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Abstract. Slip planes and slip directions of subsequent generations of faults were measured and analysed in the 

interaction damage zone of two abutting faults in porous sandstones, to understand the  paleostress/paleostrain 10 

evolution. 

The Courthouse branch point of the Moab Fault in SE Utah (USA) is a much-studied, spectacular outcrop of two 

abutting faults, located in the footwall block of the main fault and in the hanging wall block of the abutting fault. 

The abutting fault is synthetic to the main fault. The outcrop shows a wide range of deformation structures and 

fault related diagenesis: striated slip planes, deformation bands, veins, Liesegang bands and copper-rich 15 

mineralization.  

By combining our own measurements with published data on the relative age of these structures, we classified the 

data in four sets.  Using the Numeric Dynamic Analysis (NDA) to calculate the orientation of the kinematic axes we 

found three different paleo-extension directions in the four sets, recording the evolution of stress/strain axes during 

the abutting process.  20 

The first phase of deformation direction is regional extension in the NE-SW direction. As the second fault 

approached the main fault from its footwall side and the two faults start to become kinematically linked, the 

extension direction changed so that the overall extension in the became perpendicular to the approaching fault 

(NW-SE). Finally, the extension direction changed back to perpendicular to the first segment (NE-SW), when the 

two faults become geometrically-linked and regional extension became dominant again. 25 

1 Introduction 

Damage zones can extend tens to hundreds of meters away from the fault core and their evolution in porous 

sandstones has been the subject of numerous studies (see for example: Aydin and Johnson, 1978; Cartwright et 

al., 1995; Shipton and Evans, 2002; Shipton and Cowie, 2003; Davatzes and Aydin, 2003; Davatzes et al., 2003, 

2005; Crider and Peacock, 2004; Kim et al., 2004;  Johansen et al., 2005; Fossen, 2010; Soliva et al., 2016; 30 

Peacock et al, 2017a, 2017b). 
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Although at the regional scale the stress field and kinematics of extensional tectonics is well established (Anderson, 

1951), less is known of the interaction of faults at the local scale (Walsh and Watterson, 1991; Peacock, 2002; 

Nicol et al., 2010; Duffy et al., 2015; Delogkos et al., 2017; Peacock et al. , 2017a), although this is where damage 

zones and the associated flow of geofluids are most important (Walsh et al., 1998; Lonergan, 2007; Rotevatn et 35 

al., 2009a; Yale, 2003; Eichhubl et al., 2009; Duffy, 2015).  

Peacock et al. (2017a, b) suggested that flow is already affected in the “interaction damage zone” as the faults 

approach each other before becoming kinematically linked. The partitioning of strain at this scale can 

compartmentalize reservoirs or provide conduits for fluid flow depending on the mode of failure  (Aydin and 

Johnson, 1978; Ingram and Urai, 1999; Johansen et al., 2005; Rotevatn et al., 2007; Bozkurt Çiftçi and Bozkurt, 40 

2007; Urai et al., 2008; Eichhubl et al., 2009; Ferrill et al., 2009; Rotevatn et al., 2009b;  van Gent et al., 2010a, 

Vrolijk et al., 2016, Kettermann and Urai, 2015). 

In this study we focus on the evolution in the stress and strain field in a single-tip fault interaction (Fossen et al., 

2005), where one fault grows towards another. Peacock et al. (2017a) call this an “abutting fault interaction”, 

where the synchronously growing, abutting fault is synthetic to the main fault, until the two faults become hard-45 

linked and slip together, without cross-cutting.   

We use the orientation and slip direction of subsequent generations of minor faults as input for paleostress and 

paleostrain analysis. We document changes in the extension direction and related local stress field over time, which 

we correlate with the transition from isolated faults (stage i), through interacting, kinematically linked faults (stage 

ii), to geometrically linked abutting faults (stage iii). Understanding the stress and strain evolution of such a 50 

structure is a key step towards understanding the fluid pathways in the subsurface. 

