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Abstract  11 

All minerals behave elastically, a rheological property that controls their ability to support stress, 12 

strain and pressure, the nature of acoustic wave propagation and influences subsequent plastic (i.e. 13 

permanent, non-reversible) deformation. All minerals are intrinsically anisotropic in their elastic 14 

properties – that is, they have directional variations that are related to the configuration of the 15 

crystal lattice. This means that the commonly used mechanical elastic properties that relate elastic 16 

stress to elastic strain, including Young’s modulus (E), Poisson’s ratio (), shear modulus (G) and 17 

linear compressibility (), are dependent on crystallographic direction. In this paper, we explore the 18 

ranges of anisotropy of E, , G and  in 86 rock-forming minerals, using previously published data, 19 

and show that the range is much wider than commonly assumed. We also explore how these 20 

variations (the directionality and the magnitude) are important for fundamental processes in the 21 

solid earth, including deformation (mechanical) twinning, coherent phase transformations and 22 

brittle failure. We present a new open source software package (AnisoVis, written in MATLAB), 23 

which we use to calculate and visualise directional variations in elastic properties of rock-forming 24 

minerals. Following previous work in the fields of chemistry and materials, we demonstrate that by 25 

visualising the variations in elasticity, we discover previously unreported properties of rock-26 

forming minerals. For example, we show previously unreported directions of negative Poisson’s 27 

ratio and negative linear compressibility and we show that the existence of these features is more 28 

widespread (i.e. present in many more minerals) than previously thought. We illustrate the 29 

consequences of intrinsic elastic anisotropy for the elastic normal and shear strains within -quartz 30 

single crystal under different applied stress fields; the role of elastic anisotropy on Dauphiné 31 

twinning and the - phase transformations in quartz; and stress distributions around voids of 32 

different shapes in talc, lizardite, albite, and sanidine. In addition to our specific examples, elastic 33 

anisotropy in rock-forming minerals to the degree that we describe has significant consequences for 34 

seismic (acoustic) anisotropy, the focal mechanisms of earthquakes in anisotropic source regions 35 

(e.g. subducting slabs), for a range of brittle and ductile deformation mechanisms in minerals, and 36 

geobarometry using mineral inclusions.   37 

 38 

 39 

mailto:d.healy@abdn.ac.uk


 

Page 2 of 49 

Introduction  40 

The elastic deformation of rock-forming minerals plays an important role in many earth processes. 41 

The increased availability of measured or calculated elastic properties of whole rocks and of 42 

specific rock-forming minerals has led to advances in many fields of earth science, including 43 

seismology, geodynamics, tectonics and metamorphism. Minerals have long been known to display 44 

anisotropy – directional variations – in their elastic properties (Mandell, 1927; Birch & Dancroft, 45 

1938; Hearmon, 1946), and that these variations show a close relationship to the symmetry of the 46 

mineral crystallographic structure (e.g. Angel et al., 2012; Timms et al., 2018). Advances in 47 

laboratory methods of measurement (acoustic velocities, Brillouin scattering, resonant ultrasound) 48 

and in theoretical techniques for ab initio molecular dynamics calculations has allowed scientists to 49 

quantify this anisotropy for a wide range of rock-forming minerals. For this paper we have collected 50 

246 published datasets (measurements or ab initio calculations) of anisotropic elastic properties 51 

covering 86 distinct minerals. Elastic anisotropy is fully described by a fourth rank tensor 52 

(compliance or stiffness, see below), and published data are commonly presented in a Voigt matrix 53 

format, listing up to 21 independent values (depending on the crystal symmetry class), whereas 54 

elastically isotropic minerals require only 2 independent values. A key aim of this paper is to use 55 

published data to visualise and explore elastic anisotropy in rock-forming minerals using familiar 56 

measures, such as Young’s modulus and Poisson’s ratio, but presented in novel formats and thereby 57 

render the increasing volume of data more transparent to analysis. As noted by previous authors 58 

(Karki & Chennamsetty, 2006; Lethbridge et al., 2010; Marmier et al., 2010; Gaillac et al., 2016), 59 

graphical depictions of the directional variation of elastic properties provide new opportunities to 60 

relate the quantitative data to the crystalline structure of the mineral. This in turn allows us to relate 61 

the observed or predicted mechanical and chemical behaviour of the mineral to specific 62 

crystallographic directions.  63 

It has long been recognized that the velocity of seismic waves passing through rocks is a direct 64 

function of the minerals’ elastic properties and their density, expressed through the Christoffel 65 

equation (Christoffel, 1877; Zhou & Greenhalgh, 2004). By considering rocks as polycrystalline 66 

aggregates various workers have modelled seismic velocities, and their anisotropy, by combining 67 

single mineral elasticity data with different averaging schemes due to Reuss, Voigt or Hill (e.g. 68 

Mainprice, 1990; Lloyd & Kendall, 2005). This ‘rock recipe’ approach has improved our 69 

understanding of the composition and structure of the lower crust and mantle and provided useful 70 

constraints for alternative models for observed variations in seismic anisotropy beneath continents 71 

and around arcs (e.g. Kern, 1982; Tatham et al., 2008; Healy et al., 2009).     72 

Inclusions of one mineral or fluid within another host mineral have been used to estimate pressures 73 

at the time of inclusion or entrapment (Rosenfeld & Chase, 1961; Rosenfeld, 1969; Chopin, 1984; 74 

Gillet et al., 1984; van der Molen & van Roermund, 1986; Angel et al., 2014; Angel et al., 2015). 75 

The analysis critically depends on the elastic properties of the host mineral and, in the case of solid 76 

inclusions, of the inclusion itself, typically expressed as the bulk and shear moduli (e.g. 77 

Mazzucchelli et al., 2018). The underlying theory is based on the classical analysis by Eshelby 78 

(1957, 1959) who derived the equations for the deformation within an ellipsoidal inclusion and host 79 

due to the imposition of a far-field load. Most of the work to date has simplified the analysis to 80 

assume isotropy in both the inclusion and the host, although see Zhang (1998) for a rare exception. 81 

Therefore, the full effects of host minerals and inclusion elastic anisotropy on inclusion-based 82 

geobarometry have not yet been rigorously investigated. Furthermore, fluid inclusions can 83 
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decrepitate – i.e. fracture their host and dissipate their fluid – if their internal overpressure rises to a 84 

critical value that exceeds the local strength of the enclosing grain. The basis for predicting this 85 

behaviour is linear elastic fracture mechanics (LEFM), and the assumption of elastic isotropy is 86 

nearly ubiquitous (e.g. Lacazette, 1990).   87 

Permanent, non-reversible (i.e. plastic) deformation of minerals is invariably preceded by an elastic 88 

response prior to some form of yield condition being reached. For example, the elastic properties of 89 

minerals are important in the analysis of brittle cracking at the grain scale. As noted above for the 90 

decrepitation of fluid inclusions, the dominant paradigm for this analysis is linear elastic fracture 91 

mechanics (LEFM), and the assumption of elastic isotropy. This is important because faults and 92 

fractures in rocks are composite structures, built by the interaction and coalescence of many smaller 93 

cracks that nucleate at the scale of individual grains i.e. within elastically anisotropic crystals. 94 

