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Introduction: 
 This document contains our responses and proposed manuscript changes resulting from 
the two reviews of our revised “Deep learning for fast simulation of seismic waves in 
complex media” discussion paper. 
 
We would like to thank the reviewers (Andrew Curtis and Andrew Valentine) for reviewing 
our revised manuscript and our response to their comments are below. 
 
Ben Moseley, Tarje Nissen-Meyer & Andrew Markham 
 
 
Report 1 
 
This manuscript has evolved significantly since its original submission, and I thank the 
authors for their careful consideration of the reviews. A few comments: 
 
- The authors frame their manuscript as 'a manifesto or roadmap for deep learning'. I think 
this is a good line to take, and their work certainly makes a convincing case for further 
exploration. However, it should be noted that the manuscript really only explores one or 
two possible ways of framing seismic problems using deep learning. On occasion the 
authors' language creeps beyond this, towards a claim that they have comprehensively 
characterised the space of possibilities. 
 
Authors: We agree there are likely to be many alternative ways to frame this task using 
deep learning, for example by using other network types. We propose to add a sentence in 
the final summary (Section 4.5) acknowledging this explicitly and stating that we only 
consider a few types of networks (WaveNet and conditional autoencoders).  
 
- I think the comparisons between the wavenet-derived simulations and 2D ray tracing are 
very interesting. If I understand Fig. A1 correctly, the authors' approach consistently out-
performs the 'physical' method in terms of accuracy/fidelity to the training data. This could 
perhaps be discussed in more detail in the main text. Looking at Fig. 5, it appears that the 
ray-tracing introduces a slight phase shift relative to the reference waveforms. Is this the 
main source of discrepancy between the two? What do the worst-performing wavenet 
simulations look like? Does wavenet always 'more-or-less' work, or does it sometimes fail 
egregiously? 
 
Authors: The WaveNet does match the FD simulations better than the 2D ray tracing across 
the test set used in Figure A1. Small phase shifts and small differences in the amplitudes at 
large offsets are the main source of discrepancy between the ray tracing and FD modelling. 
The improved performance of the WaveNet is perhaps to be expected because it is trained 
to directly match the FD simulation, instead of the ray tracing. The WaveNet is consistent in 



its predictions across the test set, but performs poorer when tested outside of its training 
distribution (Figure 6). We propose to add these observations to Section 2.6. 
 
 
- To what extent have the authors explored different deep learning formulations? Does 
using a smaller NN cause gradual deterioration or total failure of the approach? 
 
Authors: We explored multiple different network architectures and loss functions for the 
conditional autoencoder in Figure A2; a smaller NNs (“thin”and “shallow” cases in figure) 
causes gradual deterioration, whilst changing the gain value from 2.5 to 5 or 0 in the loss 
function causes total failure. We also explored different network architectures for the 
WaveNet (Figure A1; without exponential dilations causes total failure, whilst removing its 
causality constraint slightly reduces performance). We comment on these differences in 
Section 2.6 and 3.3 and believe they are covered well in the manuscript. 
 
 
- The section on 'inverse wavenet' (using deep learning to map waveforms into models) has 
been scaled back significantly as a result of the earlier reviews. I wonder if it might be 
appropriate to move all discussion of this (i.e. formulation, training, results, discussion) into 
a single place within the manuscript, presumably within Section 4. I think this might better 
reflect the speculative tone of this part. 
 
Authors: We agree this part is more speculative and moving the section is appropriate; we 
scaled it back to focus the paper towards simulation rather than inversion. We propose to 
merge Section 2.6 and its results in Section 2.7 into Section 4.4. 
 
Finally, as a more general perspective: I would argue that the utility (or otherwise) of 
'learned' approaches is highly context-dependent. In general, machine-learning--based 
methods offer computational costs that scale very differently from 'conventional' 
approaches, but with less favourable (or at least, less clearly-understood) accuracy 
guarantees. I think this probably means that further development of 'learned' methods 
needs to be targeted towards specific identified applications: the cost/benefit analysis for 
(say) applications in earthquake early warning may be very different from those in (say) 
global tomography. Optimising and validating any learned strategy ought to take this into 
account, and I am not sure that a one-size-fits-all approach is realistic. 
 
Authors: We propose to highlight more clearly in Section 4.5 that deep learning has 
different computational costs and less well understood accuracy guarantees than 
conventional approaches and that these should be considered for each application. 
 
 
Report 2 
 
I think the authors have done a good job of addressing the comments from both myself and 
reviewer 1. The manuscript is much improved and I recommend publication with one minor 
addition: 
 



When discussing the extension to 3D, the authors state: "However, this approach is likely to 
be practically challenging because increasing the dimensionality would increase the number 
of weights and likely the training time." 
 
I think they should mention a little more explicitly/clearly that there are three compounding 
reasons that costs increase when moving to 3D, of which I think the increased number of 
weights is probably the least of our worries...: 
 
1. the number of weights in the network increases significantly. 
2. the cost of forward modelling the training examples increases hugely. 
3. the "curse of dimensionality" needs to be mentioned explicitly as this is what implies that 
we require exponentially many more samples and hence modelling runs in order to explore 
parameter space. 
 
Together these three make the extension to 3D incredibly challenging, and the worst of the 
lot is the Curse: it doesn't matter how fast your modelling method is, the curse can still 
make a problem impossible with only a few tens of parameters. 
 
Authors: We believe the first two reasons are important factors to overcome when moving 
to 3D for simulation purposes, and propose to list them more explicitly in Section 4.2. We 
believe that the curse of dimensionality, as interpreted in the setting of an inverse, 
sampling, or general probabilistic inference problem, does not apply in the same sense to 
our forward simulation networks because we are carrying out forward simulation rather 
than “exploring a parameter space”. Once any forward solution (deep networks, FD, other) 
exists, the curse of dimensionality certainly dictates the number of simulations needed to 
explore parameter space comprehensively and we fully agree that an MCMC-style posterior 
sampling is out of reach for a finely gridded 3D space, but that is beyond the scope of this 
paper which merely suggests that NN can lead to a speedup of the forward problem. We 
believe that the “manifestation” of the curse of dimensionality for the forward problem is 
that, for a given number of training examples, it is only possible to cover a small subset of 
the input space of possible velocity models in the network’s training distribution, which 
restricts its generalisation ability. We believe we cover this in Section 4.3 when discussing 
generalisation issues by mentioning that trying to simulate all possible Earth models would 
likely become computationally intractable. We think that moving all of the inversion results 
to Section 4.4 (see comments above) makes it clearer that Section 4.2 only considers the 
difficulty of extending simulation networks to 3D, and we added a sentence to Section 4.4 
acknowledging the curse of dimensionality for inverse problems. 
 
 
Otherwise, very nice manuscript. 
 
Authors: in addition to the comments above, we made some minor grammatical changes 
throughout the manuscript and added a sentence emphasising the motivation for using our 
approach at the start of Section 2. 
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Abstract. The simulation of seismic waves is a core task in many geophysical applications. Numerical methods such as Finite

Difference (FD) modelling and Spectral Element Methods (SEM) are the most popular techniques for simulating seismic

waves, but disadvantages such as their computational cost prohibit their use for many tasks. In this work we investigate the

potential of deep learning for aiding seismic simulation in the Solid Earth sciences. We present two deep neural networks which

are able to simulate the seismic response at multiple locations in horizontally layered and faulted 2D acoustic media an order5

of magnitude faster than traditional finite difference modelling. The first network is able to simulate the seismic response in

horizontally layered media and uses a WaveNet network architecture design. The second network is significantly more general

than the first and is able to simulate the seismic response in faulted media with arbitrary layers, fault properties and an arbitrary

location of the seismic source on the surface of the media, using a conditional autoencoder design. We test the sensitivity of

the accuracy of both networks to different network hyperparameters, and show that the WaveNet network can be retrained10

to carry out fast seismic inversion in the same media. We find that are there are challenges when extending our methods to

more complex, elastic and 3D Earth models; for example the accuracy of both networks reduces when they are tested on

models outside of their training distribution. We discuss further research directions which could address these challenges and

potentially yield useful tools for practical simulation tasks.