Peacock et al. (2017a) describes the interaction of abutting faults as a continuous process in a regional stress field 

with three evolutionary stages. First the faults are far from each other and do not interact. The faults start to 

interact as they approach each other and become kinematically linked. Interaction can be indicated by deformation 

structures in the acute bisector. In the final stage the approaching fault abuts to the main fault and they become 55 

geometrically linked along a branch line. From this point on, both faults slip parallel to this line: the faults become 

hard-linked. 

 

2.1 Regional Geology 

The study area is located on the Colorado Plateau near Moab, Utah (USA), where evaporites of the Paradox 60 

formation were deposited on basement in the Carboniferous (Doelling, 2002; Nuccio and Condon, 1996)  Foxford 

et al., 1996). The Lower Jurassic, aeolian Navajo Sandstone is overlain by the Middle Jurassic Dewey Bridge 

Member, a calcareous, medium- to fine-grained sandstone. The Slick Rock Member is a part of the Middle Jurassic 

Entrada Fm. This is a reddish to orange, fine grained and cross-bedded aeolian sandstone, which is overlain by the 

greyish-yellow sandstones of the Moab Member (Curtis Fm.). Directly overlying the Moab Member is the late 65 
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Jurassic terrestrial Morrison formation, consisting of siltstones, fine grained sandstones, nodular limestones and 

conglomerates, with occasional dinosaur bones.  

In the Jurassic, major salt-cored anticlines (Fig. 1a) developed in the Moab area (Doelling, 2002; Foxford et al., 

1996), with numerous salt-related faults and salt welds in the overburden. The Moab salt-related fault is described 

in detail in Foxford et al. (1998) and in many other publications. With a maximum throw of ~950 m near the 70 

entrance of the Arches National Park and a length of around 45 km (Foxford et al., 1996, 1998), The Moab fault 

likely initiated as salt-weld, but shows clear characteristics of brittle normal faulting in the study area. The fault 

offsets rocks from Late Carboniferous to Cretaceous. It was active from the Triassic to mid-Jurassic during salt 

tectonics, and again from mid-Cretaceous to Early Tertiary when the salt dissolved and the salt structures collapsed 

(Foxford et al 1996, 1998). Maximum burial depths of 2-3 km and temperatures of around 80 °C were reached in 75 

the Entrada sandstone (Nuccio and Condon, 1996; Fossen, 2010). 

In aerial and satellite photos the exposed sandstones of the Colorado Plateau display a dense network of sub-

vertical joints in many locations which formed due to the uplift of the Colorado Plateau in the Tertiary (Cruikshank 

and Aydin, 1995; Foxford et al., 1996; Kettermann et al., 2015). Similar structures are visible in the footwall of the 

Moab Fault in the Moab Member. They  postdate the activity of the Moab Fault (Cruikshank and Aydin, 1995; 80 

Fossen, 2010). 

2.2 Outcrop description   

We focus here on an outcrop near the northern termination of the Moab fault (Fig. 1) with a number of hard-linked 

strands (Fig 1) which likely developed as breached relay ramps (Foxford et al., 1998, Fossen and Rotevatn, 2016). 

This is opposed to a secondary fault splaying from the main fault. This implies that the growing abutting fault 85 

(segment B, Figure 1b and 2) is arrived at the junction after the main Moab fault (segment A). A third segment, 

(segment C) is exposed further to the west. At the intersection of segment A and B, a spectacular outcrop of 

abutting faults is found (Courthouse Junction (CHJ) branch point, Fossen et al., 2005) (Fig. 1, Fig. 2 and Fig. 3) 

(Foxford et al., 1996; Davatzes and Aydin, 2003; Davatzes et al., 2005; Eichhubl et al., 2009; Johansen et al., 

2005). The two faults abut at an angle of 64°. The intersecting damage zones are exposed in the footwall of 90 

Segment A and the hanging wall of Segment B (see box in Figs. 1b and 2a).  

The triangular CHJ outcrop exposes grey-yellow sandstones of the Moab Member (with patches of Morrison Fm on 

top), while the Courthouse Canyon to the south exposes older rocks, including the Navajo sandstone. The Moab 

Member typically has a porosity of around 20-25% (Antonellini and Aydin, 1994) which is  strongly reduced, to 

between  17 and 1% at the CHJ (Eichhubl et al., 2009; Johansen et al., 2005).  Foxford et al (1998) constrains the 95 

throw along segment A to about of 370 m just south of Courthouse Rock (see fig. 2 for location), and between 

100 and 20 m in Mill Canyon, just north of Courthouse Rock (Figure 1b). Eichhubl et al. (2009) estimates a throw 

on Segment A of about 200 m at the CHJ, and on Segment B in the order of 100 m. 

