

Dear Reviewer,

It looks like we are agreed on the technical content of our comment paper and as the paper of Polom et al. (2018) was a subject of a peer reviewing it is expected to be without technical errors. We only underline that the reported results are obtained using limited data sets and using assumptions. As well as other reported results.

The question is what should be a comment paper. We are disagreed on this subject.

If we were follow your arguments about the content of a comment paper, then it would be difficult to see where the difference between a research paper and a comment paper is.

We put this comment because Polom et al. (2018) insist that their results are obtained using modern geophysical measuring procedure and data processing. One may understand that this is the final (and assumed improved) result that replaces all previous studies. However, we have seen that it is not true and the results published by Polom et al. (2018) are within the principal uncertainty of the seismic method as well as the results published before. So, from the technical point of view, it is just another interpretation of the field measurements.

Such a conclusion is not a problem for geophysicists who have practical experience. However, it is a strong message for a wide range of non-geophysicists reading this paper who often read the summary and the conclusions. We have numerous contacts with local authorities both in Israel and in Jordan and we know that scientific results attract serious attention also of non-geophysicists.

If the Red-Dead Sea channel will be built, then it will boost the economic activity in the region and hence the subject of the natural hazard is a matter of growing importance. Local authorities, investors and decision makers need an objective expertise that is as close to the reality as possible. Unfortunately, the actual level of knowledge does not allow to know the ground truth without uncertainty.

Thus, our comment paper is a message of warning about necessary attention to pay to the reported geophysical results.

It is similar to the case when in publications it may be written “the content of this paper is under the entire responsibility of the authors and not of the journal”.

With respect to your wishing that we should write the new article we note that our results and models are published worldwide and part of them devoted to Jordanian side of the Dead Sea (see references below, articles devoted to the Ghor Al-Haditha area are marked by yellow). Latter article is under consideration and we will inform you when it will be published.

References:

Abueladas A. and Al-Zoubi A., 2004. The application of a combined geophysical survey (GPR and seismic refraction) for mapping sinkholes in Ghor Al-Haditha Area, Jordan. Fall Meeting Supplement. EOS Transactions, American Geophysical Union, 85, 47, (Abstract GP11A-0825).

Al-Zoubi, A., Abueladas, A-R., Al-Ruzouq, R.I., Camerlynck, C., Akkawi, E., **Ezersky, M.G.**, Abu-Hamatteh, Z.S.H., Wasi, A., Al-Rawashdeh, S. 2007. Use of 2D multi electrodes

resistivity imagining for sinkholes hazard assessment along the eastern part of the Dead Sea, Jordan. *American Journal of Environmental Sciences*, 3 (4): 229-233.

Al-Zoubi A., Eppelbaum L, Abueladas A, Ezersky M. & Akkawi E., 2013. Removing regional trends in microgravity in complex environments: Testing on 3D model and field investigations in the eastern Dead Sea coast (Jordan). *International Journal of Geophysics*. Special Issue. (2013). Article ID 341797, 13pp.
<http://dx.doi.org/10.155/2013/341797>

Eppelbaum L., Ezersky M., Al-Zoubi A., Goldshmidt V. & Legchenko A., 2008. Study of the factors affecting the karst volume assessment in the Dead Sea sinkhole problem using microgravity field analysis and 3D modeling. *Advances in Geosciences*, 18: 1-19. www.adv-geosci.net/18/1/2008. (c) Author(s)

Ezersky, M. 2006. The Geophysical properties of the Dead Sea salt applied to the sinkhole problem. *Journal of Applied Geophysics*, 58, (1): 45-58.
<http://dx.doi.org/10.1016/j.jappgeo.2005.01.003>

Ezersky M., 2008. *Geoelectric structure of the Ein Gedi sinkhole occurrence site at the Dead Sea shore in Israel*. *Journal of Applied Geophysics*, 64: 56-69
<http://dx.doi.org/10.1016/j.jappgeo.2008.12.003>

