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Introduction: 
This document contains our previous responses and completed manuscript changes 
resulting from the two reviews of our “Deep learning for fast simulation of seismic waves in 
complex media” discussion paper. 
 
We would like to thank the reviewers (Andrew Curtis and Andrew Valentine) for their in-
depth and valuable comments on the paper and hope our responses below address their 
comments. 
 
Where we have deemed appropriate, we have grouped similar comments from both 
reviewers together and provided a single response. 
 
 
Ben Moseley, Tarje Nissen-Meyer & Andrew Markham 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Reviewer comments: 

[Reviewer 2] 1. The main worry I have about this manuscript is a combination of (a) the method is acoustic and 
uses relatively simple acoustic models, (b) the authors themselves state that it will be difficult to extend the 
proposed methods to more complex models and particularly to solid (elastic) models, and (c) that these two 
points seem to imply that this method is not, as the authors propose, an advancement on solid Earth science 
but rather is a paper about toy problems in acoustics that cannot be extended to elastic media. I am not saying 
that this is definitely what the authors believe, nor that it is true, but that is how their message came across to 
me as a reader. If true (and I would not actually be surprised if it is), this suggests that the paper might be more 
appropriate for an acoustics journal like JASA, rather than a solid Earth journal. Otherwise, the authors must 
better justify how this work advances solid Earth science.  

It may be that the authors think that these methods could be extended to elastic media and to significantly 
more complex (heterogeneous) models, and they simply have not explained how. Or it may be that they think 
that this research closes off an avenue of research for solid Earth science which is useful to stop others from 
following – in effect they might decide to argue that they prove that this approach or network architecture will 
not be fruitful for the Earth sciences. Either is a positive step for science. One way or the other, the authors 
need to explain more clearly which (or which other message) we should take from their work, and why.  

However, since this is a Discussion paper, in fact I think the best would be to rethink the paper slightly: I would 
begin by thinking through, and then presenting, a roadmap that might solve real modelling or inversion 
problems in the solid Earth sciences using models of more realistic complexity. Then show how this paper fits 
into that – either taking a first step in a possible direction to achieve it, or testing an avenue that while 
successful, turns out not to be practical for the real Earth. Either way, in the Discussion section they can explain 
how this work has advanced our state of knowledge about the overall strategy, and how we should move 
forward in future.  

 

Author response: 
 
We can see how our message comes  across as though this is a toy problem that cannot be 
extended to elastic media and that the paper does not consider enough how it advances 
Solid Earth science.  
 
The message we want to convey is that we are taking the first steps in understanding 
whether deep learning can aid seismic simulation tasks relevant to the Solid Earth sciences, 
and in that sense proposing a new research direction. 
 
Whilst we only present methods for “toy” 2D acoustic simulation, and whilst we believe 
there are challenges to extending our methods to 3D, more heterogeneous media and 
elastic simulations tasks relevant to the Solid Earth, based on our first steps we believe 
further research is needed and the avenue could eventually yield practical and useful tools 
for Solid Earth science. We believe this ought to be done before any decision on whether 
this approach has the potential to scale up at production level for realistic Earth science 
applications.  
 
We currently believe that extending our method to 3D is mostly a computational challenge, 
rather than requiring an entire conceptual recast to our network design. Similarly, our 



network structure is readily extendable to elastic simulation; the dimensionality of the 
network’s inputs and outputs just needs to be increased. Whilst further research is needed 
to understand if these extensions are possible, we believe that our main contribution is to 
show that deep neural networks can simulate more complex 2D models for which no 
solutions other than numerically discretized ones exist and not just simple 1D models, which 
is a positive step towards using deep neural networks in real applications.  
 
Proposed manuscript changes: 
 
We propose to “reframe” the manuscript such that it includes a sort of “manifesto” or 
roadmap proposing and investigating deep learning for aiding Solid Earth simulation tasks: 

1. Add more emphasis in the introduction on practical Solid Earth seismic simulation 
tasks, their challenges and how deep learning and our method fits into them 

2. Add more detail in the discussion section on future research directions which could 
extend our methods so they can eventually be used in real Solid Earth simulation 
tasks. We would include new subsections discussing what we see are the main 
challenges towards this: 1) extending to more heterogeneous models, 2) extension 
to elastic simulation and 3) extension to 3D simulation. 

 
Completed manuscript changes: 
 

1. Abstract and introduction re-written to be more of a “manifesto” on the potential of 
deep learning for aiding simulation tasks in the Solid Earth sciences: added more 
emphasis on practical seismic simulation tasks, their challenges and how deep 
learning could aid them. 

2. Added new subsections in the discussion, discussing in more detail 1) extension to 
more complex Earth models, 2) extension to elastic simulation and 3) extension to 
3D simulation, as well as a summary on the potential practical applications of our 
method. In each case, we suggest how neural networks may be beneficial compared 
to the challenge of these extensions for conventional discrete methods.  

 
 
 
 
 
 
 
Reviewer comments: 
 
[Reviewer 1] • What do the authors foresee as the primary application(s) of their approach? The discussion 
seems to mainly envisage inversion-related use cases. Some comments on this: 

1. The ‘fast seismic inversion’ approach discussed in Section 3 is essentially a variant of the ‘prior 
sampling’ approach discussed in detail by Käufl et al (2016). The key strength and weakness of this as 
an inversion strategy is that all samples (i.e. the training set) are generated without reference to any 
observed data. This enables very rapid inference once data becomes avail- able, but it means that 
most training samples lie far from the observed data and are largely wasted from the perspective of 
any one inference. The end result is that inferences are considerably less well-constrained than would 
be possible with posterior sampling (see Fig. 9 of Käufl et al 2016). The bottom line is that prior 
sampling only seems a worthwhile strategy for (a) problems where time is of the essence, e.g. 



earthquake early warning, or (b) problems where the ‘same’ inference task needs to be solved many 
thousands of times with different data vectors. 

2. Using the learned model in Monte Carlo simulations seems superficially attractive, but comes with 
significant caveats. Fundamentally the inference remains entirely based on the information contained 
within the training dataset, and so all the limitations of prior sampling remain. The random walk 
would need to be constrained to only generate models compatible with the training data, if results are 
to be meaningful. Perhaps it would be possible to progressively retrain the learned simulation as the 
McMC proceeds, to ensure accuracy in relevant parts of the model space: this starts to move towards 
the Bayesian optimisation approaches discussed in (e.g.) Wang et al (2013). To play devil’s advocate: if 
a problem is too complex to tackle using an McMC approach using physical simulations, can we really 
be confident that a learned model is sufficiently accurate to yield meaningful results? How big a 
training set is required to capture the full complexity of the physical problem? 

Some discussion and commentary on these issues, and other potential applications, would be appreciated. 

 
 
 
Author response: 
 
We agree that discussing in more detail the potential applications of our method would be 
valuable, as described in our previous response above. We also think that the specific issues 
highlighted on inversion in this comment are important to consider and we propose to 
expand our discussion on the pros and cons of our inversion technique to include these. 
 
Proposed manuscript changes: 
 

1. Add more detail in the discussion section on potential applications (as described in 
our response above) 

2. Discuss in more detail the issues of prior sampling and limitations of the training 
dataset when discussing the pros and cons of our inversion technique. 

 
Completed manuscript changes: 
 

1. Added more emphasis on practical seismic simulation tasks (see previous response) 
2. Added a subsection in the discussion on the limitations of our inversion technique 

(Section 4.4) which includes a discussion on the limitations of the training dataset. 
 
 
 
 
 
 
Reviewer comments: 
 
 
[Reviewer 1] • The main ‘selling point’ of the author’s approach is that it enables seismograms to be generated 
significantly faster than would be possible using ‘traditional’ forward models. However, this comes with a 
number of caveats that I think need to be discussed more carefully. 

1. (As above) the author’s approach is (I suspect) only effective for models that are sufficiently similar to 
those in the training set. The numerical forward code does not suffer from this restriction, and can 
handle complexities that aren’t present in the authors’ setup (e.g. anisotropy, variable density). How 



much of a speedup could be achieved by using a numerical code that had been designed with prior 
knowledge of the characteristics of the authors’ training set? Put another way: the speedup could be 
made to seem even more impressive by using a code designed for a vastly more complex setting (e.g. 
SPECFEM3D) to build the training set. How fair is the comparison that is being presented? 

2. The headline speed comparisons ignore the costs of building a training set and then training the 
neural networks, which are significant. How many simulations does a user need to envisage 
performing before the author’s approach becomes cost-effective overall? I think this is going to be a 
rather large number. Again, some discussion of the pros and cons of the author’s approach would 
seem desirable. 

 
[Reviewer 1] • In general, we can make numerical simulations faster by introducing physical approximations. In 
such cases we typically have some intuition for how those approximations will impact upon results. Learned 
models offer a speedup without explicit physical approximations, but come with uncertainties that are difficult 
to quantify rigorously, and which may vary considerably depending on the particular set of inputs chosen. 
Would the authors like to comment on the pros and cons of the two different strategies for reducing 
computational costs? 

[Reviewer 2] I also agree with most (but not all) of the comments from Reviewer 1 (Andrew Valentine), in 
particular his comment that a fair comparison for the layered-medium example would be between neural 
networks and other modelling methods that intrinsically assume a 1D Earth structure rather than full finite 
difference methods.  

 
Author response: 
 
For the first case where we consider simple layered 1D Earth models we agree that a fairer 
speed comparison would be against existing numerical methods which intrinsically assume 
1D layers. For the 2D faulted Earth models we consider, to the best of our knowledge FD 
methods are the most efficient tools for these types of models, and therefore we believe 
this is a fair comparison. 
 
We agree that there is more nuance to the comparison than just speed; for example, a 
discussion on where our approach break downs and the cost of training dataset generation 
and training would be useful. 
 
Proposed manuscript changes: 
 

1. For the case of 1D layered Earth models compare our approach (our WaveNet 
model) against the speed of an existing numerical method which intrinsically 
assumes 1D layers. 

2. Include a discussion of where our approach breaks down and the relative cost of 
generating the training data and training our models. 

 
Completed manuscript changes: 
 

1. Added a comparison of the WaveNet model to an efficient quasi-analytic 2D ray 
tracing algorithm which assumes horizontally layered velocity models in Section 2. 

2. Added a summary in the discussion which discusses the relative cost of training our 
models (Section 4.5). 

 



 
 
 
 
 
 
Reviewer comments: 
 
[Reviewer 2] 4. The paper appears to have committed the equivalent of an ‘inverse crime’. If I understand 
correctly, the authors have trained networks in the forward and inverse directions using models with a certain 
parametrisation, and have tested the networks on models of exactly the same parametrization (Reviewer 1 
touched on this too). While this would be reasonable if the models were themselves reasonably realistic, in a 
practical field like Geophysics I think it is necessary to test the networks on examples that lie outside of the 
range of the training set – not only using different models from those in the training set, but models that are 
not within the span of the algorithm used to generate the training set (as in the real Earth). 
 
For example, (a) Earp and Curtis (2019, arXiv – https://arxiv.org/abs/1907.00541 ) and (b) Earp et al. (2019, 
arXiv – https://arxiv.org/abs/1908.09588 ) perform (a) probabilistic travel time tomographic imaging, and (b) 
probabilistic surface wave inversion for averaged shear wave structures with depth, using deep neural 
networks. The test examples using in both cases are created using a finer parametrization than was used in the 
network training set – thus the actually structure of the (synthetically) ‘true’ Earth is not attainable by the 
networks; nevertheless, they can be used as a useful check of whether in such cases (as in the real Earth) the 
networks behave sensibly – giving results that are spatial averages in some sense of the ‘true’ structure. To be 
clear I do not think that the above references are perfect in this regard and could certainly be improved (e.g., 
could use even more complex models for tests); nevertheless, the authors could usefully think about such tests 
for their work as it would strengthen the conclusions. 
 
[Reviewer 1] • In any ML-based approach, the training data is central to the applicability of the method. The 
author’s trained network appears effective for simulating waveforms in models that are generated using the 
same criteria as were used to make the training set. However, I suspect performance will be significantly worse 
for models that have significantly different character. This is something that deserves more discussion than it 
receives, perhaps with some examples. A particular concern in practical settings may be how an end-user can 
assess whether their input model is ‘sufficiently close’ to the training set. 

 
Author response: 
 
Whilst we were careful not to test the performance of the network using the same 
examples which were used to train the network, we only used examples drawn from the 
same distribution as the training distribution to test our networks. Because the training 
distribution only contains simple models we agree with the reviewers that this does not 
inform us on the performance of the network for models outside of the training set, and 
furthermore our current networks are likely to perform worse for such models.  
 
For many seismological applications of forward and inverse modelling, we believe that the 
Earth models used are typically within a known range of parameters and therefore a 
training set could be constructed which appropriately spans the expected models, however 
we believe more research is needed in this area. For instance, dozens of published 
tomographic models could be used to define a base model range for future tomography 
modelling where thousands or millions of similar model simulations are needed. 
 
Proposed manuscript changes: 



 
1. We propose to test both our models on more realistic Earth models outside of the 

span of our training distribution and show the degradation observed. We also 
propose to suggest ways (such as nearest neighbour analysis) which could help a 
user determine how close an input model is to the training distribution, and 
potential future research ideas which could quantify the prediction uncertainty. 

2. We will add more discussion on potential applications where we think this limitation 
is and is not permissible. 

 
Completed manuscript changes: 
 

1. Added generalisation tests for both the WaveNet and conditional autoencoder in 
Sections 2 and 3, testing them on velocity models significantly outside of the range 
of their training distribution. We also present a nearest neighbour approach to help 
assess how close an input velocity model is to the training distribution (Section 3). 

2. Added subsections in the discussion which discuss the challenge of generalisation 
(Section 4.3) and potential applications where this is permissible (Section 4.5). 

 
 
 
 
 
Reviewer comments: 

[Reviewer 2] 2. The introduction is interesting and reviews some of the appropriate material, but is very 
sparsely justified, and as also stated by Reviewer 1, it does not include many key references. In my view, every 
sentence of a scientific work must either be a logical deduction from previous text, must have been 
deduced/proven in another paper, or may be an argument based on the material in another paper; in that 
latter two cases that paper needs to be discussed and cited. In this paper, the Introduction cites very few 
references and therefore contains unjustified (in the sense of, ‘not justified’) statements. Examples include:  

One cannot write a paper on using neural networks to perform full waveform inversion (FWI) without citing 
Roeth and Tarantola (1994 – J. Geophys. Research). How does the FWI part of this paper improve on their 
work? That is not at all clear. There are many other papers using neural networks for imaging in Geophysics 
using waveforms or other types of data; you need to read and cite them, and describe how this work advances 
the field relative to those works. Currently the latter is not clear. The authors make the case for using neural 
networks for real-time applications – again first steps in this direction have already been taken (see Cao et al., 
2019 – Geophysics, for example) and should be discussed.  

[Reviewer 1] • Referencing, especially in the introduction, seems rather haphazard. If citations are to be given 
for broad, well-established topics such as the utility of seismic simulations in reservoir characterisation, I would 
expect these to be to major review papers or to ‘classics’: these are going to be most useful for a reader who is 
unfamiliar with the field. Without intending any criticism of the cited works, this does not really seem to be the 
case at present. Moreover, the authors’ survey of the history of machine learning in geophysics is very short-
sighted, ignoring anything more than a couple of years old. There are neural network papers in the geophysical 
literature from the late 1970s onwards, and it would be nice to see some acknowledgement of this body of 
work. Valentine & Trampert (2012) is probably the first instance of ‘deep learning’ in seismology, though the 
term had not been invented at that point (and we did not have the benefit of modern computational 
frameworks). 
 
 



Author response: 
 
We agree that the referencing in the introduction is sparse and that we only review 
examples of applications of deep learning to geophysics in the last couple of years, and that 
the paper would be stronger with more discussion of relevant work. 
 
Proposed manuscript changes: 
 

1. Ensure citations on broad, well-established topics in the introduction are major 
review papers or “classics”. 

2. Add and discuss more references where they are sparse, for example Roeth and 
Tarantola (1994 – J. Geophys. Research) when discussing FWI, and Cao et al., 2019 – 
Geophysics for real time simulation. 

3. Include a fuller review of the applications of deep learning in geophysics, and include 
earlier examples, such as Valentine & Trampert (2012) and Devilee et al., (1999 – J. 
Geophys. Res). 
 

Completed manuscript changes: 
 

1. Citations changed and added in introduction to works which are major review 
papers, core textbooks or “classics”. 

2. Roeth and Tarantola (1994 – J. Geophys. Research) included when discussing FWI. 
3. Added a review of the early applications of neural networks and deep learning in 

geophysics, including Valentine & Trampert (2012) and Devilee et al., (1999 – J. 
Geophys. Res) (Section 1.1). 

 
 
 
 
 
Reviewer comments: 
 

[Reviewer 2] 3. The authors promote the fact that they use ‘deep learning’, and their application certainly fits 
into that category. However, they must at least discuss why this is a positive feature of the method, and cite 
previous Geophysical applications of deep learning to support that discussion. Deep learning is usually defined 
to be the use of 4 or more layers within a neural network. While I agree with Reviewer 1 that his previous work 
(Valentine and Trampert) was an example of deep learning, the first that I know of in Geophysics was in fact 
Devilee et al., (1999 – J. Geophys. Res) – which came from the same university.  

