and c). However, the descending orbit of the Sentinel-1 data used here has a ground 

azimuth of 196°, and the SAR sensor looks perpendicularly to the right of this orbit direction (i.e., 286°). The LOS of the SAR 

sensor is very close to the P-axis of the focal mechanism of the September earthquake (288°). If the earthquake resulted in 415 

almost pure thrust motion along the line of the P-axis, as suggested by the focal mechanism (±10°), the single InSAR viewing 

geometry should be sensitive to the full surface deformation field. The geometry problem is thus reduced approximately to a 

vertical plane containing the LOS vector and the slip vector. 

We use the above understanding to empirically derive a multiplicative factor of 2.75, which produces a generally good match 

between the forms of both scarp-perpendicular and scarp-parallel InSAR LOS and UAV vertical displacement profiles (Figure 420 

7b and 7c, dashed black lines). This factor is consistent with our assumption of a 50° fault dip, given the ~41° side look angle 

of the Sentinel-1 sensor at our field location. It is useful to apply this factor to ‘correct’ the InSAR profile to enable a 
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comparison of the UAV and InSAR data. There are two locations on the profiles where the match is poor. Firstly, the corrected 

InSAR LOS profile underestimates the vertical displacement compared to the UAV profile from 2750 - 3250 m along the 

profile in Figure 7b. This region corresponds to a 50 m left step in the scarp, and a 25° change in strike direction (Figure 7a). 425 

The assumption that the InSAR LOS direction is parallel to the slip vector breaks down here. Secondly, the InSAR profile has 

not resolved the narrow footwall depression that is apparent in the UAV DoD (Figure 7c). Much of the region occupied by the 

proximal footwall was masked as the result of lack of coherence of the InSAR signal. 

4.1.2 Character of surface deformation 

The average magnitude of vertical surface deformation along the discrete surface rupture trace, as indicated by the UAV DoD 430 

data, and locally validated by the corrected InSAR LOS displacement profile (Figure 7b), is 0.46±0.11 m over the central 2 km 

of the rupture. The corrected InSAR LOS displacement profile suggests that displacement tails off smoothly to the north from 

this central plateau (Figure 7b). To the south of the central plateau, there is a step to higher vertical displacement where the 

scarp changes orientation (2750 - 3250 m along the profile), and then a fall to the southern extremity. The exact shape of the 

southern tail, defined by point measurements and 2-D UAV profiles, is largely obscured beneath pine forest. The scarp-435 

perpendicular profile through the UAV and corrected InSAR data (Figure 7c) shows that very little subsidence has occurred 

in the footwall of the fault (i.e., it is absent in the corrected InSAR data, and seen as a very narrow trough in the UAV DoD), 

and that the hanging wall uplift relating to the rupture tails off over the ~ 1.0 – 1.5 km to the east of the scarp, falling to a broad 

area of subsidence up to ~ 0.3 m below the foot wall level.  The rupture is bound to the north and south by highly orthogonal 

structures that are likely steeply dipping, and in the case of the southern structure accommodated dominantly tear or strike-slip 440 

displacement during the September event. These structures bracket the broad region of ground subsidence that occurred to the 

east of the uplifted hanging wall region (e.g., Figure 6b). Elastic dislocation modelling indicates that for shallow to moderate 

reverse fault dips, subsidence should occur above the buried trailing edge of the fault rupture (Okada, 1985; King et al., 1988; 

Ellis and Densmore, 2006). The area of footwall subsidence observed, an area ~1.5 times that of the uplifted region, is 

surprisingly large compared to what might be expected given our preferred fault dip of 50°. Further, the region of greatest 445 

subsidence at the northern end of the rupture, coincident with Lake Noobijup, is not predicted by simple modelling. While 

rupture complexity relating to an interaction between the rupture plane and the northern bounding structure could explain this 

result, a plausible alternative is settlement relating to the sedimentary materials filling the Lake Noobijup Basin. As field 

observations failed to find any obvious surface structural development or cracking in this region, the presence of subsidence 

may not have been recognised if not for the InSAR data.  450 

In the generally low-relief landscapes typical of intraplate regions, such depressions may have significant impacts on surface 

and subsurface hydrology. A potential analogue is the ‘back-scarp zone’ mapped in the hanging wall of the 1968 Meckering 

surface rupture (Gordon and Lewis, 1980) (see Figure 1 for location; Table 1). The back-scarp zone is an arcuate convex-to-

the-east band of normal faulting and slumping ~ 3 km wide which joined the tips of the concave-to-the-east reverse fault 

rupture.  A single levelling line across the back-scarp zone identified a 0.3 m depression of the land surface, contrasting to the 455 
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~ 1.5 – 2.0 m of throw across the scarp ~ 10 km to the west (Gordon and Lewis, 1980).  Changes in hydraulic gradient raised 

the flood level at Meckering town site by an estimated 12 cm, forcing the relocation of the town to higher ground.  In the case 

of the September Lake Muir event, the hydrology of the important wetland habitat of Lake Noobijup (e.g. Smith, 2010) may 

be permanently affected by a combination of subsidence, and re-plumbing of the local fractured rock hydrology.  

