

1 Dear editor,

2 I am pleased to send you the revised version of my paper on “Diagenetic evolution of fault
3 zones in Urgonian microporous carbonates, impact on reservoir properties (Provence – SE
4 France).

5 You will see that most of the corrections have been respected as requested.

6 You will find below, the comments to all remarks. In addition, I made a table to survey the
7 reviewer comments with the following colour code

8 - Corrections validated are in **green**
9 - Corrections in **red** have been considered un-useful or inappropriate
10 - Corrections in **blue** refer to comments at the bottom of the table

12 Best regards,

13 Irène Aubert

14 **I. General remarks**

15 *“Relative to the scientific part of the manuscript, my main concern is related to the final model
16 in which the permeability contribution was calculated. To me it feels like a good-faith effort,
17 but it would need to be grounded on your field data. To be more explicit, the percentage you
18 calculate for permeability from fault core, fracture network and matrix, should be calibrated
19 according to the width of the fault structure, fracture connectivity and so on.”*

20 The comment of the reviewer is interesting, but cannot be realized in this manuscript because:
21 - Such a quantification in our field case is too much uncertain because the fault zones are too
22 heterogeneous to do this exercise.
23 - This is too apart from the subject of the paper,
24 - this would be much too much and could represent another paper itself.
25 - Therefore we mentioned this issue in the text as follows: “"The percentage assigned to the
26 fault core or to the matrix are qualitatively estimated. Further quantification could be evaluated,
27 for instance, with the width of the fault core and damage zone domains, or by estimating the
28 fracture network volume. However, no recent study have provided such quantification." (line
29 **534 to 537**)

II. Specific Comments

N° line	validat.	not app.	com.	Reviewer's remarks p
10	ok			Please make plural the term "reservoir" changing it to "reservoirs"; moreover
10-12	ok			Please add "diagenetic" before "processes"; modify "that modify" with
13	ok			Please change "Focussing" with "Focusing".
14	ok			Please move the word "impact" before "the fault zone". Rather than using
14	ok			I would change "It" with "This contribution focuses...". Throughout all the text try to
15	ok			Please correct "La Fare Anticlinal" with "La Fare Anticline". In the same sentence
16	ok			Please correct as follows from the form "orthogonal to the fault zones" to
17	ok			Please change from "Diagenetic elements were determined on 92 thin section..."
18	ok			Why are these words "Polarized Light Microscopy" in capitals? Is that necessary?
18	ok			Maybe here it is better to state more precisely "stable isotope measurements"
19	ok			Here, I would modify "2" with "two".
20	ok			Please correct "highlight" with the third person form "highlights".
20	ok			Here, I would modify "2" with "two".
20	ok			Please modify and make "drain" plural "drains".
21	ok			Please add a line separator between "low temperature" as follows "lowtemperature".
21	ok			Here I would erase "fault zone" before "calcite cementation".
22	ok			Here, I would modify "2" with "two".
22	ok			You are mentioning here "two subsequent phases". Do you refer to tectonic
22		x		Please add "petrophysical" before "properties".
25	ok			Please change "porosities" with "porosity values".
26		x		Please change "heterogeneous properties" with "heterogeneity".
26	ok			Please correct "depend" with the third person form "depends".
27	ok			Please erase "they" and add "carbonates may" before "determine".
29	ok			Please correct the beginning of the sentence as indicated "moreover, fault
32-33		x		Here, I would modify the sentence as follows: "Fault zones in cohesive rocks
37	ok			Instead of "mixed zones", maybe is better "structures with mixed hydraulic
37	ok			Please correct "depending of" with "depending on".
38		x		Please make singular "fluid flows" to "fluid flow"
39	ok			Please correct "Earth crust" with "Earth's crust".
40	ok			Here, maybe you can change the structure of the sentence as indicated: ", and are capable of increasing the...".
40	ok			Please correct "fluids-rock interaction" with "fluid-rock interaction"
41	ok			You can add "diagenetic" before "secondary processes".
42	ok			Please add a line separator between "Fault related" as follows "Fault-related".
45	ok			Here maybe I would change "duplication of fluid pathways/barriers" with
48	ok			Please erase "of the" before "faulting" and restructure the sentence as indicated
51	ok			Maybe here "formations" should be capitalized and also please erase the space
56		x		Please add a hyphen between "poly-phasic", as you did above
60	ok			Here, I would modify "2" with "two".
60	ok			Please correct "crosscutting" with "cross-cutting".
60	ok			Please erase "facies" before "carbonates".
61	ok			Please capitalized "South-East Basin".

63	ok		With "larger extension" are you referring to the areal extension of the carbonate
64		x	With "larger extension" are you referring to the areal extension of the carbonate
65	ok		Please correct "bauxite deposits" with "bauxite deposition".
67	ok		Please modify these words as follows: ", and development of E-W-trending
67		x	Is necessary the hyphen between "Guyonnet-Benaize"?
68-69		x	Here I would restructure the sentence as indicated: "During Late Cretaceous
70	ok		Please change the structure of this part of the sentence: "...between Iberian and
70	ok		Please modify from "cited references" to "references therein
71	ok		Please modify from "cited references" to "references therein".
72	ok		Please erase "which" before "gave rise".
72	ok		Here you should add "E-W-trending north-verging thrust faults" otherwise the
72		x	Please change "ramp folds" with "thrust-related folds".
73	ok		Please modify from "cited references" to "references therein
75		x	Please change "dimly" with "weakly"
76	ok		To what "structures" are you referring? I guess they are the contractional ones
79	ok		Here, I would modify "2" with "two".
79	ok		Maybe it is better to write "a Km-scale" instead of "kilometric-scale".
79		x	Please change from "...fault system on the E-W-trending..." to "...fault system
80	ok		Please correct "anticlinal" with "anticline".
82	ok		Please add a space between "120m-thick" to separate the length from the
82	ok		Please change "calcarenite unit" with "calcarenitic unit"
83	ok		Please add a space between "40m-thick" to separate the length from the
83	ok		Please change the structure as indicated: "...coral-rich calcarenite unit, and an
84-85	ok		Here, I would modify as follows: "Santonian age coarse grained rudist
86	ok		Here you state that the Castellas Fault has a length of one Km, but in Fig.1A the
86	ok		You should also define the kinematic of the fault: I would recommend to write as
87	ok		Here change the structure of the sentence as suggested: "(Fig. 2A, B; table 1). Its
88	ok		You can modify from "The second fault zone" to "The second investigated fault
88		x	Here, I would modify "5" with "five".
89		x	Maybe here change "50m-long interval" with "50 m-wide outcrop". Pay attention to
88	ok		Sub-fault are organised in two sets sounds better than "Sub-faults are
90	ok		Instead of "Set one" use "The first one".
91	ok		Please change "orange on Fig. 2F" to "orange traces in Fig. 2F".
91	ok		Add the kinematics of the fault set "with left-lateral strike slip...".
92	ok		Please change "orange on Fig. 2F" to "red traces in Fig. 2F".
92		x	Here, I would modify "5" with "five"
93	ok		What is this asymmetry about? Is related to a different structure or width of the
95	ok		Please add "distinct" before "tectonic events".
96-98	ok		I tried to modify the two sentences as indicated: "...the Middle-Cretaceous
100	ok		I merged the first two sentences: "...(see references cited in Espurt et al. 2012),
101	ok		Please change "leads" to "led".
101	ok		Please modify "neo-formed" with "newly-formed".
105	ok		Please add "present-day" before "reverse throw".
108		x	Here, I would modify "4" with "four".
108	ok		Throughout all the text I saw that sometimes you have used numbers to identify

109	ok		Please change "transect T1" with "transect 1".
109	ok		Instead of "bed", which can be misunderstood maybe here you can use
109	ok		Please correct "pelloidal" with "peloidal", I think it should be the correct form.
110	ok		Please erase the space in "Fig. 2D a" to "Fig. 2Da".
110-111	ok		you can restructure the sentence as suggested: "Transects 2 and 3 crosscut
112	ok		Make the plural form of "echinoderm" to "echinoderms".
114	ok		Make the plural form of "amount" to "amounts".
114	ok		Make the plural form of "bryozoan" to "bryozoans".
115	ok		Eliminate the comma in the reference to the figure: "Fig. 2G, a" change to "Fig.
117-119	ok		tried to restructure the sentence as follows: "Three different fault rock
119	ok		Please change "normal" with "extensional
121	ok		Add this detail at the end of the sentence: "...<30% of fine-grained grey matrix".
122	ok		Add "strike-slip" before "reactivation"
122	ok		Please add "to" before "the onset".
123	ok		Please correct the third person form "present" with "presents" and also change
125	ok		Here maybe modify the sentence in this way: "...sub-rounded clasts belonging to
126	x		What is the nature of the cemented matrix? Are you able to distinguish the
127	ok		Here you are mentioning the reactivation of the D19 fault zone: be more specific
128	ok		Make the plural form of "clast" to "clasts".
128	ok		Add this word at the end of the sentence: "from the nearby damage zone
133	x		Here, I would modify "4" with "four".
134	ok		Please correct the sentence as indicated: "Microfacies were determined...".
136	ok		Please, modify this detail: "with a solution of hydrochloric acid, Alizarin Red S
137	ok		Please erase "The" at the beginning of the sentence and capitalize "Thin...".
137	ok		Please modify "analyzed" with "analysed". Pay attention to the use of UK or USA
138	ok		Please add these words: "...the different generation of calcite cements".
140	x		Is this underscore necessary to identify the instrument?
141	x		Is this underscore necessary to identify the instrument?
141	ok		Here, I would modify "2" with "two".
142	ok		Here, I would modify "2" with "two".
143	ok		Please add "beam" before "current".
143	ok		Keep always a space between the value and the measurement unit; do this in all
143	ok		Please make the plural form of "surface" "surfaces
146	ok		Keep always a space between the value and the measurement unit: "80 µm,"
147		1	What do you mean with the words "bulk rock"? Are you referring to the
148	ok		Please add "isotopic" before "values".
149	x		Is correct the name of the spectrometer with the symbol "+" rather than the word
151	ok		The symbol you used for the delta is not the same adopted previously in Line
151-152	ok		I modified the sentence as follows, check if suits you: "The standard
159-160	ok		I tried to fix in this way: "Porosity measured on 92 plug samples show a
161	ok		Please change "in" with "within".
163	ok		Please add these words at the beginning of the sentence: "Along transects,
164	ok		Insert a space between the value and the measurement unit: "60 m" and not
164	ok		Please change "transect T2" to "transect 2".
165	ok		Please change "low < 7%" to "lower than 7%".

165	ok		Delete the space after 1.53.
165	ok		Substitute the comma at the end with a full stop.
166	ok		Here I would write "is wider than 40 m" rather than "is >40m".
166	ok		Insert a space between the value and the measurement unit: "30 m" and not
167	ok		Here please change "In a 10m-thick" with "In a 10 m-wide".
168	ok		If you want to keep the nomenclature used above than change "T1 and T3" with
169	ok		Please add "found" between "are in narrow".
169-170	ok		tried to write as follows this part of the sentence: "...in narrow zones (less
170	ok		With the term "lens" are you describing the rock volume comprised between F4
172-173	ok		Please modify the beginning of the sentence as indicated: "Microscope
173	ok		Please remove the space in "Fig. 3C a" to "Fig. 3Ca".
174	ok		Add a comma after "φ<5%".
174	ok		Please remove the space in "Fig. 3C b, c" to "Fig. 3Cb, c".
174	ok		It is not clear to me what do you mean with "barren stylolites". Is this word
174	ok		Erase "are distinguished" at the end of the sentence.
177	ok		Please correct "micritized" with "micritised", if you want to keep the UK version of
177	ok		Here, I would modify "2" with "two".
178	ok		Here, I would modify "2" with "two".
179	ok		Why is this citation reported in italics?
180	ok		The reference to "Fig. 4A, 4B" should be "Fig.4A, B".
181	x		Here I'm really struggling with the terminology you used "puntic and serrate" are
182	ok		Please put the porosity value between parenthesis and erase the space before
183	ok		Please insert the porosity percentage in parenthesis
177-183	ok		Inside this paragraph you should also give some info concerning the
185	ok		Please add "different" between "Eight cement".
185	ok		Alizarin Red S should be with all first letters in capitals
185	ok		Add "and" after "coloration".
186	ok		Please correct "made up of" with "made of".
186	ok		Please correct from the third person form to plural "exhibits" to "exhibit".
188	ok		Here, I would modify "2" with "two".
189	x		With "thickness" here are you describing the maximum thickness of the
189	ok		Here, I think it would be more correct to use this symbol "˜" to indicate the word
190	ok		Here, I would modify "2" with "two".
190	ok		Add an hyphen between "dog-tooth".
192	ok		Again, here is that possible to describe the crystal size rather than the
192	ok		Here, I think it would be more correct to use this symbol "˜" to indicate the word
192	ok		Be more specific concerning the reference to the figure: I believe here you are
193	ok		Better than "C1b values" maybe you should use "C1b areal occurrence".
193	ok		Please correct the third person form "increases" instead of "increase
201	ok		Please change the sequence of words from "replacive phases occur largely..." to
203	ok		Use the hyphen between "dull orange" "dull-orange".
203	ok		Please change the structure as indicated from "...only found in fault core veins"
204	ok		Please erase "elements" after "Si and Al".
205	ok		Please erase "an" and add at the end of the sentence "and have black
203-205	ok		Please add also some info relative to the size of the cement crystals you

206	ok		Use the hyphen between "red dull" "red-dull".
208	ok		Add "only" before "to the fault zone".
206-208		x	Please add also some info relative to the size of the cement crystals you
211	ok		Please insert a space between "500" and "µm".
211	ok		Please insert "previous" before "dolomitization phase
212-213	ok		Please change here from "micritic inclusion in the crystal and..." to "micritic
215	ok		Please insert a space between "300" and "µm".
217	ok		Please correct the reference to "Fig. 5G, 5H" with "Fig. 5G, H".
219	ok		Here, I would modify "2" with "two".
219	ok		Please erase "which" after "C4a".
220	ok		Please correct the plural form of "band" with "bands".
220	ok		Please add "thin" before "non-luminescent zones". Change also "bands" with
221	ok		Correct the nomenclature of transects, here maybe use "transects 1 and 3" as
223	ok		Use the hyphen between "red dull" "red-dull".
227	ok		Please change "formation" with "karst deposit".
228-229	ok		See if this correction suits you: "This karst deposit present a stack of
230	ok		Please correct "clasts fall" with "grain fall". Keep in mind that the term clast is
230	ok		Please correct the singular "has" to plural form "have".
230-231	ok		tried to improve the clarity of the sentence: "Micritic layers have been
233	ok		Please change "proportion" with "areal amount" and also modify the third person
236-238		x	I fell this is a repetition of what was previously presented inside the method
239	ok		Again, what is the meaning of "bulk rock"? If you are referring to the undeformed
239	ok		Intergranular volume is better than "intergranular space".
241-242	ok		If it is more correct change the reference to the figure from "Fig. 6A, 6B" to
242	ok		Again, "bulk rock" isn't this the "host rock"?
243	ok		Here, I would modify "2" with "two".
243	ok		For "Set one" you can use the number "Set 1". I believe to identify the type of
244	ok		I don't think that using the symbol "&" is suitable here, just write "and".
245	ok		As above, "Bulk values" is too generic. If you are describing the isotopic dataset
247	ok		Please erase "the" before "transect 3".
247	ok		Please erase "along transect" after "slightly vary".
248	ok		At the end of this sentence after "δ13C" add ", respectively".
248	ok		Change "Contrarily" with "On the contrary, ...".
248-251	ok		I tried to fix these sentences as follows: "On the contrary, values are more
252	ok		Please change "spaces" with "volume".
252	ok		Maybe "infillings" is better than "fills".
252	ok		Please make the plural form "fault rocks".
253		x	Here, I would modify "5" with "five".
254	ok		Personally I modified the sentence as follows and fell like it is clearer: "isotopic
256	ok		Similar to the comment above: "isotopic values of C3 cement...".
258	ok		Again: "isotopic values of C4 cement...".
258	ok		Maybe "infillings" is better than "fill".
259	ok		Please add a space between "from-5.10‰" to have "from -5.10‰".
260	ok		Please erase the space between "FR 2" to "FR2".
260	ok		Please add a space between "from-6.55‰" to have "from -6.55‰".

261	ok		Maybe "infillings" is better than "fill".
262	ok		Please restructure the last part of the sentence as follows: "...for $\delta^{18}\text{O}$ and $\delta^{13}\text{C}$
263		x	Here, I would modify "4" with "four".
263	ok		Here, I would modify "2" with "two".
264	ok		Please add a semicolon ";" at the end of the sentence.
265-266	ok		Please start the sentence as follows: "isotopic values of C5 cement
267-268	ok		Please start the sentence as follows: "isotopic values of FR3 matrix have a
275	ok		Please change "thanks to" with "via".
275	ok		Please pluralise "cross-cutting relation" to "cross-cutting relations".
276	ok		modified the order and position of some words here: "Indeed, the veins filled
277	ok		I would change this sentence as follows: "Thus, C2 cementation postdated C1
277	ok		Please erase "The" at the beginning of the sentence
278	ok		Here there is a missing reference to the correct figure. I guess it should be "Fig."
278	ok		Please change "is ante-FR1..." with "formed prior to FR1...".
279	ok		Please change "post-C2" with "after C2".
279	ok		would use "extensional" rather than "normal".
281	ok		Please remove the comma after "formation and, are related...".
281-282	ok		Please modify the sentence as indicated: "Replacive dolomite is found
282	ok		Here I guess that this is the wrong reference to the figure. I believe it should be
282	ok		Please make the past simple version of "develop" "developed".
282	ok		Please, move "C4" before "cement".
283	ok		Please change "postponed" with "postdated
284	ok		Please modify the order of the words: "...developed during the strike-slip
287	ok		Please correct "La Fare anticlinal" with "La Fare anticline".
287	ok		Here, I would modify "3" with "three". Also substitute "important" with "major".
291		x	I don't know if this is the right term, but perhaps "micro-boring organisms"
294	ok		Please add a hyphen between "low and energy" "low-energy".
294	ok		Please add "environment" at the end of the sentence after "inner platform".
295	ok		Move "C0" before "cement".
295-296	ok		I tried to fix this sentence: "...formed around grains giving rise to a solid
299	ok		Here, I would modify "2" with "two".
299	ok		Please substitute "points" with "pairs", and "sampled of" with "pertaining to".
300	ok		Please add "isotopic" before "depletion".
304	ok		Please modify "characteristic for" with "characteristic of".
307	ok		Please change "meteoric flow" with "meteoric fluid circulation".
308	ok		Please add "to the" before "development".
315	ok		Please add a hyphens as indicated: "low-to-moderate matrix....".
316-318	ok		did some changes to this sentence: "Even if Barremian limestones of La
318	ok		Please change "Resulting from this event,..." with "Due to this characteristic,...".
320	ok		Please add a hyphen between "Fault and related" "Fault-related".
324	ok		324: Better that "impacting" maybe you should try with "affecting".
327	ok		Please erase ", and" just after the references in parenthesis and also add a
327	ok		Add a space between "<100KPa" to have "<100 KPa".
327	ok		Modify the reference to "Alikarami & Torabi 2015" as "Alikarami and Torabi,
329-330	ok		Here I fixed in this way: "...of deformation band development (Heiland et

331	x	poorly sounds better than "dimly".
331-332	ok	Add a hyphen between "low confining pressure" "low-confining pressure".
332	ok	Please change the term "pattern" with "regime".
332	ok	Add a space between "<1Km" to have "<1 Km".
333-334	ok	I reworked this sentence as indicated: "Under these conditions, Barremian
334	ok	Please correct "showned" with "showed".
335	ok	Please add "of deformation" after "early stages".
336	ok	Please add "in carbonates" after "deformation bands".
336	ok	Please change "sector" with "area".
337	x	Please correct to the singular form "circulation" instead of "circulations".
337-338	ok	Please erase "These" at the beginning of the sentence and make the
338-339	ok	would change the sentence as follows: "however, dilation bands were
340	ok	Please modify to the singular form "loading stress" instead of "loading stresses".
342	ok	Here maybe start the sentence as indicated. "This could be the explanation...".
343	ok	Add a space between "<30m" to have "<30 m".
345	ok	Add a space between "<188m" to have "<188 m".
345	ok	Here adjust the reference to "Fig. III 6A" with "Fig. 6A".
345	ok	Modify the beginning of the sentence as suggested: "Dilation bands have also
346	ok	Please correct "Sicilly" with "Sicily".
347	ok	Please add "selective" before "cementation". Also pluralise "rock" to "rocks".
348-349	ok	tried to change the structure of this sentence: "Cementation (C1a and
349	ok	Add a hyphen between "low porosity" "low-porosity".
350	ok	Please change the last part of the sentence as suggested: "...is known to
351	ok	Please erase "an" before "Al-rich".
352	ok	Please pluralise "fluid" to "fluids".
352	ok	You may explain this with "fine-grained" instead of "micro-metric".
352	ok	Again the term "barren" is very unfamiliar to me. Are you referring to an incipient
352	ok	If you feel this is an option try to put this last part of the sentence as indicated:
358	ok	Use "may" and not "must" you are not 100% sure that this happened, you are
361	ok	A few adjustments to this sentence: "As the fault grew, new fracture sets formed,
364-365	ok	Please correct "at high depth" with "in deep burial conditions", in
365-366	ok	A bit of reworking on this sentence: "...corroborate the hypothesis of
367	ok	Please change the beginning of the sentence from "Resulting from" to "Due to".
368	ok	Before "down to <5%" insert "with porosity".
368	ok	Cancel the space in "Fig. 9 B5" to "Fig. 9B5". Also in Fig. 9 what is stage 5 since
371	ok	Please change "Implicitly", with "Following this".
371	x	Please add "in this stage" before "was a barrier".
372	ok	I would change the beginning of the sentence: "Fluids responsible for
375	ok	Please insert a space between "100" and "µm".
376	ok	I modified the sentence as indicated: "...came from silica found inside C2 cement
377	ok	Please modify the beginning of the sentence: "Silica crystals in C2 veins...".
377	ok	Please insert a space between "100" and "µm".
378	x	Please add "grains" before "quartz".
379	ok	Please add "also" before "Aptian rocks".
380	ok	Please substitute "Implicitly" with "According to this,".