1 Introduction15

Seismic simulations are essential for addressing many outstanding questions in geophysics. In seismic hazards analysis, they

are a key tool for quantifying the ground motion of potential earthquakes (Boore, 2003; Cui et al., 2010). In oil and gas

prospecting, they allow the seismic response of hydrocarbon reservoirs to be modelled (Chopra and Marfurt, 2007; Lumley,

2001). In geophysical surveying they show how the subsurface is illuminated by different survey designs (Xie et al., 2006).

In global geophysics they are used to obtain snapshots of the Earth’s interior dynamics by tomography (Hosseini et al., 2019;20

Bozdağ et al., 2016), to decipher source and path effects from individual seismograms (Krischer et al., 2017) and to model

wave effects of complex structures (Thorne et al., 2020; Ni et al., 2002). In seismic inversion they are used to estimate the

elastic properties of a medium given its seismic response (Tarantola, 1987; Schuster, 2017) and in Full Waveform Inversion

(Fichtner, 2010; Virieux and Operto, 2009), a technique used to image the 3D structure of the subsurface, they are used up to

tens of thousands of times to improve on estimates of a medium’s elastic properties. In planetary science, seismic simulations25

play a central role in understanding novel recordings on Mars (Van Driel et al., 2019).
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Numerous methods exist for simulating seismic waves, the most popular in fully heterogeneous media being Finite Differ-

ence (FD) and Spectral Element Methods (SEM) (Igel, 2017; Moczo et al., 2007; Komatitsch and Tromp, 1999). They are able

to capture a large range of physics, including the effects of undulating solid-fluid interfaces (Leng et al., 2019), intrinsic atten-

uation (van Driel and Nissen-Meyer, 2014a) and anisotropy (van Driel and Nissen-Meyer, 2014b). These methods solve for the

propagation of the full seismic wavefield by discretising the elastodynamic equations of motion. For an acoustic heterogeneous5

medium these are given by the scalar linear equation of motion

ρ∇ ·
(
1

ρ
∇p
)
− 1

v2
∂2p

∂t2
=−ρ∂

2f

∂t2
, (1)

where p is the acoustic pressure, f is a point source of volume injection (the seismic source), and v =
√
κ/ρ is the velocity of

the medium, with ρ the density of the medium and κ the adiabatic compression modulus (Long et al., 2013).

Whilst FD and spectral element methods are the primary means of simulation in complex media, a major disadvantage10

of these methods is their computational cost (Bohlen, 2002; Leng et al., 2016). Typical FD or SEM simulations can involve

billions of degrees of freedom, and at each time step the wavefield must be iteratively updated at each 3D grid point. For

many practical geophysical applications this is often prohibitively expensive. For example, in global seismology one may

be interested in modelling waves up to 1 Hz in frequency to resolve small-scale heterogeneities in the mantle and a single

simulation of this type with conventional techniques can cost around 40 million CPU hours (Leng et al., 2019). At crustal15

scales, industrial seismic imaging requires wave modelling up to tens of Hertz in frequency carried out hundreds of thousands

of times for each explosion in a seismic survey, and such requirements can easily fill the largest supercomputers on Earth.

Any improvement in efficiency is welcome, not least due to the high financial and environmental costs of high-performance

computing.

In some applications, large parts of the Earth model may be relatively smooth or simple. This simplicity can be taken20

advantage of, for example in the complexity-adapted SEM introduced by Leng et al. (2016), and can deliver a large speed-

up compared to standard numerical modelling. Pseudo-analytical methods such as ray tracing and amplitude-versus-offset

modelling (Aki and Richards, 1980; Vinje et al., 1993) are another approach which can provide significant speed-ups, albeit

being approximate. We note that many applications are constrained and driven by a sparse set of observations on the surface

of an Earth model. For these applications we are typically only interested in modelling the seismic response at these points25

to deciper seismic origin or the 3D structure beneath the surface, yet fully numerical methods still need to iterate the entire

wavefield through all points in the model at all points in time. Any shortcut to avoid computing these massive 4D wavefields

might lead to drastic efficiency improvements. In short, the points above suggest that alternative and advantageous methods to

capture accurate wave physics may be possible for these challenging problems.

The field of machine learning has seen an explosion in growth over the last decade. This has been primarily driven by30

advancements in deep learning, which has provided more powerful algorithms allowing much more difficult problems to be

learned (Goodfellow et al., 2016). This progress has led to a surge in the use of deep learning techniques across many areas of

science. In particular, deep neural networks have recently shown promise in their ability to make fast yet sufficiently accurate
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predictions of physical phenomena (Guo et al., 2016; Lerer et al., 2016; Paganini et al., 2018). These approaches are able to

learn about highly non-linear physics and often offer much faster inference times than traditional simulation.

In this work we ask whether the latest deep learning techniques can aid seismic simulation tasks relevant to the Solid Earth

sciences. We investigate the use of deep neural networks and discuss the challenges and opportunities when using them for

practical seismic simulation tasks. Our contribution is as follows;5

– We present two deep neural networks which are able to simulate seismic waves in 2D acoustic media an order of

magnitude faster than FD simulation. The first network uses a WaveNet network architecture (van den Oord et al., 2016)

and is able to accurately simulate the pressure response from a fixed point source at multiple locations in a horizontally

layered velocity model. The second is significantly more general; it uses a conditional autoencoder network design and is

able to simulate the seismic response at multiple locations in faulted media with arbitrary layers, fault properties and an10

arbitrary location of the source on the surface of the media. In contrast to the classical methods both networks simulate

the seismic response in a single inference step, without needing to iteratively model the seismic wavefield through time,

resulting in a significant speed-up compared to FD simulation.

– We test the sensitivity of the accuracy of both networks to different network designs, present a loss function with a

time-varying gain which improves training convergence and show that fast seismic inversion in horizontal layered media15

can also be carried out by retraining the WaveNet network.

– We find challenges when extending our methods to more complex, elastic and 3D Earth models and discuss further

research directions which could address these challenges and yield useful tools for practical simulation tasks.

In Section 2 we consider the simple case of simulating seismic waves in horizontally layered 2D acoustic Earth models using

a WaveNet deep neural network. In Section 3 we move on to the task of simulating more complex faulted Earth models. In20

Section 4 we discuss the challenges of extending our approach
:::::::::
approaches and future research directions.

1.1 Related Work

The use of machine learning and neural networks in geophysics is not new (Van Der Baan and Jutten, 2000). For example,

Murat and Rudman (1992) used neural networks to carry out automated first break picking, Dowla et al. (1990) used a neural

network to discriminate between earthquakes and nuclear explosions and Poulton et al. (1992) used them for electromagnetic25

inversion of a conductive target. In seismic inversion, Röth and Tarantola (1994) used a neural network to estimate the velocity

of 1D, layered, constant thickness velocity profiles from seismic amplitudes and Nath et al. (1999) used neural networks for

cross-well travel-time tomography. However, these early approaches only used shallow network designs with small numbers

of free parameters which limits the expressivity of neural networks and the complexity of problems they can learn about

(Goodfellow et al., 2016).30

The field of machine learning has grown rapidly over the last decade, primarily because of advances in deep learning.

The availability of larger datasets, discovery of methods which allow deeper networks to be trained and availability of more

3
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Figure 1. Ground truth FD simulation example. Left, top: A 20 Hz Ricker seismic source is emitted close to the surface and propagates

through a 2D horizontally layered acoustic Earth model. The black circle shows the source location. 11 receivers are placed at the same depth

as the source with a horizontal spacing of 50 m (red triangles). The full wavefield is overlain for a single snapshot in time. Note seismic

reflections occur at each velocity interface. Left, bottom: The Earth velocity model. The Earth model has a constant density of 2200 kgm−2.

Right: The resulting ground truth pressure response recorded by each of the receivers, using FD modelling. A t2.5 gain is applied to the

receiver responses for display.

powerful computing architectures (mostly GPUs) has allowed much more complex problems to be learnt (Goodfellow et al.,

2016), leading to a surge in the use of deep learning in many different research areas. In physics, Lerer et al. (2016) presented

a deep convolutional network which could accurately predict whether randomly stacked wooden towers would fall or remain

stable, given 2D images of the tower. Guo et al. (2016) demonstrated that convolutional neural networks could estimate flow

fields in complex Computational Fluid Dynamics (CFD) calculations two orders of magnitude faster than a traditional GPU-5

accelerated CFD solver and Paganini et al. (2018) used a conditional generative adversarial network to simulate particle showers

in particle colliders.