Johansen et al (2005) published a detailed map of the outcrop, showing the distribution, location and interaction 

(cross-cutting relationships) between the different structure types mapped. These include joints and three types 100 

of deformation bands: Thick deformation bands (ThickDB) and Thin deformation bands (ThinDB) occasionally with 
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a slip plane (ThinDB-S). In the remainder of this paper we will use this nomenclature. All these types occur in 

bundles or clusters. While the ThickDB (~1–1.5 mm wide) are dominated by large grain size (~50–150 μm) and 

occasional undeformed grains, the ThinDB are truly cataclastic with grain size <5 μm.  Johansen et al. (2005) use 

cross-cutting relationships to demonstrate that the ThickDB  are older than the ThinDB. In addition, ThinDB were 105 

subdivided into seven separate evolutionary sets (fig. 12 in Johansen et al. 2005). Our own observations are 

consistent with this, and we will rely on the analysis of Johansen et al. (2005) in the remainder of the manuscript. 

Occasionally, ThinDB in a bundle display smooth, corrugated surfaces (Fig. 2 b-e), which are interpreted as slip 

planes (ThinDB-S) by Johannsen et al. (2005). These are the slip surfaces that are measured in this study. Because 

they are corrugated slip surfaces, rather than cataclastic bands, we assume that they follow the  Mohr-Coulomb 110 

failure criterion. These slip surfaces are relatively small compared to the entire deformation band bundle.  

Eichhubl et al., 2009 also report joints in CHJ. Some occur along deformation band bundles, indicating that some 

of the jointing postdates cataclasis in agreement with regional trend. Davatzes et al. (2005) use a static-elastic 

calculation of stress at CHJ to explain the formation of these joints, controlled by changes in remote tectonic stress, 

burial depth, fluid pressure, and rock properties. 115 

3 Methods 

3.1 Paleostress and Paleostrain 

The reconstruction of either the paleostress or the paleostrain tensor from fault slip data has a long history, but is 

not yet considered a mature field of structural geology (Simon, 2019). Nevertheless, Paleostress and Paleostrain  

reconstructions have added significantly to our toolbox to understand brittle deformation in crust (Angelier, 1985; 120 

Angelier et al., 1985; Bles et al., 1989; Kleinspehn et al., 1989; Choi et al., 2001; Vandycke, 2002; Dyksterhuis et 

al., 2005; Martínez-Martínez, 2006; Bozkurt Çiftçi and Bozkurt, 2007; Balsamo et al., 2008 ;  Sippel et al., 2009;  

van Gent et al., 2009, 2010b). Many of these studies draw inferences on the first order, regional scale stress fields 

(Gölke and Coblentz, 1996; Gruenthal and Stromeyer, 1994; Warners-Ruckstuhl et al., 2013).  

Understanding the evolution of third order local stress perturbations around a group of interacting faults (Peacock, 125 

et al. 2017a), is mostly based on numerical models (see e.g.: Ackermann and Schlische, 1997; Thomas and Pollard, 

1993; Gupta and Scholz, 2000; Maerten et al., 2002; Davatzes et al., 2005; Nikolinakou et al., 2011). Outcrop 

scale examples include changing extension directions inside relay ramps (Bozkurt Çiftçi and Bozkurt, 2007), stress 

analyses based on focal mechanisms (Larroque et al., 1987; Liang and Wyss, 1991; Wyss et al. 1992; Plateaux et 

al., 2009), paleostress changes around fault tips (Balsamo et al., 2008) and interaction of core complexes with 130 

their associated fault systems (Martínez-Martínez, 2006). 