381	ok		Add a hyphen between "Uncemented" "Un-cemented"
381	ok		Please change to the past simple form "formed" instead of "form".
383	ok		Please add "lateral extent of the..." before "drainage area".
384	ok		Add a hyphen between "high permeable" "high-permeable".
385-386	ok		I would change as follows: "...formations within fault core of strike-slip and
390	ok		Please make the past simple form of "lead" to "led".
392	ok		Please substitute "can be" with "could have been".
395	ok		Please add a reference at the end of this sentence, relative to the difference in
398	ok		I would change a bit the end of the sentence as indicated: "...not favourable for
399	ok		Add a hyphen between "Low temperature" "Low-temperature".
400	ok		Add a hyphen between "high temperature" "high-temperature".
402	ok		Here you can change from "high Mg fluid circulation" to "Mg-rich fluid
403	ok		Please add "domain" after "fault core" at the end of the sentence.
405	ok		Please insert a space between "23" and "Km".
405-406	ok		Please change from "compressive conditions" to "contractional stress
406	ok		At the beginning of the sentence please change from "From these authors..." to
407	ok		Add a hyphen between "low temperature" "low-temperature".
407	ok		After "upwelling fluids" add ", likely Mg-enriched".
409	ok		Add a hyphen between "low temperature" "low-temperature".
410	ok		Please correct "were" with "was".
412	ok		Please correct "reduce" with "reduces".
415	ok		Please change "to" with "into". Also check the reference to "Fig. 9 B6 and C6"
417	ok		Please substitute "finally" with "eventually".
419	ok		Please erase the hyphen between "back-ground" to "background".
420	ok		Please change from "lead to FR2..." to "formed FR2...".
422	ok		Please erase the hyphen between "back-ground" to "background".
423-424	ok		I would modify the structure of the sentence as indicated: "This fluid flow is
424	ok		Please correct "micritized" with "micritised".
425	ok		Please change "what led" with "leading to".
425	ok		Erase the comma and space in the reference to figure "Fig. 9, B7 and C7" to
426	ok		Please change "the" before "fracture porosity" with "that".
426	ok		At the end of the sentence modify as follows: "...permeability was still partially
427	ok		Use italics for the term "sensu".
428	ok		would modify this as indicated: "...and high fracture-related secondary
429	ok		Maybe here is better to use "infillings" rather than "fill".
429	ok		After "dissolution/cementation" add the term "processes".
431	ok		Please add "cement" after "C4".
432	ok		Maybe here is better to use "infillings" rather than "fill".
433	ok		did a few changes to this part of the sentence: "...fluid circulation in the vadose
435	x		Maybe the last part of this sentence would sound better as: "... of meteoric and
436-437	x		Please change "these" with "this" and also make the singular form of
437	ok		Please add "cement" after "C4".
437	x		Please change "on" with "in" in reference to Fig. 8.
438	ok		Higher is not the most precise term to describe isotopic data. if you are talking
439	ok		Please add "cement" after "C1".

440	ok			Please add "cement" after "C4".
440	ok			Move "C4" before "cement", and change from the plural to the singular form
441	ok			Please change "are" with "is".
441-442	ok			I tried to fix this sentence in this way: "Transect 2 cross-cuts the Castellas
442	ok			Here, I would modify "2" with "two".
446	ok			Please erase the term "local" before "permeability" and also change "allowed" to
447		x		Please make the singular of "circulations" to "circulation".
448	ok			Move "C4" before "cement".
449	ok			Please change "Contrarily" with "On the contrary,".
450	ok			Please erase the word "a" before "drains".
51	ok			Please change "That" with "This".
452	ok			Please correct "formation" with "development".
453	ok			Please change "normal" with "extensional".
453	ok			I modified the last part of the sentence as follows: "...C4 fluids to flow through the
455	ok			Please change "T2" with "transect 2".
455	ok			Please insert a space between "60" and "m".
456	ok			Use "transect 1 and transect 3" instead of "T1 and T3", add a space between "30
461		2		I don't think that the word "sieve" is appropriate to describe the evolution of th
462	ok			Please correct "de-dolomitization" with "de-dolomitized".
466	ok			Please correct "recrystallized" with "recrystallised".
469	ok			I would put also "alpine" in capitals as you did for "Pyrenean".
471	ok			tried to fix this part as indicated: "This implies fluids percolating soils, as results
475	ok			Please correct "Finally" with "Eventually".
475	ok			Please change from "incurring" to "inducing".
476	ok			Please change from "triggered" to "produced".
477	ok			Please change from "flows" to "fluids".
481-482	ok			tried to adjust this part as: "...reservoir where fractures behave as
483	ok			Please change "polyphase" with "polyphasic".
490-491	ok			See if these changes suit you: "...Castellas fault zone, permeability evolves
493	ok			Here, I would modify "2" with "two".
493	ok			Please change "fracture" with "fracturing".
493	ok			Please change "link" with "linked".
494	ok			If you feel it could be an option you can use the extended form "fault core"
495-496	ok			I adjusted the second part of the sentence: "permeability contribution is
497	ok			Again here if you can use the extended version of the name "fault core".
498	ok			Please correct "at 20%" with "for 20%".
498-499		3		The calculation of the permeability contribution is nice and to me it
501	ok			Here, I would modify "2" with "two".
501	ok			Erase "the" before "reservoir".
502	ok			Please pluralise "fault" to "faults".
503	ok			I think you should capitalise "SE basin" as "SE Basin".
508	ok			Please correct "their" with "its".
511	ok			Please change "thinly" with "slightly".
512	ok			Please substitute "formation" with "development".
514	ok			Please change "the flows" with "flowing fluids".

516-517	ok		Add a hyphen between "low temperature" "low-temperature".
517	ok		Please correct "flows" with "fluids".
517	ok		Please correct "This" with "These".
517	ok		Add a hyphen between "low temperature" "low-temperature".
517	ok		Please add "fluid" before "flows".
519	ok		Add a hyphen between "high temperature" "high-temperature".
519	ok		Please change "flows" with "fluids".
519	ok		Please add "significant" before "hydrothermal influence".
520	ok		tried to improve the last part as: "...broader rules for complex faults with
522	ok		Please correct "extensive" with "extensional".
522	ok		See if this is better: "...can lead to the development of dilation bands acting...".
523	ok		tried to improve the clarity: "Carbonates are very sensitive to rock-fluid".
529-531	ok		Again a bit of reworking: "Late-stage fluids flowed preferentially within the
566	ok		Check and erase the highlighted space
568	ok		There are too much spaces that must be corrected
569	ok		Check and erase the highlighted space.
570	ok		Check and erase the highlighted space.
571	ok		Erase the highlighted full stops.
573	ok		Erase the highlighted full stop.
580	ok		Erase the highlighted full stop.
586	ok		Check and erase the highlighted space.
590	ok		Check and erase the highlighted space.
607	ok		Please erase the comma
610	ok		Check and erase the highlighted space.
611	ok		The name of the institution is not complete.
621	ok		Check and erase the highlighted space.
621	ok		Please erase the comma.
639	ok		Please erase the comma.
641	ok		Erase the highlighted part since it is a repetition and should not be in front of the
656	ok		Please capitalise "jurassic" to "Jurassic".
664	ok		Erase the highlighted full stop
669-670	ok		Check and erase the highlighted spaces.
679	ok		Check and erase the highlighted space.
705	ok		Check and erase the highlighted spaces
714	ok		Check and erase the highlighted spaces and comma.
721	ok		Check the spelling of the journal title.
728	ok		Check and erase the highlighted full stops.
741-742	ok		Please eliminate the duplicated title.
754-755	ok		Check and erase the highlighted full stops.
772-773	ok		Check and erase the highlighted spaces.
774-775	ok		Check and erase the highlighted space and full stop.
791	ok		Check and erase the highlighted space.
803	ok		Check and erase the highlighted space.
809	ok		Check and erase the highlighted space.
814	ok		Check and erase the highlighted space and comma.

816-817	ok		Check and erase the highlighted space and comma.
819	ok		Check and erase the highlighted comma.
821	ok		Check and erase the highlighted space.

comment on figures and figure captions

fig 1	ok		You should insert the symbol of the La Fare anticline in Fig. 1A.
fig 1	ok		The kinematic indicators alongside faults are missing in Fig. 1B.
fig 1	ok		These names in the legend of Fig. 1A should be all in capitals "Upper Cretaceous, Lower
fig 1	ok		Maybe better than "thin calcarenite" you can use "fine-grained", if you are referring to the
fig 1 cap	ok		You should erase the space between "Figure 1 :" to "Figure 1:".
fig 1 cap	ok		Please add "trace of" before "stratigraphic column".
fig 1 cap	ok		Please correct the reference to "C" part of the figure rather than "B".
fig 2	ok		The kinematic indicators in both stereo-nets are indistinguishable from the fault traces.
fig 2	ok		I would mirror the transect 3 to have SSE on the left and NNW on the right side, just like
fig 2	ok		What are the red stars? Are they the positions of samples? If so you should mention them
fig 2 cap	ok		You should erase the space between "Figure 2 :" to "Figure 2:".
fig 2 cap	ok		Please change the term "localization" with "position".
fig 2 cap	ok		What are the "red points" you are referring in the stereo-nets? I can't see anything but red
fig 2 cap	ok		In the third line please add "C: Photos of transect 1 and 2."
fig 2 cap	ok		In the third line please add "D: Photomicrographs of carbonate host-rock facies...".
fig 2 cap	ok		In the fourth line add "FR1 and FR2" after "fault rock 1 and 2".
fig 2 cap	ok		In the fifth line please add "G: Photomicrographs of host-rock facies...".
fig 3	ok		Try to improve the visibility of the three petrographic images in Fig. 3C, change the
fig 3 cap	ok		In the first line correct "&" with "and".
fig 3 cap	ok		In the third line correct "b&c" with "b and c".
fig 4 cap	ok		You should erase the space between "Figure 4 :" to "Figure 4:".
fig 4 cap	ok		In the first line please pluralise "white arrow" to "white arrows".
fig 4 cap	ok		In the first line add a space between "MF1micrite" to "MF1 micrite".
fig 4 cap	ok		In the second line add a space between "2.5m" to "2.5 m".
fig 4 cap	ok		In the second line add a space between "MF1micrite" to "MF1 micrite".
fig 4 cap	ok		In the second line add a space between "2m" to "2 m".
fig 4 cap	ok		In the second line please erase the "C" which is duplicated.
fig 4 cap	ok		In the third line add a space between "188m" to "188 m".
fig 4 cap	ok		In the third line add a space between "95m" to "95 m".
fig 4 cap	ok		In the fourth line please change "F." to "F:".
fig 5 cap	ok		You should erase the space between "Figure 5 :" to "Figure 5:".
fig 5 cap	ok		In the first line please change "micritized" with "micritised".
fig 5 cap	ok		In the second line please change "space" with "volume".
fig 5 cap	ok		In the second line please substitute "a&b" with "a and b".
fig 5 cap	ok		In the second line please pluralize "clast" to "clasts".
fig 5 cap	ok		In the second line please change "micritized" with "micritised".
fig 5 cap	ok		In the third line I modified as follows: "C: C3 veins, cements and intergranular volume in...".
fig 5 cap	ok		In the third line please substitute "a&b" with "a and b".
fig 5 cap	ok		in the fourth line after "replacive dolomite" add "(RD)".
fig 5 cap	ok		In the fifth line please correct "quart" with "quartz".

fig 5 cap	ok		In the fifth line please substitute "a&b" with "a and b"; do it twice.
fig 6		x	To me it would be more logical to invert Fig. 6A and 6B, to show the reader first all bulk
fig 6	ok		In both graphs insert the X axis labels for every increment of 2 per mil (2, 4, 6...).
fig 6		x	In the legend of Fig. 6A it is written "Bulk rock", I wonder if this is actually the undeformed
fig 6	ok		In Fig. 6C the title of the graph states "Distance to Castellas Fault plane", maybe "Fault
fig 6 cap	ok		You should erase the space between "Figure 6 :" to "Figure 6:"
fig 6 cap	ok		In the first line please correct the symbols you used for the delta notation, it should be
fig 6 cap		x	In the first line you state again "bulk rock" why not "host rock"?
fig 6 cap	ok		In the third line please correct the symbols you used for the delta notation, it should be
fig 7	ok		The three photomicrographs are too small to appreciate the details. You have plenty of
fig 7 cap	ok		In the second line I slightly modified as follows: "... development (blue), cementation
fig 8		x	Again, photomicrographs are quite small, but still the reader should be able to see
fig 8	ok		In the legend please correct "Micro-facies & cement types" with "Micro-facies and cement
fig 8 cap	ok		You should erase the space between "Figure 8 :" to "Figure 8:".
fig 9	ok		It would be nice to have bigger sketches in Fig. 9A.
fig 9		x	Also why stage 5 is not reported? In the text it is mentioned. You should consider to
fig 9 cap	ok		You should erase the space between "Figure 9 :" to "Figure 9:".
fig 9 cap	ok		In the second line I would modify "2" with "two".
fig 9 cap	ok		In the second line please correct "curved" with "curve".
fig 10	ok		Also here size matters! Please make these sketches bigger otherwise you will lose a lot of
fig 10cap	ok		You should erase the space between "Figure 10 :" to "Figure 10:".
fig 10cap	ok		In the third line please add spaces between "1to 8correspond" to "1 to 8 correspond".
fig 10cap	ok		At the end of the caption you should add also explanations of the symbols used: FZ, DZ,
table 1	ok		In the caption add a full stop at the end as highlighted.
table 1	ok		In the table header increase the width to include entirely the words "Fault zones", check
table 1	ok		Check also the French name "Faille" and correct it accordingly.
table 1	ok		Capitalize "pitch striation" to "Pitch striation".
table 1	ok		Add a space between the cardinal point and angular value every time has been
table 1	ok		Non constant" is not precise, I would use "variable".
table 2	ok		Please eliminate "vs" from the table header.
table 2	ok		Check also the nomenclature of the transects to be the same to the symbols adopted in
table 2	ok		In the caption it is not clear what do you mean for "bulk carbonates", "bulk measurements".
table 2	ok		Pay attention also to put the reference always to the singular form (es. micrite value,

32

33 Comment N°1

34 "What do you mean with the words "bulk rock"? Are you referring to the undeformed host rock
35 outside the damage zone, if so I think you should correct this and be more precise. "

36 **Done.**

37 "Bulkk rock" is a conventional wording commonly used in papers dealing with isotopes.
38 Anyway, to respect the reviewer's comment, we defined the word "bulk" as follows: "The Bulk
39 rock values are related to a non-selective sampling giving information on the whole rock

40 isotopic values. These values do not capture the signature of isolated cement (Swart, 2015).”
41 **(lines 168-170)**

42

43 Comment N°2

44

45 *“I don’t think that the word “sieve” is appropriate to describe the evolution of the hydraulic*
46 *properties of a fault zone. Maybe “valve” is more suitable, since you are describing media*
47 *behaving as a drain and then as a barrier.”*

48 In this study we show that the **faults in carbonates are not valves**. The valve concept for fault
49 zones is not fully appropriate for carbonates. Indeed, the valve induces that it is alternatively
50 closed or open. Our study shows that the most appropriate concept would be a sieve, because
51 in this analogy, it is synchronously closed in places and open in other places, what rather reflects
52 the hydraulic behavior of the studied fault zones. We added in the text: “In this case, the most
53 appropriate concept would be a sieve, because in this analogy, it is synchronously closed in
54 places and open in other places.” **(Lines 503-504)**

55 Comment N°3

56 *“The calculation of the permeability contribution is nice and to me it provides useful info*
57 *relative to the hydraulic evolution of the fault zone in time. I’m sorry for being so blunt here,*
58 *but maybe you should ground you statement and discussion on the field data. What I mean is*
59 *try to explain why you assigned such percentage contribution to the fault core or to the matrix*
60 *and so on... Maybe you can do this by evaluating the width of the fault core and damage zone*
61 *domains, or by estimating the fracture network volume.”*

62 The comment of the reviewer is interesting, but cannot be realized in this manuscript because:

63 - Such a quantification in our field case is too much uncertain because the fault zones are too
64 heterogeneous to do this exercise.
65 - This is too much apart from the subject of the paper,
66 - this would be much too much for one paper and could rather represent another paper itself.
67 - Therefore we mentioned this issue in the text as follows: “The percentage assigned to the fault
68 core or to the matrix are qualitatively estimated. Further quantification could be evaluated, for
69 instance, with the width of the fault core and damage zone domains, or by estimating the
70 fracture network volume. However, no recent study have provided such quantification.” **(line**
71 **534 to 537)**

72

73

74

75 **Diagenetic evolution of fault zones in Urgonian microporous**
76 **carbonates, impact on reservoir properties (Provence – SE France).**

77
78 ***Irène Aubert^a, Philippe Léonide^a, Juliette Lamarche^a, Roland Salardon^a***

79
80 ^a Aix-Marseille Université, CNRS, IRD, Cerege, Um 34, 3 Place Victor Hugo (Case 67), 13331
81 Marseille Cedex 03, France

82
83
84 Microporous carbonate rocks form important reservoirs with permeability variability depending
85 on sedimentary, structural and diagenetic factors. Carbonates are very sensitive to fluid-rock
86 interactions that lead to secondary diagenetic processes like cementation and dissolution
87 capable of modifying the reservoir properties. Focusing on fault-related diagenesis, the aim of
88 this study is to identify impact of the fault zone on reservoir quality. This contribution focuses
89 on two fault zones east to La Fare Anticline (SE France) cross-cutting Urgonian microporous
90 carbonates. 122 collected samples along four transects orthogonal to fault strike were analysed.
91 Porosity values have been measured on 92 dry plugs. Diagenetic elements were determined
92 through the observation of 92 thin sections using polarized light microscopy,
93 cathodoluminescence, red alizarin, SEM and stable isotopic measurements ($\delta^{13}\text{C}$ and $\delta^{18}\text{O}$).
94 Eight different calcite cementation stages and two micrite micro-fabrics were identified. As a
95 main result, this study highlights that the two fault zones acted as drains canalizing low-
96 temperature fluids at their onset, and induced calcite cementation which strongly altered and
97 modified the local reservoir properties.

98 **1. INTRODUCTION**

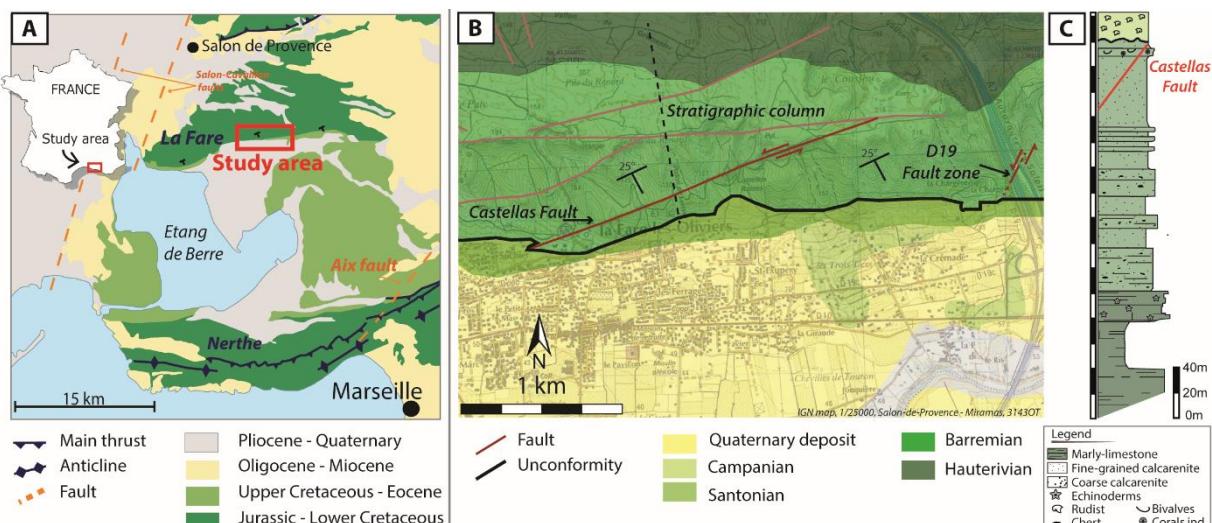
99 Microporous carbonates form important reservoirs (Deville de Periere et al., 2017; Lambert et
100 al., 2006; Sallier, 2005; Volery et al., 2009), with porosity values up to 35% (Deville de Periere
101 et al., 2011). Due to their heterogeneous properties which depends on sedimentary, structural
102 and diagenetic factors, microporous carbonates may determine a high variability of reservoir
103 permeability (Bruna et al., 2015; Deville de Periere et al., 2011, 2017; Eltom et al., 2018; Florida
104 et al., 2009; Hollis et al., 2010). Moreover, fault zones in carbonates play an important role on
105 reservoir properties (Agosta et al., 2010, 2012; Caine et al., 1996; Delle Piane et al., 2016;
106 Ferraro et al., 2019; Knipe, 1993; Laubach et al., 2010; Rossetti et al., 2011; Sinisi et al., 2016;
107 Solum et al., 2010; Solum and Huisman, 2016; Tondi, 2007; Wu et al., 2019). Fault zones are
108 complex structures composed of damage zones and the fault core encompassed by the host rock
109 (Caine et al., 1996; Chester and Logan, 1986, 1987; Hammond and Evans, 2003). Faults can
110 act as barriers (Agosta et al., 2010; Tondi, 2007), drains (Agosta et al., 2007, 2008, 2012; Delle
111 Piane et al., 2016; Evans et al., 1997; Molli et al., 2010; Reches and Dewers, 2005; Sinisi et al.,
112 2016; Solum and Huisman, 2016), or mixed hydraulic behaviour zones (Matonti et al., 2012)
113 depending on their architecture and diagenetic evolution. Because of their hydraulic properties,
114 fault zones influence the fluid flows in the upper part of Earth's crust (Bense et al., 2013; Evans
115 et al., 1997; Knipe, 1993; Sibson, 1994; Zhang et al., 2008), and are capable of increasing the
116 fluid-rock interactions. Carbonates are very sensitive to these interactions, which lead to
117 diagenetic secondary processes like cementation and dissolution (Deville de Periere et al., 2017;

118 Fournier and Borgomano, 2009; Lambert et al., 2006). Fault-related diagenesis locally modifies
119 the initial rock properties (mineralogy and porosity), and therefore the reservoir properties
120 (Hodson et al., 2016; Knipe, 1993; Knipe et al., 1998; Laubach et al., 2010; Woodcock et al.,
121 2007). In case of a polyphasic fault zone, repeating fluid pathways-barriers behaviour in times
122 leads to very complex diagenetic modifications. The initial vertical and lateral
123 compartmentalization of microporous limestones is, therefore, accentuated by fault-related
124 diagenesis. Hence, understanding faulting processes and diagenesis is crucial for a better
125 exploration and production in carbonates. Urgonian microporous carbonates of Provence, are
126 made of facies and reservoir properties analogue to Middle East microporous carbonate
127 reservoirs (Thamama, Kharaib and Shuaiba Formations; Borgomano et al. 2002, 2013; Sallier
128 2005; Fournier et al. 2011; Leonide et al. 2012; Léonide et al. 2014). Although Urgonian
129 microporous carbonates of Provence are analogue to Middle East reservoirs, the analogy can
130 be extended to other faulted microporous carbonate reservoirs. To have a better comprehension
131 of diagenetic modifications linked to fault zones on these rocks, the aim of this paper is (i) to
132 determine the diagenetic evolution of polyphasic fault zones; (ii) to identify their impact on
133 reservoir properties and (iii) to link the fault evolution with the fluid flow and geodynamic
134 history of the basin.