Jaeger & Cook (1969) used the equations published by Green & Taylor (1939) to consider the 95 

stresses developed at the edges of circular holes in anisotropic rocks. In their analysis (repeated in 96 

Pollard & Fletcher, 2005), they dismissed the significance of elastic anisotropy because the ratio of 97 

maximum to minimum Young’s modulus in rocks is ‘rarely as high as 2’. Timms et al. (2010) 98 

conducted novel indentation experiments in a single crystal of quartz and produced a type of cone 99 

fracture with variations in opening angle and crack length that have a trigonal symmetry radiating 100 

from the point of contact, and thus demonstrated the key role played by the elastic anisotropy in 101 

controlling the fracture geometry. In the same study, these authors confirmed that elastic anisotropy 102 

plays a significant role in controlling the focal mechanisms (moment tensors) of acoustic emission 103 

events at the scale of a single crystal.      104 

Poisson’s ratio appears as a term in, for example, the equations describing fracture toughness and 105 

indentation, and therefore the precise value of Poisson’s ratio is important. Poisson’s ratio for 106 

isotropic materials is constrained to lie between 0.5 and −1, but there are no theoretical limits for 107 

anisotropic materials (Ting & Chen, 2005). Materials with Poisson’s ratio less than 0 are termed 108 

‘auxetic’ (Lakes, 1987; Baughman et al., 1998a; Prawoto, 2012; Pasternak & Dyskin, 2012).  109 

Fracture toughness and resistance to indentation increase as Poisson's ratio approaches the lower 110 

(isotropic) limit of −1.0 (Yeganeh-Haeri et al., 1992). In rock-forming minerals, negative Poisson’s 111 

ratios have already been documented for -cristobalite (Yeganeh-Haeri et al., 1992), for quartz at 112 

the - phase transition (Mainprice & Casey, 1990), for talc (Mainprice et al., 2008), and for calcite 113 

and aragonite (Aouni & Wheeler, 2008). A key question therefore is to determine if there are other 114 

rock-forming minerals with the same properties, and for which specific crystallographic directions. 115 

In a recent review of data on Poisson’s ratio in engineering materials, Greaves et al. (2011) pointed 116 

out that the brittle-ductile transition at the grain scale is also a function of the elastic properties and 117 

therefore likely dependent on direction in strongly anisotropic materials.  118 

Elastic properties, and anisotropy, is also known to influence the ‘ductile’ or plastic deformation of 119 

minerals, and has a role in twinning, crystal plasticity (dislocation creep) and phase transformations 120 

(e.g. Tullis, 1969; Christian & Mahajan, 1995; Timms et al., 2018). The role of mineral elasticity is 121 

also important for inhomogeneous distribution of stresses at the grain scale necessary for driving 122 

pressure solution creep, and is either treated implicitly (e.g., Wheeler, 1992) or explicitly (e.g., 123 

Wheeler, 2018). However, in many studies of rock deformation, minerals are commonly assumed to 124 

be elastically isotropic and scalar mean values of elastic moduli are used, and/or elastic strains are 125 
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assumed to be small relative to plastic deformation and so ignored (e.g., in visco-plastic self-126 

consistent (VPSC) code) (Tomé & Lebensohn, 2014). 127 

Given the key role that the elastic behavior of minerals plays in so many fundamental geological 128 

processes, the scientific need to explore, understand and quantify directional variations in elastic 129 

properties in minerals is clear, as is the need to develop better approaches to their graphical 130 

visualisation. It is very difficult to full appreciate the variations in elastic properties of a mineral 131 

simply by inspection of the 4th rank stiffness (or compliance) tensor, even in reduced form (Voigt 132 

notation; see below). A related requirement is the ability to investigate the interactions of mineral 133 

elastic anisotropy with imposed pressure, stress, or strain. However, the visualisation and full 134 

appreciation of the properties of 2nd rank tensors, such as stress and strain, also presents challenges.  135 

No single surface can simultaneously portray the full anisotropy quantified by the diagonal (normal) 136 

and off-diagonal (shear) components of these tensorial mechanical quantities. Depictions of strain 137 

(or stress) as ellipsoids using only the principal values as semi-axes fail to quantify the directional 138 

variations in shear strain (or stress) and cannot easily show examples with mixed positive and 139 

negative principal values. We believe there are clear educational benefits to alternative approaches 140 

to visualising stress and strain, which students commonly find challenging, both conceptually and 141 

from a 3-dimensional cognition perspective. For example, most geological textbooks either 142 

illustrate stress or strain as ellipses/ellipsoids of the normal component only (with the limitations 143 

described above), Mohr diagrams, or written out in matrix notation. Furthermore, a common 144 

misnomer that some minerals are isotropic in material properties undoubtedly stems from the strong 145 

emphasis on optical properties of minerals in most undergraduate mineralogy courses. Software 146 

tools with the capability of comparative visualisation of various physical properties of minerals in 147 

2- and 3-dimensions, including elastic, optical, and acoustic anisotropy have a valuable place in 148 

teaching and learning in mineralogy and in scientific research.  149 

While the number of published datasets for single mineral elastic anisotropy continues to increase, 150 

there are relatively few publications that have reviewed or synthesised the available data. Gercek 151 

(2007) provided a useful review of Poisson’s ratio for rocks and included some data for specific 152 

minerals. A more recent review of Poisson’s ratio in rocks (Ji et al., 2018) also contained data for 153 

minerals, but used their calculated Voigt-Reuss-Hill average values rather than quantify their 154 

anisotropy. Workers in the fields of chemistry, physics and engineering have published methods 155 

and tools for visualising the elastic anisotropy of various groups of solid elements and compounds 156 

(Karki & Chennamsetty, 2006; Lethbridge et al., 2010; Marmier et al., 2010; Gaillac et al., 2016), 157 

and these predominantly focus on Poisson’s ratio. In earth sciences, the MTEX toolbox for the 158 

analysis and modelling of crystallographic textures from electron backscatter diffraction (EBSD) 159 

data provides stereographic projections of elastic properties, such as Young’s modulus, for single 160 

minerals (Hielscher, R. & Schaeben, H., 2008; Mainprice et al., 2011). The MSAT toolbox for 161 

seismic anisotropy also contains options for plotting the elastic anisotropy of rocks and minerals 162 