Paleostress and paleostrain reconstruction algorithms share many assumptions, although they differ strongly in 

their approach. Only the orientations and the relative sizes (expressed in the ratio R) of the principal stresses (R= 

(2-3)/(1-3) or strains (R= ( 2- 3)/( 1- 3)) are reconstructed, not the full tensor. This produces (in the 

case of paleostress using the ‘dynamic’ fault-slip analysis) a “reduced stress tensor”, and for the ‘kinematic 135 
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paleostress analysis” a reduced strain tensor. In the case of coaxial deformation these can be considered to coincide 

with the stress axes and the reduced stress ratio (Sperner et al., 1993; Sperner, 1996; Ilic and Neubauer, 2005), 

but the differences in infinitesimal strain (earthquake analysis) and finite strain (fault slip data) have not yet been 

fully addressed.  For a more complete discussion of these issues see Angelier (1994), Ramsay and Lisle (2000),  

Celerier et al. (2012) and Simon (2019).   140 

The kinematic approach is based on the Mohr-Coulomb Criterion (Coulomb, 1776; Mohr 1900) and assumes a high 

shear stress to normal stress ratio. An example is the Numeric Dynamic Analysis (NDA) which calculates the 

orientation of the kinematic axes and the kinematic reduced ratio. These methods treat all faults as being newly 

formed. A further requirement is that the contraction and extension axes lie in the plane defined by the slip direction 

and the fault plane normal. This makes this method unsuitable for the use with faults with oblique striae and 145 

reactivated faults (Sperner, 1996). These methods also require the assumption of an angle of internal friction 

(generally assumed to be 30°), neglecting the natural variability of this parameter (Sperner, 1996; Sperner et al., 

1993). 

The dynamic method assumes that slip on a fault plane will be parallel to the direction of maximum resolved shear 

stress on the fault plane (Wallace, 1951; Bott, 1959). The Direct Stress Inversion Method (DSI) (Angelier, 1979; 150 

1984; 1990) is an example of a Wallace and Bott type paleostress analysis, where this argument is inverted. 

Important assumptions of stress inversion are that the stress field is homogeneous, each fault is independent of 

the others, they are not coeval, and they do not interact (Simon, 2019). 

Celerier et al., (2012) and Simon (2019) discuss the similarities between paleostress and paleostrain analysis, and 

the simple geometric relationships that are sometimes observed between strain and stress axes when the fault 155 

and slip orientations are clustered. However, in cases when these orientations are more scattered, the two 

approaches yield different results. Celerier et al. (2012) argue that ‘by summing each fault contribution to obtain 

global strain tensor, strain tensor may be well suited for averaging strain within a volume’. The inverse methods 

of stress analysis on the other hand may be more suited to ‘separate heterogeneous data’. 

Separating heterogeneous fault orientation – slip direction pairs into homogenous subsets which can reasonably 160 

be considered to originate from a single phase, is one of the major challenges in paleostress calculations (see for 

example Sippel et al., 2009 and references therein), and individual faults that are wrongly assigned, or are 

overprinted by a later stress state can cause the inversion algorithm to fail. We assume that in CHJ the structures 

evolved under the same regional stress field, but are interacting with each other, causing overprinting and local 

stress rotations. For this reason, a paleostrain analysis is in our opinion more suited to analyse this outcrop.  165 

We used the implementation of NDA in the program Tectonics FP (Ortner et al., 2002, 

http://www.tectonicsfp.com/). For completeness and discussion, the paleostress results of the DSI method are 

also included in the figures. We indicate cases where paleostress and paleostrain axes are very similar. 
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3.2 Field observations 

We measured the orientation of both the slip planes with polished surfaces as well as the undulations which are 170 

interpreted to represent the slip direction (see: Angelier, 1994; Doblas, 1998, Fig. 2b and Fig. 2c) in the different 

generations of deformation band bundles, following the set numbering and evolutionary sequence of Johanssen et 

al. (2005). Macroscopic observations on samples cut perpendicular to the slip plane show an increase of 

deformation band frequency towards the slip plane, in addition to a bleaching of the matrix (Fig. 2d). Observations 

in thin sections show an anastomosing network of cataclastic deformation bands with a significant reduction of 175 

grain size (Fig. 2e), in agreement with Aydin and Johnson, (1978) and Fossen et al. (2007). This demonstrates 

that there is a genetic relation between bundles and slip planes, and suggests that these slip planes form under 

the same stress conditions as the bundle. The slickensides do not react with HCl. We note that if the slip planes 

would have formed late and in a single event, a paleostress/strain analysis on the different sets would yield the 

same result. More data from detailed optical and Broad Ion Beam polished SEM micrographs of samples of 180 

deformation bands from this outcrop can be found in Komoroczi (2014). 