135 2. GEOLOGICAL CONTEXT

136 We studied **two** faults cross-cutting microporous Valanginian-to-Early Aptian Urgonian
137 carbonates of the South-East Basin (Provence-SE France) deposited along the southern margin
138 of the Vocontian Basin (Léonide et al., 2014; Masse and Fenerci Masse, 2011). The “Urgonian”
139 platform carbonates (Masse, 1976) reached their **maximum areal** extension during the late
140 Hauterivian–Early Aptian (Masse and Fenerci-Masse, 2006). From Albian to Cenomanian, the
141 regional Durancian uplift triggered exhumation of Early Cretaceous carbonates, bauxitic
142 deposition (Guyonnet-Benaize et al., 2010; Lavenu et al., 2013; Léonide et al., 2014; Masse
143 and Philip, 1976; Masse, 1976), and **development** E-W-trending **extensional** faults (Guyonnet-
144 Benaize et al., 2010; Masse and Philip, 1976). During the Late-Cretaceous **times**, platform
145 environment led to a transgressive rudist platform deposition (Philip, 1970). From Late
146 Cretaceous to Eocene, the convergence between Iberia plate and Eurasia plates (e.g. Bestani
147 2015, and references therein) caused a regional N-S shortening (e.g. Molliex et al. 2011 and
148 references therein). The so-called “Pyrénéo-Provençal” shortening, gave rise to E-W-trending
149 north-verging thrust faults and ramp folds (e.g. Bestani et al. 2016, and references therein).
150 From Oligocene to Miocene, the area underwent extension associated to Liguro-Provençal
151 Basin opening (e.g. Demory et al. 2011). During Mio-Pliocene times, the Alpine shortening
152 dimly impacted the studied area (Besson, 2005; Bestani, 2015), and reactivated the “Pyrénéo-
153 Provençal” structures (Champion et al., 2000; Molliex et al., 2011).

154 We studied **two** faults pertaining to a Km-scale fault system on the E-W-trending La Fare
155 anticline near Marseille (Fig. 1A). The southern limb of this **anticline** dips 25° S, and is
156 constituted by Upper Hauterivian, Lower Barremian and Santonian rocks (Fig. 1B). The Upper
157 Barremian carbonates are composed, from bottom to top, of a 120 m-thick calcarenitic unit
158 with cross-beddings, a 40 m-thick massive coral-rich calcarenite unit, and an upper 10 m-thick
159 calcarenite unit (Masse, 1976; Matoniti et al., 2012; Roche, 2008). Santonian **age coarse rudist**
160 **limestones** **uncomfortably overlap** the Barremian carbonates (Fig. 1A).

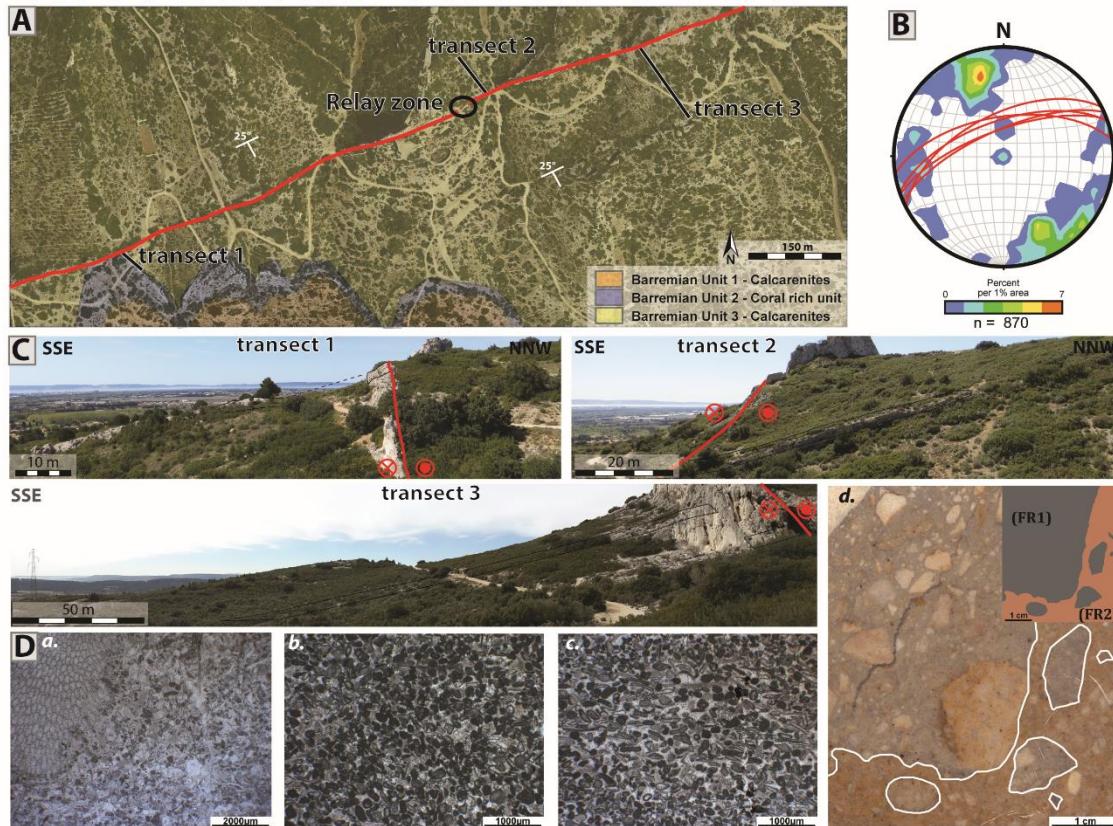

161 The Castellas fault zone is a 2.14 km-long left-lateral strike-slip fault, N060 to 070-trending
 162 and 40° to 80°N-dipping (Fig. 2A, 2B; table 1) composed horse structures, secondary faults and
 163 lenses (Fig. 2A, 2C; Aubert et al. (2019b)). The second investigated fault zone “D19” is
 164 composed of 5 sub-fault zones (F1 to F5) restricted in a 50m-long extension (Fig. 2E, 2H; Table
 165 1; (Aubert et al., 2019a)). Sub-faults are organised into two sets. The first one comprises F3 and
 166 F4, N040 to N055-trending, 60-80°NW-dipping (orange traces on Fig. 2F). Set 2 is N030-
 167 trending, dipping 80°E, with left-lateral strike-slip slickensides pitch 20 to 28°SW (F1, F2, F5,
 168 red traces on Fig. 2F).

169

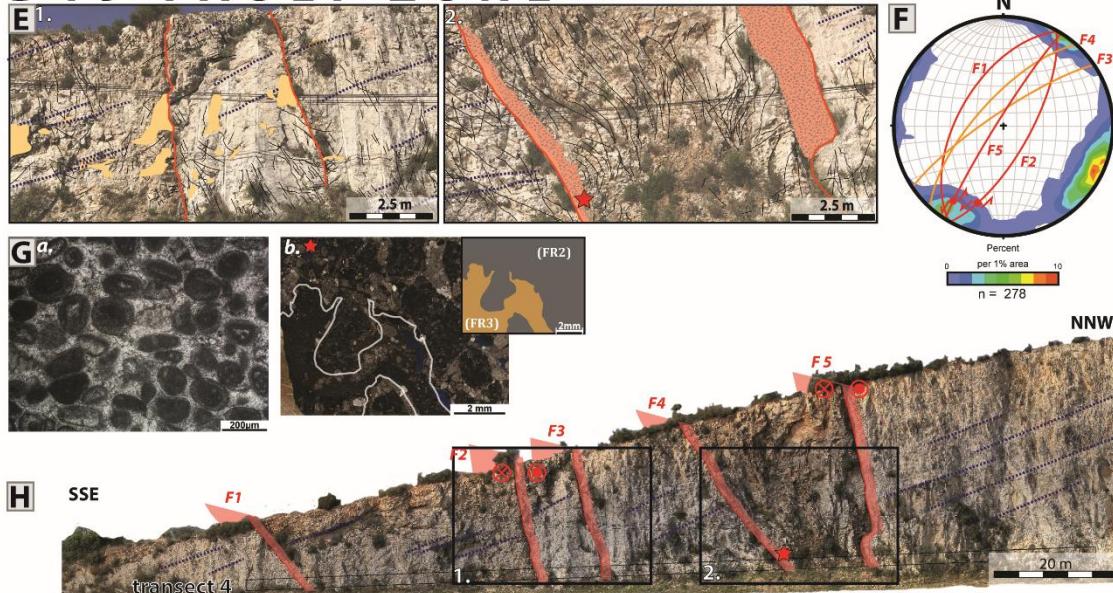
170 The internal structure of both fault zones results from three distinct tectonic events:

- 171 - the Durancian uplift dated as mid-Cretaceous leading to extension and to normal *en*
172 echelon normal faults. The Castellas fault nucleated during this first extensional event
173 and bear early dip-slip normal striations (Matonti et al., 2012),
- 174 - the Early Pyrenean compression with N000° to N170°-trending σ_H (see cited references
175 in Espurt et al. 2012) which reactivated the Castellas fault as sinistral (Matonti et al.,
176 2012) and led to the newly-formed strike-slip faults of the D19 outcrop (Aubert et al.,
177 2019a).
- 178 - the Pyrenean to Alpine folding, triggering the 25°S tilting of the strata and fault zones.
179 Faults of the D19 outcrop were reactivated while the Castellas fault tilting led to an
180 apparent present-day reverse throw (Aubert et al., 2019a).

181



182 **Figure 1** : Geological context of the study area. A: geological map of Provence, B: Simplified structural map with the
 183 location of the Castellas fault and the stratigraphic column (black dashed line); C: Stratigraphic column of exposed
 184 Cretaceous carbonates (modified from Roche, 2008)


185

186

CASTELLAS FAULT ZONE

D19 FAULT ZONE

188 **Figure 2** : A: Castellas fault map on aerial photo with position of the studied transects and the relay zone; B: stereographic
 189 projections of poles to fractures (density contoured) and faults (red lines) (Allmendinger et al., 2013; Cardozo and
 190 Allmendinger, 2013); C: Photos of transects 1 to 3; D: Photomicrographs of carbonate host-rock facies (a) transect 1 coral
 191 rich unit, (b) transect 2 calcarenites, (c) transect 3 calcarenites and (d) fault rocks 1 and 2 (FR1 and FR2); E: Pictures of D19
 192 outcrop F: Stereographic projections of poles to fractures (density contoured), set one faults (orange line) and set 2 faults (red
 193 line) G: Photomicrograph of host rock facies (a) and of fault rocks (b; red stars on the pictures); H: D19 outcrop including
 194 the five faults F1 to F5.

196 **Table 1:** structural properties of the fault zones.

Fault zones	Fault	Direction	Dip	Dip direction	Pitch striation	Fault core thickness	Fault Rocks		
							FR1	FR2	FR3
Castellas	Castellas	060 - 070	40 to 80	N	14 W -	0 to 4 m	sparsely present	majoritarily present	/
D19	F1	030	56	W	28 S	20	/	<10 cm	/
	F2	029	70	E		10 to 15	/	?	variable thickness
	F3	056	80	N		0 to 15	/	?	?
	F4	042	70	W		20	/	in the clasts of FR3	variable thickness
	F5	032	85	N	20 SW	50 to 100	/	/	variable thickness

198

3. DATA BASE

199 We performed 4 transects across the Castellas Fault and the D19 Fault (Fig. 2). Transect 1 is
200 located along the coral rich unit 2. This lithostratigraphic unit is essentially composed of
201 peloidal grains and bioclasts (corals, bivalves and stromatoporidae; Fig. 2Da). Transects 2 and
202 3 cross-cut in unit 3, made of fine calcarenites with peloidal grains and a rich fauna
203 (foraminifera, bivalves, ostracods and echinoderms; Fig. 2Db, c). Transect 4 was conducted
204 along the D19 outcrop (Fig. 3), which exposes Barremian outer platform bioclastic calcarenite
205 with current ripples. The grains are mainly peloids with minor amounts of bioclasts (solitary
206 corals, bryozoans, bivalves and some rare miliolids; Fig. 2Ga).

207 The different tectonic events impacted the fault zone and fault core structure. Three different
208 fault rock types were identified in the fault core of the two investigated fault zones (see Aubert
209 et al. 2019a; Matonti et al., 2012). Fault rock 1 (FR1) results from the extensional activation of
210 the Castellas fault during Durancian uplift. It is a cohesive breccia composed of sub-rounded to
211 rounded clasts from the nearby damage zone and <30% of fine-grey matrix (Fig. 2Dd). Fault
212 rock 2 (FR2), is linked to the strike reactivation of the Castellas fault and to the onset of D19
213 fault zone during the Pyrenean shortening. FR2 presents two morphologies depending on the
214 fault zones. Within Castellas fault, FR2 is an un-cohesive breccia with an orange/oxidized
215 matrix with angular to sub-rounded clasts belonging to the nearby damage zone and from FR1
216 (Fig. 2Dd). In the D19 fault zone, FR2 is a cohesive breccia with rounded clasts of the damage
217 zone and a white cemented matrix (Fig. 2Gb). Fault rock 3 (FR3) is formed by the reactivation
218 of D19 fault zone. The timing of D19 fault reactivation is tricky to determine as it can be related
219 both to Pyrenean or alpine shortening. FR3 is composed of angular to sub-angular clasts from
220 FR2 and from the nearby damage zone dispersed in an orange/oxidized matrix (<20%) (Fig.
221 2Gb).
222

223

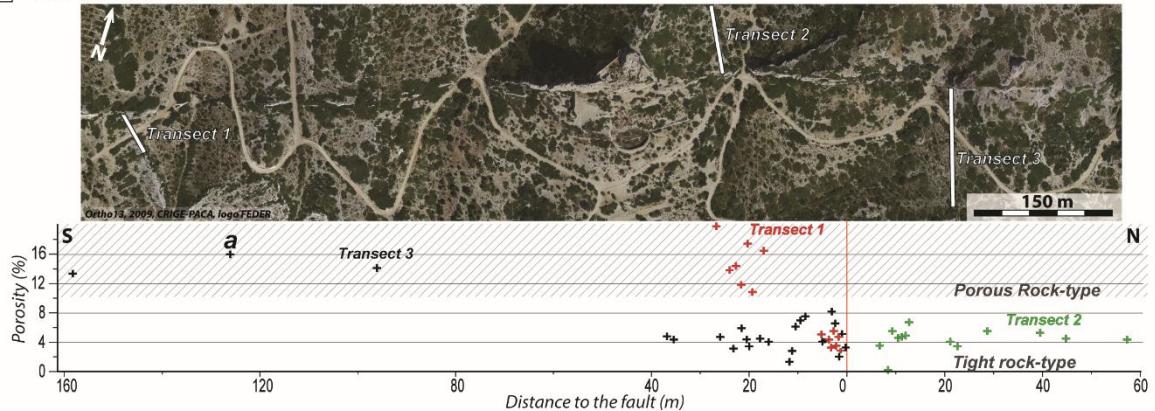
224

4. METHODS

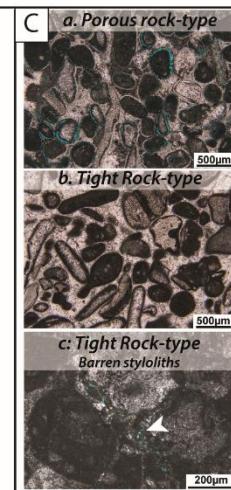
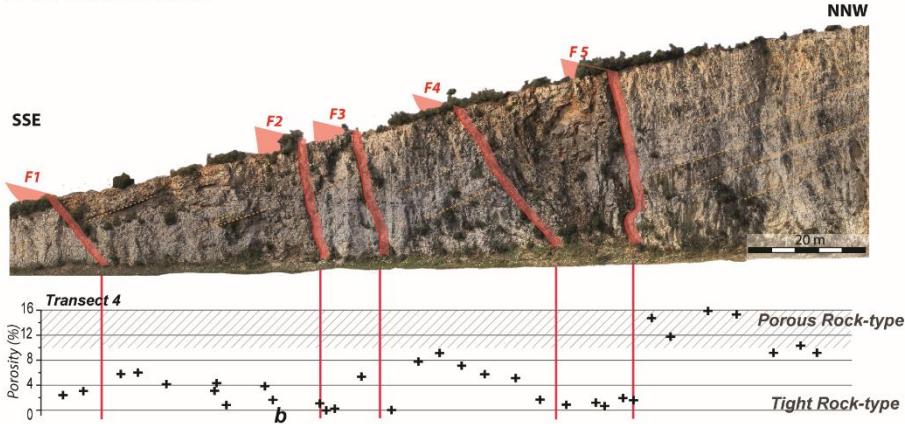
225 The data set comprises 122 samples, 62 from Castellas and 60 from D19 outcrops, collected
226 along the 4 transects. Porosity values were measured on 92 dry plugs with a Micromeritics
227 AccuPyc 1330 helium pycnometer. Microfacies were determined on 92 thin sections.
228 Impregnation with a blue-epoxy resin allowed us to decipher the different pore types. Thin
229 sections were coloured with a solution of hydrochloric acid, Alizarin red S and potassium
230 ferricyanide to distinguish carbonate minerals (calcite and dolomite). Thin sections were
231 analysed using cathodoluminescence to discriminate the different generation of calcite cements.

232 The paragenetic sequence was defined based on superposition and overlap principles observed
233 on thin sections using a Technosyn Cold Cathode Luminescence Model 8200 Mk II coupled to
234 an Olympus_BH2 microscope and to a Zeiss_MR C5. Micrite micro-fabric and major element
235 composition of two samples from the fault zone, two from the host rock and 1 from the D19
236 karst infilling were measured using PHILIPS XL30 ESEM with a beam current set at 20 kV on
237 fresh sample surfaces and on thin sections. To determine stable carbon and oxygen isotopes
238 ($\delta^{13}\text{C}$ and $\delta^{18}\text{O}$), 204 microsamples (<5 mg) were drilled, 194 of them were micro-drilled from
239 polished thin sections with an 80 μm diameter micro-sampler (Merkantec Micromill) at the VU
240 University (Amsterdam, The Netherlands). We micro-sampled bulk rocks (57), sparitic cements
241 (101), fault rocks (9) and micrite (27). The Bulk rock values are related to a non-selective
242 sampling giving information on the whole rock isotopic values. These values do not capture the
243 signature of isolated cement (Swart, 2015). Carbon and oxygen isotopic values were acquired
244 with Thermo Finnigan Delta + mass spectrometer equipped with a GASBENCH preparation
245 device at VU University Amsterdam. The internationally used standard IAEA-603, with official
246 values of +2.46‰ for $\delta^{13}\text{C}$ and -2.37‰ for $\delta^{18}\text{O}$, is measured as a control standard. The standard
247 deviation (SD) of the measurements is respectively < 0.1‰ and < 0.2 ‰ for $\delta^{13}\text{C}$ and $\delta^{18}\text{O}$,
248 respectively. Ten whole rock samples were analysed using a Gasbench II connected to a
249 Thermo Fisher Delta V Plus mass spectrometer at the FAU University (Erlangen, Germany).
250 Measurements were calibrated by assigning $\delta^{13}\text{C}$ values of +1.95‰ to NBS19 and -47.3‰ to
251 IAEA-CO9 and $\delta^{18}\text{O}$ values of -2.20‰ to NBS19. All values are reported in per mil relative to
252 V-PDB.

253 5. RESULTS


254 1. MICROPOROSITY AND POROSITY

255 Porosities measured on the 92 samples show a strong decrease towards the fault core (Fig. 3):
256 dropping from more than 10% in the host carbonates (mean: 15%, SD: 2.68 for Castellas and
257 mean 12.3%, SD: 2.52 for D19) to less than 5% within fault zones (mean: 4.8%, SD: 2.07 for
258 Castellas and mean: 3.16%, SD: 2.35 for D19).



