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This paper by Moseley et al. describes how modern deep learning approaches can
be used to construct a fast approximation to a seismological forward modelling code.
This is an interesting and timely contribution, and the manuscript itself is clear and
well-written. I have a few comments, set out below, but I have no hesitation in recom-
mending the manuscript for acceptance once the authors have had an opportunity to
respond to these.

• In any ML-based approach, the training data is central to the applicability of the
method. The author’s trained network appears effective for simulating waveforms
in models that are generated using the same criteria as were used to make the
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training set. However, I suspect performance will be significantly worse for mod-
els that have significantly different character. This is something that deserves
more discussion than it receives, perhaps with some examples. A particular con-
cern in practical settings may be how an end-user can assess whether their input
model is ‘sufficiently close’ to the training set.

• The main ‘selling point’ of the author’s approach is that it enables seismograms to
be generated significantly faster than would be possible using ‘traditional’ forward
models. However, this comes with a number of caveats that I think need to be
discussed more carefully.

1. (As above) the author’s approach is (I suspect) only effective for models that
are sufficiently similar to those in the training set. The numerical forward
code does not suffer from this restriction, and can handle complexities that
aren’t present in the authors’ setup (e.g. anisotropy, variable density). How
much of a speedup could be achieved by using a numerical code that had
been designed with prior knowledge of the characteristics of the authors’
training set? Put another way: the speedup could be made to seem even
more impressive by using a code designed for a vastly more complex setting
(e.g. SPECFEM3D) to build the training set. How fair is the comparison that
is being presented?

2. The headline speed comparisons ignore the costs of building a training set
and then training the neural networks, which are significant. How many
simulations does a user need to envisage performing before the author’s
approach becomes cost-effective overall? I think this is going to be a rather
large number. Again, some discussion of the pros and cons of the author’s
approach would seem desirable.

• What do the authors foresee as the primary application(s) of their approach?
The discussion seems to mainly envisage inversion-related use cases. Some
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comments on this:

1. The ‘fast seismic inversion’ approach discussed in Section 3 is essentially
a variant of the ‘prior sampling’ approach discussed in detail by Käufl et al
(2016). The key strength and weakness of this as an inversion strategy is
that all samples (i.e. the training set) are generated without reference to any
observed data. This enables very rapid inference once data becomes avail-
able, but it means that most training samples lie far from the observed data
and are largely wasted from the perspective of any one inference. The end
result is that inferences are considerably less well-constrained than would
be possible with posterior sampling (see Fig. 9 of Käufl et al 2016). The
bottom line is that prior sampling only seems a worthwhile strategy for (a)
problems where time is of the essence, e.g. earthquake early warning, or
(b) problems where the ‘same’ inference task needs to be solved many thou-
sands of times with different data vectors.

2. Using the learned model in Monte Carlo simulations seems superficially
attractive, but comes with significant caveats. Fundamentally the infer-
ence remains entirely based on the information contained within the training
dataset, and so all the limitations of prior sampling remain. The random walk
would need to be constrained to only generate models compatible with the
training data, if results are to be meaningful. Perhaps it would be possible
to progressively retrain the learned simulation as the McMC proceeds, to
ensure accuracy in relevant parts of the model space: this starts to move
towards the Bayesian optimisation approaches discussed in (e.g.) Wang et
al (2013). To play devil’s advocate: if a problem is too complex to tackle
using an McMC approach using physical simulations, can we really be con-
fident that a learned model is sufficiently accurate to yield meaningful re-
sults? How big a training set is required to capture the full complexity of the
physical problem?
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Some discussion and commentary on these issues, and other potential applica-
tions, would be appreciated.

• In general, we can make numerical simulations faster by introducing physical
approximations. In such cases we typically have some intuition for how those
approximations will impact upon results. Learned models offer a speedup without
explicit physical approximations, but come with uncertainties that are difficult to
quantify rigorously, and which may vary considerably depending on the particular
set of inputs chosen. Would the authors like to comment on the pros and cons of
the two different strategies for reducing computational costs?

• Referencing, especially in the introduction, seems rather haphazard. If citations
are to be given for broad, well-established topics such as the utility of seismic
simulations in reservoir characterisation, I would expect these to be to major
review papers or to ‘classics’: these are going to be most useful for a reader who
is unfamiliar with the field. Without intending any criticism of the cited works, this
does not really seem to be the case at present. Moreover, the authors’ survey
of the history of machine learning in geophysics is very short-sighted, ignoring
anything more than a couple of years old. There are neural network papers in
the geophysical literature from the late 1970s onwards, and it would be nice to
see some acknowledgement of this body of work. Valentine & Trampert (2012)
is probably the first instance of ‘deep learning’ in seismology, though the term
had not been invented at that point (and we did not have the benefit of modern
computational frameworks).
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