In my view there is therefore nothing new about the concept of deep learning: we were using it in Geophysics in 
the ‘90’s. What has changed is the extent to which depth can be used to impose useful structure on networks 
(as the authors themselves have done in this manuscript – their Figure 9, and also in the paper cited by 
Reviewer 1); also the number of parameters that can now be used (the width of each layer) has increased 
hugely. In fact the number of parameters in the authors’ application is relatively modest compared to some in 
machine learning literature, but is certainly comparable to other recent studies in Geophysics; the structure 
that the authors impose is both sensible and clearly useful in order to help to obtain stable results. These things 
should be discussed.  

 



Author response: 
 
We agree that deep learning is not a new technique in Geophysics and that two of the 
enabling recent advancements in this field are the ability to train deeper models with many 
more parameters. We agree the manuscript does not explicitly make this distinction and we 
propose to make this clearer. 
 
Proposed manuscript changes: 
 

1. Explicitly acknowledge that deep learning concepts are not new in geophysics and 
have been used in the past, and explain that, among other factors, such as the 
availability of more powerful hardware, advancements in training deep models with 
more parameters have enabled this work. 

 
Completed manuscript changes: 
 

1. Added explicit acknowledgement neural networks are not new in geophysics 
(Section 1.1) and explained the developments in deep learning which have driven 
the recent surge in deep learning research in geophysics (Section 1.1). 

 



Deep learning for fast simulation of seismic waves in complex media
Ben Moseley1, Tarje Nissen-Meyer2, and Andrew Markham1

1Department of Computer Science, University of Oxford, UK
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Correspondence: Ben Moseley (bmoseley@robots.ox.ac.uk)

Abstract. The simulation of seismic waves is a core task in many geophysical applications. Numerical methods such as

Finite Difference (FD) modelling and Spectral Element Methods (SEM) are the most popular techniques for simulating

seismic wavesin complex media, but for many tasks
:
,
:::
but

::::::::::::
disadvantages

::::
such

:::
as

:
their computational cost is prohibitively

expensive
::::::
prohibit

:::::
their

:::
use

:::
for

:::::
many

:::::
tasks. In this work we present two types of deep neural networks as fast alternatives

for simulating seismic waves in horizontally layered and faulted 2D acoustic media. In contrast to the classical methods both5

networks
::::::::
investigate

:::
the

::::::::
potential

::
of

:::::
deep

:::::::
learning

:::
for

:::::
aiding

:::::::
seismic

:::::::::
simulation

::
in

:::
the

:::::
Solid

:::::
Earth

::::::::
sciences.

:::
We

::::::
present

::::
two

::::
deep

:::::
neural

::::::::
networks

:::::
which

:
are able to simulate the seismic response at multiple locations within the media in a single inference

step, without needing to iteratively model the seismic wavefield through time, resulting in
::
in

::::::::::
horizontally

::::::
layered

::::
and

::::::
faulted

::
2D

:::::::
acoustic

::::::
media an order of magnitude reduction in simulation time. This speed improvement could pave the way to real-time

seismic simulation and benefit seismic inversion algorithms based on forward modelling, such as full waveform inversion. Our10

::::
faster

::::
than

:::::::::
traditional

:::::
finite

:::::::::
difference

:::::::::
modelling.

:::
The

:
first network is able to simulate seismic waves

::
the

:::::::
seismic

::::::::
response in

horizontally layered media . We use
:::
and

::::
uses

:
a WaveNet network architecture and show this is more accurate than a standard

convolutional network design. Furthermore we show that seismic inversion can be carried out by retraining the network with

its inputs and outputs reversed, offering a fast alternative to existing inversion techniques. Our
::::::
design.

:::
The

:
second network

is significantly more general than the first ; it
:::
and

:
is able to simulate seismic waves

::
the

:::::::
seismic

::::::::
response in faulted media15

with arbitrary layers, fault properties and an arbitrary location of the seismic source on the surface of the media. It uses a

convolutional autoencoder network designand is conditioned on the input source location. We investigate
:
,
:::::
using

:
a
::::::::::
conditional

::::::::::
autoencoder

::::::
design.

:::
We

:::
test the sensitivity of different network designs and training hyperparameterson its simulation accuracy.

We compare and contrast this network to the first network . To train both networks we introduce a time-dependent gain in the

loss function which improves convergence. We discuss the relative merits of our approach with FD modelling and how our20

approach could be generalised to simulate more complexEarth models.
::
the

::::::::
accuracy

::
of
:::::

both
::::::::
networks

::
to

:::::::
different

::::::::
network

::::::::::::::
hyperparameters,

:::
and

:::::
show

::::
that

:::
the

::::::::
WaveNet

:::::::
network

:::
can

::
be

::::::::
retrained

::
to

:::::
carry

:::
out

:::
fast

:::::::
seismic

::::::::
inversion

::
in

:::
the

:::::
same

::::::
media.

:::
We

:::
find

::::
that

:::
are

::::
there

:::
are

:::::::::
challenges

:::::
when

::::::::
extending

:::
our

::::::::
methods

::
to

::::
more

::::::::
complex,

::::::
elastic

:::
and

:::
3D

:::::
Earth

:::::::
models;

::
for

::::::::
example

::
the

::::::::
accuracy

::
of

::::
both

::::::::
networks

:::::::
reduces

::::
when

::::
they

:::
are

:::::
tested

:::
on

::::::
models

::::::
outside

::
of

:::::
their

::::::
training

::::::::::
distribution.

::::
We

::::::
discuss

::::::
further

:::::::
research

::::::::
directions

:::::
which

:::::
could

:::::::
address

::::
these

:::::::::
challenges

::::
and

:::::::::
potentially

::::
yield

::::::
useful

::::
tools

:::
for

:::::::
practical

:::::::::
simulation

:::::
tasks.

:
25

1



1 Introduction

Seismic simulations are essential for many areas of
::::::::
addressing

:::::
many

::::::::::
outstanding

::::::::
questions

::
in
:
geophysics. In seismic hazards

analysis, they are a key tool for quantifying the ground motion of potential earthquakes (?)
:::::::::::::::::::::::::
(Boore, 2003; Cui et al., 2010). In oil

and gas prospecting, they allow the seismic response of hydrocarbon reservoirs to be modelled (??)
::::::::::::::::::::::::::::::::::
(Chopra and Marfurt, 2007; Lumley, 2001)

. In geophysical surveying , they show how the subsurface is illuminated by different survey designs (?). Seismic simulations5

are used in global geophysics
::::::::::::::
(Xie et al., 2006).

:::
In

:::::
global

::::::::::
geophysics

::::
they

:::
are

::::
used to obtain snapshots of the Earth’s interior

dynamics (?) and
::
by

::::::::::
tomography

:::::::::::::::::::::::::::::::::::
(Hosseini et al., 2019; Bozdağ et al., 2016),

:
to decipher source and path effects from indi-

vidual seismograms (?). They are also heavily used in seismic inversion , which estimates
::::::::::::::::::
(Krischer et al., 2017)

:::
and

::
to

::::::
model

::::
wave

::::::
effects

::
of

:::::::
complex

::::::::
structures

::::::::::::::::::::::::::::::
(Thorne et al., 2020; Ni et al., 2002).

::
In

:::::::
seismic

::::::::
inversion

::::
they

::
are

:::::
used

::
to

:::::::
estimate the elas-

tic properties of a medium given its seismic response (?). In
:::::::::::::::::::::::::::
(Tarantola, 1987; Schuster, 2017)

:::
and

::
in

:
Full Waveform Inversion10

(FWI), a strategy widespread in the field of seismic imaging, simulations are used
:::::::::::::::::::::::::::::::::::
(Fichtner, 2010; Virieux and Operto, 2009)

:
,
:
a
::::::::
technique

:::::
used

::
to

::::::
image

:::
the

:::
3D

:::::::
structure

:::
of

:::
the

:::::::::
subsurface,

::::
they

::::
are

::::
used

:::
up

::
to

::::
tens

::
of

:
thousands of times to iteratively

estimate
:::::::
improve

:::
on

::::::::
estimates

::
of

:
a medium’s elastic properties(?). .

:::
In

::::::::
planetary

:::::::
science,

::::::
seismic

::::::::::
simulations

::::
play

::
a

::::::
central

:::
role

::
in

::::::::::::
understanding

:::::
novel

:::::::::
recordings

::
on

:::::
Mars

:::::::::::::::::::
(Van Driel et al., 2019).

:

Numerous methods exist for simulating seismic waves(?). The most popular are
:
,
:::
the

::::
most

:::::::
popular

::
in

:::::
fully

::::::::::::
heterogeneous15

:::::
media

:::::
being Finite Difference (FD) modelling and Spectral Element Methods (SEM) (??)

:::::::::::::::::::::::::::::::::::::::::::::::::
(Igel, 2017; Moczo et al., 2007; Komatitsch and Tromp, 1999)

. They are able to capture a large range of physics, including the effects of undulating solid-fluid interfaces (?)
:::::::::::::::
(Leng et al., 2019)

, intrinsic attenuation (?) and anisotropy (?)
:::::::::::::::::::::::::::::::
(van Driel and Nissen-Meyer, 2014a)

:::
and

::::::::
anisotropy

:::::::::::::::::::::::::::::::
(van Driel and Nissen-Meyer, 2014b)

. These methods solve for the propagation of the full seismic wavefield by discretising the elastodynamic equations of motion.

For an acoustic heterogeneous medium these are given by the scalar linear equation of motion20

ρ∇ ·
(
1

ρ
∇p
)
− 1

v2
∂2p

∂t2
=−ρ∂

2f

∂t2
, (1)

where p is the acoustic pressure, f is a point source of volume injection (the seismic source), and v =
√
κ/ρ is the velocity

of the medium, with ρ the density of the medium and κ the adiabatic compression modulus (?)
:::::::::::::::
(Long et al., 2013).

Whilst FD and spectral element methods are the primary means to simulate seismic waves
:
of

:::::::::
simulation

:
in complex me-

dia, a major disadvantage of these methods is their computational cost . FD modelling can involve millions of grid points25

:::::::::::::::::::::::::::
(Bohlen, 2002; Leng et al., 2016).

:::::::
Typical

:::
FD

::
or

::::
SEM

::::::::::
simulations

:::
can

::::::
involve

:::::::
billions

::
of

:::::::
degrees

::
of

:::::::
freedom,

:
and at each time

step the wavefield must be iteratively updated at each
::
3D

:
grid point. This computational cost

:::
For

:::::
many

::::::::
practical

::::::::::
geophysical

::::::::::
applications

:::
this

:
is often prohibitively expensive; supercomputers are typically required for large simulations (?). A faster

method for seismic simulation would enable many applications. For example , it would benefit real-time seismic simulation

and seismic inversion methods which are heavily limited by the computational cost of forward simulation (?).
:::
For

::::::::
example,30

::
in

:::::
global

::::::::::
seismology

:::
one

::::
may

::
be

:::::::::
interested

::
in

::::::::
modelling

::::::
waves

::
up

::
to
::
1
:::
Hz

::
in

::::::::
frequency

::
to

:::::::
resolve

:::::::::
small-scale

:::::::::::::
heterogeneities

::
in

:::
the

::::::
mantle

::::
and

::
a

:::::
single

::::::::::
simulation

::
of

::::
this

::::
type

:::::
with

:::::::::::
conventional

:::::::::
techniques

::::
can

::::
cost

::::::
around

:::
40

:::::::
million

::::
CPU

::::::
hours

2



:::::::::::::::
(Leng et al., 2019).

:::
At

::::::
crustal

::::::
scales,

::::::::
industrial

:::::::
seismic

:::::::
imaging

::::::::
requires

::::
wave

:::::::::
modelling

:::
up

::
to

::::
tens

:::
of

:::::
Hertz

::
in

:::::::::
frequency

::::::
carried

:::
out

::::::::
hundreds

::
of
:::::::::

thousands
:::

of
:::::
times

:::
for

::::
each

:::::::::
explosion

::
in
::

a
:::::::
seismic

::::::
survey,

::::
and

::::
such

::::::::::::
requirements

:::
can

::::::
easily

:::
fill

::
the

:::::::
largest

:::::::::::::
supercomputers

:::
on

:::::
Earth.

:::::
Any

:::::::::::
improvement

::
in
:::::::::

efficiency
::
is
:::::::::

welcome,
:::
not

:::::
least

:::
due

:::
to

:::
the

::::
high

::::::::
financial

::::
and

:::::::::::
environmental

:::::
costs

::
of

:::::::::::::::
high-performance

::::::::::
computing.

::
In

:::::
some

:::::::::::
applications,

::::
large

:::::
parts

::
of

::::
the

:::::
Earth

::::::
model

::::
may

::
be

:::::::::
relatively

::::::
smooth

:::
or

::::::
simple.

:::::
This

::::::::
simplicity

::::
can

:::
be

:::::
taken5

::::::::
advantage

:::
of,

:::
for

:::::::
example

::
in

:::
the

::::::::::::::::
complexity-adapted

:::::
SEM

:::::::::
introduced

:::
by

:::::::::::::::
Leng et al. (2016),

::::
and

:::
can

::::::
deliver

:
a
:::::
large

::::::::
speed-up

::::::::
compared

::
to

:::::::
standard

::::::::
numerical

:::::::::
modelling.

:::::::::::::::
Pseudo-analytical

:::::::
methods

::::
such

::
as

:::
ray

::::::
tracing

:::
and

::::::::::::::::::::
amplitude-versus-offset

::::::::
modelling

::::::::::::::::::::::::::::::::::::
(Aki and Richards, 1980; Vinje et al., 1993)

::
are

::::::
another

::::::::
approach

:::::
which

::::
can

::::::
provide

:::::::::
significant

:::::::::
speed-ups,

::::
albeit

:::::
being

:::::::::::
approximate.

:::
We

::::
note

:::
that

:::::
many

::::::::::
applications

:::
are

:::::::::
constrained

::::
and

:::::
driven

:::
by

:
a
::::::
sparse

::
set

::
of

:::::::::::
observations

::
on

:::
the

::::::
surface

::
of
:::
an

:::::
Earth

::::::
model.

:::
For

::::
these

::::::::::
applications

:::
we

:::
are

::::::::
typically

::::
only

::::::::
interested

::
in

:::::::::
modelling

:::
the

:::::::
seismic

:::::::
response

::
at

:::::
these

:::::
points

::
to
:::::::
deciper

::::::
seismic

::::::
origin10

::
or

:::
the

:::
3D

:::::::
structure

:::::::
beneath

:::
the

:::::::
surface,

::
yet

:::::
fully

::::::::
numerical

::::::::
methods

:::
still

::::
need

::
to
::::::
iterate

:::
the

:::::
entire

::::::::
wavefield

:::::::
through

::
all

::::::
points

::
in

::
the

::::::
model

::
at

::
all

::::::
points

::
in

::::
time.

::::
Any

:::::::
shortcut

::
to

:::::
avoid

:::::::::
computing

::::
these

:::::::
massive

:::
4D

:::::::::
wavefields

:::::
might

::::
lead

::
to

:::::
drastic

:::::::::
efficiency

::::::::::::
improvements.

::
In

:::::
short,

:::
the

::::::
points

:::::
above

::::::
suggest

::::
that

:::::::::
alternative

:::
and

::::::::::::
advantageous

:::::::
methods

::
to

::::::
capture

::::::::
accurate

::::
wave

:::::::
physics

:::
may

:::
be

:::::::
possible

:::
for

::::
these

::::::::::
challenging

:::::::::
problems.

The field of deep learning has
:::::::
machine

:::::::
learning

:::
has

::::
seen

::
an

::::::::
explosion

::
in

::::::
growth

::::
over

:::
the

:::
last

:::::::
decade.

::::
This

:::
has

::::
been

::::::::
primarily15

:::::
driven

::
by

::::::::::::
advancements

::
in

::::
deep

::::::::
learning,

:::::
which

:::
has

:::::::
provided

:::::
more

::::::::
powerful

:::::::::
algorithms

:::::::
allowing

:::::
much

::::
more

:::::::
difficult

::::::::
problems

::
to

::
be

:::::::
learned

::::::::::::::::::::
(Goodfellow et al., 2016)

:
.
::::
This

::::::::
progress

:::
has

:::
led

::
to

::
a

::::
surge

:::
in

:::
the

:::
use

::
of

:::::
deep

:::::::
learning

:::::::::
techniques

::::::
across

:::::
many

::::
areas

::
of

:::::::
science.

::
In

:::::::::
particular,

::::
deep

::::::
neural

::::::::
networks

::::
have recently shown promise in its

:::
their

:
ability to make approximate

:::
fast

yet sufficiently accurate predictions of physical phenomena
::::::::::::::::::::::::::::::::::::::::::::::
(Guo et al., 2016; Lerer et al., 2016; Paganini et al., 2018). These

approaches are able to learn about highly non-linear physics and often offer much faster inference times than traditional20

simulation(??). .
:

In this work we study the ability
:::
ask

:::::::
whether

:::
the

::::
latest

:::::
deep

:::::::
learning

:::::::::
techniques

:::
can

:::
aid

::::::
seismic

:::::::::
simulation

:::::
tasks

:::::::
relevant

::
to

::
the

:::::
Solid

:::::
Earth

::::::::
sciences.