259 Along transects, some porosity variations occur as follows:

- 260 - North of the Castellas fault, along the 60 m-long transect 2 the porosity is constantly
261 lower than 7% (mean of 4.4%, SD: 1.53; Fig. 3A).
- 262 - South of the Castellas fault, the reduced porosity zone is wider than 40 m in transect 3
263 and 30 m in transect 1 (Fig. 3A). In a 10 m-thick zone from the fault plane, porosity
264 reduction occurs with lower values in transect 1 (average 4.9%) than in transect 3
265 (average 5.6%).
- 266 - In the D19 fault zone, the lowest porosity values are found in narrow zones around the
267 faults (less than 2 m-wide) and in the lens between F4 and F5. Though, this porosity
268 decrease is not homogeneous in fault zone and high values are found north of F1 and
269 F3 (Fig. 3B).

271 A **Castellas Fault zone**

271 B **D19 Fault zone**

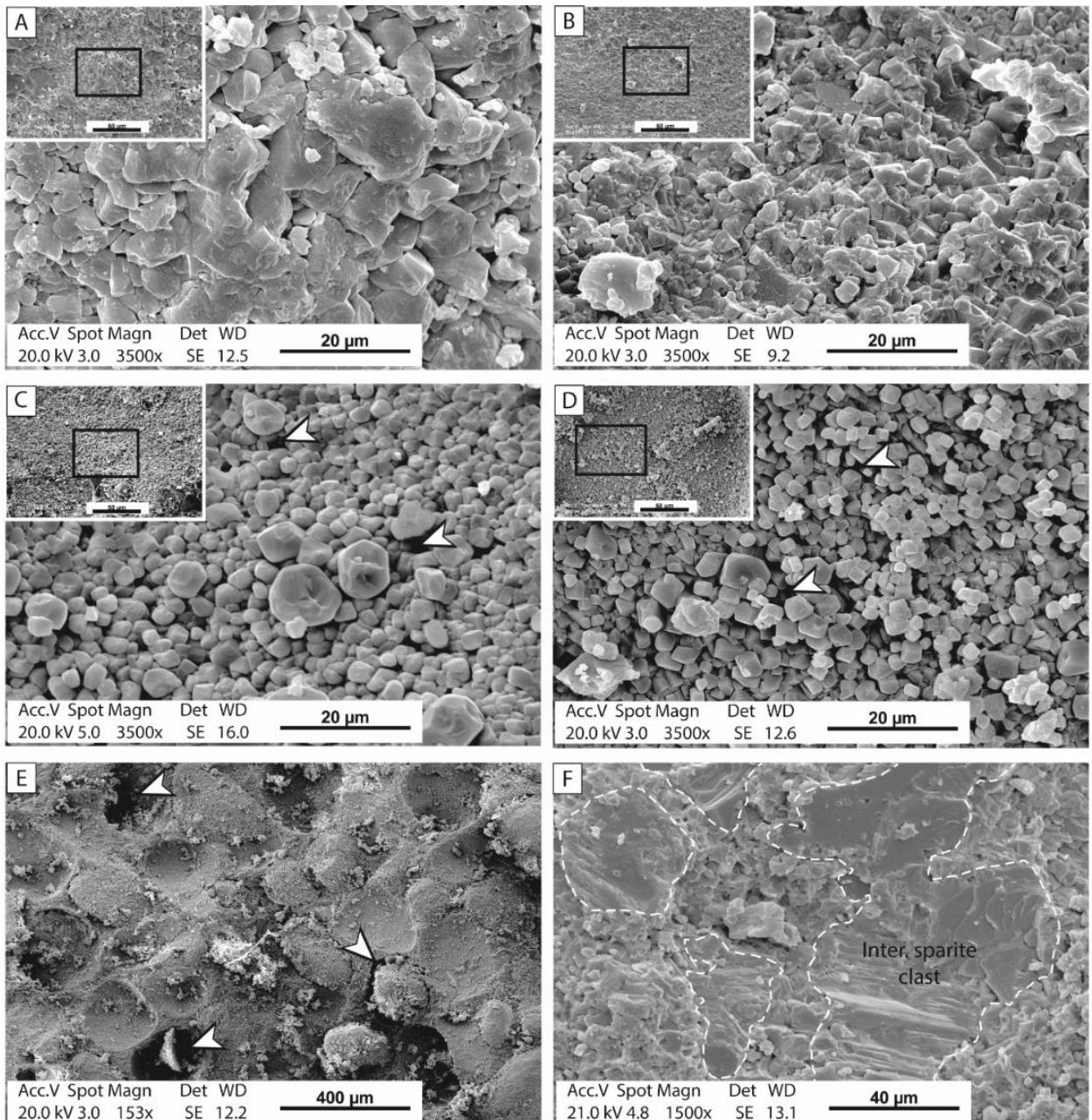
271

272 **Figure 3: A: Castellas fault zone aerial view (Ortho13, 2009, CRIGE-PACA, logo FEDER) and porosity values measured**
273 **along transect 1 (Red Cross), transect 2 (green cross) and transect 3 (black cross); B: porosity values measured along D19**
274 **fault zone; C: Pore types in the host rock (a) and in the fault zones (b and c).**

275 **Microscope observation of thin sections impregnated with blue-epoxy resin allowed to**
276 **identified a porous rock-type with $\phi > 10\%$ mainly in micritized grains as microporosity and**
277 **moldic porosity (Fig. 3Ca), and a tight rock-type with $\phi < 5\%$, where the porosity is mostly**
278 **linked to barren stylolites (Fig. 3Cb, c).**

279 **2. DIAGENETIC PHASES**

280 **a. Micrite micro-fabric**


281 Micritised bioclasts, ooids and peloids were observed after SEM analysed of **two** fault zones
282 samples and **two** host rock samples. Two micro-fabrics of micrite occur with specific crystal
283 shape, sorting and contacts according to Fournier et al. (2011). Within both fault zones, the
284 micrite is tight, with compact subhedral mosaic crystals **of less than 10 µm-wide** (MF1; Fig.
285 4A, B). In the host rock, the micrite is loosely packed, and partially coalescent with puncic
286 rarely serrate, subhedral to euhedral crystals **of less than 5 µm-wide** (MF3; Fig. 4C, D, E). MF1
287 correlates with low porosity values (< 5%), while MF3 with higher porosity (> 10%).

288 **b. Diagenetic cements**

289 Eight **different** cement stages were identified (Fig. 5). The red stain links to Alizarin Red S
290 coloration **and** shows that all visible cements made of calcite, which exhibit variable
291 characteristics (morphology, luminescence, size and location).

292 The first **two** cement phases occur in both fault zones. The first cement (C0) is non-luminescent
293 isopachous calcite of constant thickness ($\sim 10 \mu\text{m}$) around grains (Fig. 5A). The second cement
294 (C1) is divided in two sub-phases: a non-luminescent calcite, C1a, with a crystal size ranging
295 from **50 μm to more than 200 μm** , a dog-tooth morphology in intergranular spaces, and a bright
296 luminescence calcite, C1b, covering C1a with a maximum thickness of 100 μm (Fig. 5A, B,
297 D, G). C1b also fills micro-porosity in micritised grains (Fig. 5B). C1b **areal occurrence**
298 strongly increases in Castellas fault zone.

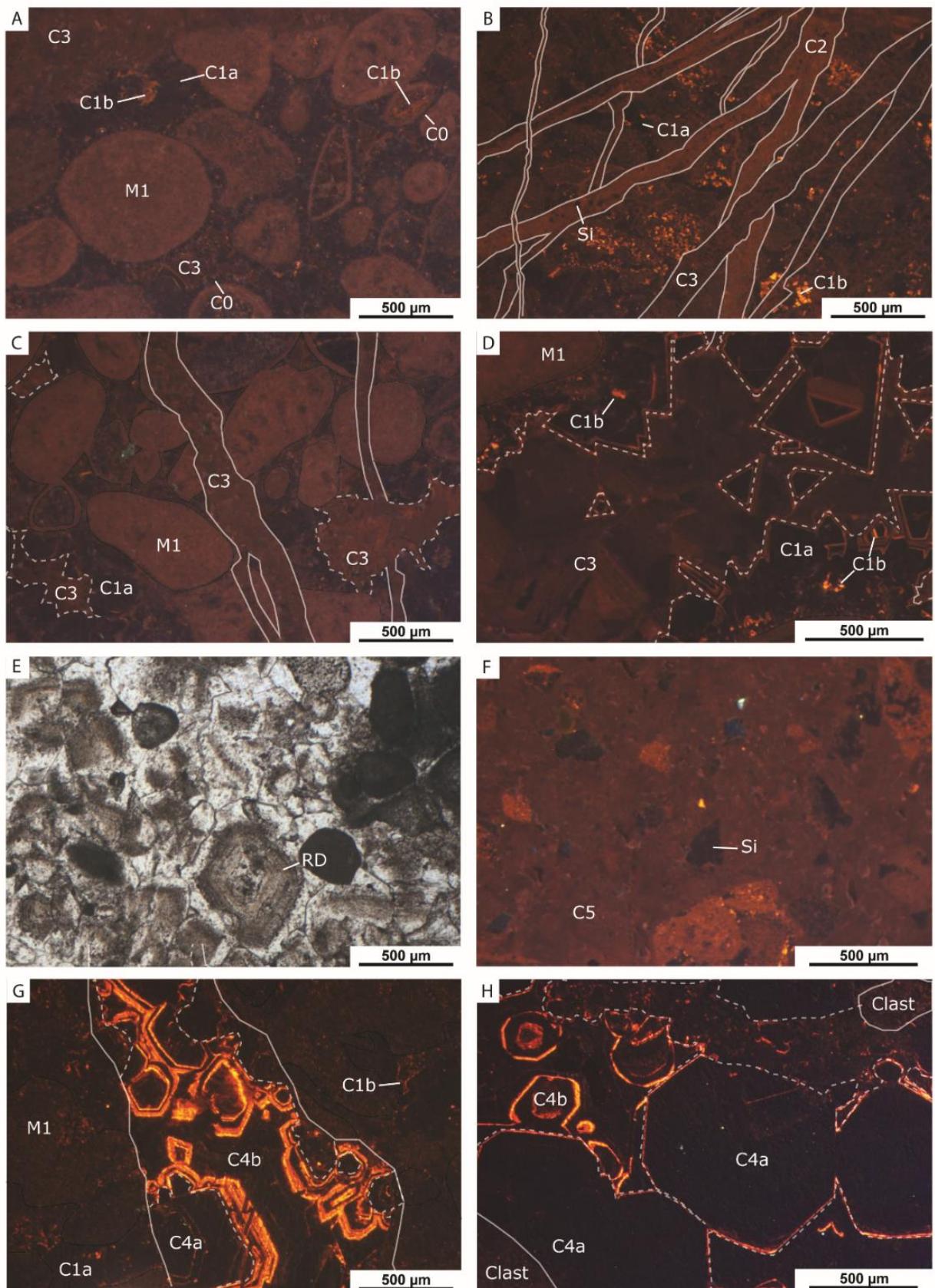

299

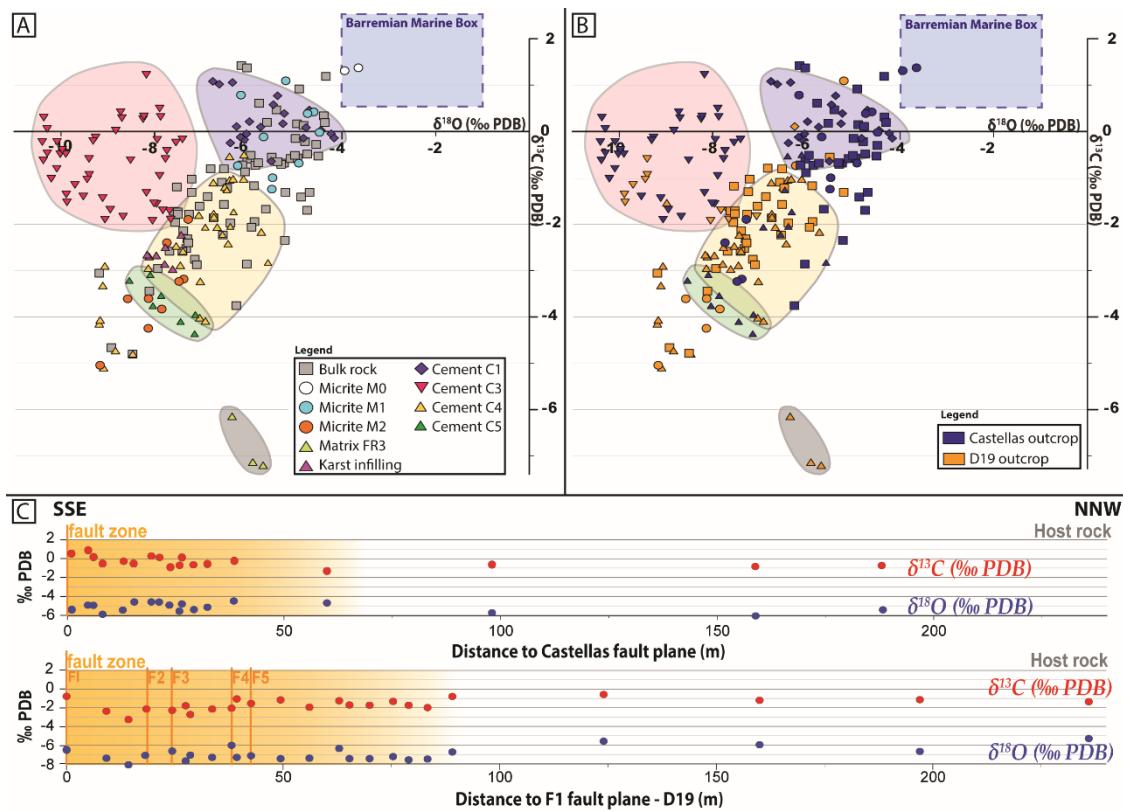
Figure 4 : MEB pictures of micrite micro-fabric and microporosity (white arrows); A: MF1 micrite micro-fabric in Castellas fault zone (2.5 m to fault plane); B: MF1 micrite micro-fabric within D19 fault zones (2 m away from F5 fault plane); C: MF3 micrite micro-fabric within Castellas host rock (188 m away from the fault plane); D: MF3 micrite micro-fabric within D19 host rock (95 m away from F5 fault plane); E: D19 host rock moldic porosity; F: Karst infilling.

300 Five cements or replacive phases **extensively occur** in the Castellas sector and rarely in the D19
 301 outcrop:

302 - C2 is a sparitic cement, with dull-orange luminescent crystals **sized of maximum 100**
 303 **μm** only found **in veins of the** fault core (Fig. 5B). SEM measurements show the Si and
 304 Al in the C2 veins. Most of Si crystals are automorphic **and have black luminescence.**

Figure 5 : Thin-sections under cathodoluminescence; A: Calcareous in transect 3 with micritised grain (M1), and intergranular volume cemented with C1 a and b and C3; B: C2 (with Si) and C3 veins affecting Castellas FRI clasts with micritized grains cemented by C1b; C: C3 veins, cements and intergranular volumes in Castellas fault zone; D: C1 (a and b) and C3 cementing moldic porosity of transect 3 calcarenite; E: FRI matrix with phantom of cloudy appearance replacive dolomite (RD); F: FRI matrix de-dolomitized by C5 containing quartz grains; G: C4 (a and b) cementing vein of D19 fault zone; H: matrix of D19 FRI2 cemented by C4 (a and b).

- C3 is a blocky calcite with non to red-dull luminescence in veins, moldic and intergranular pores (Fig. 5B, C, D). This cement also occurs in few veins of D19 sectors but is not restricted only to the fault zone.
- Phantoms of planar-e (euhedral) dolomite crystals (Sibley and Gregg, 1987) with a maximum size of 500 μm affect the matrix of FR1 (Fig. 5E). They are vestiges of a previous dolomitization phase. They have a cloudy appearance caused by solid micritic inclusion inside crystals and can be considered as replacive dolomite (RD; Machel, 2004). Within the FR1 matrix, an important concentration of angular grains of quartz with a maximum size of 300 μm is noticed (Fig. 5F).
- A blocky calcite C4 (referred to as S2 in Aubert et al. (2019a)) is mainly present in veins of the D19 outcrop, in matrix of FRA, and intergranular and moldic pores (Fig. 5G, H). This cement shows zonation of non-luminescent and bright luminescent bands and can be divided in two sparitic sub-phases: C4a which is non-luminescent with some highly luminescent bands and C4b is bright luminescent with some thin non-luminescent zones. C4a occurs in lesser proportion in some veins along transect 2 and 3 of the Castellas fault.
- A sparitic cement C5, with a red-dull luminescence replaces the RD phase (Fig. 5F).


323 c. Additional diagenetic features

324 In addition to cementation phases, other diagenetic elements affected both fault zones. Karst
 325 infilling occurs in the F2 fault zone of the D19 outcrop. It is composed of well-sorted grains
 326 deposited in laminated layers. This karst deposit presents a stack of alternating micrite-rich and
 327 grain-rich layers from the latter composed of former blocky calcite belonging to dissolved
 328 grainstones. The laminated layers are affected by veins and stylolites; some of these are
 329 deformed due to the grain fall on sediments. Micritic layers have been observed under SEM,
 330 and the micrite appeared tight with compact subhedral mosaic crystals (Fig. 4F). We observed
 331 oxide filling mainly in the Castellas area in dissolution voids affecting C1a, C1b and C3
 332 cementation phases and in D19 in karstic fill. The areal amount of oxides increase close to
 333 stylolites.

334 3. CARBON AND OXYGEN ISOTOPES

335 Isotope measurements were realized on samples collected along transects of the fault zones. A
 336 hundred and eighty-nine measurements of C and O isotopes were performed on 16 samples and
 337 32 thin sections (Fig. 6A, table 2).

338 Sampling was done in bulk rock (66), sparitic cement (101; veins, intergranular volume and
 339 fault rock cements) and in fault rocks (10) in order to determine their isotopic signature. Isotopic
 340 values range from $-10.40\text{\textperthousand}$ to $-3.65\text{\textperthousand}$ for $\delta^{18}\text{O}$ and from $-7.20\text{\textperthousand}$ to $+1.42\text{\textperthousand}$ for $\delta^{13}\text{C}$ (Fig. 6A,
 341 B, table 2). The bulk rock values range from $-9.18\text{\textperthousand}$ to $-4.34\text{\textperthousand}$ for $\delta^{18}\text{O}$ and from $-4.80\text{\textperthousand}$ to
 342 $+1.19\text{\textperthousand}$ for $\delta^{13}\text{C}$ (Fig. 6A, table 2). These values are split in two sets. Set 1 includes transect 1
 343 and 3 of the Castellas Fault. Bulk values range from $-6.07\text{\textperthousand}$ to $-4.34\text{\textperthousand}$ for $\delta^{18}\text{O}$ and from
 344 $-1.41\text{\textperthousand}$ to $+1.19\text{\textperthousand}$ for $\delta^{13}\text{C}$. Set 2 includes transect 2 (Castellas) and transect 4 (D19). Bulk
 345 values range from $-9.18\text{\textperthousand}$ to $-5.20\text{\textperthousand}$ for $\delta^{18}\text{O}$ and from $-4.80\text{\textperthousand}$ to $-0.60\text{\textperthousand}$ for $\delta^{13}\text{C}$ (Fig. 6B,
 346 table 2). In transect 3, the isotopic values only slightly vary, ranging from $-6.13\text{\textperthousand}$ to $-4.50\text{\textperthousand}$
 347 for $\delta^{18}\text{O}$ and from $-1.41\text{\textperthousand}$ to $+0.47\text{\textperthousand}$ for $\delta^{13}\text{C}$ respectively (Fig. 6C, table 2). On the contrary,
 348 values are more variable along the D19 transect; they range from $-9.18\text{\textperthousand}$ to $-5.20\text{\textperthousand}$

351 **Figure 6** : Isotopic values of $\delta^{13}\text{C}$ and $\delta^{18}\text{O}$ measured on bulk rock, cement phases, and micrite. Range values of "Urgonian
352 marine box" from Moss & Tucker (1995) and Godet et al. (2006); A: set of values sorted by the nature of diagenetic phases
353 and B: values sorted by the fault zone; C: lateral evolution of $\delta^{13}\text{C}$ and $\delta^{18}\text{O}$ bulk isotopic values in Castellas (top) and in D19
354 (bottom) fault zones.

355 for $\delta^{18}\text{O}$ and from $-4.80\text{\textperthousand}$ to $-0.60\text{\textperthousand}$ for $\delta^{13}\text{C}$ (Fig. 6C, table 2). The $\delta^{13}\text{C}$ values deplete
356 approaching to faults, especially south of F2.