4.1.3 Co-location of thrust and strike-slip surface deformation envelopes 460 

In statistical seismology the uncertainties attached to the calculated locations of small to moderate sized events forming part 

of a sequence typically precludes analysis of the detailed temporal, spatial and/or structural relationships between failure 

surfaces, even with dense instrument networks and sophisticated techniques such as double difference or joint hypocentre 

relocation (Waldhauser and Ellsworth, 2000). For the Lake Muir sequence, the InSAR data provides compelling evidence for 

co-location of the surface deformation envelopes relating to the two largest events (Figure 6), and the quadrupole surface 465 

deformation pattern for the November event allows the geometry of the source fault to be confidently interpreted, which would 

not have been the case given only the focal mechanism. Our temporary seismograph network has allowed us to achieve 

hypocentral location uncertainties of better than 300 m (see Section 3.4) for all bar the three largest events (see Section 3.4; 

Table 2). The combination of InSAR, aftershock data, field observations and regional aeromagnetic data (cf. Chakravartula 

and Street, 2000; Milligan and Nakamura, 2015) therefore provides an opportunity, unprecedented in Australia, to examine 470 

the relationships between the two MW > 5.0 events, the associated smaller-magnitude seismicity, and host geological structures. 

The inferred 50° easterly dip of the rupture plane associated with the September main shock is steeper than might be expected 

presuming fault formation or reactivation at optimal orientations with respect to a horizontal σ1 in a simple Andersonian 

compressional stress regime (Anderson, 1905; Anderson, 1951). However, the value is not unreasonable (cf. Sibson et al., 

2012) as it is likely that the very shallow Lake Muir Rupture reactivated pre-existing structures evident as north to northeast 475 

valley trends in the LiDAR (Figure 3) overlying minor lineament trends in the magnetic data (Figure 2). Aftershock hypocentre 

locations don’t define the rupture plains for the Lake Muir sequence, whereas this is the expectation (e.g. Henry and Das, 2001; 

Yabe and Ide, 2018) and commonly the case where explored (Bowman et al., 1990; Gupta et al., 1998; King et al., 2018). 

Aftershock hypocentres predominantly occur deeper than the trailing edge of the rupture, and within a volume of positive 

Coulomb stress change down-dip of the rupture plane (Figure 8). The greatest density of aftershocks, including the largest 480 

aftershock (ML 4.6), occurs where this volume of positive Coulomb stress change underlies the linear valley bounding the 

northern end of the rupture, potentially where the positive stress volume intersects the steep structures imaged in the magnetics 

underlying the valley. Similarly, aftershocks underlying the southern terminal structure of the rupture occur where Coulomb 

stress increased, but well below the expected extent of the rupture plane. 

As best as can be determined given the uncertainty in modelling the depth extent and dimensions of the September and 485 

November rupture planes (Figures 8, S3 and S4), they appear to be spatially distinct, despite coincidence of the surface 

deformation envelopes (Figure 6). Further, static stress modelling suggests that while over half of the November MW 5.2 rupture 

plane was promoted towards strike-slip failure by the September MW 5.3 event, the nucleation point for the November rupture 
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does not appear to be in the most highly stressed region proximal to the trailing edge of the September rupture (Figure S4) (for 

other examples, see: Steacy et al., 2013; Mohammadi et al., 2019). The September and November rupture planes are certainly 490 

near enough for dynamic stress triggering to be considered as a mechanism for the November failure (cf. Gomberg and 

Johnson, 2005). However, the memory of fault gouge softening resulting from dynamic strains, termed ‘slow dynamics’ 

(Johnson and Jia, 2005), typically only extends over several hours or days after the wave energy has disappeared. Prolonged 

triggered sequences require a multistage process such as continued triggering through a secondary cascade (Felzer et al., 2003; 

Johnson and Jia, 2005; Brodsky and Elst, 2014; Meier et al., 2014; Mohammadi et al., 2019). In this context the ML 4.6 495 

aftershock might be important. Permeability enhancement leading to drainage or pore pressure redistribution on faults (Hill et 

al., 1993; Townend and Zoback, 2000; Brodsky et al., 2003) is an alternative possibility that might have a long time constant 

appropriate to the Lake Muir sequence. Redistribution of pore fluid pressure might also explain the location of the minority of 

aftershock hypocentres in regions modelled to have experienced static coulomb stress reductions as a result of the September 

main shock (e.g. Figure 8). This could be the topic for a future, more focussed study. 500 

A further contributing factor to the spatial mismatch between November hypocentre and the region of highest positive coulomb 

stress change might be found in an examination of the character of the regional stress field. The modelled trajectory of the 

maximum horizontal compressive stress (SHmax) in the southwest of Western Australia is roughly east-west (88±18°, Rajabi et 

al., 2017b). This orientation is consistent with the principal compressive axis (P-axis) orientations for both Lake Muir main 

shocks (Figure 2), allowing for the poorly quantified uncertainties in moment tensor solutions (cf. Valentine and Trampert, 505 