(Walker & Wookey, 2012). Both MTEX and MSAT provide one or more options for displaying the 163 

elastic properties of minerals, but their focus is on the analysis of textures and seismic (acoustic) 164 

velocity anisotropy, respectively.  165 

In this paper, we seek to quantify and visualize the variations in elastic properties of rock-forming 166 

minerals. In addition, we present the AnisoVis toolbox, a collection of new MATLAB scripts based 167 

on published methods with a graphical user interface (GUI), to explore the range of elastic 168 

anisotropy displayed by rock-forming minerals. Specifically, AnisoVis depicts the magnitude of the 169 
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directional variations in elastic properties such as Young’s modulus (E), Poisson’s ratio (), shear 170 

modulus (G) and linear compressibility () using a range of 2- and 3-dimensional representations of 171 

each elastic property to enable a complete assessment of the anisotropy in relation to the crystal 172 

symmetry. We exploit the large database of published elastic constants for rock-forming minerals to 173 

systematically assess the anisotropy of different elastic properties as a function of temperature and 174 

pressure (where possible), giving new insights into the elastic behaviour of rock-forming minerals. 175 

Most of the figures presented in this paper have been produced from the AnisoVis toolbox, which is 176 

freely available on the web.   177 

A table of symbols and terms used in this paper is provided in Table 1. Elastic properties are 178 

reported in SI units. In Section 2 we review the theoretical basis of linear elasticity and the formal 179 

description of elastic anisotropy in terms of the key equations. We then describe the methods we 180 

use to visualise and quantify the directional variations in elastic properties for any given mineral.  181 

We present two sets of results. Firstly, we analyse general trends in the database of 86 distinct 182 

minerals with 246 separate elasticity datasets from published sources, and summarise the degree of 183 

anisotropy to be found in rock-forming minerals. Secondly, we analyse specific examples and focus 184 

on their response to applied deformation. We review the key issues raised by these analyses in the 185 

Summary. The Appendix contains benchmarks of the calculations performed in AnisoVis in 186 

comparison to published output from previous workers.    187 

Quantity Symbol Default SI unit 

Young’s modulus  E Pa 

Poisson’s ratio    

Shear modulus G Pa 

Linear compressibility   Pa-1  

Bulk modulus  K Pa  

Compliance  s Pa-1  

Stiffness c  Pa 

Stress  Pa 

Strain   

Normal stress  n Pa 

Shear stress   Pa 

Normal strain  n  

Shear strain    

Unit vectors parallel to 

crystallographic axes 

a, b, c Miller notation 
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Table 1. List of symbols and terms used in this paper, together with their default units (if any).  188 

 189 

2. Theory and underlying equations  190 

The elastic anisotropy of a solid material is described by a fourth rank tensor, either the compliance 191 

sijkl or its inverse, the stiffness cijkl (Nye, 1985). For linear elastic deformation, the generalised form 192 

of Hooke’s Law can be written as: 193 

ij = sijkl kl   (1) 194 

where ij and ij are the second rank tensors of strain and stress, respectively. Alternatively, 195 

equation (1) can be written as:  196 

ij = cijkl kl  (2). 197 

Symmetry considerations lead to sijkl = sijlk and sijkl = sjikl (Nye, 1985). The corollary of these 198 

relationships is that the number of independent (potentially unique) components of sijkl is reduced 199 

from 81 (=34) to 36. The same applies to cijkl. The elastic compliance s or stiffness c of a crystal can 200 

therefore be represented in a more compact form, known as the Voigt matrix. This is a square 6 x 6 201 

matrix where, for example, the elements of elastic stiffness are defined as cIJ = cijkl, where I = ij and 202 

J = kl. There are six different permutations of I(J) = ij(kl),  the details of which are listed in Nye 203 

(1985) and more recently in Almqvist & Mainprice (2017).  204 

The measured and calculated elastic properties of single crystals are reported in Voigt matrix 205 

notation (sIJ, cIJ), where the indices I, J (=1,2,3) relate to a standard Cartesian reference frame (x=1, 206 

y=2, z=3). The relationship between any specific crystal lattice and this Cartesian reference is 207 

arbitrary, but we adopt the convention described in Britton et al. (2016). In this system: 208 

• the unit cell lattice vectors a, b, and c form a right-handed set,  209 

• c is parallel to Cartesian z,  210 

• b lies in the Cartesian y-z plane at angle  to c, and  211 

• a is directed at angle  to c and  to b.  212 

Note that  is the angle between b and c,  is the angle between c and a and  is the angle between 213 

a and b (see Figure 1a). 214 
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 215 

Figure 1. a) Crystallographic orientation convention (after Britton et al., 2016) and b) geometrical 216 

reference frame (after Turley & Sines, 1971) used in this paper.  217 

Familiar elastic properties, such as Young’s modulus (E), Poisson’s ratio () and shear modulus 218 

(G), can be expressed directly in terms of the components of the compliance matrix. For example, 219 

the Young’s modulus of a single crystal for a uniaxial stress applied in the x-direction is:  220 

Ex = E1 = 1 / s11 (3) 221 

and the Poisson’s ratio for a uniaxial stress and axial strain along x and a lateral strain along y is  222 

xy = -s21 / s11   (4) 223 

Note that, in general for anisotropic materials, xy ≠ yx etc.   224 

Guo & Wheeler (2006) note that although Poisson’s ratio may be negative for some directions, 225 

these are often compensated by higher positive values in transverse directions perpendicular the 226 

minima in the same plane. They suggest a more useful measure of extreme auxeticity, the areal 227 

Poisson’s ratio, defined as the average of all values of Poisson’s ratio taken within the plane 228 

normal to a chosen direction. If the areal Poisson’s ratio is negative this implies that a cylinder of 229 

the mineral would contract under a uniaxial compression, around the whole circumference, and not 230 

just along certain directions.   231 

In order to calculate specific values of these elastic properties in more general directions within a 232 

crystal – i.e. not just along the axes of the default Cartesian reference frame – we need to transform 233 

the compliance matrix into a different reference frame. We follow the notation used by Turley & 234 

Sines (1971) based on Eulerian angles ,  and  (see Figure 1b) that define the new Cartesian axes 235 
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(1’, 2’, 3’ or x’, y’, z’) in relation to the initial reference frame (1,2,3 or x, y, z). The transformation 236 

of compliance matrix sijkl to s’ijkl is given by (Nye, 1985):  237 

s’ijkl = aim ajn ako aip smnop (5) 238 

where the elements of the rotation matrix a are given by:  239 

𝑎𝑖𝑗 = [
𝐴 𝐵 𝐶

(𝐷 sin 𝜃 + 𝐸 cos 𝜃) (𝐹 sin 𝜃 + 𝐺 cos 𝜃) 𝐻 sin 𝜃
(𝐷 cos 𝜃 − 𝐸 sin 𝜃) (𝐹 cos 𝜃 − 𝐺 sin 𝜃) 𝐻 cos 𝜃