A resurgence is occurring in geophysics too (Bergen et al., 2019; Kong et al., 2019). Early examples of deep learning include

Devilee et al. (1999), who used deep probabilistic neural networks to estimate crustal thicknesses from surface wave velocities

and Valentine and Trampert (2012) who used a deep autoencoder to compress seismic waveforms. More recently, Perol et al.10

(2018) presented an earthquake identification method using convolutional networks which is orders of magnitude faster than

traditional techniques. In seismic inversion, Araya-Polo et al. (2018) proposed an efficient deep learning concept for carrying
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Figure 2. Our WaveNet simulation workflow. Given a 1D Earth velocity profile as input (left), our WaveNet deep neural network (middle)

outputs a simulation of the pressure responses at the 11 receiver locations in Fig 1. The raw input 1D velocity profile sampled in depth is

converted into its normal incidence reflectivity series sampled in time before being input into the network. The network is composed of 9

time-dilated causally-connected convolutional layers with a filter width of 2 and dilation rates which increase exponentially with layer depth.

Each hidden layer of the network has same length as the input reflectivity series, 256 channels and a ReLU activation function. A final

causally-connected convolutional layer with a filter width of 101 samples, 11 output channels and an identity activation is used to generate

the output simulation.

out seismic tomography using the semblance of common mid-point receiver gathers as input. Wu and Lin (2018) proposed a

convolutional autoencoder network to carry out seismic inversion, whilst Yang and Ma (2019) adapted a U-net network design

for the same purpose. Richardson (2018) demonstrated that a recurrent neural network framework can be used to carry out FWI.

Sun and Demanet (2018) showed a method for using deep learning to extrapolate low frequency seismic energy to improve

the convergence of FWI algorithms. In seismic simulation Zhu et al. (2017) presented a multi-scale convolutional network for5

predicting the evolution of the full seismic wavefield in heterogeneous media. Their method was able to approximate wavefield

kinematics over multiple time steps, although it suffered from the accumulation of error over time and did not offer a reduction

in computational time. Moseley et al. (2018) showed that a convolutional network with a recursive loss function can simulate

the full wavefield in horizontally layered acoustic media. Krischer and Fichtner (2017) used a generative adversarial network

to simulate seismograms from radially symmetric and smooth Earth models.10

In this work we present fast methods for simulating seismic waves in horizontally layered and faulted 2D acoustic media,

which offer a significant reduction in computation time compared to Zhu et al. (2017). We also present a fast method for

seismic inversion of horizontally layered acoustic media, which is more general than the original approach proposed by Röth

and Tarantola (1994) because it is able to invert velocity models with varying numbers of layers and varying layer thicknesses.

We restrict ourselves to 2D acoustic media and discuss implications for 3D elastic media below.15
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Figure 3. Distribution of layer velocity and layer thickness over all examples in the training set.

2 Fast seismic simulation in 2D horizontally layered acoustic media using WaveNet

Top: Inverse WaveNet predictions for 4 examples in the test set. Red shows the input pressure response at the zero-offset

receiver location, the ground truth reflectivity series and its corresponding velocity model. Green shows the inverse WaveNet

reflectivity series prediction and the resulting velocity prediction.

First we consider the simple case of simulating seismic waves in horizontally layered 2D acoustic Earth models. We train a5

deep neural network with a WaveNet architecture to simulate the seismic response recorded at multiple receiver locations in the

Earth model, horizontally offset from a point source emitted at the surface of the model. As mentioned above, many seismic

applications are concerned with sparse observations similar to this setup.
:
A

::::
key

::::::::
difference

::
of
::::

this
::::::::
approach

::::::::
compared

:::
to

:::
FD

:::
and

::::
SEM

:::::::::
simulation

::
is

:::
that

:::
the

:::::::
network

::::::::
computes

:::
the

:::::::
seismic

:::::::
response

::
at

:::
the

::::::
surface

::
in

:
a
:::::
single

::::::::
inference

::::
step,

:::::::
without

:::::::
needing

::
to

::::::::
iteratively

::::::
model

:::
the

::::::
seismic

:::::::::
wavefield

::::::
through

:::::
time,

:::::::::
potentially

:::::::
offering

:
a
:::::::::
significant

:::::::::
speed-up. Whilst we concentrate on10

simple velocity models here, more complex faulted Earth models are considered in Section 3.

An example simulation we wish to learn is shown in Fig. 1 and our simulation workflow is shown in Fig. 2. The input to the

network is a horizontally layered velocity profile and the output of the network is a simulation of the pressure response recorded

at each receiver location. We will now discuss deep neural networks, our WaveNet architecture, our simulation workflow and

our training methodology in more detail below.15

2.1 Deep neural networks and the WaveNet network

A neural network is a network of simple computational elements, known as neurons, which perform mathematical opera-

tions on multidimensional arrays, or tensors (Goodfellow et al., 2016). The composition of these neurons together defines a

mathematical function of the network’s input. Each neuron has a set of free parameters, or weights, which are tuned using opti-

misation, allowing the network’s function to be learned, given a set of training data. In deep learning, the neurons are typically20

arranged in multiple layers, which allows the network to learn highly non-linear functions.

A standard building block in deep learning is the convolutional layer, where all neurons in the layer share the same weight

tensor and each neuron has a limited field of view of its input tensor. The output of the layer is achieved by cross correlating the

6
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Figure 4. WaveNet simulations for 4 randomly selected examples in the test set. Red shows the input velocity model, its corresponding re-

flectivity series and the ground truth pressure response from FD simulation at the 11 receiver locations. Green shows the WaveNet simulation

given the input reflectivity series for each example. A t2.5 gain is applied to the receiver responses for display.

weight tensor with the input tensor. Multiple weight tensors, or filters, can be used to increase the depth of the output tensor.

Such designs have achieved state of the art performance across a wide range of machine learning tasks (Gu et al., 2018).

The WaveNet network proposed by van den Oord et al. (2016) makes multiple alterations to the standard convolutional layer

for its use with time series. Each convolutional layer is made causal; that is, the receptive field of each neuron only contains

samples from the input layer whose sample times are before or the same as the current neuron’s sample time. Furthermore5

the WaveNet exponentially dilates the width of its causal connections with layer depth. This allows the field of view of its
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Figure 5. Comparison of WaveNet simulation to 2D ray tracing. We compare the WaveNet simulation to 2D ray tracing for 2 of the examples

in Fig 4. Red shows the input velocity model, its corresponding reflectivity series and the ground truth pressure responses from FD simulation.

Green shows the WaveNet simulation (left) and 2D ray tracing simulation (right). A t2.5 gain is applied to the receiver responses for display.

neurons to increase exponentially with layer depth, without needing a large number of layers. These modifications are made to

honour time series prediction tasks which are causal and to better model input data which varies over multiple time scales. The

WaveNet network recently achieved state of the art performance in text to speech synthesis.
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Figure 6. Generalisation ability of the WaveNet. The WaveNet simulations (green) for 4 velocity models with a much smaller average layer

thicknesses than the training distribution are compared to ground truth FD simulation. Red shows the input velocity model, its corresponding

reflectivity series and the ground truth pressure responses from FD simulation.

2.2 Simulation workflow

Our workflow consists of a preprocessing step, where we convert each input velocity model into its corresponding normal

incidence reflectivity series sampled in time (Fig. 2, left), followed by a simulation step, where it is passed to a WaveNet

network to simulate the pressure response recorded by each receiver (Fig. 2, middle).
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The reflectivity series is typically used in exploration seismology (Russell, 1988) and contains values of the ratio of the

amplitude of the reflected wave to the incident wave for each interface in a velocity model. For acoustic waves at normal

incidence, these values are given by

R=
ρ2v2− ρ1v1
ρ2v2 + ρ1v1

, (2)

where ρ1,v1 and ρ2,v2 are the densities and P-wave velocities across the interface. The series is usually expressed in time5

and each reflectivity value occurs at the time at which the primary reflection of the source from the corresponding velocity

interface arrives at a given receiver. The arrival times can be computed by carrying out a depth-to-time conversion of the

reflectivity values using the input velocity model.