2012). The similarity in P-axis trends implies that the stress drop associated with the September MW 5.3 event was small 

compared to the extant differential stress (σ1-σ3, e.g. Hardebeck and Okada, 2018), and that the change in stress regime 

between events relates to transposition of the intermediate and minimum principal stress axes. Rajabi et al. (2017a) model the 

stress regime in the Lake Muir region to favour thrust faulting close to the surface (~1 km), and to favour a progressively 

greater strike-slip component to failure with depth. The transposition of principal stress axes between ruptures, and the apparent 510 

location of the nucleation point of the November strike-slip event near the base of the rupture plane, may relate to this changing 

depth-character of the stress field. 

4.2 Stress triggering and moderate to large magnitude non-extended SCR earthquake sequences 

Whereas there is an emerging body of literature concerning human-induced/triggered earthquake sequences in SCRs (e.g. 

Keranen et al., 2013; Skoumal et al., 2015; Peterie et al., 2018), relatively little has been published on natural earthquake 515 

sequences (e.g. Chiu et al., 1984; Špičák, 2000; Allen et al., 2006). The latter appear to be an important component of intraplate 

seismicity, especially in non-extended SCR crust (e.g. Lopes et al., 2010; Clark et al., 2014a; Dent, 2016). Evidence for the 

spatial coincidence of similar-magnitude moderate- to large-sized earthquakes as part of these sequences, often with mixed 

focal mechanisms such as the Lake Muir sequence, is rare but not unprecedented. For example, the 1988 MW 6.76 Tennant 

Creek earthquake sequence (Figure1; Table 1) began with three surface rupturing earthquakes of similar reverse mechanism 520 

within a 12-hour period (Choy and Bowman, 1990; Bowman, 1992; Crone et al., 1997). Static stress triggering can account 
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for the progression of events within the sequence (Mohammadi et al., 2019), with the rupture planes for the three largest events 

occurring well within a fault length of each other (cf. Caskey and Wesnousky, 1997). The sequence continues to this day, 

producing occasional events sufficiently large to deform the Earth’s surface (Table 1). Of seven focal mechanisms constructed 

for the sequence, five are reverse faulting events with a similar P-axis orientation, and two are normal faulting events with 525 

tension axes coinciding with the compression axes of the reverse events (Clark and Leonard, 2003). The normal faulting events 

may relate to visco-elastic relaxation, or adjustment (cf. DeVries et al., 2016). Similar normal faulting events were recorded 

in the aftershock sequence relating to the 1993 Killari-Latur earthquake (Gupta et al., 1998). 

In the Eastern Canadian Precambrian Shield, the 1989 MW 6.5 Ungava earthquake sequence involved a reverse mechanism 

surface rupture followed after 0.9 seconds by a larger strike-slip rupture approximately 5.2 km away (Adams et al., 1991; Bent, 530 

1994). The focal mechanisms for the events share a common P-axis orientation (Bent, 1994), similar to the Lake Muir 

mainshocks. Pre-existing bedrock faults were assumed to have hosted the ruptures, but the spatial relationship between rupture 

planes was not determined, ostensibly because a surface rupture relating to the larger strike-slip event was not observed. One 

potential explanation proposed by Bent (1994) was that the focus of the strike-slip event was deeper, and so the event did not 

result in surface rupture.  535 

A comparable sequence is documented from central Australia. The reverse mechanism surface-rupturing 2012 MW 5.4 

Ernabella earthquake (Clark et al., 2014b; Figure 1) was followed 15 months later by the strike-slip 2013 MW 5.4 Mulga Park 

earthquake, which caused extensive surface cracking but no observed surface rupture (Clark and McPherson, 2013). The 

surface expressions relating to these events indicate that they were likely proximal (≤10 km separation) rather than co-located 

(Clark and McPherson, 2013). The first event occurred in the hanging wall of the crustal-scale Woodroffe Thrust Fault (cf. 540 

Camacho et al., 1995; Camacho and McDougall, 2000; Lin et al., 2005), and the second event in the foot wall, potentially at a 

depth of ~10 km (Kevin McCue pers. comm., 2013). Again, both events share a common P-axis orientation (Clark and 

McPherson, 2013). In common with the Lake Muir sequence, the moment tensor for the strike-slip event had a low percentage 

double couple, indicating rupture complexity. 