:::
We

:::::::::
investigate

::
the

::::
use of deep neural networks for simulating seismic waves in 2D acoustic media

:::
and

::::::
discuss

:::
the

:::::::::
challenges

:::
and

:::::::::::
opportunities

:::::
when

::::
using

:::::
them

:::
for

:::::::
practical

::::::
seismic

:::::::::
simulation

:::::
tasks. Our contribution is as follows;

– We present two deep neural networks which are able to simulate seismic waves in 2D acoustic media . Both networks25

are an order of magnitude faster than FD simulation. Our
:::
The first network uses a WaveNet network architecture (?) and

simulates
::::::::::::::::::::::
(van den Oord et al., 2016)

:::
and

::
is

::::
able

::
to

:::::::::
accurately

:::::::
simulate

:
the pressure response from a fixed point source

at multiple locations in a horizontally layered velocity model. We show that this network design is more accurate than a

standard convolutional neural network. We also show that seismic inversion can be carried out by retraining the network

with its inputs and outputs reversed, offering a fast alternative to existing inversion techniques, at least for layered media.30

– Our second network
:::
The

::::::
second

:
is significantly more generalthan the first; it uses a conditional autoencoder network

design and it is able to simulate seismic waves
::
the

:::::::
seismic

:::::::
response

::
at

:::::::
multiple

::::::::
locations in faulted media with arbitrary

layers, fault properties and an arbitrary location of the source on the surface of the media. The network is conditioned

3



on the input source location. We compare this network with our WaveNet network. We also investigate
::
In

:::::::
contrast

::
to

:::
the

:::::::
classical

:::::::
methods

::::
both

::::::::
networks

:::::::
simulate

:::
the

:::::::
seismic

:::::::
response

:::
in

:
a
:::::
single

::::::::
inference

:::::
step,

::::::
without

:::::::
needing

::
to

:::::::::
iteratively

:::::
model

::::
the

::::::
seismic

:::::::::
wavefield

::::::
through

:::::
time,

:::::::
resulting

::
in
::
a
:::::::::
significant

:::::::
speed-up

:::::::::
compared

::
to

:::
FD

:::::::::
simulation.

:

–
:::
We

:::
test

:
the sensitivity of its simulation accuracy with

::
the

::::::::
accuracy

::
of

::::
both

::::::::
networks

::
to
:

different network designsand

training hyperparameters.5

– For both networks we
:
, present a loss function with a time-varying gain which improves training convergence . Finally,

we discuss the relative merits of our approach with FD modelling how our approach could be generalised to simulate

more complex
:::
and

:::::
show

:::
that

:::
fast

:::::::
seismic

::::::::
inversion

::
in

:::::::::
horizontal

::::::
layered

:::::
media

::::
can

:::
also

:::
be

::::::
carried

:::
out

::
by

:::::::::
retraining

:::
the

:::::::
WaveNet

::::::::
network.

–
:::
We

:::
find

::::::::::
challenges

:::::
when

::::::::
extending

::::
our

:::::::
methods

::
to
:::::

more
::::::::
complex,

::::::
elastic

::::
and

:::
3D

:::::
Earth

::::::
models

::::
and

:::::::
discuss

::::::
further10

:::::::
research

::::::::
directions

:::::
which

:::::
could

:::::::
address

::::
these

:::::::::
challenges

::::
and

::::
yield

::::::
useful

::::
tools

:::
for

:::::::
practical

:::::::::
simulation

:::::
tasks.

:

::
In

::::::
Section

::
2

::
we

:::::::
consider

:::
the

::::::
simple

::::
case

::
of

:::::::::
simulating

::::::
seismic

::::::
waves

::
in

::::::::::
horizontally

::::::
layered

:::
2D

:::::::
acoustic

:::::
Earth

::::::
models

:::::
using

:
a
::::::::
WaveNet

::::
deep

::::::
neural

::::::::
network.

::
In

::::::
Section

::
3
:::
we

:::::
move

:::
on

::
to

:::
the

::::
task

::
of

:::::::::
simulating

:::::
more

:::::::
complex

:::::::
faulted Earth models.

::
In

::::::
Section

:
4
:::

we
:::::::
discuss

:::
the

::::::::
challenges

:::
of

::::::::
extending

:::
our

::::::::
approach

:::
and

::::::
future

:::::::
research

:::::::::
directions.

1.1
::::::

Related
:::::
Work15

1.2 Related Work

:::
The

:::
use

:::
of

:::::::
machine

::::::::
learning

:::
and

::::::
neural

::::::::
networks

::
in

::::::::::
geophysics

::
is

:::
not

::::
new

:::::::::::::::::::::::::::
(Van Der Baan and Jutten, 2000).

::::
For

::::::::
example,

::::::::::::::::::::::
Murat and Rudman (1992)

::::
used

:::::
neural

::::::::
networks

::
to

:::::
carry

:::
out

:::::::::
automated

:::
first

:::::
break

:::::::
picking,

:::::::::::::::::
Dowla et al. (1990)

::::
used

:
a
::::::
neural

:::::::
network

::
to

::::::::::
discriminate

:::::::
between

::::::::::
earthquakes

::::
and

::::::
nuclear

:::::::::
explosions

::::
and

:::::::::::::::::
Poulton et al. (1992)

::::
used

:::::
them

::
for

::::::::::::::
electromagnetic

:::::::
inversion

::
of

::
a
:::::::::
conductive

:::::
target.

:::
In

::::::
seismic

::::::::
inversion,

::::::::::::::::::::::
Röth and Tarantola (1994)

::::
used

:
a
::::::
neural

:::::::
network

::
to

:::::::
estimate

:::
the

:::::::
velocity20

::
of

:::
1D,

:::::::
layered,

::::::::
constant

::::::::
thickness

:::::::
velocity

::::::
profiles

:::::
from

::::::
seismic

::::::::::
amplitudes

:::
and

::::::::::::::::
Nath et al. (1999)

:::
used

::::::
neural

::::::::
networks

:::
for

::::::::
cross-well

::::::::::
travel-time

::::::::::
tomography.

::::::::
However,

:::::
these

:::::
early

:::::::::
approaches

::::
only

:::::
used

::::::
shallow

::::::::
network

::::::
designs

::::
with

:::::
small

::::::::
numbers

::
of

::::
free

:::::::::
parameters

::::::
which

:::::
limits

:::
the

:::::::::::
expressivity

::
of

::::::
neural

::::::::
networks

:::
and

::::
the

:::::::::
complexity

:::
of

::::::::
problems

::::
they

::::
can

:::::
learn

:::::
about

::::::::::::::::::::
(Goodfellow et al., 2016)

:
.

Applying deep learning to physics problems is a burgeoning field of research and there is much active work in this area.25

?
:::

The
::::
field

::
of

:::::::
machine

::::::::
learning

:::
has

:::::
grown

:::::::
rapidly

::::
over

:::
the

:::
last

:::::::
decade,

::::::::
primarily

:::::::
because

::
of

::::::::
advances

::
in

::::
deep

::::::::
learning.

::::
The

:::::::::
availability

::
of

:::::
larger

:::::::
datasets,

::::::::
discovery

::
of

:::::::
methods

::::::
which

:::::
allow

:::::
deeper

::::::::
networks

::
to

::
be

::::::
trained

:::
and

::::::::::
availability

::
of

::::
more

::::::::
powerful

:::::::::
computing

:::::::::::
architectures

::::::
(mostly

:::::::
GPUs)

:::
has

:::::::
allowed

:::::
much

:::::
more

::::::::
complex

::::::::
problems

::
to

:::
be

:::::
learnt

:::::::::::::::::::::
(Goodfellow et al., 2016)

:
,

::::::
leading

::
to

:
a
:::::
surge

::
in

:::
the

:::
use

:::
of

::::
deep

:::::::
learning

::
in

:::::
many

:::::::
different

:::::::
research

::::::
areas.

::
In

:::::::
physics,

:::::::::::::::
Lerer et al. (2016) presented a deep

convolutional network which could accurately predict whether randomly stacked wooden towers would fall or remain stable,30

given 2D images of the tower. ?
:::::::::::::::
Guo et al. (2016) demonstrated that convolutional neural networks could estimate flow fields in

complex Computational Fluid Dynamics (CFD) calculations two orders of magnitude faster than a traditional GPU-accelerated

4
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Figure 1. Ground truth FD simulation example. Left, top: A 20 Hz Ricker seismic source is emitted close to the surface and propagates

through a 2D horizontally layered acoustic Earth model. The black circle shows the source location. 11 receivers are placed at the same depth

as the source with a horizontal spacing of 50 m (red triangles). The full wavefield is overlain for a single snapshot in time. Note seismic

reflections occur at each velocity interface. Left, bottom: The Earth velocity model. The Earth model has a constant density of 2200 kgm−2.

Right: The resulting ground truth pressure response recorded by each of the receivers, using FD modelling. A t2.5 gain is applied to the

receiver responses for display.

CFD solver
::
and

:::::::::::::::::::
Paganini et al. (2018)

:::
used

::
a

:::::::::
conditional

:::::::::
generative

:::::::::
adversarial

:::::::
network

::
to

:::::::
simulate

::::::
particle

:::::::
showers

::
in

:::::::
particle

:::::::
colliders.

Geophysicists are also starting to use deep learning for seismic-related problems. ?
:
A

:::::::::
resurgence

::
is
::::::::
occurring

::
in

::::::::::
geophysics

:::
too

::::::::::::::::::::::::::::::::
(Bergen et al., 2019; Kong et al., 2019).

:::::
Early

:::::::::
examples

::
of

:::::
deep

:::::::
learning

:::::::
include

:::::::::::::::::
Devilee et al. (1999),

:::::
who

::::
used

:::::
deep

::::::::::
probabilistic

::::::
neural

:::::::
networks

::
to
::::::::
estimate

:::::
crustal

::::::::::
thicknesses

:::::
from

::::::
surface

::::
wave

:::::::::
velocities

:::
and

::::::::::::::::::::::::::
Valentine and Trampert (2012)5

:::
who

:::::
used

::
a

::::
deep

:::::::::::
autoencoder

::
to

::::::::
compress

:::::::
seismic

::::::::::
waveforms.

:::::
More

::::::::
recently,

::::::::::::::::
Perol et al. (2018) presented an earthquake

identification method using convolutional networks which is orders of magnitude faster than traditional techniques. In seis-

mic inversion, ?
::::::::::::::::::::
Araya-Polo et al. (2018) proposed an efficient deep learning concept for carrying out seismic tomography

using the semblance of common mid-point receiver gathers as input. ?
::::::::::::::::
Wu and Lin (2018) proposed a convolutional autoen-

coder network to carry out seismic inversion, whilst ?
:::::::::::::::::
Yang and Ma (2019) adapted a U-net network design for the same10

purpose. ?
::::::::::::::::
Richardson (2018) demonstrated that a recurrent neural network framework can be used to carry out FWI. ?

5



Figure 2. Our WaveNet simulation workflow. Given a 1D Earth velocity profile as input (left), our WaveNet deep neural network (middle)

outputs a simulation of the pressure responses at the 11 receiver locations in Fig 1. The raw input 1D velocity profile sampled in depth is

converted into its normal incidence reflectivity series sampled in time before being input into the network. The network is composed of 9

time-dilated causally-connected convolutional layers with a filter width of 2 and dilation rates which increase exponentially with layer depth.

Each hidden layer of the network has same length as the input reflectivity series, 256 channels and a ReLU activation function. A final

causally-connected convolutional layer with a filter width of 101 samples, 11 output channels and an identity activation is used to generate

the output simulation.

:::::::::::::::::::::
Sun and Demanet (2018) showed a method for using deep learning to extrapolate low frequency seismic energy to improve

the convergence of FWI algorithms.

For seismic simulation ?
::
In

:::::::
seismic

:::::::::
simulation

::::::::::::::
Zhu et al. (2017) presented a multi-scale convolutional network for predict-

ing the evolution of the full seismic wavefield in heterogeneous media. Their method was able to approximate wavefield

kinematics over multiple time steps, although it suffered from the accumulation of error over time and did not offer a reduction5

in computational time. ?
:::::::::::::::::
Moseley et al. (2018) showed that a convolutional network with a recursive loss function can simulate

the full wavefield in horizontally layered acoustic media. ?
::::::::::::::::::::::::
Krischer and Fichtner (2017) used a generative adversarial network

to simulate seismograms from radially symmetric and smooth Earth models.

In this work we present a fast method
::
fast

::::::::
methods for simulating seismic waves in faulted and arbitrarily layered

::::::::::
horizontally

::::::
layered

:::
and

::::::
faulted

:
2D

::::::
acoustic

::::::
media,

::::::
which

::::
offer

::
a

::::::::
significant

:::::::::
reduction

::
in

::::::::::
computation

::::
time

:::::::::
compared

::
to

::::::::::::::
Zhu et al. (2017)10

:
.
:::
We

::::
also

::::::
present

:
a
::::
fast

::::::
method

:::
for

:::::::
seismic

::::::::
inversion

::
of

::::::::::
horizontally

:::::::
layered

:::::::
acoustic

::::::
media,

::::::
which

:
is
:::::

more
:::::::
general

::::
than

:::
the

::::::
original

::::::::
approach

::::::::
proposed

::
by

:::::::::::::::::::::::
Röth and Tarantola (1994)

::::::
because

:
it
::
is
::::
able

::
to

:::::
invert

:::::::
velocity

:::::::
models

::::
with

::::::
varying

::::::::
numbers

::
of

:::::
layers

:::
and

:::::::
varying

::::
layer

::::::::::
thicknesses.

:::
We

::::::
restrict

::::::::
ourselves

:::
to

::
2D

:
acoustic media

:::
and

:::::::
discuss

::::::::::
implications

:::
for

:::
3D

:::::
elastic

::::::
media

:::::
below.

2 Fast seismic simulation in 2D horizontally layered acoustic media using WaveNet15
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Figure 3.
:::::::::
Distribution

::
of

::::
layer

::::::
velocity

:::
and

::::
layer

:::::::
thickness

::::
over

::
all

::::::::
examples

:
in
:::
the

::::::
training

:::
set.

In this section we consider

::::
First

:::
we

:::::::
consider

:::
the

::::::
simple

::::
case

::
of

:
simulating seismic waves in horizontally layered 2D acoustic Earth models. We train

a deep neural network with a WaveNet architecture to simulate the seismic response recorded at multiple receiver locations

in the Earth model, horizontally offset from a point source emitted at the surface of the model.
:::
As

:::::::::
mentioned

::::::
above,

:::::
many

::::::
seismic

::::::::::
applications

:::
are

:::::::::
concerned

::::
with

::::::
sparse

:::::::::::
observations

::::::
similar

::
to

::::
this

:::::
setup.

::::::
Whilst

:::
we

::::::::::
concentrate

:::
on

::::::
simple

:::::::
velocity5

::::::
models

::::
here,

:::::
more

:::::::
complex

::::::
faulted

:::::
Earth

::::::
models

:::
are

:::::::::
considered

::
in
:::::::
Section

::
3.

An example simulation we wish to learn is shown in Fig. 1 .

Our
:::
and

:::
our simulation workflow is shown in Fig. 2. The input to the network is a horizontally layered velocity profile and

the output of the network is a simulation of the pressure response recorded at each of receiver location. We will now discuss

deep neural networks, our WaveNet architecture, our simulation workflow and our training methodology in more detail below.10

2.1 Deep neural networks and the WaveNet network

Distribution of layer velocity and layer thickness over all examples in the training set.

A neural network is a network of simple computational elements, known as neurons, which perform mathematical opera-

tions on multidimensional arrays, or tensors .
::::::::::::::::::::
(Goodfellow et al., 2016)

:
.
::::
The

::::::::::
composition

::
of

:::::
these

:::::::
neurons

:::::::
together

::::::
defines

::
a

:::::::::::
mathematical

:::::::
function

::
of

::::
the

::::::::
network’s

:::::
input.

:
Each neuron has a set of free parameters, or weights, which are tuned using15

optimisationtechniques such that the networkcan learn a function of its inputs,
::::::::
allowing

:::
the

::::::::
network’s

:::::::
function

::
to

:::
be

:::::::
learned,

::::
given

::
a
:::
set

::
of

:::::::
training

::::
data. In deep learning, these

::
the

:
neurons are typically arranged in

::::::
multiple

:
layers, which allows the

network to learn highly non-linear functions.

A standard building block in deep learning is the convolutional layer, where all neurons in the layer share the same weight

tensor and each neuron has a limited field of view of its input tensor. The output of the layer is mathematically achieved by20

cross correlating the weight tensor with the input tensor. Multiple weight tensors, or filters, can be used to increase the depth of

the output layer. Such networks
::::::
tensor.

::::
Such

:::::::
designs have achieved state of the art performance across a wide range of machine

learning tasks
:::::::::::::
(Gu et al., 2018).
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Figure 4.
::::::
WaveNet

:::::::::
simulations

:::
for

:
4
::::::::

randomly
::::::
selected

::::::::
examples

::
in

:::
the

:::
test

:::
set.

:::
Red

:::::
shows

:::
the

:::::
input

::::::
velocity

:::::
model,

:::
its

:::::::::::
corresponding

::::::::
reflectivity

:::::
series

:::
and

:::
the

::::::
ground

::::
truth

:::::::
pressure

:::::::
response

::::
from

:::
FD

::::::::
simulation

::
at
:::

the
:::

11
::::::
receiver

::::::::
locations.

:::::
Green

:::::
shows

:::
the

::::::::
WaveNet

::::::::
simulation

::::
given

:::
the

::::
input

::::::::
reflectivity

:::::
series

::
for

::::
each

:::::::
example.

::
A

:::
t2.5

:::
gain

::
is

::::::
applied

:
to
:::

the
::::::
receiver

::::::::
responses

::
for

::::::
display.

The WaveNet network (?) proposed
::::::::
proposed

::
by

::::::::::::::::::::::
van den Oord et al. (2016)

:::::
makes

:
multiple alterations to the standard con-

volutional layer for its use with time series. Each convolutional layer is made causal; that is, the receptive field of each neuron

only contains samples from the input layer whose sample times are before or the same as the current neuron’s sample time.