In Fig. 3, we augment the different sets mapped by Jonhansen et al. (2005) with our own observations. We have 

only included deformation band bundles longer than 5 m. GPS stations not associated with a drawn line are of 

shorter bundles, or isolated slipplanes.  The ‘forking geometry’ (Simón, 2019), formed by segment B and the long 

deformation band bundle of set 3&4 (see figure 3a) against Segment A, supports the interpretation that Segment 185 

B abuts against Segment A. We collected 207 separate fault orientation – slip direction measurements from the 

larger CHJ area (see Fig. 3).  The bulk of these measurements (n=123) are collected at the CHJ outcrop (Fig 3a). 

The remaining data comes from both inside the fault zone and from the footwall of Segments B and C (Fig. 3b) 

where very similar-looking slip planes were found, associated with deformation band bundles. The observed slip 

planes often form conjugate sets. Measurements at the CHJ and those on top of the unnamed tower directly west 190 

of the Courthouse Rock are in the Moab Member, while those at the base of the Courthouse Rock (Fig. 3b) are in 

the Slick Rock and Dewey Bridge members. Those inside the fault zone of Segments B and C are in either Slick 

Rock or Moab members.  

Where ThinDB-S have undulations on meter and smaller scale (See Fig. 4), the different slip directions are 

generally parallel (Fig. 4d). The observation that slip planes typically occur in the core of a deformation band 195 

bundle is illustrated by this example (Fig. 4b and 4c). To better capture the variability of slip direction and reduce 

the effect of individual outliers due to local spurious orientations or measurement errors, we measured the fault 

plane and striation orientation up-to three times on a single structure, about a meter apart. The authors strived to 

include all visible slip planes, but because a reasonable outcrop quality is required to measure both the orientation 

of the surface and the corrugations, not all of the visible slip planes were included in the final anlysis. 200 

Like Johansen et al. (2005), we did not observe slip planes in the set consisting of ThickDB, which are associated 

with Segment A, but the seven sets associated with ThinDB can all be recognized in our data set of fault orientation 

– slip direction pairs. 
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Fault orientation – slip direction pairs measured outside of the Branch Point were grouped into four sets (I-IV) 

from East to West (see Fig. 3b), based on their geographical spread. Data from location I contains many 205 

observations along the base of the Courthouse Rock in the footwall of Segment B, directly south of the branch 

point (see fig. 1 & 5).   

No polished slip planes and slickensides are observed on Segments A and B, but observations of the meter-scale 

undulations of the main fault structures show slip on these structures was dip-slip (at least in the final stages of 

movement; Fig. 3a).  210 

4 Results  

4.1 Separating the data from Courthouse Junction 

We separated our 123 fault orientation – slip direction pairs from CHJ into the seven evolutionary sets of thin 

deformation band bundle sets, following the subdivision of Johansen et al. (2005), using the average orientations 

and published locations to differentiate them. Our own observations were classified into their scheme, using the 215 

orientation only. Since Set 1 and Set 2, Set 3 and Set 4 are conjugates (the average poles are at an angle of 

around 60°), we combined these into “Set 1&2”, “Set 3&4”. The remaining data was grouped into “Set 5, 6 & 

7”, when we demonstrated this combined set produces kinematically consistent results (see Fig. 6).  

4.2 Paleostrain results at the Courthouse Junction 

The calculated paleostress/paleostrain results at CHJ are shown in Figure 6. As discussed above, we focus on strain 220 

axes calculated using NDA. Results show extension in the NW-SE direction for Set 1&2 and Set 3&4. For Set 

1&2 the extension axis has the direction 334/03 and for Set 3&4 336/10, with R-values of 0.48 and 0.46 

respectively. The maximum compressive strain axis is near-vertical for Set 1&2 but is rotated slightly towards the 

west on the lower hemisphere stereoplot for Set 3&4. The results for Set 5, 6 & 7 show extension in the NE-SW 

direction, (orientation 219/03) with an R-value of 0.47. We note that the DSI paleostress axes for this particular 225 

set are broadly similar to the paleostrain axes, although the R values for both methods are very different.  