The above examples comprise a class of seismicity in non-extended Precambrian SCR crust characterised by multiple moderate 545 

to large mainshocks sharing common compression axes. The similarity in P-axis trends of the focal mechanisms implies that 

the stress drop associated with each event was small compared to the extant differential stress (σ1-σ3, e.g. Hardebeck and 

Okada, 2018), despite the sometimes large magnitude of the main shocks. The time interval between the largest events in a 

sequence varies greatly, as does the separation between rupture planes. Mohammadi (2019) explore these relationships in the 

context of the Tennant Creek earthquake sequence, and conclude that the time between two dependant events is proportional 550 

to the magnitude of the static Coulomb stress increase on the receiver fault plane (not necessarily at the hypocentral location), 

which in turn relates to the trigger-rupture magnitude and distance from the receiver fault. Multiple triggering mechanisms are 

required to explain time lags spanning several orders of magnitude (cf. Townend and Zoback, 2000; Gomberg and Johnson, 

2005; Johnson and Jia, 2005; Meier et al., 2014). 
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The September 2000 to June 2002 Burakin earthquake swarm, located ~ 20 km north of the 1979 Cadoux surface rupture 555 

(Figure 1), is perhaps an example of a different class of seismicity to the sequences discussed above. Focal mechanisms were 

generated for the largest six of the approximately 18,000-event swarm (Leonard, 2002), spanning a magnitude range from MW 

4.1 – 4.6 (Leonard et al., 2002; Allen et al., 2006). These indicate a mixture of thrust and strike-slip ruptures, and one pure 

normal faulting rupture, with diverse compression axis orientations and all within a ~5 km radius.  Preliminary joint hypocentre 

relocation suggests that these events, and several thousand smaller events, may have originated from as few as 3-4 source areas 560 

(Mark Leonard pers. comm., 2018). Aeromagnetic data (Milligan and Nakamura, 2015) indicate that the Burakin swarm area 

is characterized by a high lineament density, with major trends to the east, northeast and north. Static and dynamic stress 

interactions, or block motion following moderate events, may have stressed intersections between these trends, triggering 

further events with an eclectic mix of mechanisms with diverse P-axis orientations (cf. Talwani, 1988; Dentith and 

Featherstone, 2003; Talwani, 2014). This behavior, in contrast to the sequences that include larger events with focal 565 

mechanisms showing consistent P-axes (e.g. Lake Muir), may occur preferentially in regions of extremely heterogeneous 

geological structure, where high stress concentration around numerous cracks and faults within the structured volume results 

in failure on many local fractures at low stress (Mogi, 1963), thus reducing the probability of failure on a single large fracture. 

4.3 One-off ruptures from moderate to large magnitude earthquakes in non-extended SCR 

The Lake Muir sequence resulted in the production of a surface rupture, and more subtle landscape change (i.e., depression of 570 

Lake Noobijup), that might be expected to be persistent in the landscape for thousands of years (cf. Quigley et al., 2010; Clark, 

2010; Leonard and Clark, 2011). Questions of whether Lake Noobijup may have a seismogenic origin aside, there is no 

landscape evidence for Late Pleistocene to Holocene surface rupture on the structures that failed during the 2018 sequence 

(Section 1.3). Similarly, no evidence was found for more than the 2018 displacement across in situ weathered materials in the 

hand trench (Figure 5). Further, no sharp landscape dislocations are evident that might relate to recent faulting of Paleogene 575 

paleo-channel sediments (Section 1.2). If moderate to large earthquakes are assumed to recur on the faults that comprise the 

2018 Lake Muir rupture, the long-term average uplift rate (i.e., the vertical component of the slip rate) is limited by the very 

low regional bedrock erosion rates of 1-5 m/Myr (e.g. Chappell, 2006). 

The September MW 5.3 Lake Muir earthquake was the ninth event documented to have produced surface rupture in the 

Australian SCR in historical times (Figure 1, Table 1). These ruptures are located exclusively in the Precambrian SCR crust 580 

of central and western Australia (Figure 1), and none could have been identified and mapped using topographic signature prior 

to the historical event (see references in Table 1). For example, Crone et al. (1997) excavated trenches across the 1986 Marryat 

Creek and 1988 Tennant Creek ruptures and found that while each rupture in part exploited pre-existing bedrock faults, there 

was no unequivocal geomorphic, stratigraphic or structural evidence to suggest a penultimate event in the preceding 50-100 kyr 

or more. A similar conclusion was made on the basis of trenching investigations of the 1968 Meckering surface rupture (see 585 

Clark and Edwards, 2018, and references therein).  
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Paleoseismological investigations of several faults in the same Precambrian SCR tectonic setting provide evidence for limited 

recurrence of large earthquakes, with up to four events documented on an individual fault within the last ca. 100 kyr (Crone 

et al., 2003; Clark et al., 2008; Estrada, 2009). These scarps - Roopena, Hyden, Lort River and Dumbleyung (see Figure 1 for 

locations) - all overlie simple through-going faults imaged in aeromagnetic data (Milligan and Nakamura, 2015).  The two-to-590 

five Quaternary events documented on the Hyden (Clark et al., 2008) and Lort River (Estrada, 2009) scarps are all that are 

evident across Late Neogene duricrust.  While shallow trenches across the 2-5 m high Roopena scarp exposed Precambrian 

bedrock on both sides of the fault (Crone et al., 2003), nearby scarps are associated with an extended Neogene to Recent history 

of movement (Miles, 1952; McCormack, 2006; Weatherman, 2006).  For example, the Randell and Poynton Faults, 

immediately to the south of the Roopena scarp, are associated with 30-70 m of Pliocene and younger vertical displacement 595 