Furthermore the WaveNet exponentially dilates
::
the

:::::
width

:::
of its causal connections with layer depth. This allows the field of

view of its neurons to increase exponentially with layer depth, without increasing the number of weights in the network
:::::::
needing5

:
a
::::
large

:::::::
number

::
of

::::::
layers. These modifications are made to honour time series prediction tasks which are causal and to better

8
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Figure 5.
:::::::::
Comparison

::
of

:::::::
WaveNet

::::::::
simulation

::
to

::
2D

:::
ray

::::::
tracing.

:::
We

::::::
compare

:::
the

:::::::
WaveNet

::::::::
simulation

::
to

::
2D

:::
ray

:::::
tracing

:::
for

:
2
::
of

:::
the

:::::::
examples

:
in
:::
Fig

::
4.

:::
Red

:::::
shows

:::
the

::::
input

::::::
velocity

:::::
model,

::
its

:::::::::::
corresponding

::::::::
reflectivity

::::
series

:::
and

:::
the

:::::
ground

::::
truth

::::::
pressure

::::::::
responses

::::
from

::
FD

:::::::::
simulation.

::::
Green

:::::
shows

:::
the

:::::::
WaveNet

::::::::
simulation

::::
(left)

:::
and

:::
2D

::
ray

::::::
tracing

::::::::
simulation

:::::
(right).

::
A
:::
t2.5

::::
gain

:
is
::::::
applied

::
to

:::
the

::::::
receiver

:::::::
responses

:::
for

::::::
display.

model input data which varies over multiple time scales. The WaveNet network recently achieved state of the art performance

in text to speech synthesis.
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Figure 6.
:::::::::::
Generalisation

:::::
ability

::
of

:::
the

:::::::
WaveNet.

:::
The

:::::::
WaveNet

:::::::::
simulations

::::::
(green)

::
for

::
4

::::::
velocity

::::::
models

:::
with

:
a
:::::

much
::::::
smaller

::::::
average

::::
layer

::::::::
thicknesses

::::
than

::
the

::::::
training

:::::::::
distribution

:::
are

:::::::
compared

::
to

:::::
ground

::::
truth

:::
FD

::::::::
simulation.

::::
Red

:::::
shows

::
the

::::
input

:::::::
velocity

:::::
model,

::
its

:::::::::::
corresponding

::::::::
reflectivity

::::
series

:::
and

:::
the

::::::
ground

:::
truth

:::::::
pressure

:::::::
responses

::::
from

:::
FD

::::::::
simulation.

2.2 Simulation workflow

Our workflow consists of a preprocessing step, where we convert each input velocity model into its corresponding normal

incidence reflectivity series sampled in time (Fig. 2, left), followed by a simulation step, where we use the
:
it
::
is

::::::
passed

::
to

::
a

WaveNet network to simulate the pressure response recorded by each receiver (Fig. 2, middle).
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Figure 7.
::::
Top:

:::::
Inverse

:::::::
WaveNet

:::::::::
predictions

::
for

::
4
:::::::
examples

::
in

:::
the

:::
test

::
set.

::::
Red

:::::
shows

::
the

:::::
input

::::::
pressure

:::::::
response

::
at

::
the

:::::::::
zero-offset

::::::
receiver

::::::
location,

:::
the

::::::
ground

::::
truth

:::::::::
reflectivity

::::
series

::::
and

::
its

:::::::::::
corresponding

:::::::
velocity

:::::
model.

:::::
Green

:::::
shows

:::
the

::::::
inverse

:::::::
WaveNet

:::::::::
reflectivity

:::::
series

:::::::
prediction

:::
and

:::
the

:::::::
resulting

::::::
velocity

::::::::
prediction.

We chose to convert the velocity model to its corresponding normal incidence reflectivity series because, for the case of

horizontally layered Earth models, the normal incidence reflectivity series and the pressure responses are causally correlated.

The reflectivity series is typically used in exploration seismology (?)
:::::::::::::
(Russell, 1988) and contains values of the ratio of the

amplitude of the reflected wave to the incident wave for each interface in a velocity model. For
:::::::
acoustic waves at normal

incidence, these values are given by5

R=
ρ2v2− ρ1v1
ρ2v2 + ρ1v1

, (2)
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where ρ1,v1 and ρ2,v2 are the densities and
::::::
P-wave velocities across the interface. The series is usually expressed in time

and each reflectivity value occurs at the time at which the primary reflection of the source from the corresponding velocity

interface arrives at a given receiver. These
:::
The arrival times can be computed by carrying out a depth-to-time conversion of the

reflectivity values using the input velocity model.

:::
We

:::::
chose

::
to

:::::::
convert

:::
the

:::::::
velocity

:::::
model

:::
to

::
its

:::::::::
reflectivity

::::::
series

:::
and

:::
use

::::
the

:::::
causal

::::::::
WaveNet

::::::::::
architecture

::
to
::::::::

constrain
::::

our5

::::::::
workflow.

:
For horizontally layered velocity models and receivers horizontally offset from the source, the receiver pressure

recordings are causally correlated to the normal incidence reflectively series of the zero-offset receiver. Intuitively, a seismic

reflection recorded after a short time has only travelled through a shallow part of the velocity model and the pressure responses

are at most dependent on the past samples in this reflectivity series.

We constrain our workflow such that it honours this causal correlation, by
::
By

:
preprocessing the input velocity model into10

its corresponding reflectivity series and by using the causal WaveNet network to simulate the receiver response .
::
we

::::::::
constrain

:::
our

::::::::
workflow

::
so

::::
that

:
it
:::::::
honours

:::
this

::::::
causal

::::::::::
correlation.

We input the 1D profile of a 2D horizontally layered velocity model, with a depth of 640 m and a step size of 5 m. We use

Eq. 2 and a standard 1D depth to time conversion to convert the velocity model into its normal incidence reflectivity series.

The output reflectivity series has a length of 1 s and a sample rate of 2 ms. An example output reflectivity series is shown in15

Fig. 2 (left).

This
:::
The

:
reflectivity series is then passed to our

:::::
passed

::
to

:::
the

:
WaveNet network, which contains 9 causally-connected convo-

lutional layers (Fig. 2, middle). Each convolutional layer has the same length as the input reflectivity series, 256 hidden chan-

nels, a receptive field width of 2 samples and a Rectified Linear Unit (ReLU) activation function (?)
:::::::::::::::::::
(Nair and Hinton, 2010).

Similar to the original WaveNet design, we use exponentially increasing dilations at each layer to ensure that the first sample in20

the input reflectivity series is in the receptive field of the last sample of the output simulation. We add a final causally-connected

convolutional layer with 11 output channels, a filter width of 101 samples and an identity activation to generate the output sim-

ulation, where each output channel corresponds to a receiver prediction. This results in the network having 1,333,515 free

parameters in total.

2.3 Training data generation25

To train the network, we generate 50,000 synthetic ground truth example simulations using the SEISMIC_CPML code, which

performs 2nd-order acoustic FD modelling (?)
:::::::::::::::::::::::::
(Komatitsch and Martin, 2007). Each example simulation uses a randomly sam-

pled 2D horizontally layered velocity model with a width and depth of 640 m and a sample rate of 5 m in both directions.

(Fig. 1, bottom left). For all simulations we use a constant density model of 2200 kgm−2.

In each simulation the layer velocities and layer thickness are randomly sampled from log-normal distributions. We also30

add a small velocity gradient randomly sampled from a normal distribution to each model such that the velocity values tend

to increase with depth, to be more Earth-realistic. The distributions over layer velocities and layer thicknesses for the entire

training set are shown in Fig. 3.
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We use a 20 Hz Ricker source emitted close to the surface and record the pressure response at 11 receiver locations placed

symmetrically around the source, horizontally offset every 50 m (Fig. 1, top left). We use a convolutional perfectly matched

layer boundary condition such that waves which reach the edge of the model are absorbed with negligible reflection. We run

each simulation for 1 s and use a 0.5 ms sample rate to maintain accurate FD fidelity. We downsample the resulting receiver

pressure responses to 2 ms before using them for training.5

We run 50,000 simulations and extract a training example from each simulation, where each training example consists of

a 1D layered velocity profile and the recorded pressure response at each of the 11 receivers. We withhold 10,000 of these

examples as a validation set to measure the generalisation performance of our
::
the

:
network during training.

2.4 Training process

The network is trained using the Adam stochastic gradient descent algorithm (?)
:::::::::::::::::::
(Kingma and Ba, 2014). This algorithm com-10

putes the gradient of a loss function with respect to the free parameters of the network over a randomly selected subset, or

batch, of the training examples. This gradient is used to iteratively update the parameter values, with a step size controlled by

a learning rate parameter. We use
::::::
propose

:
a L2 loss function with time-varying gain function

::
for

:::
this

::::
task, given by

L=
1

N
‖G(Ŷ −Y )‖22 , (3)

where Ŷ is the simulated receiver pressure response from the network, Y is the ground truth receiver pressure response from15

FD modelling and N is the number of training examples in each batch. The gain function G has the form G= tg where t is the

sample time and g is a hyperparameter which determines the strength of the gain. We add this to empirically account for the

spherical spreading
:::::::::
attenuation of the wavefield by

::::::
caused

::
by

::::::::
spherical

:::::::::
spreading,

::
by

:
increasing the weight of samples at later

times. In this Section we use a fixed value of g = 2.5. We use a learning rate of 1x10−5, a batch size of 20 training examples

and run training over 500,000
:::::::
gradient

::::::
descent

:
steps.20

2.5 Results
::::::::::
Comparison

::
to

:::
2D

::::
ray

::::::
tracing

WaveNet simulations for 4 randomly selected examples in the test set. Red shows the input velocity model, its corresponding

reflectivity series and the ground truth pressure response from FD simulation at the 11 receiver locations. Green shows the

WaveNet simulation given the input reflectivity series for each example. A t2.5 gain is applied to the receiver responses

for display.
:::
We

:::::::
compare

:::
the

::::::::
WaveNet

::::::::::
simulation

::
to

::
an

::::::::
efficient,

::::::::::::::
quasi-analytical

:::
2D

:::::::::
ray-tracing

:::::::::
algorithm

:::::
which

::::::::
assumes25

::::::::::
horizontally

::::::
layered

::::::
media.

:::
We

::::::
modify

:::
the

:::
2D

::::::::::
horizontally

::::::
layered

::::::::::
ray-tracing

:::::::
bisection

::::::::
algorithm

:::::
from

:::
the

::::::::
CREWES

:::::::
seismic

::::::::
modelling

::::::
library

::::::::::::::::::::::::::::
(Margrave and Lamoureux, 2018)

:
to
:::::::
include

::::::::
Zoeppritz

::::::::
modelling

::
of

:::
the

::::::::
reflection

:::
and

:::::::::::
transmission

:::::::::
coefficients

:
at
:::::
each

::::::
velocity

::::::::
interface

:::::::::::::::::::::
(Aki and Richards, 1980)

:::
and

:::
2D

:::::::
spherical

:::::::::
spreading

:::::::::
attenuation

:::::::::::::::::::::::::::::
(Gutenberg, 1936; Newman, 1973)

:::::
during

:::
ray

:::::::
tracing.

::::
The

:::::
output

:::
of

:::
the

::::::::
algorithm

::
is

::
a

::::::
primary

::::::::::
reflectivity

:::::
series

:::
for

::::
each

:::::::
receiver,

::::::
which

:::
we

::::::::
convolve

::::
with

:::
the

:::::
source

::::::::
signature

::::
used

::
in

:::
FD

:::::::::
modelling

::
to

:::::
obtain

:::
an

:::::::
estimate

::
of

:::
the

:::::::
receiver

:::::::::
responses.30
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Comparison of WaveNet simulation to 1D convolutional model. We compare our WaveNet simulation for 3 of the examples

in Fig 4 to a simple 1D convolutional model. Red shows the input velocity model, its corresponding reflectivity series and

the ground truth pressure response at the zero-offset receiver. Green shows the WaveNet simulation at the zero-offset receiver

and blue shows the 1D normal incidence convolutional model. Bottom right: histogram of the average absolute amplitude

difference between the ground truth FD simulation and the zero-offset simulation from the WaveNet and 1D convolutional5

model, over the test set of 1000 examples. A t2.5 gain is applied to the receiver responses for display.

2.6
::::::::

Inversion
::::::::
workflow

During training the loss
::
As

::
an

:::::::::
additional

::::
test,

:::
we

::::
are

::::
also

::::
able

::
to

::::::
retrain

:::
the

::::::::
WaveNet

::::::::
network

::
to

:::::
carry

:::
out

::::
fast

:::::::
seismic

:::::::
inversion

::
in
:::
the

:::::
same

::::::
media,

:::::
which

::::::
offers

:
a
:::
fast

:::::::::
alternative

::
to
:::::::

existing
::::::::
inversion

::::::::::
algorithms.

:::
We

::::::
retrain

:::
the

::::::::
WaveNet

:::::::
network

::::
with

::
its

::::::
inputs

:::
and

::::::
output

::::::::
reversed.

::
Its

:::::
input

::
is

::::
now

::
a

::
set

:::
of

::
11

::::::::
recorded

:::::::
receiver

::::::::
responses

::::
and

::
its

::::::
output

::
is
::
a

::::::::
prediction

:::
of10

::
the

::::::::::::
corresponding

:::::::
normal

::::::::
incidence

:::::::::
reflectivity

::::::
series.

:::
To

::::::
recover

::
a

::::::::
prediction

::
of
::::

the
:::::::
velocity

:::::
model

:::
we

:::::
carry

:::
out

:
a
::::::::
standard

::
1D

::::::::::::
time-to-depth

:::::::::
conversion

::
of

:::
the

::::::
output

:::::::::
reflectivity

::::::
values

:::::::
followed

:::
by

::::::::::
integration.

:::
We

:::
use

:::
the

:::::
same

::::::::
WaveNet

::::::::::
architecture

::::::::
described

::
in

::::
Sect.

::::
2.2,

:::::
except

::::
that

:::
we

:::::
invert

::
its

::::::::
structure

::
to

:::::::
maintain

:::
the

::::::
causal

:::::::::
correlation

:::::::
between

:::
the

:::::::
receiver

::::::::
responses

::::
and

:::::::::
reflectivity

:::::
series.

:::
We

::::
also

:::
use

::::
128

::::::
instead

::
of

:::
256

::::::
hidden

::::::::
channels

::
for

:::::
each

:::::
hidden

:::::
layer.

:::
We

::::
use

::::::
exactly

:::
the

::::
same

:::::::
training

::::
data

:::
and

:::::::
training

::::::
strategy

:::::::::
described

::
in

::::
Sect.

:::
2.3

:::
and

::::
2.4,

::::::
except

:::
that

:::
we

::::
now

:::
use

:::
the

::::
loss

:::::::
function

:::::
given

::
by

:
15

L=
:::

1

N
::

‖R̂−R‖22 ,
:::::::::

(4)

:::::
where

::
R

::
is

:::
the

:::
true

:::::::::
reflectivity

:::::
series

::::
and

::
R̂

::
is

:::
the

::::::::
predicted

:::::::::
reflectivity

:::::
series.

:

2.7
::::::

Results

:::::
Whilst

:::::::
training

:::
the

::::::::
WaveNet

::::
the

:::::
losses

:
over the training and validation datasets converge to similar values, suggesting the

network is generalising well to examples in the validation dataset. To assess the performance of the trained network, we20

generate a random test set of 1000 unseen examples. The WaveNet simulations for 4 randomly selected examples from this

test set are compared to the ground truth FD modelling simulation in Fig. 4. We also compare our
:::
the WaveNet simulation to

a simple 1D convolutional approximation of the zero-offset receiver response at normal incidence (?), given by Ỹ =R ∗S,

where R is the reflectivity series in time and S is the source signature, shown in
:::
2D

:::
ray

::::::
tracing

::
in Fig. 5.

For nearly all time samples our
:::
the network is able to simulate the receiver pressure responses. Unlike the 1D convolutional25

model, the
:::
The

:
WaveNet is able to predict the Normal Moveout (NMO) of the primary layer reflections with receiver offset,

the direct arrivals at the start of each receiver recording and the spherical spreading loss of the wavefield over time, though we

notice the network struggles to accurately simulate the multiple reverberations at the end of the receiver recordings. We plot the

histogram of the average absolute amplitude difference between the ground truth FD simulation and the zero-offset simulation

from the WaveNet and 1D convolutional model
:::
2D

:::
ray

::::::
tracing over the test set in Fig. 5. We

::
A1

:::::::
(bottom

:::::
right)

::::
and

:
observe30

that the WaveNet simulation has a lower average loss than the 1D convolutional model
::::::::
difference

::::
than

:::
2D

:::
ray

::::::
tracing.
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We also investigate the accuracy of the WaveNet simulation with different network designs.
:::::::
compare

:::
the

:::::::::
sensitivity

:::
of

::
the

:::::::::
network’s

::::::::
accuracy

::
to

::::
two

:::::::
different

::::::::::::
convolutional

:::::::
network

:::::::
designs

::
in

:
Fig. A1compares the WaveNet simulation to the

simulations from using two different convolutional network designs. Both convolutional .
:::::

Their
:::::

main
::::::::::

differences
::
to
::::

the

:::::::
WaveNet

::::::
design

:::
is

:::
that

:::::
both

::::::::
networks

:::
use

::::::::
standard

:::::
rather

:::::
than

:::::
causal

::::::::::::
convolutional

::::::
layers

:::
and

::::
the

::::::
second

:::::::
network

:::::
uses

:::::::::
exponential

::::::::
dilations

::::::
whilst

:::
the

:::
first

:::::
does

::::
not.