]  (6) 240 

where 𝐴 =  cos 𝛼 cos 𝛽 , 𝐵 =  sin 𝛼 cos 𝛽 , 𝐶 =  sin 𝛽 , 𝐷 =  − cos 𝛼 sin 𝛽 , 𝐸 = − sin 𝛼 , 𝐹 =241 

 − sin 𝛼 sin 𝛽, 𝐺 =  cos 𝛼, 𝐻 =  cos 𝛽 (Turley & Sines, 1971).  242 

Using the transformed compliance matrix s’ijkl, we can now calculate the elastic properties for any 243 

general direction within the crystal defined by a unit vector with angles ,  and , for example:  244 

E’1 = 1 / s’11  (7) 245 

G’12 = 1 / s’66   (8) 246 

’12 = −s’21 / s’11 (9) 247 

To calculate the variation in any elastic property over all possible directions in 3D, we simply need 248 

to vary  and  over a unit sphere (: 0-360°, : 0-180°) and vary  over a unit circle (: 0-360°).  249 

Isotropic approximations of anisotropic elastic properties 250 

Two useful ‘averaging’ schemes that can be applied to the full set of anisotropic elastic properties 251 

of polycrystals are those due to Reuss and Voigt (see Hill, 1952). The bulk and shear moduli in the 252 

Voigt scheme are defined as: 253 

𝐾𝑉 =  [(𝑐11 + 𝑐22 + 𝑐33) + 2(𝑐12 + 𝑐23 + 𝑐31)] 9⁄      (10) 254 

𝐺𝑉 =  [(𝑐11 + 𝑐22 + 𝑐33) − (𝑐12 + 𝑐23 + 𝑐31) + 3(𝑐44 + 𝑐55 + 𝑐66)] 15⁄   (11) 255 

and in the Reuss scheme as: 256 

𝐾𝑅 =  1 [(𝑠11 + 𝑠22 + 𝑠33) + 2(𝑠12 + 𝑠23 + 𝑠31)]⁄      (12) 257 

𝐺𝑅 =  15 [4(𝑠11 + 𝑠22 + 𝑠33) − 4(𝑠12 + 𝑠23 + 𝑠31) + 3(𝑠44 + 𝑠55 + 𝑠66)]⁄  (13) 258 

The Voigt average of any property always exceeds the Reuss average and the ‘true’ value lies 259 

somewhere in between. The Voigt-Reuss-Hill (VRH) average of a property is defined as the 260 

arithmetic mean of the Voigt and Reuss estimates e.g. GVRH = (GV + GR)/2. Note that, although only 261 

formally defined for polycrystals and based on averaging over many grains, the Voigt, Reuss and 262 

VRH estimates are in practice useful for single crystals: if we consider a polycrystal made of many 263 

grains all aligned perfectly parallel, then the elastic anisotropy of this polycrystal is identical to that 264 

of the single crystal.  265 
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To plot the variations of disparate elastic properties across minerals with widely different 266 

symmetries and anisotropies, we use the Universal Anisotropy Index (AU), of Ranganathan & 267 

Ostoja-Starzewski (2008), defined as:  268 

𝐴𝑈 = 5 
𝐺𝑉

𝐺𝑅 +  
𝐾𝑉

𝐾𝑅 − 6  (14) 269 

where GV and KV are the Voigt average shear and bulk moduli, respectively; and GR and KR are the 270 

Reuss average shear and bulk moduli, respectively. In contrast to previous measures, the Universal 271 

Anisotropy Index was designed to incorporate contributions from the bulk part of the elasticity 272 

(terms in K) and is unique for a given mineral elasticity (Ranganathan & Ostoja-Starzewski, 2008). 273 

AU is zero for isotropic materials and increases as symmetry decreases e.g. monoclinic and triclinic 274 

minerals tend to have higher AU.  275 

 276 

3. AnisoVis – program description and visualisation methods  277 

The visualisations of elastic anisotropy presented in this paper have been prepared using AnisoVis, 278 

a set of custom scripts linked to a graphical user interface (GUI) and written in MATLAB™. This 279 

code is available as an open source project on GitHub (link) and through the MathWorks™ 280 

FileExchange server (https://github.com/DaveHealy-Aberdeen/AnisoVis; 281 

https://uk.mathworks.com/matlabcentral/fileexchange/73177-anisovis). Single mineral elasticity 282 

values are supplied as input data, together with lattice parameters defining the unit cell and 283 

symmetry. The code then calculates the directional variations in elastic properties and produces 284 

outputs of the kinds shown in Figures 4-7. AnisoVis can also calculate the acoustic velocities 285 

(phase and group) and their polarisations, and the optical birefringence from the refractive indices. 286 

Over 240 data files for 86 different minerals are included (from published sources), and a user guide 287 

is provided with the software.   288 

Installation and input file format 289 

AnisoVis is installed by copying all of the files from the GitHub or Mathworks FileExchange server 290 

into a folder on the user’s computer. AnisoVis will run on any computer with MATLAB installed, 291 

including running Windows, Mac OS X or different versions of Linux. After starting MATLAB, the 292 

working folder or directory should be set to the folder containing the installed source code. The 293 

application is started by typing ‘AnisoVis’ in the Command window of the MATLAB session. 294 

There is only one window in AnisoVis (Figure 2). Click ‘Browse…’ to show the standard dialog to 295 

open an input file of mineral properties. These data are stored in formatted tab-delimited ASCII text 296 

files with an extension of ‘.mdf2’ (‘mineral data file’). The user guide supplied with the software 297 

has examples for each different mineral symmetry class.   298 

https://github.com/DaveHealy-Aberdeen/AnisoVis
https://uk.mathworks.com/matlabcentral/fileexchange/73177-anisovis
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 299 

Figure 2. The graphical user interface in AnisoVis, showing the range of output options for elastic, 300 

acoustic and optical anisotropies.    301 

Calculations  302 

After selecting the required output formats (shape, sphere or stereogram) and anisotropic properties 303 

to be visualised (elastic, acoustic or optical), the user clicks Plot to generate the images. 304 

Calculations are performed using the equations for each property described above, looping through 305 

three-dimensional space with the specified angular increment. Smaller angular increments (e.g. 1-306 

2°) take longer to run than larger increments (e.g. 5-10°). In the tests that we have conducted to 307 

date, run time has been very satisfactory, with most operations completed in a few seconds on 308 

standard desktop computers purchased within the last three years.The exception to this performance 309 

is when the angular increment is 1°, where run times are typically of the order of 1-2 minutes. We 310 

have implemented a MATLAB™ WaitBar to provide basic progress information for lengthier tasks.  311 

Generating outputs  312 

Output is directed to MATLAB figure windows, with one plotted property per figure window. 313 