4.3 Paleostrain results  for the remainder of the study area  

Figure 7 shows the paleostrain/paleostress results outside CHJ. At location I, (Fig. 1, 5) 37 measurements were 

collected in the footwall of Segment B (Fig. 5). Based on the distribution of slip directions, we separated the data 

in two sub-sets (set Ia and Ib). Since we did not observe cross-cutting relations at this locality, we cannot 230 

determine relative age relationships. By separating the data from location I into set Ia and Ib, the variance 

reduces for both methods. The histogram of Fig. 7 shows the angular mismatch between the measured orientation 

of slip on a fault plane, and the calculated slip direction on that plane, providing a quality control. It can be seen 

that the mismatch is quite small. Both set Ia and Ib as well as the full data set in location I show a vertical 

maximum compressive strain axis and a N-S extension direction. The paleostress results for set Ia are broadly 235 

similar to the paleostrain results.  
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In location II and location III, the paleostress and paleostrain axes are very similar. As these locations are in the 

footwall of Segment B, away from major fault interactions, it seems reasonable that here the main paleostress 

requirements of a homogeneous stress field and independency between the faults are met. As a result, NDA and 

DSI produce results that are similar, with a vertical maximum compressive stress/strain axis and N-S extension 240 

direction. 

The data at location IV in Fig. 3 is insufficient to calculate a stress or strain tensor (at least four, but preferably 15 

independent measurements are required, (Sperner, 1996; Sperner et al., 1993, Simon, 2019). The sample location 

east of the stream in location IV (red great circle in Fig. 3) has an anomalous orientation compared to the north-

dipping fault at the western location (blue great circles), but slip directions are near parallel, suggesting reactivation 245 

of an earlier structure. The slip directions do not fit the expected NS extension. This might be due to the 

perturbation of the stress field by the nearby branch point on Segment C with the minor fault structure, (highlighted 

with a* in Fig. 1b). 

5.1 Interpretation and discussion 

Our observations on the relative timing of the different sets of deformation bands is consistent with those of 250 

Johansen et al. (2005) based on cross-cutting relationships. Johansen et al. (2005) conclude that their set 1 and 

set 2 and their set 3 and set 4 have developed roughly simultaneously, based on similar orientations, during the 

approach and initial interaction of Segments A and B. Johansen et al. (2015) describe their set 5, set 6 and set 7 

to have formed directly after Segment B abutted against Segment A.  

Our study shows that set 1&2 and set 3&4 formed under similar extension directions, supporting their 255 

interpretation, and suggesting a more complex history with gradually rotating deformation axes. Set 5,6&7 are 

kinematically consistent (but not conjugate), thus we interpret them to have formed roughly at the same time. In 

this set, the paleostress axes are consistent with the paleostrain axes, while this is not the case for combined set 

1&2 and set 3&4. Similar to the situation described above for locations II and III, Set 5,6&7 is interpreted to be 

the only set in CHJ where the requirements of a homogeneous stress field and independency between the faults 260 

are met. Thus, both methods produce similar results here. The same can be observed for the paleostress results 

of Location Ia.  

5.2 Deformation during the transition from kinematically to geometrically linked abutting faults  

In this study we used both kinematic and dynamic analysis of fault slip data. Using the analysis of Johannsen et 

al. (2005) to separate data from different generations, the strain-based NDA method which averages strain in a 265 

volume, can analyse this evolution. The NDA method yields consistent results over the study area, which is a 

reasonable result for this system (Celerier et al. 2012). In those locations where we can reasonably assume a 

homogenous stress field and no fault interaction, we found similar stress and strain axes. In the other locations 

where the relation between calculated stress and strain axes diverges, we infer that this is because DSI cannot 

separate the effects of the gradually rotating stress field as Segment B approaches Segment A.  270 
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Figure 8 summarizes the evolution of the stress state in three stages, assuming coaxial deformation: (i) as Segment 

A and B are isolated, (ii) kinematically linked and (iii) geometrically linked.  