357 Isotopic values of cements filling veins, intergranular volumes, karst infillings, and fault rocks
358 are divided into 5 groups (Fig. 6A, table 2):

- 359 - Isotopic values of C1 cement fluctuates from $-6.76\text{\textperthousand}$ to $-4.45\text{\textperthousand}$ for $\delta^{18}\text{O}$ and from -
360 1.28 to $+1.08\text{\textperthousand}$ for $\delta^{13}\text{C}$;
- 361 - Isotopic values of C3 cement ranges from $-10.40\text{\textperthousand}$ to $-6.73\text{\textperthousand}$ for $\delta^{18}\text{O}$ and from -2.09
362 to $+1.22\text{\textperthousand}$ for $\delta^{13}\text{C}$;
- 363 - Isotopic values of C4 cement in FR1 and FR2 matrix and in karst infillings ranges from
364 $-9.18\text{\textperthousand}$ to $-4.60\text{\textperthousand}$ for $\delta^{18}\text{O}$ and from $-5.10\text{\textperthousand}$ to $-0.74\text{\textperthousand}$ for $\delta^{13}\text{C}$ with a positive
365 covariance between $\delta^{18}\text{O}$ and $\delta^{13}\text{C}$. FR2 matrix values (from -6.55 to $-7.06\text{\textperthousand}$ for $\delta^{18}\text{O}$
366 and from -1.10 to $-2.24\text{\textperthousand}$ for $\delta^{13}\text{C}$) present slightly less depleted values than karst
367 infillings with mean values of $-7.83\text{\textperthousand}$ and $-2.53\text{\textperthousand}$ respectively for $\delta^{18}\text{O}$ and $\delta^{13}\text{C}$
368 respectively. (Fig. 6A). In the Castellas fault, 4 isotopic values from two veins are
369 enriched with means of -6.25 and $-4.2\text{\textperthousand}$ for $\delta^{18}\text{O}$ -0.64 and $-0.09\text{\textperthousand}$ for $\delta^{13}\text{C}$ having
370 similar positive covariance than the other C4 values;
- 371 - Isotopic values of C5 cement, sampled in FR1 matrix display mean of $-7.49\text{\textperthousand}$ for $\delta^{18}\text{O}$
372 and $-4.01\text{\textperthousand}$ for $\delta^{13}\text{C}$ (Fig. 6A);

373 - Isotopic values of FR3 matrix with a mean of -5.98‰ for $\delta^{18}\text{O}$ and -6.83‰ for $\delta^{13}\text{C}$
 374 (Fig. 6A)

375

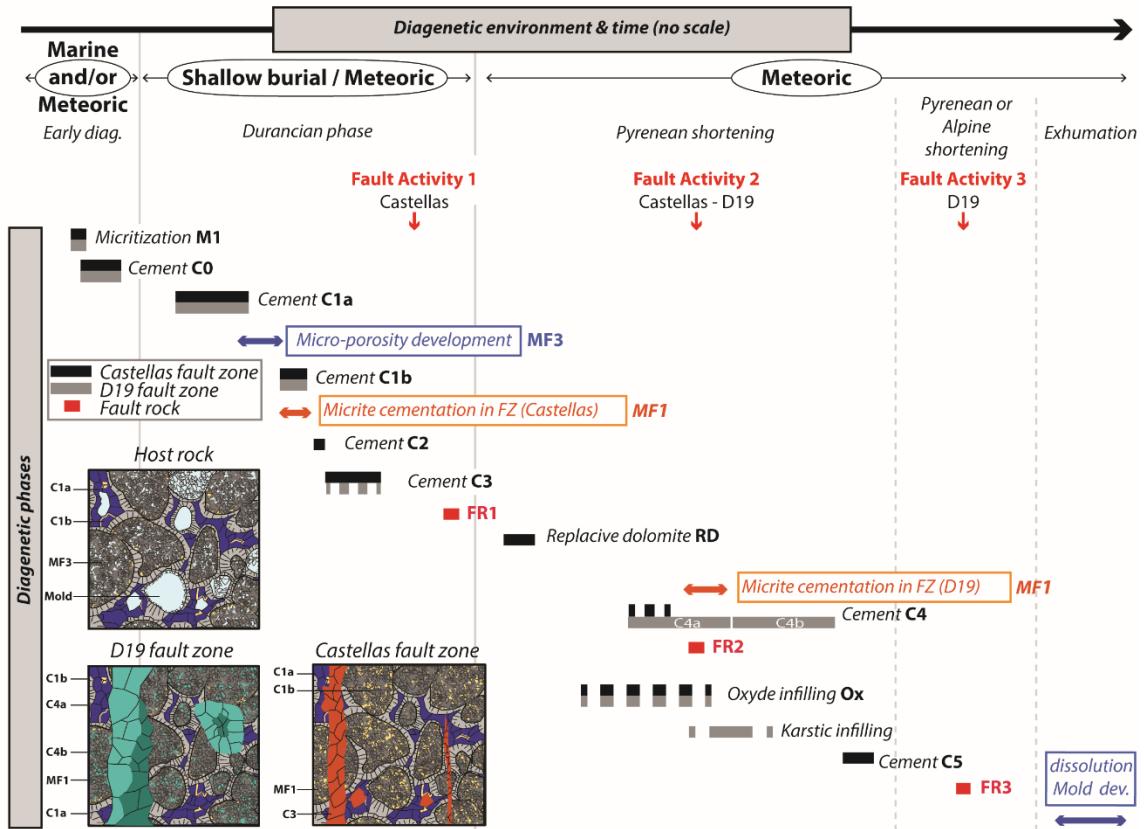
376 **Table 2:** Carbon and oxygen isotope values of bulk carbonates for Castellas fault zone and D19
 377 fault zones. B: bulk measurement; M: micrite value; C1, C3, C4, C5: cement isotopic value;
 378 FR: fault rock isotopic value.

Transect	Sample	$\delta^{13}\text{C}$ (‰VPDB)	$\delta^{18}\text{O}$ (‰VPDB)	Class	Distance to F. (m)
Transect 1 (Cast.)	201	1,19	-4,34	B	1,3
Transect 1 (Cast.)	201	1,02	-6,62	C1	1,3
Transect 1 (Cast.)	201	1,31	-3,94	M	1,3
Transect 1 (Cast.)	201	1,37	-3,65	M	1,3
Transect 1 (Cast.)	213	-0,68	-5,24	B	22,7
Transect 1 (Cast.)	213	-0,58	-5,10	B	22,7
Transect 1 (Cast.)	213	-0,18	-6,09	C1	22,7
Transect 1 (Cast.)	213	0,03	-4,45	C1	22,7
Transect 1 (Cast.)	213	0,09	-4,77	C1	22,7
Transect 1 (Cast.)	213	-2,09	-6,92	C4	22,7
Transect 1 (Cast.)	213	-0,68	-4,92	M	22,7
Transect 2 (Cast.)	c3b17	-0,52	-5,95	B	4,6
Transect 2 (Cast.)	c3b17	-2,07	-6,38	C4	4,6
Transect 2 (Cast.)	c3b7	-0,64	-5,51	B	9,3
Transect 2 (Cast.)	c3b26	-3,76	-6,26	B	22,6
Transect 2 (Cast.)	c3b26	-2,85	-5,58	C4	22,6
Transect 2 (Cast.)	c3b26	-1,31	-4,69	B	57,3
Transect 2 (Cast.)	c3b7	-1,76	-6,31	C1	57,3
Transect 2 (Cast.)	c3b7	-1,28	-6,46	C1	57,3
Transect 2 (Cast.)	c3b26	-2,35	-5,22	M	57,3
Transect 2 (Cast.)	c3b26	-1,70	-4,75	M	57,3
Transect 3 (Cast.)	327	-0,24	-7,55	C3	0,3
Transect 3 (Cast.)	325	-1,90	-9,06	C3	0,3
Transect 3 (Cast.)	325	-1,69	-8,95	C3	0,3
Transect 3 (Cast.)	327	-3,11	-8,09	C4	0,3
Transect 3 (Cast.)	327	0,47	-5,40	B	1,0
Transect 3 (Cast.)	327	-0,18	-7,95	C3	1,0
Transect 3 (Cast.)	327	-0,17	-7,41	C3	1,0
Transect 3 (Cast.)	328	0,10	-5,74	C1	1,6
Transect 3 (Cast.)	328	-1,32	-8,18	C3	1,6
Transect 3 (Cast.)	328	-0,59	-7,77	C3	1,6
Transect 3 (Cast.)	328	-0,42	-7,74	C3	1,6
Transect 3 (Cast.)	328	-0,13	-9,26	C3	1,6
Transect 3 (Cast.)	328	0,02	-8,83	C3	1,6

Transect 3 (Cast.)	328	0,29	-8,70	C3	1,6
Transect 3 (Cast.)	328	0,42	-8,73	C3	1,6
Transect 3 (Cast.)	328	0,50	-7,89	C3	1,6
Transect 3 (Cast.)	328	1,22	-8,18	C3	1,6
Transect 3 (Cast.)	333	-1,84	-8,67	C3	1,6
Transect 3 (Cast.)	333	-0,96	-7,89	C3	1,6
Transect 3 (Cast.)	328	-0,14	-4,17	C4	1,6
Transect 3 (Cast.)	328	-0,05	-4,23	C4	1,6
Transect 3 (Cast.)	329	0,16	-4,95	B	2,4
Transect 3 (Cast.)	333	-0,25	-6,38	C1	4,6
Transect 3 (Cast.)	333	-0,12	-6,17	C1	4,6
Transect 3 (Cast.)	333	-0,62	-8,52	C3	4,6
Transect 3 (Cast.)	333	-0,12	-5,67	M	4,6
Transect 3 (Cast.)	333	-0,02	-4,48	M	4,6
Transect 3 (Cast.)	333	0,42	-4,60	M	4,6
Transect 3 (Cast.)	337	0,19	-5,59	B	9,5
Transect 3 (Cast.)	302	-0,53	-4,50	B	11,8
Transect 3 (Cast.)	302	-0,49	-4,74	B	11,8
Transect 3 (Cast.)	302	-0,62	-10,38	C3	11,8
Transect 3 (Cast.)	302	-0,49	-10,02	C3	11,8
Transect 3 (Cast.)	305	0,33	-4,38	B	16,0
Transect 3 (Cast.)	306	0,21	-4,35	B	17,8
Transect 3 (Cast.)	307	-0,01	-4,46	B	18,2
Transect 3 (Cast.)	308	-0,57	-4,95	B	20,0
Transect 3 (Cast.)	308	-1,44	-9,11	C3	20,0
Transect 3 (Cast.)	308	-0,23	-10,40	C3	20,0
Transect 3 (Cast.)	308	-0,22	-10,08	C3	20,0
Transect 3 (Cast.)	309	-1,41	-4,87	B	20,5
Transect 3 (Cast.)	309	-0,52	-5,01	B	20,5
Transect 3 (Cast.)	309	-0,15	-4,82	C1	20,5
Transect 3 (Cast.)	309	-1,56	-7,96	C3	20,5
Transect 3 (Cast.)	309	-1,55	-8,01	C3	20,5
Transect 3 (Cast.)	312	0,12	-4,81	B	23,2
Transect 3 (Cast.)	314	-0,71	-5,30	B	25,9
Transect 3 (Cast.)	314	-0,80	-10,09	C3	25,9
Transect 3 (Cast.)	314	-0,49	-9,90	C3	25,9
Transect 3 (Cast.)	314	-0,47	-10,29	C3	25,9
Transect 3 (Cast.)	314	-0,40	-9,97	C3	25,9
Transect 3 (Cast.)	314	0,06	-10,30	C3	25,9
Transect 3 (Cast.)	316	-1,24	-5,50	B	29,2
Transect 3 (Cast.)	316	-1,00	-5,48	B	29,2
Transect 3 (Cast.)	316	-0,22	-4,79	B	29,2
Transect 3 (Cast.)	316	-1,02	-10,21	C3	29,2
Transect 3 (Cast.)	316	-0,18	-9,31	C3	29,2
Transect 3 (Cast.)	316	0,30	-10,37	C3	29,2
Transect 3 (Cast.)	318	-0,28	-4,53	B	35,4

Transect 3 (Cast.)	320	-0,68	-5,79	B	96,1
Transect 3 (Cast.)	322	-0,88	-6,07	B	158,0
Transect 3 (Cast.)	323	-0,65	-5,37	B	188,0
Castellas (ZF1)	Z1,1	0,17	-5,26	C1	0,0
Castellas (ZF1)	Z1,1	0,39	-5,23	C1	0,0
Castellas (ZF1)	Z1,1	0,46	-4,70	C1	0,0
Castellas (ZF1)	Z1,2	0,21	-5,98	C1	0,0
Castellas (ZF1)	Z1,1	-0,55	-6,40	C4	0,0
Castellas (ZF1)	Z1,1	-0,52	-6,10	C4	0,0
Castellas (ZF1)	Z1,2	-4,12	-7,45	C5	0,0
Castellas (ZF1)	Z1,2	-0,15	-4,99	FR	0,0
Castellas (ZF1)	Z1,2	0,39	-4,73	M	0,0
Castellas (ZF1)	Z1,2	0,61	-5,77	M	0,0
Castellas (ZF1)	Z1,1	0,78	-6,16	M	0,0
Castellas (ZF2)	Z2,2	0,77	-5,38	C1	0,0
Castellas (ZF2)	Z2,7	-1,40	-9,52	C3	0,0
Castellas (ZF2)	Z2,7	-4,38	-7,15	C5	0,0
Castellas (ZF2)	Z2,7	-3,97	-7,13	C5	0,0
Castellas (ZF2)	Z2,7	-3,78	-8,04	C5	0,0
Castellas (ZF2)	Z2,7	-3,56	-7,86	C5	0,0
Castellas (ZF2)	Z2,7	-3,24	-7,48	C5	0,0
Castellas (ZF2)	Z2,7	-3,23	-8,54	C5	0,0
Castellas (ZF2)	Z2,2	0,58	-5,47	FR	0,0
Castellas (ZF2)	Z2,2	0,92	-4,91	FR	0,0
Castellas (ZF2)	Z2,7	-1,68	-5,63	FR	0,0
Castellas (ZF2)	Z2,7	-2,24	-6,55	FR	0,0
Castellas (ZF2)	Z2,7	-3,18	-7,38	M	0,0
Castellas (ZF2)	Z2,7	-2,86	-6,03	FR	1,0
Castellas (ZF5)	Z5,4	0,27	-8,25	C3	0,0
Castellas (ZF5)	Z5,4	0,31	-7,87	C3	0,0
Castellas (ZF5)	Z5,4	0,32	-8,23	C3	0,0
Castellas (ZF5)	Z5,4	1,06	-6,34	C1	0,4
Castellas (ZF5)	Z5,4	1,08	-6,76	C1	0,4
Castellas (ZF5)	Z5,4	1,05	-7,13	FR	0,4
Castellas (ZF5)	Z5,4	1,37	-6,03	FR	0,4
Castellas (ZF5)	Z5,4	1,42	-6,15	FR	0,4

Transect	Sample	$\delta^{13}\text{C}$ (‰VPDB)	$\delta^{18}\text{O}$ (‰VPDB)	Class	Distance to F1 (m)
Transect 4 (D19)	3B	-0,81	-6,52	B	0,0
Transect 4 (D19)	3B	-1,20	-6,50	C1	0,0
Transect 4 (D19)	3B	-1,02	-6,33	C1	0,0
Transect 4 (D19)	3B	0,11	-6,25	C1	0,0
Transect 4 (D19)	3B	-0,74	-6,23	M	0,0
Transect 4 (D19)	9	-2,32	-7,30	B	9,2


Transect 4 (D19)	13a	-3,44	-8,11	B	14,3
Transect 4 (D19)	13a	-2,96	-7,93	B	14,3
Transect 4 (D19)	13C	-2,97	-7,62	M	14,3
Transect 4 (D19)	13C	-2,86	-7,79	M	14,3
Transect 4 (D19)	13C	-2,70	-8,12	M	14,3
Transect 4 (D19)	13C	-2,67	-7,96	M	14,3
Transect 4 (D19)	13C	-2,66	-8,16	M	14,3
Transect 4 (D19)	13C	-2,50	-7,77	M	14,3
Transect 4 (D19)	13C	-1,54	-8,98	M	14,3
Transect 4 (D19)	17	-2,58	-7,68	B	18,7
Transect 4 (D19)	14A	-1,97	-6,38	B	18,7
Transect 4 (D19)	14A	-1,87	-6,74	B	18,7
Transect 4 (D19)	15B	-2,23	-7,43	B	18,7
Transect 4 (D19)	17	-1,05	-6,40	C1	18,7
Transect 4 (D19)	14A	-1,77	-6,74	C1	18,7
Transect 4 (D19)	14A	-2,42	-6,43	C4	18,7
Transect 4 (D19)	14A	-2,06	-6,67	C4	18,7
Transect 4 (D19)	21	-2,23	-6,54	B	24,4
Transect 4 (D19)	RSG	-1,90	-7,66	B	28,4
Transect 4 (D19)	RSG	-1,70	-7,83	B	28,4
Transect 4 (D19)	RSD	-2,87	-7,10	B	29,5
Transect 4 (D19)	RSD	-2,76	-7,14	B	29,5
Transect 4 (D19)	RSD	-0,93	-9,40	C3	29,5
Transect 4 (D19)	RSF1	-2,40	-7,28	B	34,7
Transect 4 (D19)	RSF2	-2,14	-7,39	B	34,7
Transect 4 (D19)	RSF2	-1,78	-7,27	B	34,7
Transect 4 (D19)	RSF1	-1,03	-9,44	C3	34,7
Transect 4 (D19)	RSF2	-1,93	-8,05	C3	34,7
Transect 4 (D19)	RSF2	-0,59	-9,40	C3	34,7
Transect 4 (D19)	RSF2	-2,95	-8,14	C4	34,7
Transect 4 (D19)	RSE 1	-2,53	-7,33	B	35,0
Transect 4 (D19)	RSE 2	-2,59	-7,41	B	35,0
Transect 4 (D19)	RSE 1	-1,71	-7,68	C3	35,0
Transect 4 (D19)	RSE 2	-1,84	-6,73	C3	35,0
Transect 4 (D19)	57	-2,07	-5,93	B	38,1
Transect 4 (D19)	57	-1,94	-5,87	B	38,1
Transect 4 (D19)	57	-1,83	-7,06	C3	38,1
Transect 4 (D19)	57	-1,10	-6,75	C3	38,1
Transect 4 (D19)	57	-4,02	-7,04	C4	38,1
Transect 4 (D19)	57	-2,17	-5,72	C4	38,1
Transect 4 (D19)	57	-1,58	-6,52	FR	38,1
Transect 4 (D19)	57	-7,20	-5,68	M	38,1
Transect 4 (D19)	57	-7,13	-5,90	M	38,1
Transect 4 (D19)	28b	-1,03	-7,21	B	39,3
Transect 4 (D19)	28b	-1,03	-6,10	C3	39,3
Transect 4 (D19)	28b	-4,09	-6,92	C4	39,3

Transect 4 (D19)	28b	-2,58	-7,40	C4	39,3
Transect 4 (D19)	28b	-2,47	-7,54	C4	39,3
Transect 4 (D19)	30a	-1,61	-7,04	B	42,6
Transect 4 (D19)	30a	-1,41	-6,87	B	42,6
Transect 4 (D19)	30a	-3,23	-7,03	C4	42,6
Transect 4 (D19)	30a	-2,89	-7,45	C4	42,6
Transect 4 (D19)	24a	-1,21	-7,52	B	51,1
Transect 4 (D19)	27b	-1,92	-7,48	B	57,9
Transect 4 (D19)	31	-1,24	-6,44	B	65,0
Transect 4 (D19)	32	-1,75	-7,50	B	67,4
Transect 4 (D19)	34	-1,79	-7,49	B	72,2
Transect 4 (D19)	36	-1,32	-7,21	B	77,8
Transect 4 (D19)	38	-1,73	-7,59	B	81,5
Transect 4 (D19)	62	-1,96	-7,56	B	86,0
Transect 4 (D19)	42	-0,81	-6,80	B	91,9
Transect 4 (D19)	63	-0,55	-5,50	B	124,0
Transect 4 (D19)	64	-1,17	-5,88	B	160,0
Transect 4 (D19)	65	-1,10	-6,57	B	197,0
Transect 4 (D19)	66	-1,31	-5,21	B	236,0
Transect 4 (D19)	60a	-3,06	-9,18	B	255,2
Transect 4 (D19)	60B	-4,80	-8,47	B	255,2
Transect 4 (D19)	60B	-4,66	-8,92	B	255,2
Transect 4 (D19)	61	-1,53	-9,87	C3	255,2
Transect 4 (D19)	61	-1,36	-9,89	C3	255,2
Transect 4 (D19)	60a	-1,15	-9,70	C3	255,2
Transect 4 (D19)	60a	-3,32	-9,11	C4	255,2
Transect 4 (D19)	60B	-5,10	-9,09	C4	255,2
Transect 4 (D19)	60B	-4,73	-8,84	C4	255,2
Transect 4 (D19)	60B	-4,15	-9,18	C4	255,2
Transect 4 (D19)	60B	-4,07	-9,16	C4	255,2
Transect 4 (D19)	60B	-2,90	-9,06	C4	255,2
Transect 4 (D19)	60a	-3,83	-7,85	M	255,2
Transect 4 (D19)	60B	-5,04	-9,17	M	255,2
Transect 4 (D19)	60B	-4,25	-8,14	M	255,2
Transect 4 (D19)	60B	-3,61	-8,58	M	255,2
Transect 4 (D19)	60B	-3,61	-8,13	M	255,2

379 **6. DISCUSSION**

380 **1. DIAGENETIC EVOLUTION OF THE FAULT ZONES**

381 The chronological relations between cements can be established **via** cross-cutting relations
 382 and inclusion principles. Indeed, the veins filled with cement C2 cross-cut C1a and C1b **cements**
 383 (Fig. 5B). Thus, C2 cementation **post-dated** C1 cement. C3 veins cross-cut the C2 veins, but
 384 are included within FR1 clasts (Fig. 5B). Hence, C3 cement is **prior** to FR1 development but
 385 **after** C2 cementation. The fault rock 1 (FR1) is related to the first **extensional** fault activity,
 386 consequently, C1, C2 and C3 cementation phases occurred prior to the proper fault plane and

387

388 **Figure 7:** Paragenetic sequence of the both fault zones (black: Castellas, grey: D19) with micro-porosity development
 389 (blue), cementation (orange) and fault zone activation events (red).

390 fault core formation and are related to the fault nucleation. Replacive dolomite is found within
 391 FR1 matrix (Fig. 5E), therefore, it developed after FR1 formation. Finally, the C4 cement can
 392 be noticed within FR2 matrix indicating that C4 cementation event post-dated FR2 formation.
 393 The fault rock 2 (FR2) developed during strike-slip reactivation of the studied faults. The
 394 combined superposition, overlap, cross-cutting principles and isotopic signature of cements
 395 brought out the chronology between phases, and revealed the paragenetic sequence (Fig. 7).