These images are automatically saved as ‘.tif’ files at 600 dpi resolution in the working folder.  314 

While each figure window is visible, the user can exploit standard MATLAB functionality to resize 315 

or reformat the figure as they wish, and can save the figure to a different filename or folder, or even 316 

a different graphic format (e.g. ‘.png’ or ‘.jpeg’). The colour schemes used for the representation 317 

surfaces, unit spheres and stereograms can be varied using the drop-down list box in the main 318 

window. In addition to the standard MATLAB colour map of ‘Parula’ we offer 3 other choices from 319 

the cmocean colour map library (Thyng et al., 2016) using perceptually uniform scales (‘Haline’, 320 

‘Thermal’ and ‘Matter’).  321 
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Visualising elastic anisotropy in 2-D and 3-D 322 

As pointed out by Nye (1985), no single surface can represent the elastic behaviour of a crystal 323 

completely. However, we can plot specific surfaces that are useful in practice.  To visualise the 324 

anisotropy of elastic properties of single crystals we use a mixture of 3D surfaces and 2D polar 325 

plots projected onto selected planes. We use representation surfaces (Nye, 1985) to generate 3D 326 

shapes where, for any given radius vector measured from the origin to the surface, the radius is 327 

proportional to the magnitude of the property in that direction. The magnitude of the property is 328 

also conveyed by a colour mapping applied to the surface. An alternative method is to plot the 329 

directional variation of a property projected onto a unit sphere, using a colour map to depict the 330 

magnitude. We can also use stereographic projections (lower hemisphere, equal area) to show 331 

directional variations in properties. Lastly, we can use polar plots to the variation of a property in 332 

selected crystallographic planes (e.g. [100], [010], [001]).   333 

Challenges in visualising Poisson’s ratio () and shear modulus G 334 

Any of the above methods of visualisation can be used for ‘simple’ elastic properties, such as 335 

Young’s modulus or linear compressibility, where the property is a single scalar value for a given 336 

direction. Young’s modulus is defined as the ratio of uniaxial stress to uniaxial strain and it is 337 

implicit that the directions of applied stress and measured strain are coincident (i.e. coaxial; Figure 338 

3). However, for Poisson’s ratio and shear modulus this is no longer the case. Poisson’s ratio is 339 

defined as the ratio of (negative) lateral strain to the axial strain, and therefore involves two 340 

orthogonal directions (Figure 3). Shear modulus is defined as the ratio of the shear stress to the 341 

shear strain, again involving two orthogonal directions (see Figure 3). For a stress (normal or shear) 342 

applied in a specific direction, there is only one value of E, but there are many possible values of  343 

and G. It can be seen from Figure 3 that  and G will vary according to the direction of the normal 344 

to the chosen direction [hkl], described by angle  in the Turley & Sines (1971) notation. To plot 345 

representation surfaces for  and G, we take their minimum and maximum values calculated over   346 

for an applied stress along each direction in 3D-space. In addition, as  can be negative for some 347 

directions in some minerals, we further separate the minimum representation surfaces of Poisson’s 348 

ratio into negative minimum and positive minimum components where appropriate.   349 
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 350 

Figure 3. Schematic diagrams to illustrate the definitions of Young’s modulus, Poisson’s ratio, 351 

shear modulus in a 3D crystallographic reference frame, using -quartz (trigonal) as an example.  352 

Example: -quartz (trigonal; Ogi et al., 2006) 353 

To illustrate the different possibilities described above we use the elasticity of -quartz as 354 

quantified by Ogi et al. (2006). The anisotropy of Young’s modulus is shown in Figure 4 using a 355 

representation surface, a unit sphere, a stereogram and polar plots of E in the plane (100). The 356 

colour bar scale is the same in all plots for ease of comparison. Using AnisoVis, the user can rotate 357 

any of these plot views in the MATLAB figures to gain a better appreciation of the directional 358 

variations in relation to the crystallographic reference axes <a>, <b>, and <c>.  359 
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 360 

Figure 4. Alternative visualisations of the anisotropy of Young’s modulus (E, in GPa) of -quartz. 361 

a) 3D representation surface where the radius in any direction is proportional to the magnitude of E. 362 

b) Projection of E on to a unit sphere, colour-coded by magnitude. c) Lower hemisphere, equal area 363 

stereographic projection. d) Polar plot of anisotropy of E in selected planes. Crystallographic axes 364 

<a>, <b>, and <c> shown in pink.  365 

As noted above, the shear modulus is a function of shear stress in one direction and a shear strain in 366 

a perpendicular direction. Therefore, for any given crystallographic direction in 3D space [hkl] in an 367 

anisotropic crystal there are many possible values of G as the transverse component is rotated 368 

through the angle  (see Figure 1b). In Figure 5 we show representation surfaces for the minimum 369 

and maximum values of G of -quartz associated with each direction [hkl]. Polar plots are also 370 

shown for planes (010) and (001).  371 
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 372 

Figure 5. Alternative visualisations of the anisotropy of shear modulus (G, GPa) of -quartz. a-b) 373 

3D representation surfaces where the radius in any direction is proportional to the magnitude of G. 374 

Separate surfaces shown for minimum and maximum G. c) Lower hemisphere, equal area 375 

stereographic projection of Gmax. d) Polar plots of anisotropy of G in selected planes. 376 

Crystallographic axes <a>, <b>, and <c> shown in pink. VRH = Voigt-Reuss-Hill average value of 377 

G.   378 

Visualising the directional variation of Poisson’s ratio  can pose further challenges. -quartz is 379 

auxetic and has many directions that show negative Poisson’s ratios. As for shear modulus, we 380 

show representation surfaces for both the minimum (Figure 6a-b) and maximum (Figure 6c) 381 

Poisson’s ratios, but we separate the minimum Poisson’s ratio plot into two surfaces: one for min < 382 

0 (Figure 6a) and one for min > 0 (Figure 6b). Maximum Poisson’s ratio is nearly always positive, 383 

and we show a single plot for this. We also include a plot for the areal Poisson’s ratio – the value of 384 

Poisson’s ratio averaged over all  for each direction [hkl] (Figure 6d, after Guo & Wheeler, 2006).  385 

Polar plots for specific 2D planes can also be useful (Figure 6e-f).  386 



 

Page 15 of 49 

 387 
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Figure 6.  Alternative visualisations of the anisotropy of Poisson’s ratio () of -quartz. a-d) 3D 388 

representation surfaces where the radius in any direction is proportional to the magnitude of .  389 