::::
Both

:
networks have 9 convolutional layers, each with 256 hidden channels,5

filter sizes of 3, ReLU activations for all hidden layers and an identity activation function for the output layer. The second

network uses exponential dilations whilst the first does not. Both networks have ,
::::
with

:
1,387,531 free parameters in total. We

observe that the convolutional network without dilations does not converge during training. We plot the histogram of the
:
,

:::::
whilst

:::
the

::::::
dilated

:::::::::::
convolutional

:::::::
network

:::
has

::
a
:::::
higher

:
average absolute amplitude difference between the

:::
over

:::
the

::::
test

::
set

:::::
from

::
the

:
ground truth FD simulation and the simulations from the WaveNet and the dilated convolutional network over the test set.10

The dilated convolutional network has a higher average loss than the WaveNet network .
::::
(Fig.

:::
A1

:::::::
(bottom

::::::
right)).

We measure the average time taken to generate 100 simulations using the SEISMIC_CPML library on a single core of a

2.2 GHz Intel Core i7 processor to be 73± 1 s. Using the same core the WaveNet network is able to generate 100 simulations in

an average time of 3.79± 0.03 s (19 times quicker). Using the TensorFlow library (TensorFlow, 2015) and a Nvidia Tesla K80

GPU produces simulations with an average time of 0.133± 0.001 s (549 times quicker). This speedup is likely to be higher15

than if the GPU was used for accelerating existing numerical methods (?). The WaveNet network takes approximately 12 hours

to train on one Nvidia Tesla K80 GPU, although this training step is only required once and subsequent simulation steps are

fast.

3 Fast seismic inversion in 2D horizontally layered acoustic media using WaveNet

Comparison of network architecture on simulation accuracy. Top left shows the WaveNet simulated pressure response for a20

randomly selected example in the test set (green) compared to ground truth (red). Top right and bottom left show the simulated

response when using convolutional network designs with and without exponential dilations. Bottom right: histogram of the

average absolute amplitude difference between the ground truth FD simulation and the simulations from the WaveNet and the

dilated convolutional network, over the test set of 1000 examples. A t2.5 gain is applied to the receiver responses for display.

Top: Inverse WaveNet predictions for 4 examples in the test set. Red shows the input pressure response at the zero-offset25

receiver location, the ground truth reflectivity series and its corresponding velocity model. Green shows the inverse WaveNet

reflectivity series prediction and the resulting velocity prediction.

In this section we retrain our WaveNet network to carry out fast seismic inversion in horizontally layered 2D acoustic Earth

models. This offers a fast alternative to existing inversion algorithms.

2.1 Inversion workflow30

We are able to perform seismic inversion in the same media by retraining the WaveNet network with its inputs and output

reversed. Its input is now a set of 11 recorded receiver responses and its output is a
:::
The

::::::::::::
generalisation

::::::
ability

::
of

:::
the

::::::::
WaveNet

15



::::::
outside

::
of

:::
its

:::::::
training

::::::::::
distribution

::
is

:::::
tested

::
in

::::
Fig.

::
6.

::::
We

:::::::
generate

::::
four

:::::::
velocity

:::::::
models

::::
with

:
a
::::::

much
::::::
smaller

:::::::
average

:::::
layer

:::::::
thickness

:::::
than

:::
the

:::::::
training

:::
set

::::
and

:::::::
compare

:::
the

:::::::::
WaveNet

:::::::::
simulation

::
to

:::
the

:::::::
ground

::::
truth

::::
FD

:::::::::
simulation.

::::
We

::::
find

:::
that

::::
the

:::::::
WaveNet

:::
is

::::
able

::
to

:::::
make

:::
an

::::::::
accurate prediction of the corresponding normal incidence reflectivity series. To recover a

prediction of the velocity model, we carry out a standard 1D time-to-depth conversion of the output reflectivity values followed

by integration. We use the same WaveNet architecture described in Sect. 2.1, except that we invert its structure to maintain the5

causal correlation between the receiver responses and reflectivity series. We also use 128 instead of 256 hidden channels for

each hidden layer. We use exactly the same training data and training strategy described in Sect. 2.3 and 2.4, except that we

now use the loss function given by

L=
1

N
‖R̂−R‖22 ,

where R is the true reflectivity series and R̂ is the predicted reflectivity series
::::::
seismic

::::::::
response,

:::
but

:
it
::::::::

struggles
::
to
::::::::
simulate10

::
the

::::::::
multiple

::::::::
reflections

::::
and

:::::::::
sometimes

:::
the

::::::::::
interference

:::::::
between

:::
the

:::::
direct

::::::
arrival

:::
and

:::::::
primary

:::::::::
reflections.

2.1 Results

During training the loss
:::::
When

:::::::
training

:::
the

::::::
inverse

::::::::
WaveNet

:::
the

::::::
losses over the training and validation datasets converge to

similar values and we test the performance of the trained network using a test set of 1000 unseen examples. Our predictions

:::::::::
Predictions

:
of the reflectivity series and velocity models for 4 randomly selected examples from this test set are shown in15

Fig. 7. The inverse WaveNet network is able to predict the underlying velocity model for each example. We observe that in

some cases small velocity errors propagate with depth, which is likely a result of the integration of the reflectivity series.

We measure
:::::::
compare

:
the average time taken to generate 100 velocity predictions

::::::::::
simulations

:::
(or

::::
100

:::::::
velocity

::::::
model

:::::::::
predictions

:::
for

:::
the

:::::::
inverse

::::::::
WaveNet)

:::
to

:::
FD

:::::::::
simulation

::::
and

:::
2D

:::
ray

:::::::
tracing

::
in

:::::
Table

::
1.
::::

We
::::
find

:::
that

:
on a single core of a

2.2 GHz Intel Core i7 processor to be 1.27± 0.02 s. On a Nvidia Tesla K80 GPU this reduces to 0.051± 0.001 s. This is
::::
CPU20

:::
core

:::
the

::::::::
WaveNet

::
is
:::
19

:::::
times

:::::
faster

::::
than

:::
FD

::::::::::
simulation,

:::
and

:::::
using

::
a

::::
GPU

::::
and

:::
the

::::::::::
TensorFlow

::::::
library

:::::::::::::::::
(TensorFlow, 2015)

:
it

:
is
::::
549

:::::
times

:::::
faster.

::::
This

:::::::
speedup

::
is
:::::
likely

::
to
:::

be
::::::
higher

::::
than

:
if
:::
the

:::::
GPU

::::
was

::::
used

:::
for

::::::::::
accelerating

:::::::
existing

::::::::
numerical

::::::::
methods

::::::::::::::::::
(Rietmann et al., 2012)

:
.
::
In

:::
this

:::::
case,

:::
the

:::::::::
specialised

:::
2D

:::
ray

::::::
tracing

::::::::
algorithm

:::::
offers

:
a
::::::
similar

:::::
speed

:::
up

::
to

:::
the

:::::::
WaveNet

::::::::
network.

:::
The

::::::
inverse

::::::::
WaveNet

::
is

:::
able

::
to
:::::::
produce

:::::::
velocity

:::::::::
predictions

::
in
:::
the

:::::
same

::::
order

::
of
:::::::::
magnitude

::::
time

::
as

:::
the

:::::::
forward

:::::::
network,

::::::
which

:
is
:
likely to be a fraction of the time needed for existing seismic inversion algorithms which rely on forward simulation. We25

note the
::
Its prediction time is faster than the forward WaveNet network because the inverse network

:::::::
because

:
it
:
has less hidden

channels in its architecture and therefore requires less computation.
::::
Both

::::::::
networks

:::
take

::::::::::::
approximately

:::
12

:::::
hours

::
to

::::
train

::
on

::::
one

:::::
Nvidia

:::::
Tesla

::::
K80

:::::
GPU,

::::::::
although

:::
this

:::::::
training

:::
step

::
is
::::
only

:::::::
required

:::::
once

:::
and

::::::::::
subsequent

::::::::
simulation

:::::
steps

:::
are

::::
fast.

3 Fast seismic simulation in 2D faulted acoustic media using a conditional autoencoder

Our WaveNet network30
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::::::
Method

::::::
Average

::::
CPU

::::
time

::
(s)

: ::::::
Average

::::
GPU

::::
time

::
(s)

: ::::::
Training

::::
time

:::::
(days)

::
2D

:::
FD

::::::::
simulation

:::::
73± 1

:::
(1x)

:
-
: :

-

::
2D

:::
ray

:::::
tracing

: ::::::
2.2± 0.1

:::::
(33x) -

: :
-

:::::::
WaveNet

:::::::
(forward)

: ::::::::
3.79± 0.03

:::::
(19x)

:::::::::::
0.133± 0.001

:::::
(549x)

: :::
0.5

:::::::::
Conditional

:::::::::
autoencoder

::::::
3.3± 0.1

:::::
(22x)

:::::::::::
0.180± 0.003

:::::
(406x)

: :
4

:::::::
WaveNet

:::::::
(inverse)

::::::::
1.27± 0.02

: ::::::::::
0.051± 0.001

: :::
0.5

Table 1.
::::
Speed

:::::::::
comparison

::
of

::::::::
simulation

:::
and

:::::::
inversion

:::::::
methods.

:::
The

::::
time

:::::
shown

::
is

:::
the

::::::
average

:::
time

:::::
taken

::
to

::::::
generate

:::
100

:::::::::
simulations

:::
(or

:::
100

::::::
velocity

::::::::
predictions

:::
for

:::
the

:::::
inverse

::::::::
WaveNet)

::
on

:::::
either

:
a
:::::
single

::::
core

::
of

:
a
:::
2.2

::::
GHz

:::
Intel

::::
Core

::
i7
::::::::
processor

::
or

:
a
:::::
Nvidia

:::::
Tesla

:::
K80

:::::
GPU.

::
For

:::::::::
simulation

::::::
methods

:::
the

::::
speed

:::
up

::::
factor

::::::::
compared

::
to

::
FD

::::::::
simulation

::
is
:::::
shown

::
in

:::::::
brackets.
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Figure 8.
::::::
Ground

::::
truth

::
FD

:::::::::
simulation

:::::::
example,

:::
with

:
a
:::

2D
::::::
faulted

:::::
media.

::::
Left,

:::
top:

:::
The

:::::
black

::::
circle

:::::
shows

:::
the

:::::
source

:::::::
location.

::
32

:::::::
receivers

::
are

:::::
placed

::
at

:::
the

::::
same

::::
depth

::
as

:::
the

:::::
source

:::
with

:
a
::::::::
horizontal

::::::
spacing

::
of

::
15

::
m

:::
(red

::::::::
triangles).

:::
The

:::
full

:::::::
wavefield

:::::::
pressure

:
is
::::::
overlain

:::
for

:
a
:::::
single

::::::
snapshot

::
in
:::::
time.

::::
Left,

::::::
bottom:

:::
The

:::::
Earth

::::::
velocity

:::::
model.

::::::
Right:

:::
The

:::::::
resulting

:::::
ground

::::
truth

:::::::
pressure

:::::::
response

:::::::
recorded

::
by

::::
each

:::::::
receiver,

::::
using

:::
FD

::::::::
modelling.

::
A

:::
t2.5

:::
gain

::
is

::::::
applied

::
to

::
the

::::::
receiver

::::::::
responses

::
for

::::::
display.

:::
The

::::::::
WaveNet

::::::::::
architecture

:::
we

:::::::::::
implemented is limited in that it is only able to simulate horizontally layered Earth models. In

this section we present a second network which is significantly more general; it simulates seismic waves in 2D faulted acoustic

media with arbitrary layers, fault properties and an arbitrary location of the seismic source on the surface of the media.
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Figure 9.
:::
Our

:::::::::
conditional

:::::::::
autoencoder

:::::::::
simulation

::::::::
workflow.

:::::
Given

:
a
::::

2D
::::::
velocity

:::::
model

::::
and

:::::
source

:::::::
location

::
as

:::::
input,

::
a
:::::::::
conditional

:::::::::
autoencoder

::::::
network

::::::
outputs

::
a
::::::::
simulation

::
of

:::
the

:::::::
pressure

:::::::
responses

::
at
:::

the
:::::::
receiver

:::::::
locations

::
in

:::
Fig.

::
8.
::::

The
::::::
network

::
is
::::::::
composed

::
of

:::
24

::::::::::
convolutional

:::::
layers

:::
and

:::::::::
concatenates

:::
the

::::
input

:::::
source

::::::
location

::::
with

::
its

:::::
latent

:::::
vector.

This is a much more challenging task
:
to

:::::
learn

:
for multiple reasons. Firstly, the media varies along both dimensions and

the resulting seismic wavefield has more complex kinematics than the wavefields in horizontally layered media. Secondly, we

allow the output of the network to be conditioned on the input source location which requires the network to learn the effect

of the source location. Thirdly, we input the velocity model directly into the network without conversion to a reflectivity series

beforehand; the network must learn to carry out its own depth to time conversion to simulate the receiver responses. We chose5

this approach over our WaveNet workflow because we note that for non-horizontally layered media the pressure responses

are not causally correlated to the normal incidence reflectivity series in general and therefore the causality assumption in our

WaveNet workflow
:::
our

:::::::
previous

::::::::
causality

:::::::::
assumption

:
does not hold.

Similar to Section 2, we simulate the seismic response recorded by a set of receivers horizontally offset from a point source

emitted within the Earth model. An example simulation we wish to learn is shown in Fig. 8. We will now discuss our
:::
the10

network architecture and training process in more detail below.

Ground truth FD simulation example, with a 2D faulted media. Left, top: The black circle shows the source location. 32

receivers are placed at the same depth as the source with a horizontal spacing of 15 m (red triangles). The full wavefield

pressure is overlain for a single snapshot in time. Left, bottom: The Earth velocity model. Right: The resulting ground truth

pressure response recorded by each receiver, using FD modelling. A t2.5 gain is applied to the receiver responses for display.15

Our conditional autoencoder simulation workflow. Given a 2D velocity model and source location as input, a conditional

autoencoder network outputs a simulation of the pressure responses at the receiver locations in Fig. 8. The network is composed

of 24 convolutional layers and concatenates the input source location with its latent vector.

Conditional autoencoder simulations for 8 randomly selected examples in the test set. White circles show the input source

location. The left simulation plots show the network predictions, the middle simulation plots show the ground truth FD20

simulations and the right simulation plots show the difference. A t2.5 gain is applied for display.
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Figure 10.
::::::::
Conditional

::::::::::
autoencoder

:::::::::
simulations

:::
for

:
8
::::::::
randomly

::::::
selected

::::::::
examples

::
in

:::
the

:::
test

:::
set.

:::::
White

::::::
circles

::::
show

:::
the

::::
input

::::::
source

::::::
location.

::::
The

::
left

:::::::::
simulation

:::
plots

:::::
show

::
the

:::::::
network

:::::::::
predictions,

::
the

::::::
middle

::::::::
simulation

::::
plots

::::
show

:::
the

:::::
ground

::::
truth

:::
FD

:::::::::
simulations

:::
and

:::
the

:::
right

::::::::
simulation

::::
plots

:::::
show

::
the

::::::::
difference.

::
A
:::
t2.5

::::
gain

:
is
::::::

applied
:::
for

::::::
display.

Conditional autoencoder simulation accuracy when varying the source location. The network simulation is shown for 6

different source locations whilst keeping the velocity model fixed. The source positions are regularly spaced across the surface

of the velocity model (white circles). Example simulations for 2 different velocity models in the test set are shown, where each

row corresponds to a different velocity model. The pairs of simulation plots in each row from left to right correspond to the

network prediction (left in the pair) and the ground truth FD simulation (right in the pair), when varying the source location5

from left to right in the velocity model. A t2.5 gain is applied for display.
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Figure 11.
:::::::::
Conditional

:::::::::
autoencoder

::::::::
simulation

:::::::
accuracy

::::
when

::::::
varying

:::
the

:::::
source

:::::::
location.

:::
The

::::::
network

::::::::
simulation

::
is
:::::
shown

:::
for

:
6
:::::::
different

:::::
source

:::::::
locations

:::::
whilst

::::::
keeping

::
the

:::::::
velocity

:::::
model

::::
fixed.

:::
The

::::::
source

:::::::
positions

::
are

:::::::
regularly

::::::
spaced

:::::
across

::
the

::::::
surface

::
of

::
the

:::::::
velocity

:::::
model

:::::
(white

::::::
circles).

:::::::
Example

:::::::::
simulations

:::
for

:
2
:::::::
different

::::::
velocity

::::::
models

::
in

:::
the

:::
test

:::
set

::
are

::::::
shown,

:::::
where

::::
each

:::
row

::::::::::
corresponds

::
to

:
a
:::::::
different

::::::
velocity

:::::
model.

::::
The

::::
pairs

::
of

::::::::
simulation

::::
plots

::
in

::::
each

:::
row

::::
from

:::
left

::
to

::::
right

:::::::::
correspond

::
to

::
the

:::::::
network

::::::::
prediction

:::
(left

::
in

:::
the

::::
pair)

:::
and

:::
the

:::::
ground

::::
truth

:::
FD

::::::::
simulation

::::
(right

::
in

::
the

:::::
pair),

::::
when

::::::
varying

::
the

::::::
source

::::::
location

::::
from

:::
left

:
to
::::
right

::
in

:::
the

::::::
velocity

:::::
model.

::
A

:::
t2.5

:::
gain

::
is
::::::
applied

::
for

::::::
display.

Comparison of different network designs and training hyperparameters on simulation accuracy. Top right shows a randomly

selected velocity model and source location from the test set and its corresponding ground truth FD simulation. Bottom

compares simulations and their difference to the ground truth when using our proposed conditional autoencoder (baseline),

when halving the number of hidden channels for all layers (thin), when using an L2 loss function during training (L2 loss),

when using gain exponents of g = 0 and g = 5 in the loss function and when removing 2 layers from the encoder and 8 layers5

from the decoder (shallow). Top right: histogram of the average absolute amplitude difference between the ground truth FD

simulation and the simulation from the different cases over the test set. A t2.5 gain is applied for display.