We chose to convert the velocity model to its reflectivity series and use the causal WaveNet architecture to constrain our

workflow. For horizontally layered velocity models and receivers horizontally offset from the source, the receiver pressure10

recordings are causally correlated to the normal incidence reflectively series of the zero-offset receiver. Intuitively, a seismic

reflection recorded after a short time has only travelled through a shallow part of the velocity model and the pressure responses

are at most dependent on the past samples in this reflectivity series. By preprocessing the input velocity model into its corre-

sponding reflectivity series and using the causal WaveNet network
:::::::::
architecture

:
to simulate the receiver response we constrain

our workflow
:::
can

::::::::
constrain

:::
the

:::::::
network so that it honours this causal correlation.15

We input the 1D profile of a 2D horizontally layered velocity model, with a depth of 640 m and a step size of 5 m. We use

Eq. 2 and a standard 1D depth to time conversion to convert the velocity model into its normal incidence reflectivity series.

The output reflectivity series has a length of 1 s and a sample rate of 2 ms. An example output reflectivity series is shown in

Fig. 2 (left).

The reflectivity series is passed to the WaveNet network, which contains 9 causally-connected convolutional layers (Fig. 2,20

middle). Each convolutional layer has the same length as the input reflectivity series, 256 hidden channels, a receptive field

width of 2 samples and a Rectified Linear Unit (ReLU) activation function (Nair and Hinton, 2010). Similar to the original

WaveNet design, we use exponentially increasing dilations at each layer to ensure that the first sample in the input reflectivity

series is in the receptive field of the last sample of the output simulation. We add a final causally-connected convolutional layer

with 11 output channels, a filter width of 101 samples and an identity activation to generate the output simulation, where each25

output channel corresponds to a receiver prediction. This results in the network having 1,333,515 free parameters in total.

2.3 Training data generation

To train the network, we generate 50,000 synthetic ground truth example simulations using the SEISMIC_CPML code, which

performs 2nd-order acoustic FD modelling (Komatitsch and Martin, 2007). Each example simulation uses a randomly sampled

2D horizontally layered velocity model with a width and depth of 640 m and a sample rate of 5 m in both directions. (Fig. 1,30

bottom left). For all simulations we use a constant density model of 2200 kgm−2.

In each simulation the layer velocities and layer thickness are randomly sampled from log-normal distributions. We also

add a small velocity gradient randomly sampled from a normal distribution to each model such that the velocity values tend

10



to increase with depth, to be more Earth-realistic. The distributions over layer velocities and layer thicknesses for the entire

training set are shown in Fig. 3.

We use a 20 Hz Ricker source emitted close to the surface and record the pressure response at 11 receiver locations placed

symmetrically around the source, horizontally offset every 50 m (Fig. 1, top left). We use a convolutional perfectly matched

layer boundary condition such that waves which reach the edge of the model are absorbed with negligible reflection. We run5

each simulation for 1 s and use a 0.5 ms sample rate to maintain accurate FD fidelity. We downsample the resulting receiver

pressure responses to 2 ms before using them for training.

We run 50,000 simulations and extract a training example from each simulation, where each training example consists of

a 1D layered velocity profile and the recorded pressure response at each of the 11 receivers. We withhold 10,000 of these

examples as a validation set to measure the generalisation performance of the network during training.10

2.4 Training process

The network is trained using the Adam stochastic gradient descent algorithm (Kingma and Ba, 2014). This algorithm computes

the gradient of a loss function with respect to the free parameters of the network over a randomly selected subset, or batch, of

the training examples. This gradient is used to iteratively update the parameter values, with a step size controlled by a learning

rate parameter. We propose a L2 loss function with time-varying gain function for this task, given by15

L=
1

N
‖G(Ŷ −Y )‖22 , (3)

where Ŷ is the simulated receiver pressure response from the network, Y is the ground truth receiver pressure response from

FD modelling and N is the number of training examples in each batch. The gain function G has the form G= tg where t is the

sample time and g is a hyperparameter which determines the strength of the gain. We add this to empirically account for the

attenuation of the wavefield caused by spherical spreading, by increasing the weight of samples at later times. In this Section20

we use a fixed value of g = 2.5. We use a learning rate of 1x10−5, a batch size of 20 training examples and run training over

500,000 gradient descent steps.

2.5 Comparison to 2D ray tracing

We compare the WaveNet simulation to an efficient, quasi-analytical 2D ray-tracing algorithm which assumes horizontally

layered media. We modify the 2D horizontally layered ray-tracing bisection algorithm from the CREWES seismic modelling25

library (Margrave and Lamoureux, 2018) to include Zoeppritz modelling of the reflection and transmission coefficients at each

velocity interface (Aki and Richards, 1980) and 2D spherical spreading attenuation (Gutenberg, 1936; Newman, 1973) during

ray tracing. The output of the algorithm is a primary reflectivity series for each receiver, which we convolve with the source

signature used in FD modelling to obtain an estimate of the receiver responses.

2.6 Inversion workflow30

11



As an additional test, we are also able to retrain the WaveNet network to carry out fast seismic inversion in the same media,

which offers a fast alternative to existing inversion algorithms. We retrain the WaveNet network with its inputs and output

reversed. Its input is now a set of 11 recorded receiver responses and its output is a prediction of the corresponding normal

incidence reflectivity series. To recover a prediction of the velocity model we carry out a standard 1D time-to-depth conversion

of the output reflectivity values followed by integration. We use the same WaveNet architecture described in Sect. 2.2, except5

that we invert its structure to maintain the causal correlation between the receiver responses and reflectivity series. We also use

128 instead of 256 hidden channels for each hidden layer. We use exactly the same training data and training strategy described

in Sect. 2.3 and 2.4, except that we now use the loss function given by

L=
1

N
‖R̂−R‖22 ,

where R is the true reflectivity series and R̂ is the predicted reflectivity series.10

2.6 Results

Whilst training the WaveNet the losses over the training and validation datasets converge to similar values, suggesting the

network is generalising well to examples in the validation dataset. To assess the performance of the trained network, we

generate a random test set of 1000 unseen examples. The simulations for 4 randomly selected examples from this test set are

compared to the ground truth FD modelling simulation in Fig. 4. We also compare the WaveNet simulation to 2D ray tracing15

in Fig. 5.

For nearly all time samples the network is able to simulate the receiver pressure responses. The WaveNet is able to predict

the Normal Moveout (NMO) of the primary layer reflections with receiver offset, the direct arrivals at the start of each receiver

recording and the spherical spreading loss of the wavefield over time, though the network struggles to accurately simulate the

multiple reverberations at the end of the receiver recordings.20

We plot the histogram of the average absolute amplitude difference between the ground truth FD simulation and the simula-

tion from the WaveNet and 2D ray tracing over the test set in Fig. A1 (bottom right) and observe that the WaveNet simulation

has a lower average
::::::::
amplitude difference than 2D ray tracing.

:::::
Small

:::::::::
differences

::
in

:::::
phase

::::
and

::::::::
amplitude

:::
at

:::::
larger

::::::
offsets

:::
are

::
the

:::::
main

::::::
source

::
of

::::::::::
discrepancy

:::::::
between

:::
the

:::
2D

::::
ray

::::::
tracing

:::
and

:::
FD

::::::::::
simulation,

:::::
which

::::
can

::
be

::::
seen

::
in

::::::
Figure

::
5,

::::
and

:::
are

:::::
likely

:::
due

::
to

:::::
errors

::::
both

::
in

:::
the

:::
ray

::::::
tracing

:::::::::::::
approximation

:::
and

::
in

:::::
using

:::::::::::
discretisation

::
in

:::
the

:::
FD

::::::::::
simulation.

:::
The

::::::::
WaveNet

::::::::::
predictions25

::
are

:::::::::
consistent

::::
and

:::::
stable

:::::
across

:::
the

::::
test

:::
set,

::::
and

::::
their

:::::
closer

:::::::::
amplitude

:::::
match

::
to
:::

the
::::

FD
:::::::::
simulation

::
is

::::::
perhaps

:::
to

::
be

::::::::
expected

::::::
because

:::
the

:::::::
network

::
is
::::::
trained

::
to

:::::::
directly

:::::
match

:::
the

:::
FD

::::::::::
simulation,

:::::
rather

::::
than

:::
the

:::
2D

:::
ray

::::::
tracing.