(McCormack, 2006).  Scarps developed in the ca. 15 Ma surface of the Nullarbor Plain (Figure 1), which overlies 

Neoproterozoic mobile belt basement, are associated with up to 15-30 m of vertical surface displacement (Hillis et al., 2008; 

Clark et al., 2012), implying the recurrence a dozen or so neotectonic events per fault at most. In general, scarps developed 

within Archean and Paleoproterozoic crust tend to be more modest in height, less well connected (i.e., spatially isolated), and 

more complex in plan than scarps in Mesoproterozoic and Neoproterozoic crust (Clark et al., 2012). A pattern is emerging in 600 

Australian Precambrian non-extended SCR where ‘one-off’ ruptures, as evidenced by the historic surface-breaking 

earthquakes, are filling the spaces between mapped multi-event neotectonic scarps (Figure 1).  

Elsewhere in Precambrian non-extended SCRs the record is consistent with the Australian examples, but more fragmentary. 

Seeber et al. (1993; 1996) excavated two trenches across the 1993 Killari earthquake rupture in Peninsular India. These authors 

found no evidence for a pre-exiting fault zone, but observe that the rupture followed foliation in Cretaceous basalt country 605 

rocks, which were estimated to be several hundred metres thick. A third trench revealed a section of the rupture that exploited 

a pre-existing fault zone in the basalts, which coincided with a lineament evident in satellite imagery (Rajendran et al., 1996). 

However, no evidence was found in the topography at all three trench sites, or along the lineament, for a Late Pleistocene to 

Holocene prior rupture.  The Ungava rupture in the Canadian Precambrian shield was found to be controlled by compositional 

layering and foliation within crystalline rocks containing concordant ductile high-strain zones (Adams et al., 1992), similar to 610 

the 2016 Petermann Ranges rupture in Australia (King et al., 2018). Although the landscape record was short, being in a 

recently de-glaciated region, the authors found no evidence to suggest that the Ungava rupture occurred on a fault that has 

hosted prior reactivation in the Phanerozoic. 

The preponderance of ‘one-off’ and limited-recurrence faults suggests caution in applying a traditional elastic strain 

accumulation model to non-extended Precambrian SCR crust (cf. Braun et al., 2009; Clark, 2010). Indeed, over the last few 615 

decades, permanent and campaign GPS studies have failed to detect a tectonic deformation signal from which a strain budget 

could be calculated across all classes of SCR crust; in Australia (e.g. Tregonning, 2003), the central and eastern United States 

(Calais et al., 2005), eastern Canada (Mazzotti and Adams, 2005), and central Africa (Gardonio et al., 2018).  Similar studies 

have used these observations, amongst others (e.g. Calais et al., 2005), to propose that one-off events and clusters of large 

events either deplete long-lived pools of ‘fossil’ lithospheric stress (Liu and Stein, 2016; Calais et al., 2016) and/or that there 620 
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is an orders of magnitude difference in the timescales of elastic strain accumulation and seismogenic strain release (e.g. Clark 

et al., 2015; Craig et al., 2016).  Hence, the underpinning assumption that a ‘long-term slip rate’ is a meaningful concept in all 

classes of intraplate crust, as per the prevailing plate margin paradigm, remains to be fully tested. Preliminary indications are 

that the concept may be useful for extended SCR crust worldwide (Sandiford, 2003b; Quigley et al., 2006; Cox et al., 2013; 

Copley et al., 2014; Rastogi et al., 2014), and for the non-extended Phanerozoic SCR crust of eastern Australia (Figure 1), 625 

where faults with up to a few hundreds of metres of neotectonic slip occur (cf. Sandiford, 2003a; Clark et al., 2015; Clark et 

al., 2017). However, faults studied thus far in the Phanerozoic SCR crust of the eastern United States (Crone and Luza, 1990; 

Crone and Machette, 1995; Zellman and Ostenaa, 2016; Hornsby et al., 2019), and Mongolia (Amarjargal et al., 2013) seem 

more akin to the limited recurrence faults in Precambrian non-extended SCR, cautioning against a blanket application. 

Conceptually, for the purposes of probabilistic seismic hazard assessment, a fault source is a seismogenic fault that has 630 

produced earthquakes in the past, and can be expected to continue doing so (Musson, 2012).  Our results therefore urge caution 

when building ‘active’ faults into seismic hazard assessments in SCRs.  Furthermore, in the absence of meaningful recurrence 

of large events, building relations for fault displacement hazard using rupture traces from Precambrian Australia is also fraught 

(cf. Boncio et al., 2018; Livio et al., 2019). Another implication for seismic hazard assessment involving the ‘Lake-Muir’ class 

of seismicity discussed herein, perhaps most significantly demonstrated by the 1989 Ungava rupture (Adams et al., 1991; Bent, 635 

1994), is that the paleoseismic and neotectonics records of large earthquakes may be missing significant seismic moment in 

that not all main shocks within a sequence produce recognisable surface deformation. 