Comparison of the WaveNet and conditional autoencoder simulation accuracy. The left plot shows a velocity model, reflectivity

series and ground truth receiver pressure responses for a randomly selected example in the horizontally layered velocity model

test set in red. Green shows the WaveNet simulation. The middle plot shows the conditional autoencoder simulation for the10

same velocity model. The right plot shows the histogram of the average absolute amplitude difference between the ground truth

FD simulation and the WaveNet and conditional autoencoder simulations over this test set. A t2.5 gain is applied for display.
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Figure 12.
:::::::::::
Generalisation

:::::
ability

::
of

::
the

:::::::::
conditional

::::::::::
autoencoder.

:::
The

:::::::::
conditional

:::::::::
autoencoder

:::::::::
simulations

::
for

:
5
:::::::

velocity
:::::
models

:::::
taken

::::
from

::::::
different

::::::
regions

::
of

:::
the

::::::::
Marmousi

::::::
P-wave

::::::
velocity

:::::
model

:::
are

::::::
shown

::::::::
(examples

::::::
(d)-(h)).

:::
For

::::
each

:::::::
example,

:::
left

:::::
shows

:::
the

::::
input

:::::::
velocity

:::::
model

::::
and

:::::
source

:::::::
location,

::
the

::::::
middle

:::::::::
simulations

::::
plots

::::
show

:::
the

::::::
network

::::::::
prediction

::::
(left)

:::
and

:::
the

::::::
ground

::::
truth

::
FD

::::::::
simulation

::::::
(right)

:::
and

:::
right

:::::
shows

:::
the

:::::
nearest

::::::::
neighbour

::
in

:::
the

::::::
training

::
set

::
to

:::
the

::::
input

::::::
velocity

:::::
model.

:::::::::
Simulations

::::
from

:
3
::

of
:::
the

:::
test

::::::
velocity

::::::
models

::
in

:::
Fig.

::
10

:::
are

:::
also

:::::
shown

::::
with

:::
their

::::::
nearest

::::::::
neighbours

::::::::
(examples

::::::
(a)-(c)).

::
A

:::
t2.5

::::
gain

:
is
::::::
applied

:::
for

::::::
display.

3.1 Conditional autoencoder architecture

Our simulation workflow is shown in Fig. 9. Instead of preprocessing the input velocity model to its associated reflectivity

model, we input the velocity model directly into our network. Our network is now also
::
the

::::::::
network.

:::
The

:::::::
network

::
is conditioned

on the source position, which can
::
is

:::::::
allowed

::
to

:
vary along the surface of the Earth model. The output of the network is a

simulation of the pressure responses recorded at the 32 fixed receiver locations in the model shown in Fig. 8.5
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We use a conditional autoencoder network design, shown in Fig 9. The network is composed of 10 convolutional layers

which reduce the spatial dimensions of the input velocity model until it has a 1x1 shape with 1024 hidden channels. We

term this tensor the latent vector. The input source surface position is concatenated onto the latent vector and 14 transposed

convolutional layers are used to expand the size of the latent vector until its output shape is the same as the target receiver gather.

We choose this encoder-decoder architecture to force the network to compress the velocity model into a set of salient features5

before expanding them to infer the receiver responses. All hidden layers use ReLU activation functions and the final output

layer uses an identity activation function. The resulting network has 18,382,296 free parameters. The full parameterisation of

the network is shown in Table A1.

Layer Type in, out channels kernel size stride padding 1 Conv2d (1,8) (3,3) (1,1) (1,1) 14 Conv2d (512,512) (3,3) (1,1) (1,1)

2 Conv2d (8,16) (2,2) (2,2) 0 15 Conv2d (512,512) (3,3) (1,1) (1,1) 3 Conv2d (16,16) (3,3) (1,1) (1,1) 16 ConvT2d (512,256)10

(2,4) (2,4) 0 4 Conv2d (16,32) (2,2) (2,2) 0 17 Conv2d (256,256) (3,3) (1,1) (1,1) 5 Conv2d (32,32) (3,3) (1,1) (1,1) 18 Conv2d

(256,256) (3,3) (1,1) (1,1) 6 Conv2d (32,64) (2,2) (2,2) 0 19 ConvT2d (256,64) (2,4) (2,4) 0 7 Conv2d (64,128) (2,2) (2,2) 0

20 Conv2d (64,64) (3,3) (1,1) (1,1) 8 Conv2d (128,256) (2,2) (2,2) 0 21 Conv2d (64,64) (3,3) (1,1) (1,1) 9 Conv2d (256,512)

(2,2) (2,2) 0 22 ConvT2d (64,8) (2,4) (2,4) 0 10 Conv2d (512,1024) (2,2) (2,2) 0 23 Conv2d (8,8) (3,3) (1,1) (1,1) 11 Concat

(1024,1025) 24 Conv2d (8,8) (3,3) (1,1) (1,1) 12 ConvT2d (1025,1025) (2,2) (2,2) 0 25 Conv2d (8,1) (1,1) (1,1) 0 13 ConvT2d15

(1025,512) (2,4) (2,4) 0

Conditional autoencoder layer parameters. Each entry shows the parameterisation of each convolutional layer. The padding

column shows the padding on each side of the input tensor for each spatial dimension.

3.2 Training process

We use the same training data generation process described by Section 2.3. When generating velocity models, we add a fault20

to the model. We randomly sample the length, normal or reverse direction, slip distance and orientation of the fault. Example

velocity models drawn from this process are shown in Fig. 10. We generate 100,000 example velocity models and for each

model chose three random source locations along the top of the model. This generates a total of 300,000 synthetic ground truth

example simulations to use for training the network. We withhold 60,000 of these examples to use as a validation set during

training.25

We train using the same training process and loss function described in Section 2.4, except that we employ a L1 norm instead

of a L2 norm in the loss function (Eq. 3). We use a learning rate of 1x10−4, a batch size of 100 examples and run training over

3,000,000
::::::
gradient

:::::::
descent steps. We use batch normalisation (?)

::::::::::::::::::::::
(Ioffe and Szegedy, 2015) after each convolutional layer to

help regularise the network during training.

3.3 Results30

During training the loss
:::::
losses

:
over the training and validation datasets converge to similar values and we test the performance

of the trained network using a test set of 1000 unseen examples. The output simulations for 8 randomly selected velocity models

and source positions from this set are shown in Fig. 10. We observe that the network is able to simulate the recorded pressure
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response. The network is able to simulate the kinematics of the primary reflections and in most cases is able to approximate

::::::
capture their relative amplitudes. The network is also able to generalise over different source locations. We demonstrate this

capability further in Fig. 11, where we
::
We

::::
also

:
plot the network simulation when varying the source location over 2 velocity

models from the test set .
:
in

::::
Fig.

::
11

::::
and

:::
find

::::
that

:::
the

:::::::
network

::
is

:::
able

:::
to

::::::::
generalise

::::
well

::::
over

:::::::
different

::::::
source

::::::::
locations.

:

We test the accuracy of the network simulation when using different network designs and training hyperparameters. ,
::::::
shown5

::
in Fig. A2compares an example simulation

:
.
:::
We

::::::::
compare

:::::::
example

::::::::::
simulations

:
from the test set when using our baseline

conditional autoencoder network, when halving the number of hidden channels for all layers, when using an L2 loss function

during training, when using gain exponents of g = 0 and g = 5 in the loss function and when removing 2 layers from the

encoder and 8 layers from the decoder. We plot the histogram of the average absolute amplitude difference between the ground

truth FD simulation and the simulation from all of these cases
:::::::
network

:::::::::
simulation

:
over the test set . We

::
for

::
all

:::
of

:::
the

:::::
cases10

:::::
above,

::::
and observe that in all the cases the simulations are less accurate than our baseline approach. Without the gain in the

loss function, the network only learns to simulate the direct arrival and the first few reflections in the receiver responses. With a

gain exponent of g = 5, the network simulation is unstable and it fails to simulate the first 0.2 seconds of the receiver responses.

When using the network with less layers the simulations have edge artefacts. The
:
,
:::::
whilst

:::
the

:
network with half the number of

hidden channels is closest to the baseline accuracy. We also
::
In

::::::
testing

::
we

:
find that training a flat convolutional neural network15

with the same number of layers but without using a bottleneck design to reduce the velocity model to a 1x1x1024 latent vector

does not converge.

We compare the accuracy of the conditional autoencoder to the WaveNet network .
::
in

:::
Fig.

::::
A3.

:
We plot the simulation

from both networks for an example model in the horizontally layered velocity model test set in Fig. A3. We also plot
:::
and

the histogram of the average absolute amplitude difference between the ground truth FD simulation and the WaveNet and20

conditional autoencoder simulations over this test set. Both networks are able to
::::::::
accurately

:
simulate the receiver responses and

the WaveNet simulation is slightly more accurate than the conditional autoencoder, though of course the latter is more general.

We measure the average time taken for
:::
test

:::
the

::::::::::::
generalisation

:::::
ability

:::
of the conditional autoencoder to

::::::
outside

::
of

::
its

:::::::
training

:::::::::
distribution

:::
by

::::::::
inputting

::::::::
randomly

:::::::
selected

:::::::::
640× 640

:::
m

:::::
boxes

:::::
from

:::
the

:::::::
publicly

::::::::
available

:::
2D

:::::::::
Marmousi

:::::::
P-wave

:::::::
velocity

:::::
model

:::::::::::::::::
(Martin et al., 2006)

:::
into

:::
the

::::::::
network.

:::::
These

::::::::
velocity

::::::
models

::::::
contain

:::::
much

:::::
more

::::::::
complex

::::::
faulting

:::
at

:::::::
multiple

::::::
scales,25

:::::
higher

::::
dips

::::
and

::::
more

:::::
layer

:::::::::
variability

::::
than

:::
our

:::::::
training

::::::
dataset.

::::
The

::::::::
resulting

:::::::
network

::::::::::
simulations

:::
are

:::::
shown

:::
in

:::
Fig.

::::
12.

:::
We

:::::::
calculate

:::
the

::::::
nearest

:::::::::
neighbour

::
to

:::
the

::::
input

:::::::
velocity

::::::
model

::
in

:::
the

::
set

:::
of

::::::
training

:::::::
velocity

:::::::
models,

::::::
defined

:::
as

:::
the

::::::
training

::::::
model

::::
with

:::
the

:::::
lowest

:::
L1

:::::::::
difference

:::::::
summed

::::
over

:::
all

:::::::
velocity

::::::
values

::::
from

:::
the

:::::
input

:::::::
velocity

::::::
model,

::::
and

:::::
show

:::
this

::::::::
alongside

:::::
each

:::::::
example.

:

:::
We

:::
find

::::
that

:::
the

:::::::
network

::
is

:::
not

::::
able

::
to

::::::::
accurately

::::::::
simulate

:::
the

:::
full

::::::
seismic

::::::::
response

::::
from

:::::::
velocity

:::::::
models

:::::
which

::::
have

:::::
large30

:::
dips

::::::
and/or

:::::::
complex

:::::::
faulting

:::::::::
(examples

:::
(e),

:::
(f)

:::
and

::::
(h))

:::
that

:::
are

::::::
absent

::
in

:::
the

:::::::
training

:::
set.

::::
This

::::::::::
observation

::
is

::::::
similar

::
to

:::::
most

::::::
studies

:::::
which

:::::::
analyse

:::
the

:::::::::::::
generalisability

::
of

:::::
deep

:::::
neural

::::::::
networks

:::::::
outside

::::
their

:::::::
training

:::
set

::::
(e.g.

:::::::::::::::::::
Zhang and Lin (2018)

:::
and

::::::::::::::::::
Earp and Curtis (2019)

::
).

::::::::
However,

::::::::::::
encouragingly,

:::
the

:::::::
network

::
is

::::
able

::
to

::::::
mimic

:::
the

:::::::
response

:::::
from

::::::
velocity

:::::::
models

::::
with

:::::
small

:::
dips

::::
((d)

:::
and

::::
(g)),

::::
even

::::::
though

:::
the

::::::
nearest

::::::::::
training-set

:::::::::
neighbour

:::::::
contains

:
a
::::
fault

:::::::
whereas

:::
the

:::::::::
Marmousi

:::::
layers

:::
are

::::::::::
continuous.
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:::
We

:::::::
compare

:::
the

:::::::
average

::::
time

:::::
taken

::
to generate 100 simulations using a single core of a 2.2 GHz Intel Core i7 processor to

be 3.3± 0.1 s (
::
the

::::::::::
conditional

::::::::::
autoencoder

:::::::
network

::
to

:::
FD

:::::::::
simulation

::
in

:::::
Table

::
1.

:::
We

:::
find

::::
that

::
on

:
a
::::::
single

::::
CPU

::::
core

:::
the

:::::::
network

:
is
:
22 times faster than FD modelling on the same core ). Similar to the WaveNet network , this is an order of magnitude

:::::
times

faster than FD modelling. Using PyTorch (Pytorch, 2016) and a Nvidia Tesla K80 GPU produces simulations with an average

time of 0.180± 0.003 s (
:::::::::
simulation

:::
and

:::::
when

:::::
using

:
a
:::::
GPU

:::
and

:::
the

:::::::
PyTorch

::::::
library

::::::::::::::
(Pytorch, 2016)

:
it
::
is 406 times fasterthan5

FD modelling). The conditional autoencoder
:
.
::::
This

::
is

::::::::::
comparable

::
to

:::
the

:::::
speed

:::
up

:::::::
obtained

::::
with

:::
the

::::::::
WaveNet.

::
It
::
is

:::::
likely

::::
that

::
2D

:::
ray

:::::::
tracing

:::
will

:::
not

:::::
offer

::
the

:::::
same

:::::
speed

:::
up

::
as

:::::::
observed

:::
in

::::::
Section

:::
2.7,

:::::::
because

:::::::::
computing

:::
ray

:::::
paths

:::::::
through

::::
these

:::::::
models

:
is
:::::
likely

::
to
:::

be
:::::
more

:::::::::
demanding.

::::
The

:
network takes approximately 4 days to train on one Nvidia Titan V GPU. This is 8 times

longer than training the WaveNet network, though we made little
:::::::
although

::
we

:::::
made

:::
no effort to optimise the

:
its

:
training time.

We also find that when using only 50,000 training examples the validation loss increases and the network overfits to the training10

dataset.

4 Discussion and Further Work

We present two neural networks which offer fast methods for simulating seismic waves

4
:::::::::
Discussion

::::
Both

:::
our

::::
deep

::::::
neural

::::::::
networks

:::::::::
accurately

:::::
model

:::
the

:::::::
seismic

:::::::
response

:
in horizontally layered and faulted 2D acoustic media .15

Our WaveNet network
:::
one

::
to

::::
two

:::::
orders

::
of

:::::::::
magnitude

:::::
faster

::::
than

:::
FD

:::::::::
modelling.

::::
The

::::::::
WaveNet is able to simulate the pressure

response at multiple receiver locations in
:::::
carry

:::
out

:::
fast

:::::::::
simulation

::
of

:
horizontally layered velocity models, whilst our

:::
and

:::
the

conditional autoencoder is more general in that it is able to simulate the response from 2D faulted velocity models, conditioned

on the source location.

We find that using causality in our WaveNet network generates more accurate simulations than when using a standard20

convolutional network without causality. This suggests that adding this physics constraint helps the network simulate the

pressure responses. We also show that using exponential dilations appears to be a crictical design choice; using a convolutional

network without dilations does not converge. This is likely because without dilations the network’s field of view does not cover

the entire input reflectivity series.

Our WaveNet network can also carry out
:::
able

:::
to

:::::::::
generalise

::
to

::::::
faulted

::::::
media

::::
with

::::::::
arbitrary

::::::
layers,

::::
fault

:::::::::
properties

::::
and25

::
an

::::::::
arbitrary

:::::::
location

::
of

:::
the

:::::::
seismic

::::::
source

:::
on

:::
the

::::::
surface

:::
of

:::
the

::::::
media.

::::
This

::
is
::

a
:::::::::::
significantly

:::::
harder

::::
task

:::::
than

:::::::::
simulating

::::::::::
horizontally

::::::
layered

::::::
media

::::
with

:::
the

::::::::
WaveNet

:::::::
network.

::::
The

::::::::
WaveNet

:::
can

::::
also

:::
be

::::::
adapted

::
to
:::::

carry
:::
out

::::
fast seismic inversion,

which offers a fast alternative to existing inversion algorithms. We note that seismic inversion is typically an ill-defined problem

and it is likely that the predictions the inverse WaveNet architecture makes are biased towards the velocity models it is trained

on. This uncertainty could be quantified, for example by using Bayesian deep learning methods (?). We have also yet to compare30

our inverse WaveNet network to existing seismic inversion techniques, or test it with real seismic data. An alternative method
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for inversion is to use our forward networks in existing seismic inversion algorithms based on optimisation, such as FWI (?).

Both our WaveNet and conditional autoencoder networks are fully differentiable and could therefore be used to generate fast

approximate gradient estimates in these methods

:::::
Whilst

:::::
these

::::::
results

:::
are

:::::::::::
encouraging

::::
and

::::::
suggest

::::
that

::::
deep

::::::::
learning

::
is

:::::::
valuable

:::
for

:::::
both

:::::::::
simulation

:::
and

:::::::::
inversion,

:::::
there

::
are

:::::::
further

:::::::::
challenges

:::::
when

::::::::
extending

::::
our

:::::::::
simulation

:::::::
methods

:::
to

:::::
more

::::::::
complex,

:::::
elastic

::::
and

:::
3D

:::::
Earth

:::::::
models

::
in

::::::::
practical5

::::::::
simulation

:::::
tasks.