:

We compare the sensitivity of the network’s accuracy to two different convolutional network designs in Fig. A1. Their main

differences to the WaveNet design is that both networks use standard rather than causal convolutional layers and the second

network uses exponential dilations whilst the first does not. Both networks have 9 convolutional layers, each with 256 hidden30

channels, filter sizes of 3, ReLU activations for all hidden layers and an identity activation function for the output layer, with

1,387,531 free parameters in total. We observe that the convolutional network without dilations does not converge during

12



Method Average CPU time (s) Average GPU time (s) Training time (days)

2D FD simulation 73± 1 (1x) - -

2D ray tracing 2.2± 0.1 (33x) - -

WaveNet (forward) 3.79± 0.03 (19x) 0.133± 0.001 (549x) 0.5

Conditional autoencoder 3.3± 0.1 (22x) 0.180± 0.003 (406x) 4

WaveNet (inverse) 1.27± 0.02 0.051± 0.001 0.5

Table 1. Speed comparison of simulation and inversion methods. The time shown is the average time taken to generate 100 simulations (or

100 velocity predictions for the inverse WaveNet) on either a single core of a 2.2 GHz Intel Core i7 processor or a Nvidia Tesla K80 GPU.

For simulation methods the speed up factor compared to FD simulation is shown in brackets.
:::
The

:::::
inverse

:::::::
WaveNet

::
is
::::
faster

::::
than

:::
the

::::::
forward

:::::::
WaveNet

::::::
because

:
it
:::
has

:::
less

::::::
hidden

::::::
channels

::
in

::
its

:::::::::
architecture

:::
and

:::::::
therefore

::::::
requires

::::
less

::::::::::
computation.

training, whilst the dilated convolutional network has a higher average absolute amplitude difference over the test set from the

ground truth FD simulation than the WaveNet network (Fig. A1 (bottom right)).

The generalisation ability of the WaveNet outside of its training distribution is tested in Fig. 6. We generate four velocity

models with a much smaller average layer thickness than the training set and compare the WaveNet simulation to the ground

truth FD simulation. We find that the WaveNet is able to make an accurate prediction of the seismic response, but it struggles5

to simulate the multiple reflections and sometimes the interference between the direct arrival and primary reflections.

When training the inverse WaveNet the losses over the training and validation datasets converge to similar values and we

test the performance of the trained network using a test set of 1000 unseen examples. Predictions of the reflectivity series and

velocity models for 4 randomly selected examples from this test set are shown in Fig. 12. The inverse WaveNet network is able

to predict the underlying velocity model for each example. We observe that in some cases small velocity errors propagate with10

depth, which is likely a result of the integration of the reflectivity series.

We compare the average time taken to generate 100 simulations (or 100 velocity model predictions for the inverse WaveNet)

to FD simulation and 2D ray tracing in Table 1. We find that on a single CPU core the WaveNet is 19 times faster than FD

simulation, and using a GPU and the TensorFlow library (TensorFlow, 2015) it is 549 times faster. This speedup is likely to

be higher than if the GPU was used for accelerating existing numerical methods (Rietmann et al., 2012). In this case, the15

specialised 2D ray tracing algorithm offers a similar speed up to the WaveNet network. The inverse WaveNet is able to produce

velocity predictions in the same order of magnitude time as the forward network , which is likely to be a fraction of the time

needed for existing seismic inversion algorithms which rely on forward simulation. Its prediction time is faster than the forward

WaveNet because it has less hidden channels in its architecture and therefore requires less computation. Both networks take

:::::::
network

::::
takes

:
approximately 12 hours to train on one Nvidia Tesla K80 GPU, although this training step is only required once20

and subsequent simulation steps are fast.
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Figure 7. Ground truth FD simulation example, with a 2D faulted media. Left, top: The black circle shows the source location. 32 receivers

are placed at the same depth as the source with a horizontal spacing of 15 m (red triangles). The full wavefield pressure is overlain for a single

snapshot in time. Left, bottom: The Earth velocity model. Right: The resulting ground truth pressure response recorded by each receiver,

using FD modelling. A t2.5 gain is applied to the receiver responses for display.

Figure 8. Our conditional autoencoder simulation workflow. Given a 2D velocity model and source location as input, a conditional autoen-

coder network outputs a simulation of the pressure responses at the receiver locations in Fig. 7. The network is composed of 24 convolutional

layers and concatenates the input source location with its latent vector.
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Figure 9. Conditional autoencoder simulations for 8 randomly selected examples in the test set. White circles show the input source location.

The left simulation plots show the network predictions, the middle simulation plots show the ground truth FD simulations and the right

simulation plots show the difference. A t2.5 gain is applied for display.

3 Fast seismic simulation in 2D faulted acoustic media using a conditional autoencoder

The WaveNet architecture we implemented
::::
above

:
is limited in that it is only able to simulate horizontally layered Earth

models. In this section we present a second network which is significantly more general; it simulates seismic waves in 2D

faulted acoustic media with arbitrary layers, fault properties and an arbitrary location of the seismic source on the surface of

the media.5
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Figure 10. Conditional autoencoder simulation accuracy when varying the source location. The network simulation is shown for 6 different

source locations whilst keeping the velocity model fixed. The source positions are regularly spaced across the surface of the velocity model

(white circles). Example simulations for 2 different velocity models in the test set are shown, where each row corresponds to a different

velocity model. The pairs of simulation plots in each row from left to right correspond to the network prediction (left in the pair) and the

ground truth FD simulation (right in the pair), when varying the source location from left to right in the velocity model. A t2.5 gain is applied

for display.

This is a much more challenging task to learn for multiple reasons. Firstly, the media varies along both dimensions and

the resulting seismic wavefield has more complex kinematics than the wavefields in horizontally layered media. Secondly, we

allow the output of the network to be conditioned on the input source location which requires the network to learn the effect

of the source location. Thirdly, we input the velocity model directly into the network without conversion to a reflectivity series

beforehand; the network must learn to carry out its own depth to time conversion to simulate the receiver responses. We chose5

this approach over our WaveNet workflow because we note that for non-horizontally layered media the pressure responses are

not causally correlated to the normal incidence reflectivity series in general and our previous causality assumption does not

hold.

Similar to Section 2, we simulate the seismic response recorded by a set of receivers horizontally offset from a point source

emitted within the Earth model. An example simulation we wish to learn is shown in Fig. 7. We will now discuss the network10

architecture and training process in more detail below.

3.1 Conditional autoencoder architecture

Our simulation workflow is shown in Fig. 8. Instead of preprocessing the input velocity model to its associated reflectivity

model, we input the velocity model directly into the network. The network is conditioned on the source position, which is
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Figure 11. Generalisation ability of the conditional autoencoder. The conditional autoencoder simulations for 5 velocity models taken from

different regions of the Marmousi P-wave velocity model are shown (examples (d)-(h)). For each example, left shows the input velocity

model and source location, the middle simulations plots show the network prediction (left) and the ground truth FD simulation (right) and

right shows the nearest neighbour in the training set to the input velocity model. Simulations from 3 of the test velocity models in Fig. 9 are

also shown with their nearest neighbours (examples (a)-(c)). A t2.5 gain is applied for display.

allowed to vary along the surface of the Earth model. The output of the network is a simulation of the pressure responses

recorded at 32 fixed receiver locations in the model shown in Fig. 7.

We use a conditional autoencoder network design, shown in Fig 8. The network is composed of 10 convolutional layers

which reduce the spatial dimensions of the input velocity model until it has a 1x1 shape with 1024 hidden channels. We term

this tensor the latent vector. The input source surface position is concatenated onto the latent vector and 14 convolutional layers5
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Figure 12.
:::
Top:

::::::
Inverse

:::::::
WaveNet

:::::::::
predictions

::
for

:
4
::::::::
examples

:
in
:::
the

:::
test

:::
set.