396 The Urgonian carbonates in La Fare anticline underwent 3 major diagenetic events, which
 397 impacted the host rock and/or the fault zones. We discriminate among diagenetic events that
 398 occurred before and during faulting.

399 **a. Pre fault diagenesis – microporosity development**

400 During Upper Barremian, just after deposition, micro-bores organisms at the sediment-water
 401 interface enhanced the formation of micritic calcitic envelopes on bioclasts, ooids and peloids
 402 (Purser, 1980; Reid and Macintyre, 2000; Samankassou et al., 2005; Vincent et al., 2007). This
 403 micritisation in marine conditions is typical for Urgonian low-energy inner platform
 404 environment (Fournier et al., 2011; Masse, 1976). Subsequently, C0 cement formed around
 405 grains giving rise to a solid envelop inducing the preservation of the original grain shape during
 406 the later burial compaction (Step 0 on Fig. 8). However, the majority of isotopic values do not
 407 fit in the Barremian sea water calcite box which ranges from -1.00‰ to -4.00‰ for $\delta^{18}\text{O}$ and
 408 from +1.00‰ to +3.00‰ for $\delta^{13}\text{C}$ (Fouke et al., 1996; Godet et al., 2006). Only two data points
 409 pertaining to micritised grains show isotopic values close the Barremian sea water calcite. The
 410 isotopic depletion of other data indicates the slight impact of C0 cementation on isotopic values.

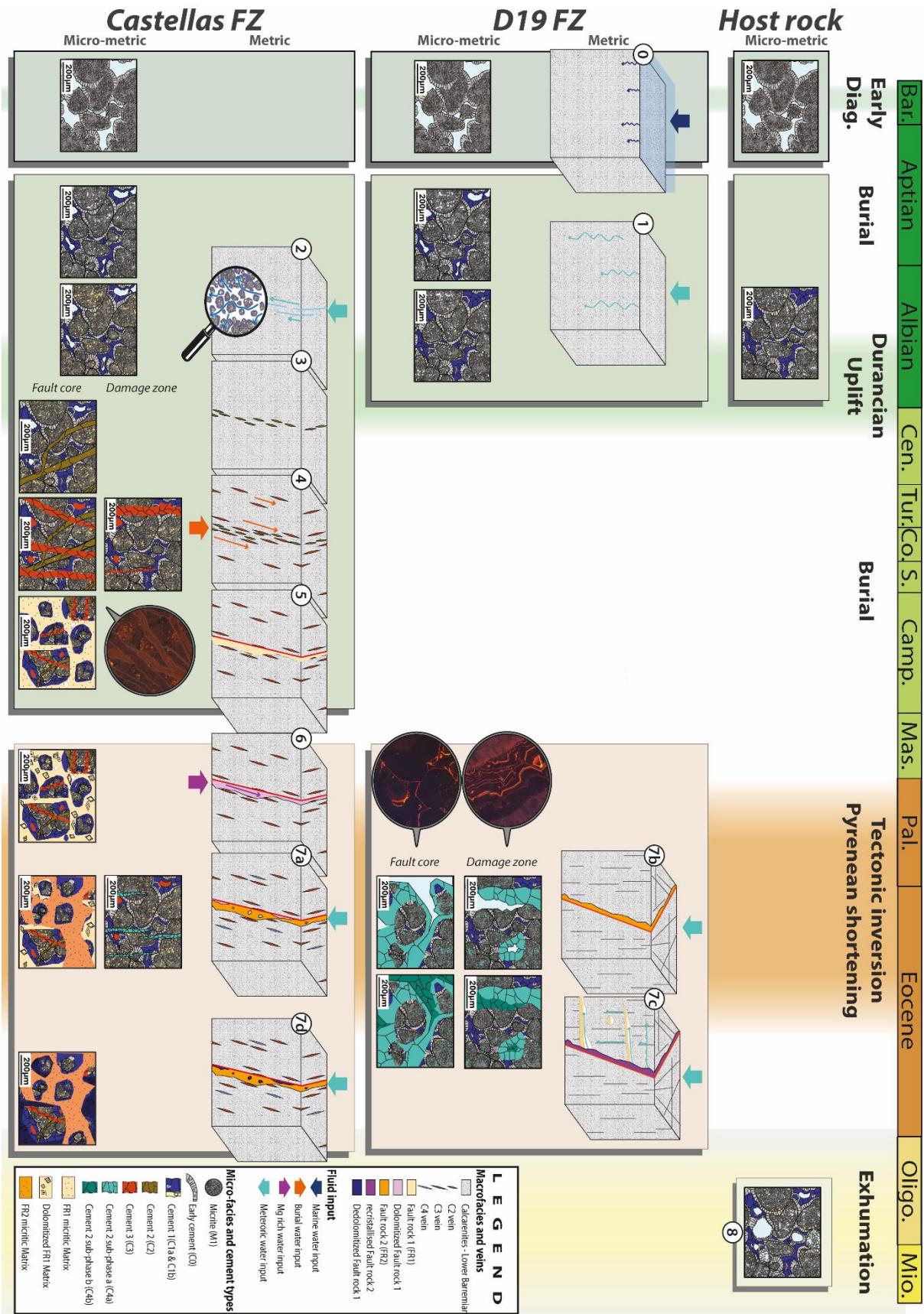
411 The next sub-phase of cementation C1a partly fills intergranular porosity. This non luminescent
412 cement with isotopic values ranging from -6.8‰ to -3.9‰ for $\delta^{18}\text{O}$ and from -1.0‰ to +1.3‰
413 for $\delta^{13}\text{C}$ is characteristic of mixed fluids. Léonide et al. (2014) measured a calcite cement S1,
414 near La Fare anticline with similar luminescence and isotopic range values (mean: $\delta^{18}\text{O} =$
415 -5.49‰; $\delta^{13}\text{C} = +2.34\text{‰}$). These authors linked this cementation phase to a shallow burial
416 meteoric fluid circulation under equatorial climate during Durancian uplift. This diagenetic
417 event led to micrite re-crystallization, and to the development of microporosity (MF3). Since
418 La Fare carbonates were exhumed at that time (Léonide et al., 2014) the meteoric fluids led to
419 similar diagenetic modifications (Step 1 on Fig. 8):

420 (i) Micrite re-crystallization and microporosity MF3 setup by Ostwald ripening
421 processes (Fig. 9B1a; Ostwald, 1886; Volery et al., 2010).
422 (ii) Cementation of C1a, partly filling intergranular porosity (Fig. 9B1b)

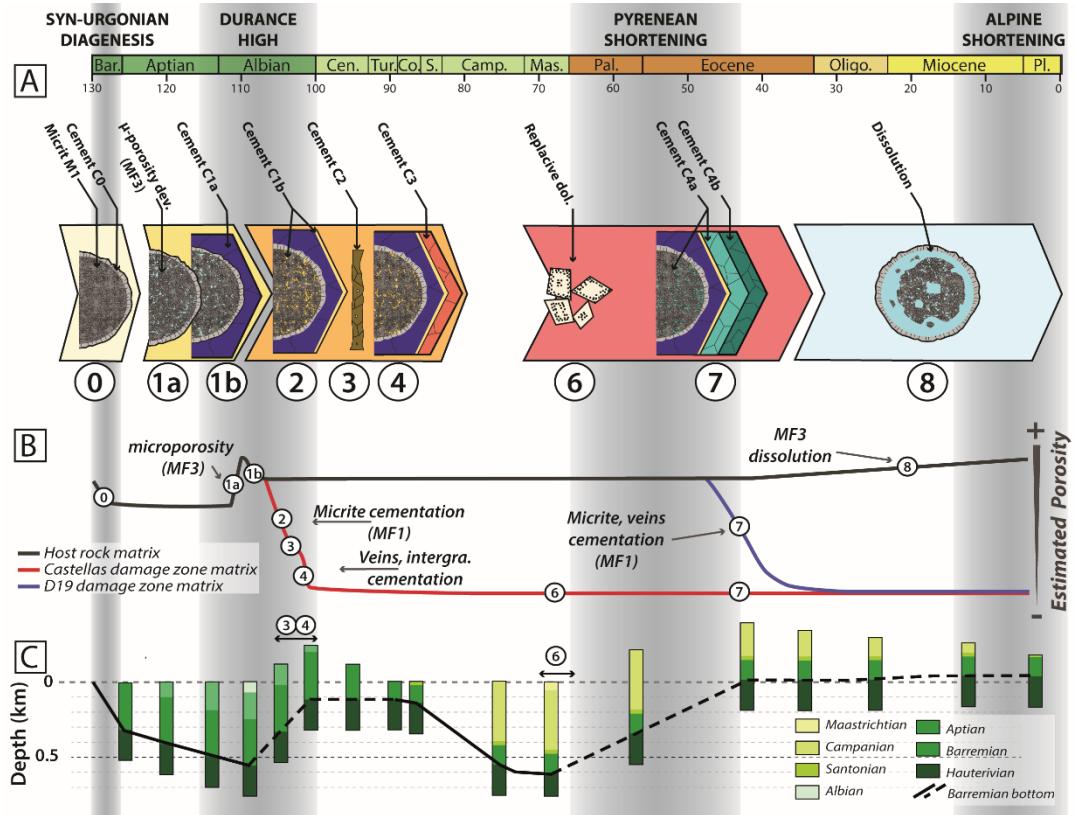
423 The micrite re-crystallization strongly increased rock porosity due to enhanced microporosity
424 (Fig. 9B1a). Resulting from this event, Urgonian carbonates formed a type III reservoir *sensu*
425 Nelson (2001).

426 b. Fault-related diagenesis – alteration of reservoir properties

428 Normal faulting-related diagenesis


429 The Castellas fault first nucleated during Durancian uplift (Aubert et al., 2019b; Matonti et al.,
430 2012) affecting the host Urgonian carbonates.

431 In porous granular media, fault nucleation mechanisms can lead to dilation processes (Fossen
432 and Bale, 2007; Fossen and Rotevatn, 2016; Main et al., 2000; Wilkins et al., 2007; Zhu and
433 Wong, 1997) under low-confining pressure (<100 KPa; Alikarami and Torabi 2015). Because
434 this process leads to dilatancy, it increases the rock permeability (Alikarami and Torabi, 2015;
435 Bernard et al., 2002) in the first stage of deformation bands (Heiland et al., 2001; Lothe et al.,
436 2002) enhancing fluid flows.


437 Castellas fault zone nucleated within a partially and dimly cemented host rock under low-
438 confining pressure, in an extensional stress regime, at a depth <1 km (Lamarche et al. 2012).

439 Under these conditions, Barremian host rock were likely characterised by mechanical and
440 petrographical properties close to porous granular media described above. Moreover, Micarelli

441 et al. (2006) showed that, during early stages of deformation, fault zones in carbonates have a
442 hydraulic behaviour comparable to deformation bands in carbonates. Hence, in the Urgonian
443 carbonates of La Fare area, dilatant processes occurred as an incipient fault mechanism and
444 enhanced fluid circulations along the deformation bands. Fluid flows led to the cementation of
445 C1b (Step 2 on Fig. 8). However, dilation bands were likely unstable and grain collapse occurred
446 swiftly after the beginning of the deformation due to an increase in the loading stress (Lothe et
447 al., 2002). This could be the explanation why C1b does not fill all intergranular porosity.
448 Consequently, as all micritic grains in fault zone are cemented by C1b, the bulk isotopic
449 measurements are strongly influenced by C1 cement isotopic values. This is the explanation
450 why in transect 3 the bulk isotopic values 30 m apart from the fault (means of -5.26‰ for $\delta^{18}\text{O}$
451 and -0.82‰ for $\delta^{13}\text{C}$) are close to bulk isotopic values far from the fault plane (188 m; -5.37‰
452 for $\delta^{18}\text{O}$ and -0.65‰ for $\delta^{13}\text{C}$, Fig. 6A). Dilation bands have also been described by Kaminskaite
453 et al. (2019) in the San Vito Lo Capo carbonates grainstones (Sicily, Italy). These dilation bands
454 also led to selective cementation of the carbonate rocks and to a microporosity decrease.

Figure 8 : Diagenetic and geodynamic evolution since the Barremian of both fault zones and host rock at the metric and micro-metric scale. Numbers 0 to 8 correspond to the steps 0 to 8 (see text for description).

460 **Figure 9** : Evolution of reservoir properties. A: different cementation phases; numbers 0 to 8 correspond to the steps 0 to 461 8 (see text for description), B: relative porosity evolution of the host rock and the two fault zones; C: Burial/Uplift curve of 462 Barremian basement (modified from Matonti et al. (2012)).

463 Cementation (C1a and C1b) conferred a stiffer response of limestone to deformation, making 464 it prone to deform through brittle structures (joints and veins), rather than via granular 465 particulate flow (deformation bands). During the first stages of fault evolution in low-porosity 466 limestones, intense fracturing of the fault zone predating fault core formation is known to 467 increase fault permeability (Micarelli et al., 2006). In the studied faults, the first brittle event 468 allowed Al-rich fluids to flow with fine-grained quartz grains in the incipient open fractures 469 leading to precipitation of C2 cement (Step 3 on Fig. 8). The Urgonian facies of the studied area 470 are composed of pure carbonates without siliciclastic input. Quartz grains and Aluminium could 471 have been reworked from surrounding formations. The rocks underlying the studied exposed 472 Urgonian carbonates are limestones and dolostones. Albian and Aptian rocks are marly and 473 sandy limestones, respectively (Anglada et al., 1977). Hence, Aptian layers are very likely to 474 be the source of quartz. The fluids may have carried small grains of quartz from the Aptian 475 sandy limestones via the fracture network. The Al enrichment of C2 could result from the 476 erosion of Albian and Aptian deposits during the Durancian uplift (Guendon and Parron, 1985; 477 Triat, 1982).

478 As the fault zone grew, new fracture sets formed, leading to new phase of calcite cementation 479 (C3) in veins and intergranular porosity (Step 4 on Fig. 8). The $\delta^{18}\text{O}$ isotopic values of C3 range 480 from $-10.40\text{\textperthousand}$ to $-6.73\text{\textperthousand}$ with $\delta^{13}\text{C}$ values between $-2.09\text{\textperthousand}$ and $+1.22\text{\textperthousand}$. As C3 cementation 481 occurred during the Durancian uplift and denudation, C3 most probably did not cement in deep 482 burial conditions (maximum depth of 500 m; Fig. 9C4). The negative $\delta^{13}\text{C}$ values tend 483 corroborate the hypothesis of cementation induced by meteoric fluid rather than marine ones. 484 Hence, C3 would correspond to a shallow burial/meteoric cementation phase. Due to this

485 cementation, rocks in this zone tightened with porosity down to <5%. The porosity did not
486 change since this event (Fig. 9B5). This porosity reduction due to cementation has also been
487 observed in other cases of brittle-dilatant faults (Agosta et al., 2007; Celico et al., 2006;
488 Gaviglio et al., 2009; Mozley and Goodwin, 1995). Following this, the fault zone was a barrier
489 to fluid flow, leading to a reservoir compartmentalization. Fluids responsible for precipitation
490 of C3 cement also occurred along fracture clusters of the D19 sector and led to vein formation.

491 In a later stage, the fault core formed and the fault plane *sensu stricto* developed, leading to
492 FR1 breccia with a permeable matrix with quartz grains >100 μm in size (Step 5 on Fig. 8).
493 These grains either came from silica found inside C2 cement described above or from Aptian
494 overlying rocks. Silica crystals in C2 veins are scarce and smaller than 10 μm . Thus, quartz
495 grains may rather come from Aptian rocks like the ones found in C2 veins. The presence of
496 Aptian quartz in the fault core proves that the Castellas fault affected also Aptian rocks, which
497 were later eroded during the Durancian uplift. According to this, the fault activity occurred
498 before total erosion of Aptian rocks. Un-cemented breccias within the fault core formed good
499 fluid pathways (Billi et al., 2008; Delle Piane et al., 2016). In the studied fault, formation of
500 FR1 breccia allowed the fault core to act as a drain. However, the cemented surrounding host
501 rocks constrained the lateral extent of the drainage area of this high-permeable conduit. Un-
502 cemented breccias acting as good across- and along- fluid pathways were also described on
503 Apennines carbonate formations within fault cores of strike and extensional faults (Billi et al.,
504 2003, 2008; Storti et al., 2003).

505 Tectonic Inversion – Castellas fault-related dolomitization

506 At the onset of the Pyrenean shortening, compressive stresses led to underground water
507 upwelling through the permeable fault core. This fluid flow triggered the dolomitization of FR1
508 matrix (Step 6 on Fig. 8). This matrix-selective dolomitization could have been favoured by
509 several factors:

- 510 (i) The matrix has higher permeability than cemented clasts with a smaller grain size,
511 hence a higher grain surface area (Machel, 2004);
- 512 (ii) This type of upwelling fluids, so-called “squeegee-type”, are short lived processes
513 (Buschkuehle and Machel, 2002; Deming et al., 1990; Dorobek, 1989; Machel et
514 al., 2000) not favourable for massive dolomitization;
- 515 (iii) Low-temperature fluids, under 50°-80°C, enabled the preservation of FR1 clast
516 initial structure. Contrarily, high-temperature dolomitization tends to be destructive
517 (Machel, 2004);
- 518 (iv) The tight surrounding host rock constrained Mg-rich fluid circulation to the fault
519 core domain.

520 Gisquet et al. (2013) noticed similar fault related replacive dolomitization phase in the Etoile
521 massif, 23 km South-Est of the studied zones. They linked the dolomitization to contractional
522 stress regime during the early (Late Cretaceous) Pyrenean shortening. According to these
523 authors, the tectonic stress led to low-temperature upwelling fluids likely Mg-enriched by the
524 dissolution of underlying Jurassic dolomites. The Jurassic dolomites also occur in La Fare
525 anticline. Since the fluids leading to dolomitization of fault core were low-temperature and
526 since dolomites occur underground, it is possible that the dolomitization in La Fare and in the
527 Etoile massif were similar and synchronous. Matrix dolomitization can increase inter-

528 crystalline and/or inter-particle porosity up to 13% but the later dolomite overgrowth reduces
529 the porosity and permeability (Lucia, 2004; Machel, 2004; Saller and Henderson, 2001). Hence,
530 in the first stages of dolomitization, the fault core was an important drain. After the growth of
531 dolomite crystals, the fault core turned into barrier (Fig. 9 B6 and C6)

532 **Sinistral tectonic inversion – meteoric alteration of reservoir properties**

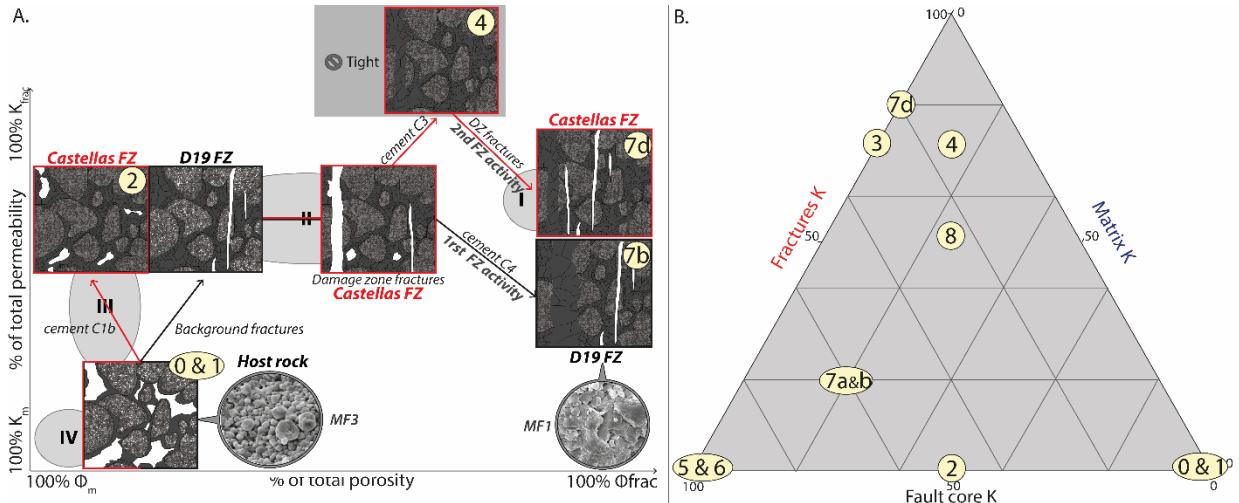
533 The ongoing tectonic inversion with increasing compressive stresses eventually led to the
534 Castellas fault sinistral reactivation and to the onset of D19 fault zone (Aubert et al., 2019b).
535 Aubert et al. (2019a) has shown that this compression reactivated the pre-existing early N030°
536 background fractures (Step 7 on Fig. 8). This tectonic event formed FR2 in fault cores but with
537 specific diagenetic consequences. In the D19 fault zone, the fault nucleation and reactivation of
538 background fractures led to pluri-metric to kilometric fault surfaces with a permeable fault rock
539 acting as drains and localizing the fluid flow (Aubert et al., 2019a). This fluid flow witnessed
540 by the cementation of C4a and C4b in veins and micritised grains (MF1, Step 7c on Fig. 8),
541 leading to a strong porosity decrease in the fault zone (Fig. 9,B7 and C7). However, not all
542 fractures were cemented by C4, so that fracture porosity/permeability was still partially
543 preserved. Therefore, the D19 fault zone became a type I reservoir *sensu* Nelson (2001) with a
544 very low matrix porosity/permeability and high fracture-related secondary permeability (Aubert
545 et al., 2019a).