::::
We

::::::
believe

:::
that

::::::
further

:::::::
research

::::
will

::::
help

::
to

:::::::::
understand

:::::::
whether

:::::
deep

:::::::
learning

:::
can

:::
aid

::
in

:::::
these

::::
more

:::::::
general

::::::
settings

:::
and

:::::::
discuss

:::
this

::
in

:::::
more

:::::
detail

:::::
below.

Our conditional autoencoder shows excellent generalisation; it is

4.1
::::::::

Extension
::
to

::::::
elastic

:::::::::
simulation

::
An

:::::::::
important

:::::
ability

:::
for

:::::::
practical

::::::::::
geophysical

::::::::::
applications

::
is

::
to

::
be

:
able to simulate seismic waves in faulted mediawith arbitrary10

layers, fault properties and an arbitrary location of the seismic source on the surface of the media. This is a significantly harder

task than simulating the horizontally layered mediawith the WaveNet network. The network shows good accuracy in simulating

the kinematics of reflections, but for velocity models with many layers or strong contrasts it sometimes struggles to accurately

simulate their relative amplitudes. Our loss function or network designcould be investigated further to reduce these amplitude

differences.
:::::::::::
(visco-)elastic

::::::
media,

:::::
rather

::::
than

:::::::
acoustic

::::::
media.

::::
The

:::::::::::
architectures

::
of

:::
our

::::::::
networks

:::
are

::::::
readily

:::::::::
extendable

::
in

::::
this15

::::::
regard;

::::::
S-wave

:::::::
velocity

::::
and

::::::
density

::::::
models

::::::
could

::
be

:::::
added

:::
as

::::::::
additional

:::::
input

::::::::
channels

::
to

:::
our

::::::::
networks

::::
and

:::
the

::::::
number

:::
of

:::::
output

::::::::
channels

::
in

:::
the

::::::::
networks

:::::
could

:::
be

::::::::
increased

::
so

::::
that

:::::::::::::::
multi-component

::::::
particle

:::::::
velocity

:::::::
vectors

:::
are

::::::
output.

::::
The

:::::
same

::::::
training

:::::::
scheme

:::::
could

:::
be

::::
used,

:::::
with

:::::::
training

::::
data

::::::::
generated

:::::
using

::::::
elastic

:::
FD

:::::::::
simulation

::::::
instead

:::
of

:::::::
acoustic

:::::::::
simulation

::::
and

:
a
::::
loss

:::::::
function

::::::
which

::::::::
compares

::::::
vector

:::::
fields

:::::::
instead

::
of

:::::
scalar

::::::
fields.

:::::
Thus,

:::::
with

:::::
some

::::::
simple

:::::::
changes

::
to

::::
our

::::::
design,

::::
this

::::::::
challenge

::
is

:
at
:::::
least

::::::::::
conceptually

::::::
simple

::
to

:::::::
address,

::::::
though

::::::
further

::::::::
research

:
is
::::::::
required

::
to

:::::::::
understand

::
if

:
it
::
is

:::::::
feasible.

::::
The

::::
cost20

::
of

::::::::
traditional

::::::
elastic

:::::::::
simulation

:::::::
exceeds

:::
the

::::
cost

::
of

:::::::
acoustic

:::::::::
simulation

::
by

::::::
orders

::
of

:::::::::
magnitude

::::
and

:::
has

::::::::
prevented

:::
the

:::::::
seismic

:::::::
industry

::::
from

:::::
fully

:::::::::
embracing

:::
this

::::::
crucial

:::::
step.

:::
We

::::::::
postulate

::::
that

:::
the

:::::::::
difference

::
in

:::::::::
simulation

:::::
times

:::::::
between

::::::
future

::::::
elastic

:::
and

:::::::
acoustic

:::::::::
simulation

::::::::
networks

:::::
might

:::
be

:::::::
smaller

::::::::
compared

::
to

:::::
fully

:::::::::
discretised

:::::::
methods

:::::
such

::
as

::::
FD,

::
as

::
a

::::::::::
consequence

:::
of

::
the

::::::::
networks

:::
not

:::::::
needing

::
to
::::::::
compute

:::
the

:::::
entire

:::::::::
discretised

:::::::::
wavefield.

:::::
While

::::
this

::
is

:::::::::
speculative

::
at

:::
this

::::::
point,

:
it
::
is
:::::::::
intriguing

::
to

:::::::::
investigate.

:
25

Our ablation tests show that simulation accuracy is sensitive to the network design and training hyperparameters. Using

an appropriate gain function in the loss function appears critical; with too little or too much gain convergence is unstable.

Empirically our gain function with g = 2.5 performs well. When using less layers in the network we find the simulation has

edge artefacts. This suggest that there is a minimum limit on the number of layers when using this encoder-decoder network

design30

4.2
::::::::

Extension
::
to

:::
3D

::::::::::
simulation

:::::::
Another

::::::::
important

::::::::
extension

::
is

::
to

:::::
move

::::
from

:::
2D

::
to

:::
3D

:::::::::
simulation. We also find that using a flat network without a bottleneck

design does not converge. Our hypothesis is that the bottleneck encourages a depth-to-time conversion by slowly reducing the
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spatial dimensions of
:
A

:::::
major

::::::::
challenge

::::
here

::
is
:::::
likely

:::
to

::
be

:::
the

::::::::
increased

::::::::::::
computational

::::
cost

::
of

:::::::::
generating

:::::::
training

::::
data

::::
with

::::::::::
conventional

::::::::
methods,

:::::
which

:::
for

:::::::
instance

::
is
:::::::::::
significantly

:::::
higher

::
in

:::
3D

:::::
when

:::::
using

:::
FD

:::::::::
modelling.

::
In

:::::
terms

::
of

:::::::
network

:::::::
design,

:::
our

::::::::::
autoencoder

:::::
could

::
be

::::::::
extended

::
to

:::
3D

::::::::
simulation

:::
by

:::::::::
increasing

::
the

:::::::::::::
dimensionality

::
of

::
its

:::::
input,

::::::
hidden

:::
and

::::::
output

:::::::
tensors.

::
In

:::
this

::::
case

:::
we

:::::
would

::::::
expect

:
a
::::::
similar

:::::
order

::
of

:::::::::
magnitude

::::::::::
acceleration

::
of

:::::::::
simulation

::::
time

::
to
::::
2D,

:::::::
because

:::
the

:::::::
network

:::::
would

::::
still

::::::
directly

:::::::
estimate

:::
the

:::::::
seismic

:::::::
response

:::::::
without

:::::::
needing

::
to

:::::::::
iteratively

:::::
model

:::
the

:::::::
seismic

::::::::
wavefield

:::::::
through

::::
time.

::::::::
However,

::::
this5

:::::::
approach

::
is
:::::
likely

:::
to

::
be

:::::::::
practically

::::::::::
challenging

:::::::
because

:::::::::
increasing

:::
the

::::::::::::
dimensionality

::::::
would

:::::::
increase

:::
the

:::::::
number

::
of

:::::::
weights

:::
and

:::::
likely

:::
the

:::::::
training

::::
time.

:::::::
Finding

:::
an

:::::::::
alternative

::::::::::::
representation,

::::
such

::
as

:::::::
meshes

::
or

::::::::
oct-trees

:::::::::::::::::
(Ahmed et al., 2018)

::
to

::::::
reduce

::
the

:::::::::::::
dimensionality

::
of

:::
the

::::::::
problem,

::
or

::
a

::::
way

::
to

::::::
exploit

::::::::
symmetry

::
in
:::

the
:::::

wave
::::::::
equation

::
to

::::::
reduce

::::::::::
complexity,

::::
may

::
be

:::::::
critical.

::::::::::
Furthermore,

::::::
whilst

:::
we

::::
only

::::
used

:::
the

::::::::
wavefield

::
at

::::
each

:::::::
receiver

:::::::
location

::
to

::::
train

::::
our

::::::::
networks,

::::::
finding

::
a

:::
way

::
to
::::

use
:::
the

:::::
entire

::::::::
wavefield

::::
from

::::
FD

:::::::::
simulation

::
to

::::
train

::::
the

:::::::
network

::::
may

::::
help

::::::
reduce

:::
the

:::::::
number

::
of
:::::::

training
::::::::::

simulations
::::::::

required.
::::
We

::::
note10

:::
that

:::::::::
generating

:::::::
training

::::
data

::
is

::
an

:::::::::
amortized

:::
cost

:::::::
because

:
the velocity model before expanding them into time.

:::::::
network

::::
only

:::::
needs

::
to

::
be

:::::::
trained

::::
once,

::::::
which

::
in

:::
the

::::
case

:::
of

::::::
seismic

::::::::
inversion

:::::
with

:::::::
millions

::
of

::::::::::
production

::::
runs

:::::
could

:::::::
become

:::::::::
negligible.

:::::::
Another

::::::::
intriguing

:::::
aspect

::
is

::
to

:::::::::
investigate

:::::::
whether

::::
deep

::::::
neural

:::::::
network

:::::::::
simulation

::::
costs

::::
scale

:::::
more

:::::::::
favourably

::::
with

:::::::::
increasing

::::::::
frequency

::
ω,

:::::::::
compared

::
to

:::::
fully

:::::::
discrete

:::::::
methods

::::::
which

::::
scale

::::
with

::::
ω4;

::
in

::::
this

:::::
study

:::
we

::::
only

:::::::
consider

:::::::::
simulation

:::
at

:
a
:::::
fixed

::::::::
frequency.

:
15

We find that the WaveNet network has marginally better performance than the conditional autoencoder when simulating

layered velocity models. This may be because the WaveNet network is more physically-constrained for this task; it uses

causality and has 18 times less free parameters. It is an open question how best to represent causality in networksfor simulating

more arbitrary Earth models. We find that both networks have more difficulty simulating multiple reverberations, perhaps

because they have more complex wave physics than the primary reflections. Other components such as Long Short-Term20

Memory (LSTM) or Recursive Neural Network (RNN) cells could be tested inside the networks for improving its prediction

of these signals.

4.3
::::::::::::

Generalisation
::
to

:::::
more

::::::::
complex

:::::
Earth

:::::::
models

A key future challenge is to generalise our networks to
::::::
Perhaps

:::
the

::::::
largest

:::::::::
challenge

::
in

::::::::
designing

::::::::::
appropriate

::::::::
networks

::
is

::
to

:::::::
improve

::::
their

::::::::
generality

::
so

::::
they

::::
can simulate more complex Earth models. Whilst our generalisation from

::
We

:::::
have

:::::
shown

::::
that25

::::
deep

:::::
neural

::::::::
networks

:::
can

:::::
move

::::::
beyond

:::::::::
simulating

::::::
simple

:
horizontally layered velocity models to faulted models is promising,

we have yet to consider arbitrary Earth models. Furthermore we focus on acoustic simulation and do not consider elastic

or viscoelastic simulation. To generalise further, our conditional autoencoder network requires
::::
more

:::::::
complex

::::::
faulted

:::::::
models

:::::
where,

:::
to

:::
the

::::
best

::
of

::::
our

:::::::::
knowledge,

:::
no

:::::::::
analytical

::::::::
solutions

:::::
exist,

:::::
which

:::
we

:::::::
believe

::
is

:
a
:::::::

positive
:::::

step.
::::::::
However,

::::
both

::::
our

:::::::
networks

:::::::::
performed

::::::
worse

::
on

:::::::
velocity

::::::
models

:::::::
outside

::
of

::::
their

:::::::
training

:::::::::::
distributions.

:::::::::::
Furthermore,

::
to
:::
be

::::
able

::
to

:::::::::
generalise

::
to30

::::
more

:::::::
complex

:::::::
velocity

::::::
models

:::
the

::::::::::
conditional

::::::::::
autoencoder

:::::::
required more free parameters, more time to train and more training

examples than the WaveNet network. Elastic and aniostropic parameters would need to be added as additional inputs to the

networks and ground truth simulations with more complex Earth models would need to be used to train them. Novel network

designs which incorporate physics constraints directly in their architecture or in their loss function may help; it may also be
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useful to use
::::::::::::
Generalisation

::::::
outside

::
of

:::
the

:::::::
training

::::::::::
distribution

:
is
::
a

::::
well

:::::
known

::::
and

:::::::
common

::::::::
challenge

::
of

:::::
deep

:::::
neural

::::::::
networks

::
in

::::::
general

:::::::::::::::::::::
(Goodfellow et al., 2016).

:

:
A
:::::

naive
::::::::

approach
::::::

would
:::
be

::
to

:::::::
increase

:::
the

:::::
range

:::
of

:::
the

:::::::
training

::::
data

::
to

:::::::
improve

:::
the

:::::::::
generality

::
of

::::
the

:::::::
network,

::::::::
however

:::
this

::::::
would

::::::
quickly

:::::::
become

::::::::::::::
computationally

:::::::::
intractable

:::::
when

:::::
trying

::
to
::::::::

simulate
:::
all

:::::::
possible

:::::
Earth

:::::::
models.

:::
We

::::
note

::::
that

:::
for

::::
many

::::::::
practical

::::::::::
applications

::
it

::::
may

::
be

:::::::::
acceptable

:::
to

:::
use

:
a
:::::::
training

::::::::::
distribution

::::
with

::
a

::::::
limited

::::::
range;

::
for

::::::::
example,

::
in
:::::

many
:::

of5

::
the

:::::::
seismic

:::::::::::
applications

::::
such

:::::::::::
tomography,

:::::
FWI,

:::
and

:::::::
seismic

::::::
hazard

::::::::::
assessment,

::
a

::::
huge

:::::::
number

::
of

:::::::
forward

::::::::::
simulations

:::
of

:::::::::::
comparatively

::::
few

:::::
Earth

::::::
models

:::
are

::::::
carried

:::
out.

:

:
A
:::::::::
promising

:::::::
research

::::::::
direction

::::
may

::
be

:::
to

:::::
better

::::::::
regularise

:::
the

::::::::
networks

::
by

::::::
adding

:::::
more

::::::::::::
physics-based

:::::::::
constraints

::::
into

:::
the

::::::::
workflow.

:::
We

::::::
found

:::
that

:::::
using

::::::::
causality

:::
in

:::
the

::::::::
WaveNet

::::::::
generated

:::::
more

:::::::
accurate

::::::::::
simulations

:::::
than

:::::
when

:::::
using

:
a
::::::::
standard

:::::::::::
convolutional

::::::::
network;

:::
this

::::::::
suggested

::::
that

::::::
adding

::::
this

::::::::
constraint

::::::
helped

:::
the

:::::::
network

:::::::
simulate

:::
the

:::::::
seismic

::::::::
response,

::::::::
although10

:
it
::
is
:::
an

::::
open

::::::::
question

::::
how

::::
best

::
to

::::::::
represent

::::::::
causality

:::::
when

:::::::::
simulating

:::::
more

::::::::
arbitrary

:::::
Earth

:::::::
models.

:::
We

::::
also

:::::
found

::::
that

::
a

::::::::
bottleneck

::::::
design

::::::
helped

::::
the

::::::::::
conditional

::::::::::
autoencoder

::
to
:::::::::

converge;
:::
our

::::::::::
hypothesis

::
is

::::
that

:::
this

::::::::::
encouraged

::
a
::::::::::::
depth-to-time

:::::::::
conversion

::
by

::::::
slowly

::::::::
reducing

:::
the

:::::
spatial

::::::::::
dimensions

::
of

:::
the

:::::::
velocity

::::::
model

:::::
before

:::::::::
expanding

:::::
them

:::
into

:::::
time.

:::::
More

::::::::
advanced

:::::::
network

:::::::
designs,

::
for

::::::::
example

::::
using

:
attention-like mechanisms

::::::::::::::::::
(Vaswani et al., 2017) to help the network focus on the relevant

part
::::::
relevant

::::
parts

:
of the velocity modelto carry out simulation, rather than using convolutional layers with full fields of view(?)15

.

Another key challenge is to move from 2D simulation to 3D simulation. This is challenging because the computation cost

of generating training data in 3D is significantly higher than in 2D. However, though large, this could be an amortized cost;

the network would only ,
::
or

:::::
using

:::::
Long

:::::::::
Short-Term

::::::::
Memory

:::::::
(LSTM)

::::
cells

::
to

::::
help

:::
the

:::::::
network

::::::
model

:::::::
multiple

::::::::::::
reverberations

::::
could

:::
be

:::::
tested.

:::::::
Another

:::::::::
interesting

::::::::
direction

:::::
would

:::
be

::
to

:::
use

:::
the

::::
wave

::::::::
equation

::::
(Eq.

::
1)

::
to

::::::
directly

:::::::::
regularise

:::
the

:::
loss

::::::::
function,20

::::::
similar

::
to

:::
the

:::::::::::
physics-based

::::::::
machine

:::::::
learning

:::::::
approach

::::::::
proposed

:::
by

:::::::::::::::
Raissi et al. (2019)

:
.

:::
We

:::
find

:::
the

::::::
nearest

:::::::::
neighbour

:::
test

::
is

:
a
:::::
useful

::::
way

::
to

:::::::::
understand

::
if
::
an

:::::
input

:::::::
velocity

:::::
model

::
is

:::::
close

::
to

::
the

:::::::
training

::::::::::
distribution

:::
and

::::::::
therefore

::
if

:::
the

:::::::::
network’s

::::::
output

:::::::::
simulation

::
is

:::::
likely

:::
to

::
be

::::::::
accurate.