Separate surfaces shown for minimum negative, minimum positive, maximum and areal , as 390 

defined in the equations in Section 2. e) Lower hemisphere, equal area stereographic projection of 391 

areal. f) Polar plots of anisotropy of  in selected planes.  Crystallographic axes <a>, <b>, and <c> 392 

shown in pink.  393 

 394 

 395 

Figure 7.  Alternative visualisations of the anisotropy of linear compressibility (, in GPa-1) of -396 

quartz. a) 3D representation surface where the radius in any direction is proportional to the 397 

magnitude of . b) Projection of  on to a unit sphere, colour-coded by magnitude. c) Lower 398 

hemisphere, equal area stereographic projection. d) Polar plot of anisotropy of  in the (010) plane.  399 

Crystallographic axes <a>, <b>, and <c> shown in pink.  VRH = Voigt-Reuss-Hill average value of 400 

.   401 



 

Page 17 of 49 

The linear compressibility () of an anisotropic crystal quantifies the directional response to an 402 

applied hydrostatic load i.e. to pressure, not stress. For isotropic materials, the compressibility is a 403 

scalar – i.e. directionally invariant – and is simply the inverse of the bulk modulus K ( = 1 / K).  404 

For anisotropic rock-forming minerals, this is no longer the case and  varies with direction. Figure 405 

7 shows the variation for -quartz using the same types of plots as for Young’s modulus (Figure 5).   406 

In summary, we note that as a corollary of the point made by Nye (1985) that no single surface can 407 

represent the full richness of the 4th rank elasticity tensor, neither can any one measure (e.g. E, G,  408 

or ) convey the complete behavior of an anisotropic mineral. The anisotropies of the different 409 

parameters shown in these plots should be used in combination to understand a specific problem.  410 

Visualising second-rank tensors: stress and strain  411 

To address the challenges in visualizing stress and strain described above, we use two separate 412 

graphical depictions, or glyphs, for the normal and shear components of the strain and stress tensors 413 

(Kratz et al., 2014). We use the Reynolds glyph for normal strains and stresses, as this can show 414 

positive and negative principal values (Moore et al., 1996). We use the HWY glyph to visualise the 415 

shear components of the strain and stress tensors (Hashash et al., 2003). Figures 8 and 9 show 416 

examples of the Reynolds and HWY glyphs for strains and stresses, respectively. Isotropic 417 

compaction plots as a single point in Mohr space (Figure 8a), and as a sphere using a Reynolds 418 

glyph (Figure 8b; shear strains are zero and so there is no HWY glyph). For a general triaxial strain 419 

with both shortening and stretching components, the Reynolds and HWY glyphs are shown in 420 

Figure 8d and 8e. Note that in the HWY glyph for shear strain the maxima are located at 45° to the 421 

principal axes, and the minima (0) are located along the principal axes. Triaxially compressive 422 

stress is shown in Figure 9a-c. Again, maxima of shear stress in the HWY glyph are at 45° to the 423 

directions of the principal (normal) stresses. For a general triaxial stress with components of 424 

compression and tension, the directional variations of normal and shear stress are shown in Figure 425 

9d-f.   426 
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 427 

Figure 8. Examples of strain tensors depicted in Mohr space (n, ), and as Reynolds (normal 428 

strains, n) and HWY (shear strains, ) glyphs. a-b) Isotropic compaction (taken as negative, blue 429 

colour). c-e) Visualisations for a general triaxial strain. Note the lobes of extensional (blue) and 430 

contractional (red) strain in the normal strain plot (d).  431 
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 432 

Figure 9. Examples of stress tensors depicted in Mohr space (n, ) and as Reynolds (normal stress, 433 

n) and  HWY (shear stress, ) glyphs. a-c) Triaxial compression (taken as negative, blue colour). 434 

d-f) General triaxial stress with one principal stress tensile (xx).  435 

 436 

4. Results – General trends  437 

Data sources 438 

The elastic properties of the minerals used in this study have been derived from previous 439 

compilations and original sources where possible. Many compilations of elastic and other physical 440 

properties are now available: see Bass (1995) and Almqvist & Mainprice (2017), and references 441 

therein. Note that most elastic properties are measured by laboratory methods whereas a minority 442 

are calculated from theory (ab initio molecular dynamics simulations; e.g. Mainprice et al., 2018). 443 

Single mineral lattice parameters have been extracted from the same publication as the elasticity 444 

data where possible, but if this was not available, we took representative values from Deer, Howie 445 

& Zussman (1992).   446 

Summary plots  447 

From our database of published elastic properties of rock-forming minerals (246 data files covering 448 

86 distinct minerals, all included with AnisoVis), we have calculated the maxima and minima for 449 

Young’s modulus, Poisson’s ratio, shear modulus and linear compressibility. In Figure 10 we show 450 

the variation in the anisotropy of Young’s modulus (E) for 246 rock-forming minerals as a function 451 

of the Universal Anisotropy Index AU. If we consider a simple measure of the anisotropy of E as the 452 

ratio between the maximum and minimum values, it is clear that most minerals display significant 453 
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anisotropy with Emax/Emin often greater than 2. With increasing AU, many minerals show Emax/Emin 454 

ratios of about 4 or more. Figure 11 shows the anisotropy of shear modulus (G) for the same rock-455 

forming minerals, plotted against AU. The anisotropy of G, simply defined as Gmax/Gmin, is less than 456 

that shown for E, and this ratio tends to flatten out with increasing AU.  457 

 458 

Figure 10. Anisotropy of Young’s modulus in rock-forming minerals (n=246) plotted against the 459 

Universal Anisotropy Index (AU) of Ranganathan & Ostoja-Starzewski (2008). EVRH is the Voigt-460 

Reuss-Hill average of E. Many minerals display anisotropy of E (Emax/Emin) of 2 or more. b) Plot of 461 

Emax/Emin versus AU. c-e) Histograms of Emin, Emax and EVRH to show the distribution across all 246 462 

datasets.  463 
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 464 

Figure 11. Anisotropy of shear modulus in rock-forming minerals (n=246) plotted against the 465 

Universal Anisotropy Index of Ranganathan & Ostoja-Starzewski (2008). GVRH is the Voigt-Reuss-466 

Hill average of G. b) Plot of Gmax/Gmin versus AU. c-e) Histograms of Gmin, Gmax and GVRH to show 467 

the distribution across all 246 datasets.  468 

Figure 12 shows the variation in Poisson’s ratio () versus AU for all minerals. The shaded area in 469 

Figure 12a and 12b denotes the range 0 ≤ 𝜈 ≤ 0.5 . As noted by Ting & Chen (2005),  for 470 

anisotropic materials can have no bounds. The data show that many minerals have minimum values 471 

less than 0 and maximum values greater than 0.5. The histogram in Figure 12c shows the statistical 472 

variation in min for all minerals: 28% (=70/246) have negative minimum values for Poisson’s ratio 473 