For stage (i), our observations are consistent with the interpretation of Johansen et al. (2005) that Segment A 

formed first. Since no striated slip planes are observed here, we assume a vertical σ1 and estimate σ3 at 040-045°, 

perpendicular to Segment A. This is interpreted as the regional stress field. ThickDB also formed during this phase 275 

(Johansen et al., 2005). 

In stage (ii) (Fig. 8b), the two faults start to interact. Set 1&2 start to form in the damage zone around the fault 

tip of Segment B and develop further in the interaction damage zone, in a heterogeneous, rotating stress field. 

This stress field eventually causes a second group of deformation structures (set 3&4) to form. The difference in 

orientation of the extension axis between the results of set 1&2 and set 3&4 is small, but the maximum principle 280 

strain (λ1 in Fig. 6) rotates slightly away from vertical. 

In stage (iii) the segments A and B connected and became geometrically hard-linked. The stress state in the 

Courthouse branch point rotates back to regional extension direction of NE-SW tension as seen in the NDA analysis 

of sets 5,6&7 (Fig. 8c).  

The relative timing of the observations outside CHJ is poorly constrained, but extension at locations I, II and III 285 

was roughly N-S (Fig. 8b). If we assume that Set Ia formed before Ib, the rotation caused by the linkage of 

Segment A and B corresponds to the minor rotation of axes at this location. In locations II and III we infer that 

the stress states were not influenced by the connection of Segment A and B, and deformation axes are assumed 

to be relatively constant here. At location IV our data suggest that extension was with a slight anticlockwise 

rotation. 290 

The changes in orientation of the principal stresses over time in CHJ are interpreted to show the local, third order 

stress evolution. The Moab (segment A, B and C, but before the relay ramps between them were breached)  field 

formed in a regional stress field, an overall NE-SW regional extension. The approach of Segment B as the relay 

ramp was breaching caused local stress rotations around the fault tip, causing new structures to form. Thomas 

and Pollard (1993) show that near-tip stresses in models of en-echelon mode I fractures in a similar geometry 295 

dominate over the regional stresses, and these stresses change before oblique intersection. Davatzes et al. (2005) 

model the stress state at a branch point by combining observations from the Courthouse branch point and the 

branch point close to location IV (Fig. 3). Their models are iterative and the calculated stress orientations are 

similar to our results.  

Peacock at al. (2017a) discuss how the interaction damage zone can influence fluid flow before the faults become 300 

geometrically linked. Eichubl et al. (2009), infer most diagenetic cement deposits in the CHJ to be associated with 

Set 5,6&7 which formed after the faults became hard-linked. They identify the structures associated with this set 

as joints and not as deformation bands. Johansen et al. (2005) however shows that joints in the CHJ formed inside 

a deformation band (an observation shared by us), and thus jointing post-dates the formation of deformation 

bands. This suggest that the diagenetic overprint in the CHJ is later then the abutting of the fault. 305 
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6. Conclusions 

We analysed subsequent generations of striated minor fault planes in the overprinting damage zones of interacting 

normal faults in porous sandstone, at Courthouse Junction, near Moab, UT.   

By combining our own measurements with published data on the relative age of these structures, we classified the 

observations in four sets.  Using Numeric Dynamic Analysis (NDA) the orientation of the kinematic axes was 310 

calculated for three of these sets, and made inferences on the first set. We found three different paleo-extension 

directions in the sets, recording the evolution of stress/strain axes during the abutting process.  

Stage 1 of deformation direction is regional extension in the NE-SW direction. In this case study of a single-tip 

interaction of abutting faults, we find a near 90° rotation of the extension direction (from NE-SW to NW-SE) as the 

stress fields around the main fault and the abutting faults start to interact when they are kinematically linked in 315 

stage ii.  Once the faults abut and become geometrically linked (stage iii), there is a rotation back to the regional 

extension direction. This evolution represents a third order local change of the regional stress field, caused by relay 

ramp breaching and abutting faults. 
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Fig. 1: a) Simplified geological map of the Moab area, showing the study area in the box. b) Geological map of 
the study area. The box denotes the position of the CHJ, and the locations and view direction for Fig. 2a and Fig. 550 
5. Maps are modified from: Nuccio and Condon, 1996, Doelling, 2002, Gutiérrez, 2004, Fossen et al., 2005, 
Johansen et al., 2005, Eichhubl et al., 2009, with our own observations. Coordinates of top left and bottom right 
corners of the maps (UTM): a) 38.963783, -110.183635; 38.468487, -109.139748, b) 38.754977, -109.810685; 

38.691298, -109.710322. 