546 Along F2, successive fluids gave rise to karsts, karstic infilling and dissolution/cementation
547 processes of FR2 matrix (Step 7c on Fig. 8). Then, FR2 was sealed by C4 cementation. Isotopic
548 values of C4 cement (from -9.2 to -6.1‰ for $\delta^{18}\text{O}$ and from -5.01‰ to -1.0‰ for $\delta^{13}\text{C}$) highlight
549 the strong influence of meteoric fluids. This is coherent with the occurrence of karstic infilling
550 due to fluid circulations in vadose zone, with alternating dissolution and cementation (Swart,
551 2015). However, the positive covariance between $\delta^{18}\text{O}$ and $\delta^{13}\text{C}$ of C4 suggests mixed fluids
552 (Allan and Matthews, 1982) of meteoric water and burial or marine water.

553 In the Castellas fault zone, the host rocks are slightly impacted by these meteoric fluid
554 circulations. Yet, some veins filled with C4a cement occur along transect 2 and transect 3 (Step
555 7a on Fig. 8). Two samples have enriched $\delta^{18}\text{O}$ and $\delta^{13}\text{C}$ isotopic values (respective means of -
556 6.25‰ and -4.20‰ for $\delta^{18}\text{O}$; -0.64 and -0.09‰ for $\delta^{13}\text{C}$) similar to C1 cement (Fig. 6A). This
557 indicates that C4 cement in the Castellas fault zone was precocious in comparison to the D19.
558 C4 cement in Castellas area is restricted to transect 2. Transect 2 cross-cuts the Castellas fault
559 along a relay zone (Fig. 2A). Relay or linkage zones occur where two fault segments overlap
560 each other during fault grow (Kim et al., 2004; Long and Imber, 2011; Walsh et al., 1999, 2003).
561 Consequently, the fault complexity, the fracture intensity and the fracture-strike range are
562 increased (Kim et al., 2004; Sibson, 1996). This process in the studied area resulted in a well-
563 connected fracture network that increased the permeability and favoured local fluid circulations.
564 In transect 2, the increase of the local permeability in the relay zone enhanced fluid flow related
565 to C4 cement. The relay zones along the Castellas fault and their consequences on the fracture
566 permeability are, therefore, responsible for this local cementation event. On the contrary,
567 cementation in D19 fault zone is linked to the highly permeable fault surfaces which acted as
568 drains (Aubert et al., 2019a). This implies that the cementation occurred only after the
569 development of the fault surface. In the case of Castellas, the relay zone was already present,
570 inherited from the former extensional activity, allowing early C4 fluid to flow through the fault
571 zone. This, in addition, explains why the early C4 cementation has not been recorded in D19

572 fault zone. The C4 cementation in transect 2 reduced the porosity to less than 8% on a larger
573 zone (>60 m) than in both others transects (transect 1 ≈30m, transect 3>40m).

574 The reactivation of the Castellas fault formed a new fracture network that locally triggered the
575 fracture connectivity and permeability. The Castellas fault zone formed a type I reservoir
576 (Nelson, 2001), but lateral variation of the fracture network implies lateral variations of the
577 hydraulic properties. Thus, the fault zone was both a drain and a barrier (Matonti et al., 2012).
578 In this case, the most appropriate concept would be a sieve, because in this analogy, it is
579 synchronously closed in places and open in other places.


580 After these events, the matrix of the Castellas fault core was de-dolomitized (FR1) in relation
581 to cementation C5 (Step 7d on Fig. 8). The C5 cement isotope values (mean of -7.49‰ for $\delta^{18}\text{O}$
582 and -4.01‰ for $\delta^{13}\text{C}$) are comprised within C4 positive covariance between $\delta^{18}\text{O}$ and $\delta^{13}\text{C}$. This
583 indicates a continuity between C4 and C5 fluid flows. The measurements with the SEM
584 revealed a lack of Mg in the matrix indicating that C5 totally recrystallised the replacive
585 dolomite. Following this de-dolomitization phase, no additional diagenetic event is recorded in
586 Castellas fault zone.

587 A late Pyrenean to Alpine compression reactivated the D19 fault zone what formed the new
588 fault rock FR3. The matrix of this fault rock has very low $\delta^{13}\text{C}$ isotopic values (mean of -6.83‰)
589 indicating an organic matter input (Swart, 2015). This implies fluids percolating soils, as results
590 from a near surface fluid circulation. We deduce that the D19 faults was lately reactivated after
591 the folding of the La Fare anticline. There is no such cementation with similar isotope values
592 in the fault zone, meaning that fluids and cements did not alter the fault zone diagenetic
593 properties.

594 Eventually, the late exhumation of the Urgonian carbonate host rocks led to flows inducing
595 dissolution of MF3 grains in the host rock. This phase produced the moldic porosity and
596 increased the porosity/permeability (Step 8 on Fig. 9B and C). These fluids, however, did not
597 affect fault zones.

598 2. EVOLUTION OF FAULT ZONES RESERVOIR PROPERTIES

599 The host rock presents a monophasic evolution and switch from a type IV reservoir where
600 matrix provided storage and flow, to a type III reservoir where fractures behave as pathways
601 towards fluid flow but the production comes mainly from the matrix (Nelson 2001, Fig. 10A).
602 The fault zones present a more complex polyphasic evolution than the host rock. Indeed, their
603 reservoir properties evolved from a type IV reservoir corresponding to the host rock to a type I
604 reservoir where fractures provide both storage and flow pathways (Nelson 2001, Fig. 10A).
605 Both fault zones present slight differences. The Castellas fault zone was completely tight soon
606 after C3 cementation. Consequently, it did not fit to the Nelson reservoir type classification.
607 However, after fault core formation, the fault zone presents a high fault core permeability. In
608 this study we propose a new approach with a triangle diagram taking into account fault core
609 permeability to remove the flaws of this method (Fig. 10B). The percentage assigned to the
610 fault core or to the matrix are qualitatively estimated. Further quantification could be evaluated,
611 for instance, with the width of the fault core and damage zone domains, or by estimating the
612 fracture network volume. However, no recent study have provided such quantification. Thus,
613 for Castellas fault zone, permeability evolves from a stage with exclusive contribution from the
614 host rock permeability (100% matrix; step 0 on Fig. 10B) to a permeability due to 50% to the

615

616 **Figure 10** : Castellas and D19 fault zone reservoir properties evolution. A: evolution of permeability and porosity taking into
 617 account fault zone fractures and matrix after Nelson (2001) and B: Triangle diagram of permeability evolution with 3
 618 components: matrix, fractures and fault core. Numbers 1 to 8 correspond to the steps 1 to 8 (see text for description). K: Permeability, Φ : porosity, FZ: Fault Zone, DZ: Damage zone, MF1 and MF3: Micrite micro-fabric.

620 matrix and 50% to the fault core during dilation band development (step 2 on Fig. 10B).
 621 Thereafter, during the two fracture events permeability is mainly linked to fracturing (C2: 30%
 622 fault core, 70% fractures; C3: 15% fault core, 15% matrix, 70% fractures; step 3, 4 on Fig.
 623 10B). Then, after fault core formation and during dolomitization event, permeability is solely
 624 provided by the fault core (step 6, 7 on Fig. 10B). Lastly, after fault zone reactivation, the
 625 permeability is due to 20% to the fault core and 80% to fractures (step 7c on Fig. 10B). The
 626 D19 fault zone permeability during its development was related for 20% to the matrix, 20% to
 627 the fractures and 60% to the fault core (step 7a and 7b on Fig. 10B).

628

8. CONCLUSION

629 This study deciphered the diagenetic evolution of two fault zones and the impact on reservoir
 630 properties of both faults and host rock in the frame of the overall geodynamic context of the SE
 631 Basin. The main outcomes are:

632 • Fault zones may have a complex diagenetic history, but most diagenetic phases occur
 633 during the nucleation of the fault. In the case of Castellas fault zone, the diagenetic
 634 imprint is mainly influenced by early diagenesis occurring along fractures and diffuse
 635 dilation zones prior to the proper fault plane nucleation. Regarding D19 fault zone, most
 636 of diagenetic alterations occurred just after fault onset in the first stage of its activity. In
 637 both cases, the cementation altered initial reservoir properties in the fault zone vicinity,
 638 switching from type III to type I during the first stages of fault development. Later fault
 639 reactivation slightly impacts matrix porosity/permeability.

640 • Fault zones act as drains canalizing fluid flows in the beginning of their development.
 641 This induces fault zone cementation but preservation of host rock microporosity. This
 642 important fluid drainage is visible on D19 outcrop where the flowing fluids led to
 643 dissolution/cementation of fault rock matrix and formed karsts.

644 • All diagenetic stages, including cementation and dolomitization, result from low-
 645 temperature fluids with important meteoric water input. These low-temperature fluid

646 flows associated with the deformation and cementation types and, the lack of
647 mineralisation specific to high-temperature fluids disprove any significant hydrothermal
648 influence.

649 This regional study allows to draw broader rules for complex faults with polyphasic activity
650 affecting granular carbonates at shallow burial conditions (Fig. 9).

- 651 • Under extensional context, fault nucleation can lead to the development of dilation
652 bands acting as conduits for fluid flow. Carbonates are very sensitive to rock-fluids
653 interactions. Thus, the onset of dilation bands triggers important diagenetic reactions
654 that strongly alter local reservoir properties. During later fault zone development, the
655 diagenesis depends on faults zones internal architecture.
- 656 • Fracture networks related to fault nucleation in granular carbonates form good fluid
657 pathways before proper fault plane formation. However, in the case of pre-fractured
658 carbonates, like D19 fault zone, fault rocks early appear in fault cores. In these cases,
659 fluids flowed preferentially within the permeable breccia rather than the damage zone.

660

661 Acknowledgement

662 We would like to thank Suzan Verdegaal, Lionel Marié and Alain Tonetto for support they
663 provide during this study. We grateful to Editor Kei Ogata, and Fabrizio Agosta, Mattia Pizzati
664 and Eric Salomon who made critical suggestions to improve this paper.

665

666 **REFERENCES**

667 Agosta, F., Prasad, M. and Aydin, A.: Physical properties of carbonate fault rocks, Fucino Basin (Central Italy):
668 implications for fault seal in platform carbonates, *Geofluids*, 7, 19–32, doi:10.1111/j.1468-8123.2006.00158.x, 2007.

669

670 Agosta, F., Mulch, A., Chamberlain, P. and Aydin, A.: Geochemical traces of CO₂-rich fluid flow along normal
671 faults in central Italy, *Geophys. J. Int.*, 174(2), 1074–1096, doi:10.1111/j.1365-246X.2008.03792.x, 2008.

672 Agosta, F., Alessandroni, M., Antonellini, M., Tondi, E. and Giorgioni, M.: From fractures to flow: A field-based
673 quantitative analysis of an outcropping carbonate reservoir, *Tectonophysics*, 490(3–4), 197–213,
674 doi:10.1016/j.tecto.2010.05.005, 2010.

675 Agosta, F., Ruano, P., Rustichelli, A., Tondi, E., Galindo-Zaldívar, J. and Sanz de Galdeano, C.: Inner structure
676 and deformation mechanisms of normal faults in conglomerates and carbonate grainstones (Granada Basin, Betic
677 Cordillera, Spain): Inferences on fault permeability, *J. Struct. Geol.*, 45, 4–20, doi:10.1016/j.jsg.2012.04.003,
678 2012.

679 Alikarami, R. and Torabi, A.: Geomechanics for Energy and the Environment Micro-texture and petrophysical
680 properties of dilation and compaction shear bands in sand, *Geomech. Energy Environ.*, 3, 1–10,
681 doi:10.1016/j.gete.2015.06.001, 2015.

682 Allan, J. R. and Matthews, R. K.: Isotope signatures associated with early meteoric diagenesis, *Sedimentology*,
683 29(6), 797–817, doi:10.1111/j.1365-3091.1982.tb00085.x, 1982.

684 Allmendinger, R. W., Cardozo, N. and Fisher, D. M.: Structural geology algorithms: Vectors and tensors,
685 Cambridge Univ. Press, 9781107012, 1–289, doi:10.1017/CBO9780511920202, 2013.

686 Anglada, R., Arlhac, P., Catzigras, F., Colomb, E., Damiani, L., Durand, J. P., Durozoy, G., Guieu, G., Masse, J.
687 P., Nury, D., Philip, J., Rouire, J., Rousset, C., Roux, R. M. and Blanc, J. J.: Notice explicative. Carte géologique
688 de la France a 1/50 000. Martigues - Marseille., 1977.

689 Aubert, I., Lamarche, J. and Léonide, P.: Deciphering background fractures from damage fractures in fault zones
690 and their effect on reservoir properties in microporous carbonates (Urgonian limestones, SE France), *Pet. Geosci.*,
691 doi:DOI10.1144/petgeo2019-010, 2019a.

692 Aubert, I., Lamarche, J., Richard, P. and Leonide, P.: Imbricated Structure and Hydraulic Path Induced by Strike
693 Slip Reactivation of a Normal Fault in Carbonates, in Fifth International Conference on Fault and Top Seals, p. 4.,
694 2019b.

695 Bense, V. F., Gleeson, T., Loveless, S. E., Bour, O. and Scibek, J.: Fault zone hydrogeology, *Earth-Science Rev.*,
696 127, 171–192, doi:10.1016/j.earscirev.2013.09.008, 2013.

697 Bernard, X. Du, Eichhubl, P. and Aydin, A.: Dilation bands : A new form of localized failure in granular media,
698 29(24), 1–4, doi:10.1029/2002GL015966, 2002.

699 Besson, D.: Architecture du bassin rhodano-provençal miocène (Alpes , SE France) : relations entre déformation,
700 physiographie et sédimentation dans un bassin molassique d'avant-pays, Ecole des Mines, Paris., 2005.

701 Bestani, L.: Géométrie et cinématique de l'avant-pays provençal : Modélisation par coupes équilibrées dans une
702 zone à tectonique polyphasée, Aix-Marseille University, 2015.

703 Bestani, L., Espurt, N., Lamarche, J., Bellier, O. and Hollender, F.: Reconstruction of the Provence Chain
704 evolution, Southeastern France, *Tectonics*, 35, 1506–1525, doi:10.1002/2016TC004115, 2016.

705 Billi, A., Salvini, F. and Storti, F.: The damage zone-fault core transition in carbonate rocks: Implications for fault
706 growth, structure and permeability, *J. Struct. Geol.*, 25(11), 1779–1794, doi:10.1016/S0191-8141(03)00037-3,
707 2003.

708 Billi, A., Primavera, P., Soligo, M. and Tuccimei, P.: Minimal mass transfer across dolomitic granular fault cores,
709 *Geochemistry, Geophys. Geosystems*, 9(1), doi:10.1029/2007GC001752, 2008.

710 Borgoman, J., Masse, J., Maskir, S. Al, Borgoman, J. and International, S.: The lower Aptian Shuaiba carbonate
711 outcrops in Jebel Akhdar, northern Oman: Impact on static modeling for Shuaiba petroleum reservoirs, *Bull. Am.
712 Assoc. Pet. Geol.*, 9(9), 1513–1529, doi:10.1306/61EEDCE2-173E-11D7-8645000102C1865D, 2002.

713 Borgoman, J., Masse, J. P., Fenerci-Masse, M. and Fournier, F.: Petrophysics of lower cretaceous platform
714 carbonate outcrops in provence (SE France): Implications for carbonate reservoir characterisation, *J. Pet. Geol.*,
715 36(1), 5–41, doi:10.1111/jpg.12540, 2013.

716 Bruna, P., Guglielmi, Y., Viseur, S., Lamarche, J. and Bildstein, O.: Coupling fracture facies with in-situ
717 permeability measurements to generate stochastic simulations of tight carbonate aquifer properties: Example from
718 the Lower Cretaceous aquifer , Northern Provence , SE France, *J. Hydrol.*, 529, 737–753,
719 doi:10.1016/j.jhydrol.2015.08.054, 2015.

720 Buschkuehle, B. E. and Machel, H. G.: Diagenesis and paleo fluid flow in the Devonian Southesk-Cairn carbonate
721 complex in Alberta, Canada, *Mar. Pet. Geol.*, 19, 219–227, doi:10.1016/S0264-8172(02)00014-4, 2002.

722 Caine, J. S., Evans, J. P. and Forster, C. B.: Fault zone architecture and permeability structure, *Geology*, 24(11),
723 1025–1028, doi:10.1130/0091-7613(1996)024<1025, 1996.

724 Cardozo, N. and Allmendinger, N. W.: Spherical projections with OSXStereonets, *Comput. Geosci.*, 51, 193–205,

725 doi:10.1016/j.cageo.2012.07.021, 2013.

726 Celico, F., Petrella, E. and Celico, P.: Hydrogeological behaviour of some fault zones in a carbonate aquifer of
727 Southern Italy: An experimentally based model, *Terra Nov.*, 18(5), 308–313, doi:10.1111/j.1365-
728 3121.2006.00694.x, 2006.

729 Champion, C., Choukroune, P. and Clauzon, G.: La déformation post-miocène en provence occidentale, *Geodin.*
730 *Acta*, 13(2–3), 67–85, doi:10.1080/09853111.2000.11105365, 2000.

731 Chester, F. M. and Logan, J. M.: Implications for Mechanical Properties of Brittle Faults from Observations of the
732 Punchbowl Fault Zone, California, *PAGEOPH*, 124(1/2), 79, doi:10.1007/BF00875720, 1986.

733 Chester, F. M. and Logan, J. M.: Composite planar fabric of gouge from the Punchbowl Fault, California, *J. Struct.*
734 *Geol.*, 9(5–6), doi:10.1016/0191-8141(87)90147-7, 1987.

735 Delle Piane, C., Giwelli, A., Clennell, M. Ben, Esteban, L., Nogueira Kiewiet, M. C. D., Kiewiet, L., Kager, S.
736 and Raimon, J.: Frictional and hydraulic behaviour of carbonate fault gouge during fault reactivation — An
737 experimental study, *Tectonophysics*, 690(PartA), 21–34, doi:10.1016/j.tecto.2016.07.011, 2016.

738 Deming, D., Nunn, A. and Evans, D. G.: Thermal Effects of Compaction-Driven Groundwater Flow, 95(89), 6669–
739 6683, doi:10.1029/JB095iB05p06669, 1990.

740 Demory, F. R., Conesa, G. I., Oudet, J. U., Mansouri, H. A. and Münch, P. H.: Magnetostratigraphy and
741 paleoenvironments in shallow-water carbonates : The Oligocene- Miocene sediments of the northern margin of the
742 Liguro- Provençal basin (West Marseille , southeastern France), *Bull. Soc. géol. Fr.*, 1, 37–55,
743 doi:10.2113/gssgbull.182.1.37, 2011.

744 Deville de Periere, M., Durlet, C., Vennin, E., Lambert, L., Bourillot, R., Caline, B. and Poli, E.: Morphometry of
745 micrite particles in cretaceous microporous limestones of the middle east: Influence on reservoir properties, *Mar.*
746 *Pet. Geol.*, 28(9), 1727–1750, doi:10.1016/j.marpetgeo.2011.05.002, 2011.

747 Deville de Periere, M., Durlet, C., Vennin, E., Caline, B., Boichard, R. and Meyer, A.: Influence of a major
748 exposure surface on the development of microporous micritic limestones - Example of the Upper Mishrif
749 Formation (Cenomanian) of the Middle East, *Sediment. Geol.*, 353, 96–113, doi:10.1016/j.sedgeo.2017.03.005,
750 2017.

751 Dorobek, S.: migration of erogenic fluids through the Siluro-Devonian Helderberg Group during late Paleozoic
752 deformation: constraints on fluid sources and implications for thermal histories of sedimentary basins presence, ,
753 159, 25–45, doi:10.1016/0040-1951(89)90168-6, 1989.

754 Eltom, H. A., Gonzalez, L. A., Hasiotis, S. T., Rankey, E. C. and Cantrell, D. L.: Paleogeographic and paleo-
755 oceanographic influences on carbon isotope signatures: Implications for global and regional correlation, Middle-
756 Upper Jurassic of Saudi Arabia, *Sediment. Geol.*, 364, 89–102, doi:10.1016/j.sedgeo.2017.12.011, 2018.

757 Espurt, N., Hippolyte, J. C., Saillard, M. and Bellier, O.: Geometry and kinematic evolution of a long-living
758 foreland structure inferred from field data and cross section balancing, the Sainte-Victoire System, Provence,
759 France, *Tectonics*, 31(4), doi:10.1029/2011TC002988, 2012.

760 Evans, J. P., Forster, C. B. and Goddard, J. V.: Permeability of fault-related rocks, and implications for hydraulic
761 structure of fault zones, *J. Struct. Geol.*, 19(11), 1393–1404, doi:10.1016/S0191-8141(97)00057-6, 1997.

762 Ferraro, F., Agosta, F., Ukar, E., Grieco, D. S., Cavalcante, F., Belviso, C. and Prosser, G.: Structural diagenesis
763 of carbonate fault rocks exhumed from shallow crustal depths: An example from the central-southern Apennines,
764 Italy, *J. Struct. Geol.*, 122(February), 58–80, doi:10.1016/j.jsg.2019.02.008, 2019.

765 Florida, S., Maliva, R. G., Missimer, T. M., Clayton, E. A. and Dickson, J. A. D.: Diagenesis and porosity
766 preservation in Eocene microporous limestones , *Sediment. Geol.*, 217(1–4), 85–94,
767 doi:10.1016/j.sedgeo.2009.03.011, 2009.

768 Ford, M., Duchene, S., Gasquet, D. and Vanderhaeghe, O.: Two-phase orogenic convergence in the external and
769 internal SW Alps, *J. Geol. Soc. London.*, 163(5), 815–826, doi:10.1144/0016-76492005-034, 2006.

770 Fossen, H. and Bale, A.: Deformation bands and their influence on fluid flow, 12(12), 1685–1700,
771 doi:10.1306/07300706146, 2007.

772 Fossen, H. and Rotevatn, A. Fault linkage and relay structures in extensional settings — A review, *Earth Sci. Rev.*,
773 154, 14–28, doi:10.1016/j.earscirev.2015.11.014, 2016.