– that is, they display auxetic behaviour. Analysis of the variation of max shows that 37% (=91/246) 474 

have values greater than 0.5 (Figure 12d). The mean value of the Voigt-Reuss-Hill average of 475 
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Poisson’s ratio for all minerals is 0.2464 (Figure 12e), close to the default assumption of many 476 

simplifications to elastic isotropy (=0.25). A full list of the rock-forming minerals in our database 477 

that show auxetic behaviour is shown in Table 2, and the specific directions of negative  are shown 478 

for several examples in the stereograms in Figure 13. 479 

 480 

Figure 12. a) Anisotropy of Poisson’s ratio in rock-forming minerals (n=246) plotted against the 481 

Universal Anisotropy Index of Ranganathan & Ostoja-Starzewski (2008). VRH is the Voigt-Reuss-482 

Hill average of . b) Plot of max/min versus AU. c) Histogram of min values shown in Figure 12. 483 

Note that 28% (n=70/246) of minerals display negative min. d) Histogram of max values. 37% 484 

(n=91/246) minerals display max > 0.5. e) Histogram of VRH values. Mean VRH = 0.2464, very 485 

close to the common default assumption of  = 0.25.  486 

 487 
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Mineral Symmetry  Minimum 

 < 0  

Minimum 

areal  < 0 

Reference  

Albite (An0) Triclinic -0.03  Hearmon, 1984 

 Triclinic -0.15  Brown et al., 2016 

Anhydrite  Orthorhombic -0.046  Hearmon, 1979 

Andesine 

(An37) 

Triclinic -0.091  Brown et al., 2016 

Andesine 

(An48) 

Triclinic -0.075  Brown et al., 2016 

Antigorite Monoclinic -0.215  Bezacier et al., 2010 

Aragonite Orthorhombic -0.061  Hearmon, 1979 

Augite Monoclinic -0.012  Alexandrov et al., 1964 

Bytownite 

(An78) 

Triclinic -0.053  Brown et al., 2016 

Calcite Trigonal -0.047  Babuska & Cara, 1991 

 Hexagonal -0.02  Chen et al., 2001 

Coesite Monoclinic -0.108  Weidner & Carleton, 1977 

-Cristobalite  Tetragonal  -0.537 -0.262 Pabst & Gregorova, 2013 

-Cristobalite  Cubic  -0.288 -0.162 Pabst & Gregorova, 2013 

Dolomite Trigonal -0.064  Hearmon, 1979 

Hornblende Monoclinic -0.075  Hearmon, 1984 

Illite-Smectite Monoclinic -0.416  Militzer et al., 2011 

Labradorite Triclinic -0.085  Ryzhova, 1964 

Labradorite 

(An60) 

Triclinic -0.009  Brown et al., 2016 

Labradorite 

(An67) 

Triclinic -0.025  Brown et al., 2016 

Lawsonite Orthorhombic -0.088  Sinogeikin et al., 2000 

Microcline Triclinic -0.199 -0.042 Babuska & Cara, 1991 

Oligoclase 

(An25) 

Triclinic -0.098  Brown et al., 2016 

Orthoclase Monoclinic -0.169  Hearmon, 1984 

 Monoclinic -0.092  Waeselmann et al., 2016 

-Quartz Trigonal -0.97 -0.071 Ogi et al., 2006 

 Trigonal -0.93 -0.067 Babuska & Cara, 1991 

T=200°C Trigonal -0.123 -0.088 Lakshtanov et al., 2007 

T=400°C Trigonal -0.215 -0.138 Lakshtanov et al., 2007 

T=500°C Trigonal -0.301 -0.186 Lakshtanov et al., 2007 

T=573°C Trigonal -0.546 -0.398 Lakshtanov et al., 2007 

T=575°C Hexagonal -0.255 -0.095 Lakshtanov et al., 2007 

Rutile Tetragonal -0.044  Manghnani, 1969 

Sanidine Monoclinic -0.097  Waeselmann et al., 2016 

Sillimanite Orthorhombic -0.001  Verma, 1960 

Sphalerite Cubic -0.025  Hearmon, 1984 

Spinel Cubic -0.07  Hearmon, 1984 

T=300°K Cubic -0.081  Anderson & Isaak, 1995 

T=350°K Cubic -0.079  Anderson & Isaak, 1995 

T=400°K Cubic -0.083  Anderson & Isaak, 1995 

T=450°K Cubic -0.083  Anderson & Isaak, 1995 

T=500°K Cubic -0.084  Anderson & Isaak, 1995 

T=550°K Cubic -0.084  Anderson & Isaak, 1995 
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T=600°K Cubic -0.085  Anderson & Isaak, 1995 

T=650°K Cubic -0.033  Anderson & Isaak, 1995 

T=700°K Cubic -0.088  Anderson & Isaak, 1995 

T=750°K Cubic -0.089  Anderson & Isaak, 1995 

T=800°K Cubic -0.09  Anderson & Isaak, 1995 

T=850°K Cubic -0.092  Anderson & Isaak, 1995 

T=900°K Cubic -0.093  Anderson & Isaak, 1995 

T=950°K Cubic -0.094  Anderson & Isaak, 1995 

T=1000°K Cubic -0.095  Anderson & Isaak, 1995 

Staurolite Orthorhombic -0.201  Hearmon, 1979 

Stishovite Tetragonal -0.04  Babuska & Cara, 1991 

Talc (c1) Triclinic -0.864 -0.287 Mainprice et al., 2008 

P=0.87 GPa Triclinic -0.178 -0.001 Mainprice et al., 2008 

P=1.96 GPa Triclinic -0.107  Mainprice et al., 2008 

P=3.89 GPa Triclinic -0.009  Mainprice et al., 2008 

Talc (c2c) Monoclinic -0.126 -0.029 Mainprice et al., 2008 

P=0.15 GPa Monoclinic -0.107 -0.021 Mainprice et al., 2008 

P=0.35 GPa Monoclinic -0.125 -0.025 Mainprice et al., 2008 

P=0.64 GPa Monoclinic -0.091 -0.002 Mainprice et al., 2008 

P=0.93 GPa Monoclinic -0.028  Mainprice et al., 2008 

P=1.72 GPa Monoclinic -0.019  Mainprice et al., 2008 

Zircon 

(metamict) 

Tetragonal -0.113  Hearmon, 1984 

Zoisite Orthorhombic -0.014  Mao et al., 2007 

     

Number of 

distinct 

minerals  

 n=33 n=7  

 488 

Table 2. List of rock-forming minerals showing auxetic behaviour (Poisson’s ratio < 0) in at least 489 

one direction. Also shown are those minerals with directions that have negative areal Poisson’s ratio 490 

(Guo & Wheeler, 2006). The Reference column shows the source of the elasticity data for each 491 

mineral used in the calculation. The auxetic directions were found by calculating Poisson’s ratio for 492 

every possible direction (, ,  in the Turley & Sines reference frame shown in Figure 1) using an 493 

angular increment of 1 degree in each direction.  494 

 495 
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Figure 13.  Examples of rock-forming minerals showing auxetic and areally auxetic behaviour. 497 

