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SM1: Seismic event detection

The following figures show evolution of event detection of all experiments, additionally to flow rate and injection
pressure. The color-coded area represents the contribution of events according to their detection within the bore-
hole sensor array (i.e., events recorded on all eight borehole sensors correspond to a coincidence level of eight).
The strips on top of the “cumulative number of events” line indicate performed seismic surveys during which
passive event detection was on hold.
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HS5 event evolution
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SM2: Magnitude correction

The following figure shows a) the estimate of angle dependency on Mg, (b) the estimate of Mg correction due to
variations in the coupling quality, (c) instrument responses referenced to velocity for the five piezosensors which
are paired with an accelerometer.
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SM3: Temporal seismic event evolution
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SM4: Plane fits to seismic clouds

45 Table 1: Orientation of plane fits through seismic clouds (azimuth, dip) along with the standard deviation of positive and
negative orthogonal distances to the fitted planes

Injection Azimuth [°] | Dip [°] | 6adist [m] Injection Azimuth [°] | Dip [°] | odist [m]
HS1 322 89 -14/1.4 HF2-C1 | 29 83 -0.3/0.5
HS2 175 90 -1.1/0.7 HF2 - C2 175 76 -0.3/0.3
HS3 164 70 -0.4/0.1 HF3 - - -
HS4 - C1 169 76 -0.1/0.1 HF5 17 73 -0.3/0.2
HS4-C2 |6 82 -0.1/0.2 HF6 - - -
HS4-C3 | 30 45 -0.2/0.2 HF8 178 70 -0.4/0.5
HSS 172 81 -09/1.2
HS8 181 79 -0.6/0.9
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SMS5: Estimate of seismically activated area

The planes fitted through the seismicity cloud allow an estimate of the an upper (convex hull) and lower bound
(concave hull) of seismically activated area (Table 2) and its temporal evolution. In general, for all the HS injection
experiments, the seismically active area during the actual stimulation cycle (C3), where about 50% of the total
volume per injection was pumped, is the largest. Injection experiments HS1, HS2 and HS3 performed on S1 shear
zones reveal overlapping seismically-activated areas, which is interpreted as repeated rupturing on seismically
active patches. Injection HS2 shows ongoing seismicity around the injection interval, and in injection HS3 the
seismicity cloud changes from an upward migration (cycle 1) towards a migration direction facing downwards
(cycle 3, 4). In injection HS1, seismicity clouds migrate upwards in a consecutive fashion. Injection experiments
HS5, HS4 and HS8 performed on S3 structures are the experiments where the seismically activated area was
highest (among the HS injection experiments). In experiment HS5 and HS8, injection borehole INJ1 was hydrau-
lically connected to injection borehole INJ2. In experiment HS5 the seismic events induced during cycles 1, 2
formed around the injection interval in INJ1 in an upward facing direction. In cycle 3 seismicity migrated further
upwards, towards the East. In cycle 4, the seismicity cloud changed its migration direction downwards, arriving at
the injection borehole INJ2 (more information on injection experiment HS5 can be found in Krietsch et al. (in
preparation)).

Injection experiment HS8 was performed in an interval that includes an S1 structure south of the S3 shear zones.
During injection cycle 1, only the area around injection borehole INJ1 was seismically activated. In cycle 2, seis-
micity further migrated towards the East in the direction of the injection borehole INJ2. During injection cycle 3,
injection boreholes INJ1 and INJ2 were definitely hydraulically connected. In addition, seismicity occurs in the
lower regions of shear zone S3.1.

Injection experiment HS4, with over 50% of located seismic events from all injection experiments, is contained in
a comparatively small volume. The seismicity clouds induced during injection experiment HS4 formed in the
metabasic dykes (cluster 1) and the pre-existing fractures (cluster 2) and show a very high density of seismicity
around the injection interval over all injection cycles, providing evidence of repeated rupturing on seismically
active patches. A new seismicity cloud induced in cycle 3 formed perpendicular to the minimum principal stress
of the perturbed stress state in an Easterly direction over a time period of 12 minutes and reopened in injection
cycle 4.

Table 2: Upper and lower bound of the seismically activated area from all injection experiments, where a plane fit
seemed adequate. Note: The area estimates stem from induced seismic events from all cycles. Repeated seismicity
on seismically active patches do not add to the seismically activated area estimate.

Injec- Lower bound (con- | Upper bound (con- | Injec- Lower bound (con- | Upper bound (con-
tion cave hull) [m?] vex hull) [m?] tion cave hull) [m?] vex hull) [m?]

HS1 102.1 172.6 HF2 66.0 123.1

HS2 33.6 104.4 HF3 - -

HS3 74.2 121.6 HFS 6.8 9.1

HS4 141.8 279.8 HF6 - -

HSS 2243 345.2 HF8 160.5 310.8

HS8 120.6 183.0

Hydraulic fracturing experiments HF5 and HF8, both performed south of shear zones S3 in close proximity to
each other, could not be more different in terms of seismically activated areas. Injection HF5 activated a compa-
rably small area, with activated areas over cycles overlapping. Experiment HFS8, on the other hand, activated a
larger area; seismicity begins to light up in the formation breakdown cycle in close proximity to the injection
interval, followed by a significant area gain during the first refrac cycle surrounding the injection interval. The
seismicity clouds of the subsequent two refrac cycles overlap, suggesting repeated rupturing on seismically active
fault patches. The propagation direction of the two refrac cycles is downwards with respect to the injection interval.
During injection experiment HF2, the first seismic events are located at the beginning of refrac 2 in close proximity
to the injection interval in borehole INJ1 (start of cluster 1). The initiated seismic events orient themselves in
parallel to the injection interval axis, in a direction perpendicular to the minimum principal stress of the perturbed
stress state. During the subsequent flow controlled refrac cycle 3, the seismically activated area of cluster 1 in-
creases, and a new seismicity cloud forms in an East-West orientation (cluster 2). In cluster 1, during refrac cycles
4 and 5, seismicity clouds overlay the seismicity induced during cycle 2 and 3. During cycle 4, cluster 2 is enlarged



in the planar East-West direction. The seismicity cloud induced during cycle 5 overlays seismicity of the previous
cycles in cluster 2.



a. Seismically activated area estimates HS experiments
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HS4 plane fits HS4, Cluster 1, concave HS4, Cluster 2, concave HS4, Cluster 3, concave
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HS8 plane fits
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b. Seismically activated area estimates HF experiments

HF2, Cluster 1, concave

HF2 plain fits

HF2, Cluster 2, convex
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SM6: Estimates of seismic triggering fronts

HS1 seismic triggering front
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distance from injection interval [m]
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HF3 seismic triggering front
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HF8 seismic triggering front
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