5 Conclusions 

A shallow MW 5.3 earthquake near Lake Muir in southwest Western Australia on the 16th of September 2018 was followed on 

the 8th of November by a proximal MW 5.2 event. Focal mechanisms produced for the events suggest reverse and strike-slip 640 

rupture, respectively. InSAR data has allowed for the mapping of the surface deformation fields relating to both earthquakes 

in unprecedented detail, and these are shown to be partly coincident. Field mapping, guided by the InSAR data, reveal that the 

first event produced an approximately 3 km-long and up to 0.4-0.6 m high west-facing surface rupture, consistent with slip on 

a moderately east-dipping fault. Interpretation of InSAR data shows that the surface scarp relates to a sub-surface rupture ~5 

km long, bound at its north and southern extremities by terminal structures, and to the east by a broad zone of landscape 645 

depression. The November event did not produce surface rupture. Almost nine hundred aftershocks were recorded by a 

temporary seismometer deployment. Hypocentre locations correlate poorly with the rupture plane of their respective main-

shocks but well with regions of modelled increase in Coulomb stress. The Lake Muir sequence is typical of a class of seismicity 

within non-extended Precambrian SCR crust involving multiple moderate to large mainshocks with focal mechanisms sharing 

common compression axes. Multiple triggering mechanisms must be invoked to explain time lags between mainshocks 650 

spanning several orders of magnitude. In some cases, more than half the seismic moment release relating to sequences of this 

kind has no surface expression, and hence leaves no landscape record, despite typically very shallow hypocentres. 
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The September MW 5.3 Lake Muir earthquake was the ninth event documented to have produced surface rupture in Australia 

in historical times (Figure 1, Table 1). These ruptures are located exclusively in the non-extended Precambrian SCR rocks of 

central and western Australia, and none could have been identified and mapped using topographic signature prior to the 655 

historical event. A consistent, more fragmentary record exists from analogous crust worldwide. The pattern is repeated with 

ruptures from the paleoseismic record, which show only very limited evidence for recurrence. Hence, the underpinning 

assumption that a ‘long-term slip rate’ is a meaningful concept in all classes of intraplate crust, as per the prevailing plate 

margin paradigm, remains to be fully tested. Within non-extended Precambrian SCR crust, ‘one-off’ or ‘limited recurrence’ 

ruptures may be the norm, with obvious implications for seismic hazard assessment. 660 
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Tables 

Event (setting)  
e=extended, n = non-

extended, b = 
lithospheric boundary 

Year Magnitude 
(Mw) 

Mapped 
surface 
rupture 
length 
(km)# 

Mechanism Max vertical 
surface 

displacement 
(m) 

Deformation Reference 

Reelfoot Thrust, USA 

(e) 
1812 7.2-7.3 blind (61) 

R 
~2 Mueller & Pujol (2001) 

Kutch, India (e) 1819 7.25-8.25 blind (>90) R 7-9 Rajendran et al. (2008) 

Accra, Africa (e) 1939 6.5 9-17 SS 0.46 Bates (1941); Yarwood and Doser (1990) 

The Sudan, Africa (e) 1956 5.1 6 SS 0 Qureshi and Sadig (1967) 

Meckering, WA (n) 1968 6.58 37 
R 

2.5 
Gordon & Lewis (1980); Clark & Edwards 

(2018) 

Calingiri, WA (n) 1970 5.46 3.3 R 0.4 Gordon & Lewis (1980) 

Cadoux, WA (n) 1979 6.13 14 R 1.4 Lewis et al. (1981) 

Guinea, Africa (e) 1983 6.2 9.4 SS 0.13 Langer et al. (1987) 

Marryat Creek, SA (n) 1986 5.74 13 R 0.9 Machette et al. (1993) 

Tennant Creek, NT* (n) 1988 6.76 36 R 1.8 Crone et al. (1992, 1997) 

Ungava, Canada* (n) 1989 6.3 8.5 R 0.8 Bent (1994) 

Killari, India (n) 1993 6.1 3 (7-15) R 0.5 Rajendran et al. (1996); Satyabala (2006)  

Bhuj, India (e) 2001 7.7 blind (60) 
R 

3.0 
Schmidt and Burgmann (2006); Rajendran et al. 

(2008)  

Kallanie (n) 2005 4.4 blind R 0.027 Dawson et al. (2008) 

Hatanbulag, Mongolia 

(n,b) 
2005 5.2 blind 

R 
0.01 Amarjargal et al. (2013) 

Katanning, WA (n) 2007 4.73 0.2 (1.26) R 0.1 Dawson et al. (2008) 

Ernabella, SA (n,b) 2012 5.37 1.5 R 0.5 Clark et al. (2014b) 
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Petermann Ranges, NT 