:::
Red

:::::
shows

:::
the

::::
input

::::::
pressure

:::::::
response

::
at

::
the

:::::::::
zero-offset

::::::
receiver

::::::
location,

:::
the

::::::
ground

::::
truth

:::::::::
reflectivity

::::
series

::::
and

::
its

:::::::::::
corresponding

:::::::
velocity

:::::
model.

:::::
Green

:::::
shows

:::
the

::::::
inverse

:::::::
WaveNet

:::::::::
reflectivity

:::::
series

:::::::
prediction

:::
and

:::
the

:::::::
resulting

::::::
velocity

::::::::
prediction.

are used to expand the size of the latent vector until its output shape is the same as the target receiver gather. We choose this

encoder-decoder architecture to force the network to compress the velocity model into a set of salient features before expanding

them to infer the receiver responses. All hidden layers use ReLU activation functions and the final output layer uses an identity

activation function. The resulting network has 18,382,296 free parameters. The full parameterisation of the network is shown

in Table A1.5
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3.2 Training process

We use the same training data generation process described by Section 2.3. When generating velocity models, we add a fault

to the model. We randomly sample the length, normal or reverse direction, slip distance and orientation of the fault. Example

velocity models drawn from this process are shown in Fig. 9. We generate 100,000 example velocity models and for each

model chose three random source locations along the top of the model. This generates a total of 300,000 synthetic ground truth5

example simulations to use for training the network. We withhold 60,000 of these examples to use as a validation set during

training.

We train using the same training process and loss function described in Section 2.4, except that we employ a L1 norm instead

of a L2 norm in the loss function (Eq. 3). We use a learning rate of 1x10−4, a batch size of 100 examples and run training over

3,000,000 gradient descent steps. We use batch normalisation (Ioffe and Szegedy, 2015) after each convolutional layer to help10

regularise the network during training.

3.3 Results

During training the losses over the training and validation datasets converge to similar values and we test the performance of

the trained network using a test set of 1000 unseen examples. The output simulations for 8 randomly selected velocity models

and source positions from this set are shown in Fig. 9. We observe that the network is able to simulate the kinematics of the15

primary reflections and in most cases is able to capture their relative amplitudes. We also plot the network simulation when

varying the source location over 2 velocity models from the test set in Fig. 10 and find that the network is able to generalise

well over different source locations.

We test the accuracy of the simulation when using different network designs and training hyperparameters, shown in Fig. A2.

We compare example simulations from the test set when using our baseline conditional autoencoder network, when halving20

the number of hidden channels for all layers, when using an L2 loss function during training, when using gain exponents

of g = 0 and g = 5 in the loss function and when removing 2 layers from the encoder and 8 layers from the decoder. We

plot the histogram of the average absolute amplitude difference between the ground truth FD simulation and the network

simulation over the test set for all of the cases above, and observe that in all cases the simulations are less accurate than our

baseline approach. Without the gain in the loss function, the network only learns to simulate the direct arrival and the first few25

reflections in the receiver responses. With a gain exponent of g = 5, the network simulation is unstable and it fails to simulate

the first 0.2 seconds of the receiver responses. When using the network with less layers the simulations have edge artefacts,

whilst the network with half the number of hidden channels is closest to the baseline accuracy. In testing we find that training

a network with the same number of layers but without using a bottleneck design to reduce the velocity model to a 1x1x1024

latent vector does not converge.30

We compare the accuracy of the conditional autoencoder to the WaveNet network in Fig. A3. We plot the simulation from

both networks for an example model in the horizontally layered velocity model test set and the histogram of the average absolute

amplitude difference between the ground truth FD simulation and the WaveNet and conditional autoencoder simulations over
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this set. Both networks are able to accurately simulate the receiver responses and the WaveNet simulation is slightly more

accurate than the conditional autoencoder, though of course the latter is more general.

We test the generalisation ability of the conditional autoencoder outside of its training distribution by inputting randomly

selected 640× 640 m boxes from the publicly available 2D Marmousi P-wave velocity model (Martin et al., 2006) into the

network. These velocity models contain much more complex faulting at multiple scales, higher dips and more layer variability5

than our training dataset. The resulting network simulations are shown in Fig. 11. We calculate the nearest neighbour to the

input velocity model in the set of training velocity models, defined as the training model with the lowest L1 difference summed

over all velocity values from the input velocity model, and show this alongside each example.

We find that the network is not able to accurately simulate the full seismic response from velocity models which have large

dips and/or complex faulting (examples (e), (f) and (h)) that are absent in the training set. This observation is similar to most10

studies which analyse the generalisability of deep neural networks outside their training set (e.g. Zhang and Lin (2018) and ?

::::::::::::::::::
Earp and Curtis (2020)). However, encouragingly, the network is able to mimic the response from velocity models with small

dips ((d) and (g)), even though the nearest training-set neighbour contains a fault whereas the Marmousi layers are continuous.

We compare the average time taken to generate 100 simulations using the conditional autoencoder network to FD simulation

in Table 1. We find that on a single CPU core the network is 22 times faster than FD simulation and when using a GPU and15

the PyTorch library (Pytorch, 2016) it is 406 times faster. This is comparable to the speed up obtained with the WaveNet. It is

likely that 2D ray tracing will not offer the same speed up as observed in Section 2.6, because computing ray paths through

these models is likely to be more demanding. The network takes approximately 4 days to train on one Nvidia Titan V GPU.

This is 8 times longer than training the WaveNet network, although we made no
::::
little

:
effort to optimise its training time. We

find that when using only 50,000 training examples the validation loss increases and the network overfits to the training dataset.20

4 Discussion

Both our deep neural networks accurately model the seismic response in horizontally layered and faulted 2D acoustic mediaone

to two orders of magnitude faster than FD modelling. The WaveNet is able to carry out fast simulation of horizontally layered

velocity models, and the conditional autoencoder is able to generalise to faulted media with arbitrary layers, fault properties

and an arbitrary location of the seismic source on the surface of the media. This is a significantly harder task than simulating25

horizontally layered media with the WaveNet network. The WaveNet can also be adapted to carry out fast seismic inversion,

which offers a fast alternative to existing inversion algorithms
::::::::::
Furthermore,

::::
both

::::::::
networks

:::
are

:::
one

:::
to

:::
two

::::::
orders

::
of

:::::::::
magnitude

::::
faster

::::
than

:::
FD

:::::::::
modelling.

Whilst these results are encouraging and suggest that deep learning is valuable for both simulationand inversion
::::::::
simulation,

there are further challenges when extending our simulation methods to more complex, elastic and 3D Earth models in practical30

simulation tasks. We believe that further research will help to understand whether deep learning can aid in these more general

settings and discuss this in more detail below.
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4.1 Extension to elastic simulation

An important ability for practical geophysical applications is to be able to simulate seismic waves in (visco-)elastic media,

rather than acoustic media. The architectures of our networks are readily extendable in this regard; S-wave velocity and density

models could be added as additional input channels to our networks and the number of output channels in the networks could

be increased so that multi-component particle velocity vectors are output. The same training scheme could be used, with5

training data generated using elastic FD simulation instead of acoustic simulation and a loss function which compares vector

fields instead of scalar fields. Thus, with some simple changes to our design, this challenge is at least conceptually simple to

address, though further research is required to understand if it is feasible. The cost of traditional elastic simulation exceeds the

cost of acoustic simulation by orders of magnitude and has prevented the seismic industry from fully embracing this crucial

step. We postulate that the difference in simulation times between future elastic and acoustic simulation networks might be10

smaller compared to fully discretised methods such as FD, as a consequence of the networks not needing to compute the entire

discretised wavefield. While this is speculative at this point, it is intriguing to investigate.

4.2 Extension to 3D simulation

Another important extension is to move from 2D to 3D simulation. A major challenge here is likely to be the increased

computational cost of generating training data with conventional methods, which for instance is significantly higher in 3D15

when using FD modelling. In terms of network design, our autoencoder could be extended to 3D simulation by increasing the

dimensionality of its input, hidden and output tensors. In this case we would expect a similar order of magnitude acceleration

of simulation time to 2D, because the network would still directly estimate the seismic response without needing to iteratively

model the seismic wavefield through time. However, this approach is likely to be practically challenging because
:::::::
multiple

::::::::
challenges

:::::
arise

::
in

:::
this

:::::::
setting.