Ezersky, M. and Frumkin, A., 2013. Faults—dissolution front relations and the DS sinkholes problem. *Geomorphology*, 201: 35–44.
<http://dx.doi.org/10.1016/j.geomorph.2013.06.002>

Ezersky, M. and Livne, E., 2013. Geotechnical and geophysical properties of soils in the Dead Sea sinkhole problem. EAGE Annual Meeting of Near Surface Geoscience, 9–12 September, 2013, Bochum MO P13, 4 pp.
<http://dx.doi.org/10.3997/2214-4609.20131328>

Ezersky, M.G. and Goretsky, I., 2014. Velocity-resistivity versus porosity-permeability inter-relations in Dead Sea salt samples. *Engineering Geology*, 183: 95-115, 2014.
<http://dx.doi.org/10.1016/j.enggeo.2014.09.009>

Ezersky, M., and Legchenko, A., 2014. Quantitative Assessment of In-situ Salt Karstification Using Shear Wave Velocity, Dead Sea. *Geomorphology*, 221: 150-163, 2014.
<http://dx.doi.org/10.1016/j.geomorph.2014.06.014>

Ezersky, M. and Legchenko, A., 2015. Mapping of salt consolidation and permeability using MASW method in the Dead Sea sinkhole problem. In: G. Lollino et al. (Eds.), *Engineering Geology for Society and Territory*, 5: 465-469. Springer
http://dx.doi.org/10.1007/978-3-319-09048-1_89

Ezersky, M. and Frumkin, A., 2017. Evaluation and mapping of Dead Sea coastal aquifers salinity using Transient Electromagnetic (TEM) resistivity measurements. *Copres Rendus Geosciences*. 349: 1-11.
<http://dx.doi.org/10.1016/j.crte.2016.08.001>

Ezersky M., Bruner I., Keydar S., Trachtman P. & Rybakov M., 2006b. *Integrated study of the sinkhole development site using geophysical methods at the Dead Sea western shore*. *Near Surface Geophysics*, 4, 5: 335-343
<http://dx.doi.org/10.3997/1873-0604.2006007>

Ezersky, M., Legchenko, A., Camerlynck, C. and Al-Zoubi, A., Identification of sinkhole development mechanism based on a combined geophysical study in Nahal Hever South area (Dead Sea coast of Israel), *Environmental Geology*, 58, (5): 1123-1141, 2009
<http://dx.doi.org/10.1007/s00254-008-1591-7>

Ezersky, M., Legchenko, A., Camerlynck, C., Al-Zoubi, A., Eppelbaum, L., Keidar S., Baucher, M., Chalikakis, K. 2010. *The Dead Sea sinkhole hazard– new findings based on a multidisciplinary geophysical study*. Zeitschrift fur Geomorph. N.F., 54, (2): 69-90, Berlin-Stuttgart, <http://dx.doi.org/10.1127/0372-8854/2010/0054S2-0069>.

Ezersky M., Legchenko A., Al-Zoubi A., Levi E., Akkawi E. & Chalikakis K, 2011. *TEM study of the geoelectrical structure and groundwater salinity of the Nahal Hever sinkhole site, Dead Sea shore, Israel*. Journal of Applied Geophysics, **75**: 99-112.
<http://dx.doi.org/10.1016/j.jappgeo.2011.06.011>

Ezersky M., Bodet L., Akkawi E., Al-Zoubi A., Camerlynck C., Dhemai A. and Galibert P.-Y., 2013a. Seismic surface-wave prospecting methods for sinkhole hazard assessment along the Dead Sea shoreline. J. of Env. and Eng. Geoph., **18** (4), 233–253.
<http://dx.doi.org/10.2113/JEG18.4.233>.