774 Fouke, B. W., Everts, A. W., Zwart, E. W. and Schlager, W.: Subaerial exposure unconformities on the Vercors
775 carbonate platform (SE France) and their sequence stratigraphic significance, *Geol. Soc. London, Spec. Publ.*, 104,
776 295–319, 1996.

777 Fournier, F. and Borgomano, J.: Critical porosity and elastic properties of microporous mixed carbonate-
778 siliciclastic rocks, *Geophysics*, 74(2), E93–E109, doi:10.1190/1.3043727, 2009.

779 Fournier, F., Leonide, P., Biscarrat, K., Gallois, A., Borgomano, J. and Foubert, A.: Elastic properties of
780 microporous cemented grainstones, *Geophysics*, 76(6), E211–E226, doi:10.1190/geo2011-0047.1, 2011.

781 Gattaccea, J., Deino, A., Rizzo, R., Jones, D. S., Henry, B., Beaujouin, B. and Vadeboin, F.: Miocene rotation of
782 Sardinia: New paleomagnetic and geochronological constraints and geodynamic implications, *Earth Planet. Sci.*
783 *Lett.*, 258(3–4), 359–377, doi:10.1016/j.epsl.2007.02.003, 2007.

784 Gaviglio, P., Bekri, S., Vandycke, S., Adler, P. M., Schroeder, C., Bergerat, F., Darquennes, A. and Coulon, M.:

785 Faulting and deformation in chalk, *J. Struct. Geol.*, 31(2), 194–207, doi:10.1016/j.jsg.2008.11.011, 2009.
786 Gisquet, F., Lamarche, J., Floquet, M., Borgomano, J., Masse, J. P. and Caline, B.: Three-dimensional structural
787 model of composite dolomite bodies in folded area (upper Jurassic of the Etoile massif, southeastern France), *Am.*
788 *Assoc. Pet. Geol. Bull.*, 97(9), 1477–1501, doi:10.1306/04021312016, 2013.
789 Godet, A., Bodin, S., Föllmi, K. B., Vermeulen, J., Gardin, S., Fiet, N., Adatte, T., Berner, Z., Stüben, D. and van
790 de Schootbrugge, B.: Evolution of the marine stable carbon-isotope record during the early Cretaceous: A focus
791 on the late Hauterivian and Barremian in the Tethyan realm, *Earth Planet. Sci. Lett.*, 242(3–4), 254–271,
792 doi:10.1016/j.epsl.2005.12.011, 2006.
793 Guendon, J.-L. and Parron, C.: Les phenomenes karstiques dans les processus de la bauxitisation sur substrat
794 carbonaté. Exemple de gisement du sud est de la France, *Ann. la Société Géologique Belgique*, 108, 85–92, 1985.
795 Guieu, G.: Un exemple de tectonique tangentielle: l'évolution du cadre montagneux de Marseille, *Bull. la Société*
796 *Géologique Fr.*, 7 (T.IX N°, 610–630, 1967.
797 Guyonnet-Benaize, C., Lamarche, J., Masse, J. P., Villeneuve, M. and Viseur, S.: 3D structural modelling of small-
798 deformations in poly-phase faults pattern. Application to the Mid-Cretaceous Durance uplift, Provence (SE
799 France), *J. Geodyn.*, 50(2), 81–93, doi:10.1016/j.jog.2010.03.003, 2010.
800 Hammond, K. J. and Evans, J. P.: Geochemistry, mineralization, structure, and permeability of a normal-fault
801 zone, Casino mine, Alligator Ridge district, north central Nevada, 25, 717–736, doi:10.1016/S0191-
802 8141(02)00060-3, 2003.
803 Heiland, J., Raab, S. and Potsdam, G.: Experimental Investigation of the Influence of Differential Stress on
804 Permeability of a Lower Permian (Rotliegend) Sandstone Deformed in the Brittle Deformation, *Phys. Chem.*
805 *earth*, 26(1), 33–38, doi:10.1016/S1464-1895(01)00019-9, 2001.
806 Hodson, K. R., Crider, J. G. and Huntington, K. W.: Temperature and composition of carbonate cements record
807 early structural control on cementation in a nascent deformation band fault zone: Moab Fault, Utah, USA,
808 *Tectonophysics*, 690, 240–252, doi:10.1016/j.tecto.2016.04.032, 2016.
809 Hollis, C., Vahrenkamp, V., Tull, S., Mookerjee, A. and Taberner, C.: Pore system characterisation in
810 heterogeneous carbonates: An alternative approach to widely-used rock-typing methodologies, *Mar. Pet. Geol.*,
811 27(4), 772–793, doi:10.1016/j.marpetgeo.2009.12.002, 2010.
812 Kaminskaite, I., Fisher, Q. J. and Michie, E. A. H.: Microstructure and petrophysical properties of deformation
813 bands in high porosity carbonates, *J. Struct. Geol.*, 119(November 2018), 61–80, doi:10.1016/j.jsg.2018.12.001,
814 2019.
815 Kim, Y. S., Peacock, D. C. P. and Sanderson, D. J.: Fault damage zones, *J. Struct. Geol.*, 26(3), 503–517,
816 doi:10.1016/j.jsg.2003.08.002, 2004.
817 Knipe, R. J.: The influence of fault zone processes and diagenesis on fluid flow, *Diogenes. basin Dev. AAPG Stud.*
818 *Geol.*, 36, 135–154 [online] Available from:
819 <http://archives.datapages.com/data/specpubs/resmi1/data/a067/a067/0001/0100/0135.htm>, 1993.
820 Knipe, R. J., Jones, G. and Fisher, Q. J.: Faulting, fault sealing and fluid flow in hydrocarbon reservoirs: an
821 introduction, *Geol. Soc. London, Spec. Publ.*, 147(1), NP LP-NP, doi:10.1144/GSL.SP.1998.147.01.21, 1998.
822 Lamarche, J., Lavenu, A. P. C., Gauthier, B. D. M., Guglielmi, Y. and Jayet, O.: Relationships between fracture
823 patterns, geodynamics and mechanical stratigraphy in Carbonates (South-East Basin, France), *Tectonophysics*,
824 581, 231–245, doi:10.1016/j.tecto.2012.06.042, 2012.
825 Lambert, L., Durlet, C., Loreau, J. P. and Marnier, G.: Burial dissolution of micrite in Middle East carbonate
826 reservoirs (Jurassic-Cretaceous): Keys for recognition and timing, *Mar. Pet. Geol.*, 23(1), 79–92,
827 doi:10.1016/j.marpetgeo.2005.04.003, 2006.
828 Laubach, S. E., Eichhubl, P., Hilgers, C. and Lander, R. H.: Structural diagenesis, *J. Struct. Geol.*, 32(12), 1866–
829 1872, doi:10.1016/j.jsg.2010.10.001, 2010.
830 Lavenu, A. P. C., Lamarche, J., Gallois, A. and Gauthier, B. D. M.: Tectonic versus diagenetic origin of fractures
831 in a naturally fractured carbonate reservoir analog [Nerthe anticline, Southeastern France, *Am. Assoc. Pet. Geol.*
832 *Bull.*, 97(12), 2207–2232, doi:10.1306/04041312225, 2013.
833 Leonide, P., Borgomano, J., Masse, J. and Doublet, S.: Relation between stratigraphic architecture and multi-scale
834 heterogeneities in carbonate platforms: The Barremian – lower Aptian of the Monts de Vaucluse, SE France,
835 *Sediment. Geol.*, 265–266, 87–109, doi:10.1016/j.sedgeo.2012.03.019, 2012.
836 Leonide, P., Fournier, F., Reijmer, J. J. G., Vonhof, H., Borgomano, J., Dijk, J., Rosenthal, M., Van Goethem, M.,
837 Cochard, J. and Meulenaars, K.: Diagenetic patterns and pore space distribution along a platform to outer-shelf
838 transect (Urgonian limestone, Barremian-Aptian, SE France), *Sediment. Geol.*, 306, 1–23,
839 doi:10.1016/j.sedgeo.2014.03.001, 2014.
840 Long, J. J. and Imber, J.: Geological controls on fault relay zone scaling, *J. Struct. Geol.*, 33(12), 1790–1800,
841 doi:10.1016/j.jsg.2011.09.011, 2011.
842 Lothe, A. E., Gabrielsen, R. H., Hagen, N. B. and Larsen, B. T.: An experimental study of the texture of
843 deformation bands: effects on the porosity and permeability of sandstones, (1990), doi:10.1144/petgeo.8.3.195,
844 2002.

845 Lucia, F. J.: Origin and petrophysics of dolostone pore space, *Geom. Petrog. Dolomite Hydrocarb. Reserv. Geol. Soc. London, Spec. Publ.*, 235, 141–155, doi:10.1144/GSL.SP.2004.235.01.06, 2004.

846 Machel, H. G.: Concepts and models of dolomitization: a critical reappraisal, *Geol. Soc. London, Spec. Publ.*, 235(1), 7–63, doi:10.1144/GSL.SP.2004.235.01.02, 2004.

847 Machel, H. G., Cavell, P. A., Buschkuhle, B. E. and Michael, K.: Tectonically induced fluid flow in Devonian 848 carbonate aquifers of the Western Canada Sedimentary Basin, *Journal geochemical Explor.*, 70, 213–217, 849 doi:10.1016/S0375-6742(00)00093-5, 2000.

850 Main, I. G., Kwon, O., Ngwenya, B. T. and Elphick, S. G.: Fault sealing during deformation-band growth in porous 851 sandstone, *Geology*, 28(12), 1131–1134, doi:10.1130/0091-7613(2000)28<1131:FSDDGI>2.0.CO;2, 2000.

852 Masse, J.-P. and Philip, J.: Paléogéographie et tectonique du Crétacé moyen en Provence: révision du concept 853 d’isthme durancien., *Rev. Géographie Phys. Géologie Dyn.*, 18(1), 49–46, 1976.

854 Masse, J. P.: Les calcaires urgoniens de Provence (Valanginien-Aptien Inférieur) - Stratigraphie, paléontologie, 855 paléoenvironnements et leur évolution, Marseille, Thèse de la Faculté des Sciences de Luminy (U2), 1976.

856 Masse, J. P. and Fenerci-Masse, M.: Carbonate production by rudist bivalves. The record of Late Barremian 857 requieniid communities from Provence (SE France), *Palaeogeogr. Palaeoclimatol. Palaeoecol.*, 234(2–4), 239– 858 257, doi:10.1016/j.palaeo.2005.10.010, 2006.

859 Masse, J. P. and Fenerci Masse, M.: Drowning discontinuities and stratigraphic correlation in platform carbonates. 860 The late Barremian-early Aptian record of southeast France, *Cretac. Res.*, 32(6), 659–684, 861 doi:10.1016/j.cretres.2011.04.003, 2011.

862 Matonti, C., Lamarche, J., Guglielmi, Y. and Marié, L.: Structural and petrophysical characterization of mixed 863 conduit/seal fault zones in carbonates: Example from the Castellas fault (SE France), *J. Struct. Geol.*, 39, 103– 864 121, doi:10.1016/j.jsg.2012.03.003, 2012.

865 Micarelli, L., Benedicto, A. and Wibberley, C. A. J.: Structural evolution and permeability of normal fault zones 866 in highly porous carbonate rocks, *J. Struct. Geol.*, 28(7), 1214–1227, doi:10.1016/j.jsg.2006.03.036, 2006.

867 Molli, G., Cortecchi, G., Vaselli, L., Ottria, G., Cortopassi, A., Dinelli, E., Mussi, M. and Barbieri, M.: Fault zone 868 structure and fluid–rock interaction of a high angle normal fault in Carrara marble (NW Tuscany, Italy), *J. Struct. 869 Geol.*, 32(9), 1334–1348, doi:10.1016/j.jsg.2009.04.021, 2010.

870 Mollie, S., Bellier, O., Terrier, M., Lamarche, J., Martelet, G. and Espurt, N.: Tectonic and sedimentary 871 inheritance on the structural framework of Provence (SE France): Importance of the Salon-Cavaillon fault, 872 *Tectonophysics*, 501(1–4), 1–16, doi:10.1016/j.tecto.2010.09.008, 2011.

873 Moss, S. and Tucker, M. E.: Diagenesis of Barremian-Aptian platform carbonates (the Urgonian Limestone 874 Formation of SE France): near-surface and shallow-burial diagenesis, *Sedimentology*, 42(6), 853–874, 875 doi:10.1111/j.1365-3091.1995.tb00414.x, 1995.

876 Mozley, P. S. and Goodwin, L. B.: Patterns of cementation along a Cenozoic normal fault: a record of paleoflow 877 orientations, *Geology*, 23(6), 539–542, doi:10.1130/0091-7613(1995)023<0539:POCAAC>2.3.CO;2, 1995.

878 Nelson, R.: *Geologic Analysis of Naturally Fractured Reservoirs*, second ed., 2001.

879 Ostwald, W.: *Lehrbuch der allgemeinen Chemie*, Verlag von Wilhelm Engelmann, Leipzig, 2, 909, 1886.

880 Philip, J.: Les formations calcaires à rudistes du Crétacé supérieur provençal et rhodanien, *Thèse de Doctorat*, 881 Université de Provence (Marseille), 1970.

882 Le Pichon, X., Bergerat, F. and Roulet, M.-J.: Plate kinematics and tectonics leading to the Alpine belt formation; 883 A new analysis, *Geol. Soc. Am.*, 218(March 1986), 111–131, doi:10.1130/SPE218-p111, 1988.

884 Pichon, X., Le, Rangin, C., Hamon, Y., Loget, N., Lin, J. Y., Andreani, L. and Flotte, N.: Geodynamics of the 885 france southeast basin, *Bull. la Soc. Geol. Fr.*, 181(6), 477–501, doi:10.2113/gssgbull.181.6.477, 2010.

886 Purser, B. H.: Sédimentation et diagenèse des carbonates nérithiques récents, *Les éléments de la sédimentation et 887 de la diagenèse*, Ed. Tech., 1, 366, 1980.

888 Reches, Z. and Dewers, T. A.: Gouge formation by dynamic pulverization during earthquake rupture, *Earth Planet. 889 Sci. Lett.*, 235(1–2), 361–374, doi:10.1016/j.epsl.2005.04.009, 2005.

890 Reid, R. P. and Macintyre, I. G.: Microboring Versus Recrystallization: Further Insight into the Micritization 891 Process, *J. Sediment. Res.*, 70(May), 24–28, doi:10.1306/2DC408FA-0E47-11D7-8643000102C1865D, 2000.

892 Roche, V.: Analyse structurale et géo-mécanique de réseau de failles du chaînon de La Fare les Oliviers (Provence), 893 Univ. Montpellier 2, 45, 2008.

894 Rossetti, F., Aldega, L., Tecce, F., Balsamo, F., Billi, A. and Brilli, M.: Fluid flow within the damage zone of the 895 Bocccheggiano extensional fault (Larderello-Travale geothermal field, central Italy): Structures, alteration and 896 implications for hydrothermal mineralization in extensional settings, *Geol. Mag.*, 148(4), 558–579, 897 doi:10.1017/S001675681000097X, 2011.

898 Saller, A. H. and Henderson, N.: Distribution of Porosity and Permeability in Platform Dolomites: Insight from 899 the Permian of West Texas: reply, *Am. Assoc. Pet. Geol. Bull.*, 85, 530–532, doi:10.1306/090800850530, 2001.

900 Sallier, B.: Carbonates microporeux: influence de l’architecture du milieu poreux et de la mouillabilité sur les 901 écoulements diphasiques dans les réservoirs pétroliers, *Univ. Genève.*, 2005.

902 Samankassou, E., Tresch, J. and Strasser, A.: Origin of peloids in Early Cretaceous deposits, Dorset, South 903 904

905 England, *Facies*, 51(1–4), 264–273, doi:10.1007/s10347-005-0002-8, 2005.
906 Séranne, M.: The Gulf of Lion continental margin (NW Mediterranean) revisited by IBS: an overview, *Geol. Soc.*
907 *London, Spec. Publ.*, 156(1), 15–36, doi:10.1144/GSL.SP.1999.156.01.03, 1999.
908 Sibley, D. F. and Gregg, J. A. Y. M.: Classification of Dolomite Rock Texture, *J. Sediment. Petrol.*, 57(6), 967–
909 975, doi:10.1306/212F8CBA-2B24-11D7-8648000102C1865D, 1987.
910 Sibson, R. H.: Crustal stress, faulting and fluid flow, *Geol. Soc. London, Spec. Publ.*, 78(1), 69–84,
911 doi:10.1144/GSL.SP.1994.078.01.07, 1994.
912 Sibson, R. H.: Structural permeability of fluid-driven fault-fracture meshes, *J. Struct. Geol.*, 18(8), 1031–1042,
913 doi:10.1016/0191-8141(96)00032-6, 1996.
914 Sinisi, R., Petrullo, A. V., Agosta, F., Paternoster, M., Belviso, C. and Grassa, F.: Contrasting fault fluids along
915 high-angle faults: a case study from Southern Apennines (Italy), *Tectonophysics*, 690(PartA), 206–218,
916 doi:10.1016/j.tecto.2016.07.023, 2016.
917 Solum, J. G. and Huisman, B. A. H.: Toward the creation of models to predict static and dynamic fault-seal
918 potential in carbonates, *Pet. Geosci.*, 23(1), 70–91, doi:10.1144/petgeo2016-044, 2016.
919 Solum, J. G., Davatzes, N. C. and Lockner, D. A.: Fault-related clay authigenesis along the Moab Fault:
920 Implications for calculations of fault rock composition and mechanical and hydrologic fault zone properties, *J.*
921 *Struct. Geol.*, 32(12), 1899–1911, doi:10.1016/j.jsg.2010.07.009, 2010.
922 Storti, F., Billi, A. and Salvini, F.: Particle size distributions in natural carbonate fault rocks: Insights for non-self-
923 similar cataclasis, *Earth Planet. Sci. Lett.*, 206(1–2), 173–186, doi:10.1016/S0012-821X(02)01077-4, 2003.
924 Swart, P. K.: The geochemistry of carbonate diagenesis: The past, present and future, *Sedimentology*, 62(5), 1233–
925 1304, doi:10.1111/sed.12205, 2015.
926 Tempier, C.: Modèle nouveau de mise en place des structures provençales, *Bull. la Soc. Geol. Fr.*, 3, 533–540,
927 doi:10.2113/gssgbull.III.3.533, 1987.
928 Tondi, E.: Nucleation, development and petrophysical properties of faults in carbonate grainstones: Evidence from
929 the San Vito Lo Capo peninsula (Sicily, Italy), *J. Struct. Geol.*, 29(4), 614–628, doi:10.1016/j.jsg.2006.11.006,
930 2007.
931 Triat, J.: Paléoaltérations dans le crétacé supérieur de Provence rhodanienne, Strasbourg: Institut de Géologie –
932 Université Louis-Pasteur., 1982.
933 Vincent, B., Emmanuel, L., Houel, P. and Loreau, J. P.: Geodynamic control on carbonate diagenesis: Petrographic
934 and isotopic investigation of the Upper Jurassic formations of the Paris Basin (France), *Sediment. Geol.*, 197(3–
935 4), 267–289, doi:10.1016/j.sedgeo.2006.10.008, 2007.
936 Volery, C., Davaud, E., Foubert, A. and Caline, B.: Shallow-marine microporous carbonatereservoir rocks in the
937 Middle East: relationship with seawater Mg/Ca ration and eustatic sea level, *J. Pet. Geol.*, 32(October), 313–325,
938 doi:10.1111/j.1747-5457.2009.00452.x, 2009.
939 Volery, C., Davaud, E., Foubert, A. and Caline, B.: Lacustrine microporous micrites of the Madrid Basin (Late
940 Miocene, Spain) as analogues for shallow-marine carbonates of the Mishrif reservoir formation (Cenomanian to
941 Early Turonian, Middle East), *Facies*, 56(3), 385–397, doi:10.1007/s10347-009-0210-8, 2010.
942 Walsh, J. J., Watterson, J., Bailey, W. R. and Childs, C.: Fault relays, bends and branch-lines, 21(8–9), 1019–
943 1026, doi:10.1016/S0191-8141(99)00026-7, 1999.
944 Walsh, J. J., Bailey, W. R., Childs, C., Nicol, A. and Bonson, C. G.: Formation of segmented normal faults: a 3-D
945 perspective, 25, 1251–1262, doi:10.1016/S0191-8141(02)00161-X, 2003.
946 Wilkins, S. J., Naruk, S. J., Wilkins, S. J., International, S., Naruk, S. J. and International, S.: Quantitative analysis
947 of slip-induced dilation with application to fault seal, 1(1), 97–113, doi:10.1306/08010605177, 2007.
948 Woodcock, N. H., Dickson, J. A. D. and Tarasewicz, J. P. T.: Transient permeability and reseal hardening in fault
949 zones: evidence from dilation breccia textures, *Geol. Soc. London, Spec. Publ.*, 270, 43–53, 2007.
950 Wu, G., Gao, L., Zhang, Y., Ning, C. and Xie, E.: Fracture attributes in reservoir-scale carbonate fault damage
951 zones and implications for damage zone width and growth in the deep subsurface, *J. Struct. Geol.*, 118(February
952 2017), 181–193, doi:10.1016/j.jsg.2018.10.008, 2019.
953 Zhang, Y., Schaub, P. M., Zhao, C., Ord, A., Hobbs, B. E. and Barnicoat, A. C.: Fault-related dilation,
954 permeability enhancement, fluid flow and mineral precipitation patterns: numerical models, *Geol. Soc. London,*
955 *Spec. Publ.*, 299(1), 239–255, doi:10.1144/SP299.15, 2008.
956 Zhu, W. and Wong, T.-F.: The transition from brittle faulting to cataclastic flow: Permeability evolution, *J.*
957 *Geophys. Res.*, 102(96), 3027–3041, doi:10.1029/96JB03282, 1997.
958

959