::::::
Firstly, increasing the dimensionality would increase the number of weights and likely the

:::
size20

::
of

:::
the

:::::::
network

::::
and

::::::::
therefore

:::::
likely

:::::::
increase

:::
its training time. Finding an alternative representation, such as meshes or oct-

trees (Ahmed et al., 2018) to reduce the dimensionality of the problem, or a way to exploit symmetry in the wave equation to

reduce complexity, may be critical . Furthermore, whilst
::
in

:::
this

::::::
aspect.

::::::::
Secondly,

:
a
::::::
major

::::::::
challenge

:
is
:::::
likely

::
to
:::
be

:::
the

::::::::
increased

:::::::::::
computational

::::
cost

:::
of

:::::::::
generating

:::::::
training

::::
data

::::
with

:::::::::::
conventional

::::::::
methods,

::::::
which

:::
for

:::::::
instance

::
is

:::::::::::
significantly

:::::
higher

:::
in

:::
3D

::::
when

:::::
using

::::
FD

:::::::::
modelling.

::::::
Whilst we only used the

:::::
subset

::
of

::::
the wavefield at each receiver location to train our networks,25

finding a way to use the entire wavefield from FD simulation to train the network may help reduce the number of training

simulations required. We note that generating training data is an amortized cost because the network only needs to be trained

once, which
:::
and

:::::::
although

:::::
large,

:
in the case of seismic inversion with

:::::
where

:
millions of production runs

::
are

:::::::
required

:::
the

:::::::
training

:::
cost

:
could become negligible. Another intriguing aspect is to investigate whether deep neural network simulation costs scale

more favourably with increasing frequency ω, compared to fully discrete methods which scale with ω4; in this study we only30

consider simulation at a fixed frequency
:::::
range.
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4.3 Generalisation to more complex Earth models

Perhaps the largest challenge in designing appropriate networks is to improve their generality so they can simulate more com-

plex Earth models. We have shown that deep neural networks can move beyond simulating simple horizontally layered velocity

models to more complex faulted models where, to the best of our knowledge, no analytical solutions exist, which we believe

is a positive step. However, both our networks performed worse on velocity models outside of their training distributions. Fur-5

thermore, to be able to generalise to more complex velocity models the conditional autoencoder required more free parameters,

more time to train and more training examples than the WaveNet network. Generalisation outside of the training distribution is

a well known and common challenge of deep neural networks in general (Goodfellow et al., 2016).

A naive approach would be to increase the range of the training data to improve the generality of the network, however

this would quickly become computationally intractable when trying to simulate all possible Earth models. We note that for10

many practical applications it may be acceptable to use a training distribution with a limited range; for example, in many of

the seismic applications such tomography, FWI, and seismic hazard assessment, a huge number of forward simulations of

comparatively few Earth models are carried out.

A promising research direction may be to better regularise the networks by adding more physics-based constraints into the

workflow. We found that using causality in the WaveNet generated more accurate simulations than when using a standard15

convolutional network; this suggested that adding this constraint helped the network simulate the seismic response, although

it is an open question how best to represent causality when simulating more arbitrary Earth models. We also found that a

bottleneck design helped the conditional autoencoder to converge; our hypothesis is that this encouraged a depth-to-time

conversion by slowly reducing the spatial dimensions of the velocity model before expanding them into time. More advanced

network designs, for example using attention-like mechanisms (Vaswani et al., 2017) to help the network focus on relevant20

parts of the velocity model, rather than using convolutional layers with full fields of view, or using Long Short-Term Memory

(LSTM) cells to help the network model multiple reverberations could be tested. Another interesting direction would be to

use the wave equation (Eq. 1) to directly regularise the loss function, similar to the physics-based machine learning approach

proposed by Raissi et al. (2019).

We find the nearest neighbour test is a useful way to understand if an input velocity model is close to the training distribution25

and therefore if the network’s output simulation is likely to be accurate. Probabilistic approaches, such as Bayesian deep

learning (Gal, 2016), could be investigated for their ability to provide more quantitative uncertainty estimates on the network’s

output simulation.

4.4 Inversion with WaveNet

Finally, we discuss our inversion approach using WaveNet .
::
As

:::
an

:::::::::
additional

:::
test,

:::
we

:::::
were

::::
also

::::
able

::
to

::::::
retrain

:::
the

::::::::
WaveNet30

:::::::
network

::
to

:::::
carry

:::
out

::::
fast

:::::::
seismic

::::::::
inversion

::
in

:::
the

:::::::::::
horizontally

::::::
layered

:::::::
media,

:::::
which

:::::::
offered

:
a
::::

fast
:::::::::
alternative

:::
to

:::::::
existing

:::::::
inversion

::::::::::
algorithms.

:::
We

::::::::
retrained

:::
the

::::::::
WaveNet

:::::::
network

:::::
with

::
its

::::::
inputs

:::
and

::::::
output

::::::::
reversed;

:::
its

::::
input

::::
was

::::
then

::
a
:::
set

::
of

:::
11

:::::::
recorded

:::::::
receiver

::::::::
responses

::::
and

::
its

::::::
output

:::
was

::
a

::::::::
prediction

::
of

:::
the

::::::::::::
corresponding

:::::::
normal

::::::::
incidence

:::::::::
reflectivity

:::::
series.

::::
We

::::
used
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::
the

:::::
same

::::::::
WaveNet

::::::::::
architecture

::::::::
described

::
in

::::::
Section

::::
2.2,

::::::
except

:::
that

:::
we

:::::::
inverted

::
its

::::::::
structure

::
to

:::::::
maintain

:::
the

::::::
causal

:::::::::
correlation

:::::::
between

:::
the

:::::::
receiver

::::::::
responses

:::
and

:::::::::
reflectivity

::::::
series,

::::
and

::
we

:::::
used

:::
128

::::::
instead

:::
of

:::
256

::::::
hidden

::::::::
channels

:::
for

::::
each

::::::
hidden

:::::
layer.

:::
We

::::
used

::::::
exactly

::::
the

:::::
same

::::::
training

:::::
data

:::
and

:::::::
training

:::::::
strategy

:::::::::
described

::
in

:::::::
Section

:::
2.3

:::
and

::::
2.4,

::::::
except

::::
that

:::
we

::::
used

::
a
::::
loss

:::::::
function

:::::
given

::
by

:

L=
:::

1

N
::

‖R̂−R‖22 ,
:::::::::

(4)5

:::::
where

::
R

::
is

:::
the

::::
true

:::::::::
reflectivity

:::::
series

::::
and

::
R̂

::
is

:::
the

::::::::
predicted

:::::::::
reflectivity

:::::
series.

:::
To

:::::::
recover

:
a
:::::::::
prediction

::
of

:::
the

:::::::
velocity

::::::
model

::
we

::::::
carried

:::
out

::
a
:::::::
standard

:::
1D

:::::::::::
time-to-depth

::::::::::
conversion

::
of

:::
the

:::::
output

:::::::::
reflectivity

::::::
values

::::::::
followed

::
by

::::::::::
integration.

:::::::::
Predictions

::
of

:::
the

:::::::::
reflectivity

:::::
series

:::
and

:::::::
velocity

::::::
models

:::
for

:
4
:::::::::
randomly

::::::
selected

::::::::
examples

:::::
from

:
a
:::
test

:::
set

::
of

::::::
unseen

::::::::
examples

::
are

::::::
shown

:::
in

::::
Fig.

:::
12.

::::
The

::::::
inverse

::::::::
WaveNet

:::::::
network

::::
was

::::
able

:::
to

::::::
predict

:::
the

:::::::::
underlying

::::::::
velocity

:::::
model

:::
for

:::::
each

::::::::
example,

:::::::
although

::
in

:::::
some

::::
cases

:::::
small

:::::::
velocity

:::::
errors

:::::::::
propagated

::::
with

:::::
depth,

:::::
which

::::
was

:::::
likely

:
a
:::::
result

::
of

:::
the

:::::::::
integration

::
of

:::
the

:::::::::
reflectivity10

:::::
series.