Ezersky, M.G., Eppelbaum, L.V., Al-Zoubi, A., Keydar, S., Abueladas, A.-R., Akkawi, E. and Medvedev B., 2013b. Geophysical prediction and following development sinkholes in two Dead Sea areas, Israel and Jordan. Environ. Earth Sci., **70** (4), 1463-1478, <http://dx.doi.org/10.1007/s12665-013-2233-2>.

Ezersky, M.G., Al-Zoubi, A., Eppelbaum, L.V. and Keydar, S., 2013c. Sinkhole Hazard Assessment of the Dead Sea area in Israel and Jordan: Multidisciplinary Study. Final Technical Report MERC_M27-050, 142pp.

Ezersky, M. G., Eppelbaum, L. V., Al-Zoubi, A., Keydar, S., Abueladas, A.-R., Akkawi, E.. and Medvedev, B., 2014. Comments to publication of D. Closson and N. Abu Karaki 1365 "Sinkhole hazards prediction at Ghor Al Haditha, Dead Sea, Jordan: "Salt Edge" and "Tectonic" models contribution - a rebuttal to "Geophysical prediction and following development ...". Environ. Earth Sci. 71 (4), 1989–1993.

Ezersky, M. G., Legchenko, A., Eppelbaum L.V., Al-Zoubi, A. 2017. Overview of the geophysical studies in the Dead Sea coastal area related to evaporite karst and recent sinkhole development. International Journal of Speleology, **46** (2), 277-302, Tampa, FL (USA) ISSN 0392-6672, <https://doi.org/10.5038/1827-806X.46.2.2087>

Ezersky, M., and Frumkin, A. 2017. Evaluation and mapping of Dead Sea coastal aquifers salinity using Transient Electromagnetic (TEM) resistivity measurements. C. R. Geoscience 349 (2017) 1–11, <http://dx.doi.org/10.1016/j.crte.2016.08.001>

Frumkin, A., Ezersky, M., Al-Zoubi, A., Akkawi, E. and Abueladas, A.-R. 2011. The Dead Sea hazard: geophysical assessment of salt dissolution and collapse. Geomorphology, **134**, 102-117.
<http://dx.doi.org/10.1016/j.geomorph.2011.04.023>

Legchenko A., Ezersky M., Girard J-F., Baltassat J-M., Camerlynck C. and Al-Zoubi A., 2008a. Interpretation of the MRS measurements in rocks with high electrical conductivity. Jour. of Applied Geophysics, **66**, 118-127,
<http://dx.doi.org/10.1016/j.jappgeo.2008.04.002>

Legchenko A., Ezersky M., Camerlynck C. Al-Zoubi A., Chalikakis K. and Girard J-F., 2008b. Locating water-filled karst caverns and estimating their volume using magnetic resonance soundings. Geophysics, **73** (5):51-61.
<http://dx.doi.org/10.1190/1.2958007>

Legchenko, A., M. Ezersky, M. Boucher, M., Camerlynck, C., A. Al-Zoubi, and K. Chalikakis, 2008c Pre-existing caverns in salt formations could be the major cause of sinkhole hazards

along the coast of the Dead Sea. *Geophys. Res. Lett.*, 35, L19404, 2008c., <http://dx.doi.org/doi:10.1029/2008GL035510>.

Legchenko A., Ezersky M., Kamerlynck C., Al-Zoubi A. & Chalikakis K., 2009, *Joint use of TEM and MRS method in complex geological setting*. Comptes Rendus (C.R.) Geosciences, **341**: 908-917.

Polom, U., Alrshdan, H., Al-Halbouni, D., Holohan, E.P., Dahm, T. Sawarieh, A., Atallah, M.Y. and Krawczyk, C.M., Shear wave reflection seismic yields subsurface dissolution and subrosion patterns: application to the Ghor Al-Haditha sinkhole site, Dead Sea, Jordan. *Solid Earth*, **9**, 1079-1098, 2018. <https://doi.org/10.5194/se-9-1079-2018>