Solid Earth Discuss., https://doi.org/10.5194/se-2019-130-RC2, 2019 © Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License.

SED

Interactive comment

Interactive comment on "Towards a nappe theory: Thermo-mechanical simulations of nappe detachment, transport and stacking in the Helvetic Nappe System, Switzerland" *by* Dániel Kiss et al.

Patrice Rey (Referee)

patrice.rey@sydney.edu.au

Received and published: 25 November 2019

The paper presents a set of high-resolution thermo-mechanical simulations aiming towards a "nappe theory". The simulations focus strongly on reproducing as many features and attributes documented in the Helvetic nappe system, which guides the choice of input parameters, geometry, and boundary conditions. From a reference simulation, a set of key parameters are varied to test their influence on the simulation outcome. âĂć First, the viscosity of each material is tested in turn by (i) dropping the viscosity of the basement, (ii) increasing the viscosity of the cover sequence, and (iii) increasing the viscosity of the stronger syn-rift unit capping the rift basins. âĂć Then the stronger

Discussion paper

syn-rift unit is replaced by a 4- or 5-layer system involving 2 stronger layers and 2 or 3 weaker units. Three simulations test various thicknesses and configurations. âĂć Two strain weakening mechanisms (i.e. shear heating and accumulated plastic strain) are tested at various extensional velocities (1 cm/yr and 5 cm/yr). The simulation outcomes are then compared to the Helvetic nappe system.

The paper will be of great interest to geologists interested in nappe tectonics and in particular those interested in the Helvetic nappe system. The paper is well organized, relatively easy to follow, and the figures serve their purpose reasonably well.

The study is an attempt to learn about nappe tectonics from reproducing via numerical simulations the well-documented Helvetic nappe system. However, it remains to be seen whether an all-encompassing "nappe theory" can be extracted from such an approach, for two reasons: âĂć I would first question in the present context the use of the word "theory". In natural science, a theory is a very robust model established over decades of data collection and analysis and explaining a very large range of unrelated observations. Plate tectonics and biological evolution are two theories. For this reason, I think that the concept of "nappe theory" could safely be replaced by the concept of "nappe model". âĂć In addition, I think it is pretty safe to state that there is probably more than one way for nappes to develop. Hence, the proposed model is only strictly relevant to the Helvetic nappe system that develops as the result of the inversion of an extended continental margin, and the extrusion of its syn-rift sedimentary infilling. Hence, I think that modifying slightly the title and introduction, to bring a stronger focus on the "Helvetic style" of nappe tectonics, would be beneficial to the paper.

Perhaps the main missing ingredient in the numerical experiments presented here is isostasy and the absence of flexure despite up to 10 km of topography due to crust thickening and nappe stacking. I acknowledge that this issue is touch upon in section 5.2, but it is important to stress that the outcome of this set of simulation will change should the basement be allowed to subside under the weight of the nappe stack.

SED

Interactive comment

Printer-friendly version

Discussion paper

The paper would also benefit from being leaner. I found at places the paper to be unnecessarily wordy, and the description on the simulation lengthy and tedious to read. Rather than describing the evolution of each experiment in great detail (perhaps you can point toward movies or animations instead), it would be best to highlight key differences. The conclusion needs to be rewritten and shortened. A conclusion goes beyond merely repeating what was said before.

The supplementary section needs some editing, there are too many spelling mistakes.

Finally, either a code is made freely available, or it is not. Having to ask permission to the author to access the code is, in my view, not sufficient. Codes which are accessible are available online (e.g. underworldcode.org). Chances are that in ten years Underworld will still be available like it was ten years ago.

Kind regards,

Patrice Rey

Please also note the supplement to this comment: https://www.solid-earth-discuss.net/se-2019-130/se-2019-130-RC2-supplement.pdf

Interactive comment on Solid Earth Discuss., https://doi.org/10.5194/se-2019-130, 2019.

SED

Interactive comment

Printer-friendly version

Discussion paper