::::
The

:::::::
network

::::
was

::::
able

::
to

:::::::
produce

:::::::
velocity

::::::::::
predictions

::
in

:::
the

:::::
same

:::::
order

:::
of

:::::::::
magnitude

::::
time

::
as

:::
the

:::::::
forward

::::::::
network

::::::
(shown

::
in

:::::
Table

:::
1),

:::::
which

::
is

:::::
likely

::
to

::
be

::
a
:::::::
fraction

::
of

:::
the

::::
time

::::::
needed

:::
for

:::::::
existing

::::::
seismic

::::::::
inversion

:::::::::
algorithms

::::::
which

:::
rely

:::
on

::::::
forward

::::::::::
simulation.

We note that seismic inversion is typically an ill-defined problem and it is likely that the predictions the network made
:
of

::::
this

:::::::
network are biased towards the velocity models it was trained on. The

:::
We

::::::
expect

:::
the accuracy of the network reduced when15

it was
::
to

::::::
reduce

:::::
when tested on inputs outside of its training distribution and this is likely to degrade further when tested with

real, noisy seismic data. Further research could try to quantify this uncertainty, for example by using Bayesian deep learning.

We have also yet to compare
:::
not

:::
yet

::::::::
compared

:
our inverse WaveNet network to existing seismic inversion techniques, such as

posterior sampling or FWI.

An alternative method for inversion is to use our forward networks in existing seismic inversion algorithms based on opti-20

misation, such as FWI. Both the WaveNet and conditional autoencoder networks are fully differentiable and could therefore

be used to generate fast approximate gradient estimates in these methods, although
:
.
::::::::
However,

:
similar limitations on their

generality are likely to exist and one would need to be careful to keep the inversion routine within the training distribution of

the network.
:::::::::::
Furthermore,

:::::
whilst

::::
fast,

:::::
these

:::::::::
approaches

::::::
would

:::
still

:::::
suffer

:::::
from

::::
curse

::
of

:::::::::::::
dimensionality

:::::
when

::::::
moving

::
to

::::::
higher

::::::::::
dimensions,

:::
and

::::::
require

::::::::::::
exponentially

::::
more

:::::::
samples

::
to

::::
fully

:::::::
explore

:::
the

::::::::
parameter

::::::
space.25

4.5 Summary

Given the potentially large training costs and the challenge of generality, it may be that current deep learning techniques are

most advantageous to practical simulation tasks where many similar simulations are required, such as inversion or statistical

seismic hazard analysis, and least useful for problems with a very small number of simulations per model family. In seismology,

however, we suspect that most current and future challenges fall into the former category, which renders these initial results30

promising.
:::::
Deep

:::::::
learning

::::::::::
approaches

::::
have

::::::::
different

::::::::::::
computational

:::::
costs

:::
and

::::::::
benefits,

::::
and

:::::::::
accuracies

::::
that

:::
are

::::
less

::::::
clearly

:::::::::
understood

::::::::
compared

::
to

:::::::::
traditional

:::::::::
approaches

:::
and

:::::
these

::::::
should

::
be

:::::::::
considered

:::
for

::::
each

::::::::::
application. Further research is required

to understand how best to design the training set for a particular simulation application, as well as how to help deep neural
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networks generalise to unseen velocity models outside of the training distribution.
::::::
Finally

:::
we

::::
note

:::
that

:::
we

:::::
only

:::::
tested

::::
two

::::
types

::
of
:::::

deep
:::::
neural

::::::::
networks

:::::::::
(WaveNet

:::
and

::::::::::
conditional

::::::::::::
autoencoders)

:::
and

:::::
many

:::::
other

:::::
types

::::
exist

::::::
which

:::::
could

:::::
prove

:::::
more

:::::::
effective.

:

5 Conclusions

We have investigated the potential of deep learning for aiding seismic simulation tasks in geophysics. We presented two deep5

neural networks which are able to carry out fast and largely accurate simulation of seismic waves. Both networks are 20 - 500

times faster than FD modelling and simulate seismic waves in horizontally layered and faulted 2D acoustic media. The first

network uses a WaveNet architecture and simulates seismic waves in horizontally layered media. We showed that this network

can also be used to carry out fast seismic inversion of the same media. The second network is significantly more general than

the first; it simulates seismic waves in faulted media with arbitrary layers, fault properties and an arbitrary location of the10

seismic source on the surface of the media. Our main contribution is to show that deep neural networks can move beyond

simulating simple horizontally layered velocity models to more complex faulted models where, to the best of our knowledge,

no analytical solutions exist, which we believe is a positive step towards understanding their
:::::::
practical

:
potential. We discussed

the challenges of extending our approaches to practical geophysical applications and future research directions which could

address them, noting where it may be favourable for using these network architectures.15

Appendix A: Supplementary figures and tables
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Figure A1. Comparison of different network architectures on simulation accuracy. Top left shows the WaveNet simulated pressure response

for a randomly selected example in the test set (green) compared to ground truth FD simulation (red). Top right and bottom left show the

simulated response when using two convolutional network designs with and without exponential dilations. Bottom right shows the histogram

of the average absolute amplitude difference between the ground truth FD simulation and the simulations from the WaveNet, the dilated

convolutional network and 2D ray tracing over the test set of 1000 examples. A t2.5 gain is applied to the receiver responses for display.
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Figure A2. Comparison of different conditional autoencoder network designs and training hyperparameters on simulation accuracy. Top left

shows a randomly selected velocity model and source location from the test set and its corresponding ground truth FD simulation. Bottom

compares simulations and their difference to the ground truth when using our proposed conditional autoencoder (baseline), when halving

the number of hidden channels for all layers (thin), when using an L2 loss function during training (L2 loss), when using gain exponents of

g = 0 and g = 5 in the loss function and when removing 2 layers from the encoder and 8 layers from the decoder (shallow). Top right shows

the histogram of the average absolute amplitude difference between the ground truth FD simulation and the simulation from the different

cases over the test set. The histogram of the baseline network over the Marmousi test dataset is also shown. A t2.5 gain is applied for display.
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Figure A3. Comparison of the WaveNet and conditional autoencoder simulation accuracy. The left plot shows a velocity model, reflectivity

series and ground truth FD simulation for a randomly selected example in the horizontally layered velocity model test set in red. Green

shows the WaveNet simulation. The middle plot shows the conditional autoencoder simulation for the same velocity model. The right plot

shows the histogram of the average absolute amplitude difference between the ground truth FD simulation and the WaveNet and conditional

autoencoder simulations over this test set. A t2.5 gain is applied for display.

Layer Type in, out channels kernel size stride padding

1 Conv2d (1,8) (3,3) (1,1) (1,1) 14 Conv2d (512,512) (3,3) (1,1) (1,1)

2 Conv2d (8,16) (2,2) (2,2) 0 15 Conv2d (512,512) (3,3) (1,1) (1,1)

3 Conv2d (16,16) (3,3) (1,1) (1,1) 16 ConvT2d (512,256) (2,4) (2,4) 0

4 Conv2d (16,32) (2,2) (2,2) 0 17 Conv2d (256,256) (3,3) (1,1) (1,1)

5 Conv2d (32,32) (3,3) (1,1) (1,1) 18 Conv2d (256,256) (3,3) (1,1) (1,1)

6 Conv2d (32,64) (2,2) (2,2) 0 19 ConvT2d (256,64) (2,4) (2,4) 0

7 Conv2d (64,128) (2,2) (2,2) 0 20 Conv2d (64,64) (3,3) (1,1) (1,1)

8 Conv2d (128,256) (2,2) (2,2) 0 21 Conv2d (64,64) (3,3) (1,1) (1,1)

9 Conv2d (256,512) (2,2) (2,2) 0 22 ConvT2d (64,8) (2,4) (2,4) 0

10 Conv2d (512,1024) (2,2) (2,2) 0 23 Conv2d (8,8) (3,3) (1,1) (1,1)

11 Concat (1024,1025) 24 Conv2d (8,8) (3,3) (1,1) (1,1)

12 ConvT2d (1025,1025) (2,2) (2,2) 0 25 Conv2d (8,1) (1,1) (1,1) 0

13 ConvT2d (1025,512) (2,4) (2,4) 0

Table A1. Conditional autoencoder layer parameters. Each entry shows the parameterisation of each convolutional layer. The padding column

shows the padding on each side of the input tensor for each spatial dimension.
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