(n,b) 
2016 6.10 15 (20) 

R 
1.0 

King et al. (2018); Polcari et al. (2018); Wang 

et al. (2019) 

Botswana, Africa (n,b) 2017 6.5 blind N 0.04 Gardonio et al. (2018) 

Lake Muir, WA (n,b) 2018 5.30 3.2 (7) R 0.4 this article 

Lake Muir , WA (n,b) 2018 5.20 Blind (4) SS 0 this article 

Tennant Creek (n) 2019 5.3 Blind 
R 

0.04 
https://twitter.com/sotisvalkan/status/11583628

51930726400 

Montelimar, France (e) 2019 4.9 <1?(5) 
R 

0.08 
https://twitter.com/sotisvalkan/status/11945397

03858606080 

Table 1: Historical earthquake events known to have produced surface rupture in stable continental region crust (expanded after Crone et al., 1997; Clark 
et al., 2014b). * The Ungava surface rupture formed as the result of two events 0.9 sec apart (Bent, 1994), and Tennant Creek surface rupture was produced 
by three events in a 12 hr period (Bowman, 1992). # values in brackets estimate the surface rupture length from surface deformation (e.g. InSAR data). 1065 
Shaded cells are events for which an InSAR image was produced. 

  

https://twitter.com/sotisvalkan/status/1158362851930726400
https://twitter.com/sotisvalkan/status/1158362851930726400
https://twitter.com/sotisvalkan/status/1194539703858606080
https://twitter.com/sotisvalkan/status/1194539703858606080
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Date 

(UTC) 
Latitude 

Longitud

e 

Max 

horiz 

uncert. 

(km) 

Depth 

(km) 

Depth 

uncert. 

(km) 

MW ML Event page (USGS = moment tensors) 

16/09/201

8 
-34.4102 116.7792 1.19 1.72 1.92 5.32 5.71 

https://earthquakes.ga.gov.au/event/ga2018sfzeme 

https://earthquake.usgs.gov/earthquakes/eventpage/us2000h

fcw 

12/10/201

8 
-34.3953 116.7988 0.88 5.77 1.90   4.6 https://earthquakes.ga.gov.au/event/ga2018ucpciy 

8/11/2018 -34.4347 116.7704 1.05 3.02 1.46 5.19 5.40 

https://earthquakes.ga.gov.au/event/ga2018wamvnf 

https://earthquake.usgs.gov/earthquakes/eventpage/us1000h

pej 

Table 2: Selected source parameters and resource links for the three largest events in the Lake Muir earthquake sequence. 

https://earthquakes.ga.gov.au/event/ga2018sfzeme
https://earthquakes.ga.gov.au/event/ga2018sfzeme
https://earthquakes.ga.gov.au/event/ga2018sfzeme
https://earthquakes.ga.gov.au/event/ga2018sfzeme
https://earthquakes.ga.gov.au/event/ga2018wamvnf
https://earthquakes.ga.gov.au/event/ga2018wamvnf
https://earthquakes.ga.gov.au/event/ga2018wamvnf
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 1070 

Figure Captions 

Figure 1: An example of heterogeneity in seismogenic potential within Stable Continental Region (SCR) crust from Australia. Base 

map shows neotectonic superdomains (after Leonard et al., 2014), and the outlines of Australian States and Territories. Neotectonic 

features (red lines) from the Australian Neotectonic Features Database (Clark et al., 2012; Clark, 2012). Historical surface ruptures 

shown as red dots labelled with the year of the event.  Note all historical surface ruptures have occurred in Precambrian non-1075 
extended stable continental region (SCR, Johnston et al., 1994) crust. a = Roopena scarp, b = Hyden scarp, c = Lort River scarp, d 

= Dumbleyung scarp. 

Figure 2: Location and geological setting of the 2018 Lake Muir earthquake sequence in southwest Western Australia. Inset shows 

Precambrian basement geology, and overlying Phanerozoic Perth Basin and Eocene rocks (modified after Geological Survey of 

Western Australia, 2016). Proterozoic and younger faults and dykes are shown as thick and thin black lines respectively. Base map 1080 
in the main frame shows reduced to pole total magnetic intensity data (Milligan and Nakamura, 2015). Black triangles show the 

locations of seismic recording stations (rapid deployment kits are prefixed with LM), and GPS stations (SWSZ prefix). The location 

of the two M>5 earthquake epicentres are shown by white stars, with arrows indicting the associated focal mechanisms (see Table 2 

for source). The surface rupture trace from the September event and the surface deformation front from the November event are 

shown by black solid and dashes lines, respectively (see text for details). The InSAR phase image for the September MW 5.3 1085 
earthquake is overlain to demonstrate the scale of surface deformation. 