 555 

Fig. 2: Outcrop and sample photos. a) The CHJ, as seen from the NW. Larger deformation structures are already 
visible from this distance. See Fig. 1b for location and view direction of this photo. b) and c) show typical 
examples of striated slip planes.  d) photograph of a sample cut perpendicular to the slip plane and parallel to 
the striations. Note the increase in deformation band density towards the slip plane, as well as the bleaching of 
the sandstone near the slip plane. A picture of the sample is shown in the inset.  e) Photomicrograph with 560 
crossed polarizers, thin section of the sample shown in e). The deformation bands are clearly cataclastic. 
Deformation band density increases towards the slip plane at this scale too.  
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Fig. 3: a) Map of the Courthouse Junction outcrop with GPS stations (dots) of the locations were striated slip 
planes were measured in (33 locations, 123 measurements). A sketch map of the different sets of deformation 565 
bands is included, based on Johansen et al. (2005) and our own observations (length > 5m). Stereograms show 
the measured striated fault planes, as Angelier lower hemisphere plot and as Hoepener plot. The small 
stereograms show faults and striations in the two fault segments. See Fig. 1 for key. b) b) same as a, but along 
Segment B and C, at 15 stations, with 60 measurements (separated in 4 Locations; I-IV). c) Stereonets for these 
Locations.  570 
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Fig. 4: A) An undulating slip plane in a bundle of deformation bands. Symbols show measurement locations. For 
location, see Fig. 3. B) interpreted field image of A). C) detail of A), showing the slip plane in the core of a bundle 
of deformation bands. D) Stereographic plot of the orientation and slip direction at the four locations, shown in 
A). Both the Hoepener plot (top) and the great circle plot (bottom) show that these locations exhibit significantly 575 
different orientations of the structure, but that the slip directions are similar. The colours and symbols in d) 
correspond to those in a). 

 

Fig. 5: View of the western face of the northern termination of the Courthouse Rock (Location I), with visible 
faults interpreted. The 27 measurements of striated slip planes are recorded at the stations indicated with the 580 
black dots. Width of view is about 400 m. Stereonet shows the measured planes and slip directions. See Fig. 1b 

for location and direction info. CHJ is just off the image, to the north. 
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Fig. 6: Fault plane orientation –slip direction and paleostress (DSI) and paleostrain (NDA) results (for the three 
sets) from CHJ (Fig. 3a). The separation is based on Johansen et al. (2005), with kinematically related sets 585 
combined into a single data set.  
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Fig. 7: Fault plane orientation –slip direction and paleostress (DSI) and paleostrain (NDA) results from Locations 
I-III along Segments B and C. No paleostress results are shown for location IV, as the number of observations 
here was too low to obtain a valid result. 590 
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Figure 8: Sketch of the evolution of the Courthouse branch point (CHJ). Broken lines are damage zones in front 
of normal faults (lines) (see Peacock e 201b). Blue arrows point in the direction of extension, light blue symbols 
are inferred. i) The faults are isolated. The Moab fault (Segment A) forms under the influence of the regional 
NE-SW extension direction (based on fault undulations on segment A and the thick deformation bands set, 595 
described by Johannsen et al. (2015).  ii) When Segment B, initially formed as a parallel fault, starts to rotate 
and approach Segment A, the segments becomes kinematically linked, and  the minimum principal stress rotates 
at CHJ to NW-SE (Deformation band sets 1&2 and 3&4. iii) When Segment A and B connect and become hard-
linked or geometrically linked, the minimum principal stress at CHJ rotates back to the regional stress state 
(deformation band Set 5,6&7). The outline of these sketches corresponds roughly to the rea shown in Fig. 3b. 600 

 