:::::::::::
Probabilistic

::::::::::
approaches,

:::::
such

::
as

::::::::
Bayesian

:::::
deep

:::::::
learning

:::::::::
(Gal, 2016)

:
,
:::::
could

::
be

::::::::::
investigated

:::
for

::::
their

::::::
ability

::
to

::::::
provide

:::::
more

::::::::::
quantitative

:::::::::
uncertainty

::::::::
estimates

::
on

:::
the

:::::::::
network’s

:::::
output

::::::::::
simulation.25

4.4
::::::::
Inversion

::::
with

::::::::
WaveNet

::::::
Finally,

:::
we

::::::
discuss

::::
our

:::::::
inversion

::::::::
approach

:::::
using

:::::::::
WaveNet.

:::
We

::::
note

:::
that

:::::::
seismic

::::::::
inversion

::
is

:::::::
typically

:::
an

::::::::
ill-defined

::::::::
problem

:::
and

:
it
::
is
:::::
likely

::::
that

:::
the

:::::::::
predictions

:::
the

:::::::
network

:::::
made

:::
are

:::::
biased

:::::::
towards

:::
the

:::::::
velocity

::::::
models

::
it

:::
was

::::::
trained

:::
on.

::::
The

::::::::
accuracy

::
of

::
the

::::::::
network

::::::
reduced

:::::
when

::
it

::::
was

:::::
tested

::
on

::::::
inputs

::::::
outside

::
of

:::
its

::::::
training

::::::::::
distribution

::::
and

:::
this

::
is

:::::
likely

::
to

:::::::
degrade

::::::
further

:::::
when

:::::
tested

::::
with

::::
real,

::::
noisy

:::::::
seismic

::::
data.

::::::
Further

::::::::
research

:::::
could

::
try

::
to

:::::::
quantify

::::
this

:::::::::
uncertainty,

:::
for

:::::::
example

:::
by

:::::
using

:::::::
Bayesian

:::::
deep30

:::::::
learning.

:::
We

::::
have

::::
also

:::
yet

::
to

:::::::
compare

:::
our

:::::::
inverse

:::::::
WaveNet

:::::::
network

::
to

:::::::
existing

:::::::
seismic

:::::::
inversion

::::::::::
techniques,

::::
such

::
as

::::::::
posterior

:::::::
sampling

:::
or

::::
FWI.

:::
An

:::::::::
alternative

:::::::
method

::
for

::::::::
inversion

::
is
::
to

:::
use

::::
our

::::::
forward

::::::::
networks

::
in
:::::::
existing

:::::::
seismic

::::::::
inversion

:::::::::
algorithms

:::::
based

::
on

::::::::::::
optimisation,

::::
such

::
as

:::::
FWI.

:::::
Both

:::
the

::::::::
WaveNet

::::
and

:::::::::
conditional

:::::::::::
autoencoder

::::::::
networks

:::
are

:::::
fully

:::::::::::
differentiable

::::
and

::::
could

::::::::
therefore

:::
be

:::::
used

::
to

:::::::
generate

::::
fast

:::::::::::
approximate

:::::::
gradient

::::::::
estimates

:::
in

:::::
these

::::::::
methods,

:::::::
although

:::::::
similar

:::::::::
limitations

:::
on
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::::
their

::::::::
generality

:::
are

::::::
likely

::
to

::::
exist

::::
and

:::
one

::::::
would

:
need to be trained once and after this inference steps are still likely to be

fast. Whilst we extract only the wavefield at each receiver location to train our network, using the entire wavefield from FD

simulation during training may help reduce the number of
:::::
careful

:::
to

::::
keep

:::
the

::::::::
inversion

::::::
routine

:::::
within

:::
the

:::::::
training

::::::::::
distribution

::
of

:::
the

:::::::
network.

:

4.5
::::::::
Summary5

:::::
Given

:::
the

:::::::::
potentially

:::::
large

::::::
training

:::::
costs

:::
and

:::
the

:::::::::
challenge

::
of

:::::::::
generality,

::
it

::::
may

::
be

::::
that

::::::
current

::::
deep

::::::::
learning

:::::::::
techniques

:::
are

::::
most

:::::::::::
advantageous

::
to
::::::::

practical
:::::::::
simulation

:::::
tasks

:::::
where

:::::
many

::::::
similar

::::::::::
simulations

:::
are

::::::::
required,

::::
such

::
as

::::::::
inversion

:::
or

::::::::
statistical

::::::
seismic

::::::
hazard

:::::::
analysis,

:::
and

::::
least

::::::
useful

::
for

::::::::
problems

::::
with

::
a

:::
very

:::::
small

:::::::
number

::
of

:::::::::
simulations

:::
per

::::::
model

::::::
family.

::
In

::::::::::
seismology,

:::::::
however,

:::
we

:::::::
suspect

:::
that

:::::
most

::::::
current

::::
and

:::::
future

:::::::::
challenges

:::
fall

::::
into

:::
the

::::::
former

::::::::
category,

:::::
which

:::::::
renders

:::::
these

:::::
initial

::::::
results

:::::::::
promising.

::::::
Further

:::::::
research

::
is

:::::::
required

::
to

:::::::::
understand

::::
how

::::
best

::
to

::::::
design

:::
the training simulations

::
set

:::
for

::
a

::::::::
particular

:::::::::
simulation10

:::::::::
application,

::
as

::::
well

::
as

::::
how

::
to

::::
help

::::
deep

:::::
neural

::::::::
networks

:::::::::
generalise

:
to
::::::
unseen

:::::::
velocity

::::::
models

:::::::
outside

::
of

::
the

:::::::
training

::::::::::
distribution.

5 Conclusions

We have
::::::::::
investigated

:::
the

:::::::
potential

:::
of

::::
deep

:::::::
learning

:::
for

:::::
aiding

:::::::
seismic

:::::::::
simulation

:::::
tasks

::
in

::::::::::
geophysics.

:::
We presented two deep

neural networks for carrying
:::::
which

:::
are

::::
able

::
to

:::::
carry out fast and largely accurate simulation of seismic waves. Both networks

are 20 - 500 times faster than FD modelling and simulate seismic waves in horizontally layered and faulted 2D acoustic media.15

The first network uses a WaveNet architecture and simulates seismic waves in horizontally layered media. We showed that

this network can also be used to carry out fast seismic inversion of the same media. Our
:::
The

:
second network is significantly

more general than the first; it simulates seismic waves in faulted media with arbitrary layers, fault properties and an arbitrary

location of the seismic source on the surface of the media. Our approaches could pave the way to real-time seismic simulation

and benefit seismic inversion algorithms based on forward simulation. Our work suggests that deep learning is a valuable tool20

for both seismic simulation and inversion
::::
main

::::::::::
contribution

::
is
::
to

:::::
show

::::
that

::::
deep

:::::
neural

::::::::
networks

:::
can

:::::
move

:::::::
beyond

:::::::::
simulating

:::::
simple

::::::::::
horizontally

:::::::
layered

:::::::
velocity

::::::
models

::
to

::::
more

::::::::
complex

::::::
faulted

::::::
models

::::::
where,

::
to

:::
the

:::
best

::
of

:::
our

::::::::::
knowledge,

:::
no

::::::::
analytical

:::::::
solutions

:::::
exist,

::::::
which

:::
we

::::::
believe

:::
is

:
a
:::::::
positive

::::
step

:::::::
towards

::::::::::::
understanding

:::::
their

::::::::
potential.

:::
We

:::::::::
discussed

:::
the

:::::::::
challenges

:::
of

::::::::
extending

:::
our

:::::::::
approaches

::
to

::::::::
practical

::::::::::
geophysical

::::::::::
applications

:::
and

:::::
future

:::::::
research

:::::::::
directions

:::::
which

:::::
could

::::::
address

:::::
them,

::::::
noting

:::::
where

:
it
::::
may

:::
be

:::::::::
favourable

:::
for

::::
using

:::::
these

:::::::
network

:::::::::::
architectures.25

Code and data availability. All our training data used was generated synthetically, using the SEISMIC_CPML FD modelling library. Our

WaveNet code is already publicly available on Github here: https://github.com/benmoseley/seismic-simulation-wavenet. We are happy to

release the code to reproduce all our results on Github on publication of this paper.
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Figure A1.
::::::::
Comparison

::
of
:::::::
different

::::::
network

::::::::::
architectures

::
on

::::::::
simulation

:::::::
accuracy.

::::
Top

::
left

:::::
shows

:::
the

:::::::
WaveNet

::::::::
simulated

::::::
pressure

:::::::
response

::
for

:
a
::::::::

randomly
::::::
selected

:::::::
example

::
in

:::
the

:::
test

::
set

::::::
(green)

::::::::
compared

::
to

:::::
ground

::::
truth

:::
FD

::::::::
simulation

:::::
(red).

:::
Top

::::
right

:::
and

::::::
bottom

:::
left

::::
show

:::
the

:::::::
simulated

:::::::
response

::::
when

::::
using

:::
two

:::::::::::
convolutional

::::::
network

::::::
designs

:::
with

:::
and

::::::
without

:::::::::
exponential

:::::::
dilations.

::::::
Bottom

::::
right

:::::
shows

::
the

::::::::
histogram

:
of
:::

the
::::::

average
:::::::

absolute
::::::::
amplitude

::::::::
difference

::::::
between

:::
the

::::::
ground

::::
truth

:::
FD

::::::::
simulation

:::
and

:::
the

:::::::::
simulations

::::
from

:::
the

:::::::
WaveNet,

:::
the

::::::
dilated

::::::::::
convolutional

::::::
network

:::
and

:::
2D

:::
ray

:::::
tracing

::::
over

::
the

:::
test

:::
set

::
of

::::
1000

:::::::
examples.

::
A

:::
t2.5

::::
gain

:
is
::::::
applied

::
to

:::
the

::::::
receiver

:::::::
responses

:::
for

::::::
display.
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Figure A2.
::::::::
Comparison

::
of
:::::::
different

::::::::
conditional

::::::::::
autoencoder

::::::
network

::::::
designs

:::
and

::::::
training

::::::::::::
hyperparameters

:::
on

::::::::
simulation

:::::::
accuracy.

:::
Top

:::
left

::::
shows

::
a
:::::::
randomly

:::::::
selected

::::::
velocity

:::::
model

:::
and

:::::
source

::::::
location

::::
from

:::
the

:::
test

:::
set

:::
and

::
its

:::::::::::
corresponding

:::::
ground

::::
truth

:::
FD

:::::::::
simulation.

::::::
Bottom

:::::::
compares

:::::::::
simulations

:::
and

::::
their

::::::::
difference

::
to

::
the

::::::
ground

::::
truth

:::::
when

::::
using

:::
our

:::::::
proposed

:::::::::
conditional

:::::::::
autoencoder

::::::::
(baseline),

:::::
when

::::::
halving

::
the

::::::
number

::
of

::::::
hidden

::::::
channels

:::
for

::
all

:::::
layers

:::::
(thin),

::::
when

:::::
using

::
an

::
L2

::::
loss

::::::
function

:::::
during

::::::
training

:::
(L2

:::::
loss),

::::
when

::::
using

::::
gain

::::::::
exponents

::
of

::::
g = 0

:::
and

:::::
g = 5

::
in

::
the

:::
loss

:::::::
function

:::
and

::::
when

::::::::
removing

:
2
:::::
layers

::::
from

::
the

::::::
encoder

:::
and

::
8
::::
layers

::::
from

:::
the

::::::
decoder

::::::::
(shallow).

:::
Top

::::
right

:::::
shows

::
the

::::::::
histogram

::
of

:::
the

::::::
average

::::::
absolute

::::::::
amplitude

::::::::
difference

:::::::
between

::
the

::::::
ground

::::
truth

:::
FD

::::::::
simulation

:::
and

:::
the

::::::::
simulation

::::
from

:::
the

:::::::
different

::::
cases

:::
over

:::
the

:::
test

:::
set.

:::
The

::::::::
histogram

::
of

::
the

::::::
baseline

:::::::
network

:::
over

:::
the

::::::::
Marmousi

:::
test

:::::
dataset

::
is

:::
also

::::::
shown.

:
A
:::
t2.5

::::
gain

::
is

:::::
applied

:::
for

::::::
display.

Appendix A:
:::::::::::::
Supplementary

::::::
figures

::::
and

:::::
tables
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Figure A3.
::::::::
Comparison

::
of
:::
the

:::::::
WaveNet

:::
and

:::::::::
conditional

:::::::::
autoencoder

::::::::
simulation

:::::::
accuracy.

::::
The

::
left

::::
plot

:::::
shows

:
a
::::::
velocity

::::::
model,

::::::::
reflectivity

::::
series

:::
and

::::::
ground

::::
truth

:::
FD

::::::::
simulation

:::
for

:
a
::::::::

randomly
::::::
selected

:::::::
example

::
in

:::
the

:::::::::
horizontally

::::::
layered

::::::
velocity

::::::
model

:::
test

::
set

::
in
::::

red.
:::::
Green

::::
shows

:::
the

:::::::
WaveNet

:::::::::
simulation.

:::
The

::::::
middle

:::
plot

:::::
shows

:::
the

::::::::
conditional

::::::::::
autoencoder

::::::::
simulation

::
for

:::
the

::::
same

:::::::
velocity

:::::
model.

:::
The

::::
right

::::
plot

::::
shows

:::
the

::::::::
histogram

::
of

::
the

::::::
average

:::::::
absolute

:::::::
amplitude

::::::::
difference

:::::::
between

::
the

::::::
ground

::::
truth

::
FD

::::::::
simulation

:::
and

:::
the

:::::::
WaveNet

:::
and

:::::::::
conditional

:::::::::
autoencoder

:::::::::
simulations

:::
over

:::
this

:::
test

:::
set.

::
A

:::
t2.5

:::
gain

::
is
::::::
applied

::
for

::::::
display.

::::
Layer

: :::
Type

: ::
in,

:::
out

:::::::
channels

:::::
kernel

:::
size

::::
stride

: ::::::
padding

:
1

:::::
Conv2d

: ::::
(1,8)

::::
(3,3)

::::
(1,1)

::::
(1,1)

::
14

:::::
Conv2d

: :::::::
(512,512)

: ::::
(3,3)

::::
(1,1)

::::
(1,1)

:
2

:::::
Conv2d

: ::::
(8,16)

::::
(2,2)

::::
(2,2)

:
0

::
15

:::::
Conv2d

: :::::::
(512,512)

: ::::
(3,3)

::::
(1,1)

::::
(1,1)

:
3

:::::
Conv2d

: :::::
(16,16)

: ::::
(3,3)

::::
(1,1)

::::
(1,1)

::
16

:::::::
ConvT2d

:::::::
(512,256)

: ::::
(2,4)

::::
(2,4)

:
0
:

:
4

:::::
Conv2d

: :::::
(16,32)

: ::::
(2,2)

::::
(2,2)

:
0

::
17

:::::
Conv2d

: :::::::
(256,256)

: ::::
(3,3)

::::
(1,1)

::::
(1,1)

:
5

:::::
Conv2d

: :::::
(32,32)

: ::::
(3,3)

::::
(1,1)

::::
(1,1)

::
18

:::::
Conv2d

: :::::::
(256,256)

: ::::
(3,3)

::::
(1,1)

::::
(1,1)

:
6

:::::
Conv2d

: :::::
(32,64)

: ::::
(2,2)

::::
(2,2)

:
0

::
19

:::::::
ConvT2d

::::::
(256,64)

::::
(2,4)

::::
(2,4)

:
0
:

:
7

:::::
Conv2d

: ::::::
(64,128)

::::
(2,2)

::::
(2,2)

:
0

::
20

:::::
Conv2d

: :::::
(64,64)

: ::::
(3,3)

::::
(1,1)

::::
(1,1)

:
8

:::::
Conv2d

: :::::::
(128,256)

: ::::
(2,2)

::::
(2,2)

:
0

::
21

:::::
Conv2d

: :::::
(64,64)

: ::::
(3,3)

::::
(1,1)

::::
(1,1)

:
9

:::::
Conv2d

: :::::::
(256,512)

: ::::
(2,2)

::::
(2,2)

:
0

::
22

:::::::
ConvT2d

::::
(64,8)

::::
(2,4)

::::
(2,4)

:
0
:

::
10

: :::::
Conv2d

: ::::::::
(512,1024)

::::
(2,2)

::::
(2,2)

:
0

::
23

:::::
Conv2d

: :::
(8,8)

: ::::
(3,3)

::::
(1,1)

::::
(1,1)

::
11

: :::::
Concat

: :::::::::
(1024,1025)

: ::
24

:::::
Conv2d

: :::
(8,8)

: ::::
(3,3)

::::
(1,1)

::::
(1,1)

::
12

: :::::::
ConvT2d

:::::::::
(1025,1025)

: ::::
(2,2)

::::
(2,2)

:
0

::
25

:::::
Conv2d

: :::
(8,1)

: ::::
(1,1)

::::
(1,1)

:
0
:

::
13

: :::::::
ConvT2d

::::::::
(1025,512)

::::
(2,4)

::::
(2,4)

:
0

Table A1.
::::::::
Conditional

:::::::::
autoencoder

::::
layer

:::::::::
parameters.

::::
Each

::::
entry

:::::
shows

::
the

:::::::::::::
parameterisation

::
of

:::
each

::::::::::
convolutional

:::::
layer.

:::
The

::::::
padding

::::::
column

::::
shows

:::
the

::::::
padding

:::
on

:::
each

::::
side

::
of

::
the

::::
input

:::::
tensor

:::
for

::::
each

:::::
spatial

::::::::
dimension.
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