Figure 3: Map of the Lake Muir surface ruptures and associated seismicity. Background map is part of the Western Australian 

Department of Biodiversity, Conservation and Attractions LiDaR holdings (https://www.dbca.wa.gov.au/contact-us) with ESRI 

world imagery overlain at 75% transparency. White line shows the extent of the discrete surface rupture relating to the September 

event, as mapped from InSAR.  Superposed black lines are scarp segments mapped on the ground. Grey dashed line shows the 1090 
discrete line of deformation relating to the November event, as mapped from InSAR. The three largest events and their uncertainty 

ellipses, 16th September MW5.3, 12th October ML4.6, and 8th November MW5.2, are consecutively numbered (see Table 2).  

Figure 4: Photographs of the surface rupture: (a) 13 cm high scarp crossing farm track. Photo taken by Roger Hearn on 27/09/2018. 

Looking north (479101 mE, 6190727 mN); (b) east-trending tension fissures relating to lateral spread into a farm dam (479588 mE, 

6192126 mN); (c) 40 cm high scarp and hanging wall tension fissure at the hand trench location (see Figure 5). Looking north (479285 1095 
ME, 6191496 mN); (d) 40 cm high scarp in pine plantation. Looking northeast (479112 mE, 6190422 mN). GD94/MGA50. 

Figure 5: Hand trench location (479285 ME, 6191496 mN GDA94/MGA50). (a) subset of the photogrammetrically-derived UAV 

DTM (see Figure 3 for full footprint), with topographic section indicated by the black line. Colour drape has been tilted to remove 

regional topographic slope and enhance relative differences; (b) photomosaic of the north wall of the hand trench showing folded 

and displaced strata; and (c) interpretation of stratigraphy and structure of the north wall of the hand trench. 1100 

https://www.dbca.wa.gov.au/contact-us
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Figure 6: Phase images and images of the unwrapped InSAR line of sight (LOS) displacement field for the (a) & (b) September MW 

5.3 and (c) & (d) November MW5.2 events. The location of the surface rupture relating to the September event is shown as a white 

line, with a black dashed line showing where the scarp was observed in the field. The surface deformation front relating to the 

November event is shown as a dashed black line. Refer to Figure 2 for focal mechanisms. Seismicity before and after the November 

event is shown black dots on parts (a) & (b) and (c) & (d), respectively. The main shocks are shown as red stars. Each fringe in (a) 1105 
and (c) represents 2.8 cm of LOS range change. Note several unwrapping errors are evident as regions bound by a step jump at the 

northern and southern end of the scarp in part (b). The north-south extent of an easterly trending band of pine forest associated 

with degradation of coherence is indicated with a white arrow in part (a). 

Figure 7: Relative co-seismic displacement swath profiles through UAV and InSAR data; (a) Location of scarp parallel and 

perpendicular swath profiles. Mapped scarp elements are shown in red. Length-weighted rose diagrams (north up) show orientation 1110 
of scarp elements. The extent of the UAV surveys are shown as black outlines. UAV DTM differenced against LiDAR is shown over 

main scarp segment (blues are small, greys are large). Location and uncertainty ellipse for the September MW5.3 event is shown 

with a star and red dashed line, respectively. Base map is the InSAR phase image for the September event over LiDaR 

(datum/projection = GDA94/MGA50); (b) Scarp-parallel profiles. UAV profiles sample a 100 m wide swath centred on the profile 

line and plot relative vertical displacement. The 90th percentile minus the 10th percentile value elevation value is plotted to reduce 1115 
noise in the UAV data resulting from the difficulty in removing low vegetation inherent to structure from motion DTMs. UAV 2-D 

profiles plot the vertical displacement measured from single profile lines through small area UAV DTMs flown along forest trails. 

Spot heights were measured visually with a tape measure where the forest was too dense for other techniques to be used. InSAR 

swath profiles are co-located with the UAV profile lines and sample 300 m either side of the profile line. These plot relative LOS 

displacement, calculated as the difference between the maximum and the minimum value in each scarp-perpendicular swath. (c) 1st 1120 
to 3rd quartile range of a scarp-perpendicular swath profile through the UAV data is plotted along with the mean value to 

demonstrate the precision of the UAV data. Variation in LOS displacement for the co-located unwrapped InSAR profile is not 

resolvable at the scale of the figure, so the maximum value sampled by each scarp-parallel swath is plotted. Zero relative 

displacement is arbitrarily pinned to the eastern end of the profile in part.  

Figure 8: Coulomb stress changes resulting from the September MW 5.3 event (plan at 3 km depth and section), (a) resolved for 1125 
reverse faults parallel to the November rupture plain, and (b) resolved for optimally oriented strike slip faults. The rupture area 

was modelled as being 5.0 km long by 1.17 km wide to constrain seismic moment and slip, and 50° east-dipping consistent with the 

USGS focal mechanism for the event (Figure 2, Table 2,). Relocated seismicity prior to the November main shock is overlain onto 

the plan and projected onto the vertical A-B section plane (see Figure 3 for seismicity legend). Black line is the surface deformation 

trace interpreted from ground observations and InSAR data. Black arrows in the upper panel point to the position of the November 1130 
MW 5.3 strike-slip event rupture plane. 
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