Stereograms are all lower hemisphere, equal area projections and only the directions with negative 498 

Poisson’s ratio (a, b, c, e, g) or negative areal Poisson’s ratio (d, f, h) are shown coloured in (i.e. 499 

other directions show positive values).  Crystallographic axes in pink.  a) Staurolite. b) Illite-500 

smectite. c-d) -Quartz. e-f) -Quartz at the temperature of the phase transformation to -Quartz 501 

(hexagonal). g-h) Talc (c1, triclinic).  502 

 503 

The elastic properties of minerals are known to be temperature (T) and pressure (P) dependent. 504 

However, systematic data to quantify the variation of anisotropic elasticity with T or P is relatively 505 

scarce. We summarise some of the published data in Figure 14, shown as the calculated range in 506 

Poisson’s ratio (min to max). In terms of pressure dependence, the effect of increasing P is to 507 

decrease the anisotropy in  for talc to within the range normally expected for isotropic minerals. 508 

The opposite effect is observed for zircon, with modest increases in max with P. The temperature 509 

dependence of elastic anisotropy in quartz is well known (Mainprice & Casey, 1990), with a 510 

significant excursion into auxetic behaviour at the temperature of the - phase transition at 573°C 511 

(846°K). The effect of increasing T on the anisotropy of  for olivine, corundum and spinel is 512 

almost non-existent.    513 

 514 
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Figure 14. Anisotropy of Poisson’s ratio in rock-forming minerals as a function of P (top) and T 515 

(bottom). Other than the well-known auxeticity of - quartz around the phase transition 516 

(T=573°C), most minerals display Poisson’s ratios of between 0-0.5. Talc (c1, triclinic) is one 517 

exception, and the anisotropy of Poisson’s ratio decreases markedly with increasing P.  518 

Linear compressibility () also displays significant anisotropy in rock-forming minerals (Figure 519 

16). A list of the rock-forming minerals in our database that show negative linear compressibility 520 

(NLC) is shown in Table 3. These minerals have directions that expand in response to a 521 

compressive hydrostatic pressure (and vice versa: ‘stretch-densification’ of Baughman et al., 522 

1998b). The specific directions of negative  are shown in the stereograms in Figure 15.  523 

 524 

Mineral Symmetry  Minimum  < 0, GPa-1  Reference  

Lizardite Hexagonal -0.00165 Reynard et al., 2007 

Talc (c1) Triclinic -0.00251 Mainprice et al., 2008 

 525 

Table 3. List of rock-forming minerals showing negative linear compressibility (NLC) in at least 526 

one direction.  527 

 528 

 529 

Figure 15.  Rock-forming minerals showing negative linear compressibility (NLC) in certain 530 

directions. Stereograms are all lower hemisphere, equal area projections and only the directions 531 

with NLC are shown coloured in (i.e. other directions show positive values). Crystallographic axes 532 

in pink.  a) Lizardite.  b) Talc (c1, triclinic).  533 
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 534 

Figure 16. a) Anisotropy of linear compressibility (, GPa-1) in rock-forming minerals (n=246) 535 

plotted against the Universal Anisotropy Index of Ranganathan & Ostoja-Starzewski (2008). b) Plot 536 

of max/min versus AU. c-e) Histograms of min, max and VRH to show the distribution across all 246 537 

datasets.  538 

 539 

We can summarise the elastic anisotropy data for all rock-forming minerals using the Elastic 540 

Anisotropy Diagram of Ranganathan & Ostoja-Starzewski (2008). In their review of Poisson’s ratio 541 

in materials, Greaves et al. (2011) used a plot of bulk modulus K versus shear modulus G, however 542 

for the anisotropic rock-forming minerals there is no single value of either of these properties.  543 

Following Ranganathan & Ostoja-Starzewski (2008), we therefore take the ratios KV/KR and GV/GR 544 

and cross-plot these instead (Figure 17). Note that the origin is at (1,1) as no mineral can have 545 
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KV/KR < 1 or GV/GR < 1. The dashed lines of slope –5 are for constant AU (equation 14), increasing 546 

to the right. Unsurprisingly, minerals with monoclinic, triclinic and hexagonal symmetries dominate 547 

the higher elastic anisotropies, while minerals with cubic, orthorhombic and tetragonal symmetries 548 

are generally less elastically anisotropic.   549 

 550 

Figure 17. a) Anisotropy of rock-forming minerals (n=246) using the Elastic Anisotropy Diagram 551 

used in materials science, grouped by mineral symmetry class. b) Close-up of the data plotted in a), 552 

in the range GV/GR 1 to 1.5 and KV/KR 1 to 1.5.  553 

 554 

5. Results – Specific examples 555 

Twinning  556 

Deformation or mechanical twinning critically depends on the anisotropy of elastic properties 557 

because minerals respond elastically to imposed stress (or strain) before exceeding the threshold for 558 

twin nucleation and propagation (Christian and Mahajan, 1995, and references therein). Perhaps the 559 

most widely accepted theory is that twin initiation occurs when an applied shear stress along the 560 

twin shear plane (K1) in the shear direction of twinning (η1) reaches a critical value (critically 561 

resolved shear stress, CRSS) for twin nucleation and propagation, analogous to Schmid’s law for 562 

dislocation slip (Thompson and Millard, 1952; Bell and Cahn, 1953; Christian and Mahajan, 1995). 563 

However, experimental results can indicate that twinning dynamics can be more complex (e.g., Bell 564 

and Cahn, 1957). Additional complexities, such as energy barriers for the nucleation of coeval 565 

defects such as stacking faults, disconnections, and unstable transition states associated with 566 

twinning, have also been considered for twinning in metals (e.g., Serra & Bacon; 1996; Kibey et al., 567 

2007; Pond et al., 2016). Development of a general theory of mechanical twinning applicable to 568 

most minerals is still lacking. Nevertheless, shear modulus G in η1 along K1 is highly relevant to 569 

mechanical twinning. 570 

Dauphiné twins in -quartz are merohedral twins, meaning only some atoms exchange their 571 

positions, resulting in a host-twin symmetry relationship that can be described simply by a 180° 572 
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rotation about the c-axis, and recognisable in EBSD maps via a 60° misorientation around the c-573 

axis. The formation of Dauphiné twins has been related to the difference in elastic strain energy 574 

between twinned and un-twinned at constant stress (Thomas & Wooster, 1951; Tullis, 1970; De 575 

Vore, 1970). This difference in elastic strain energy can be written as  576 

 E = ½ (1 – 3)
2 s11’  (15) 577 

where (1 – 3) is the applied differential stress, and s11’ = s11’twinned – s11’un-twinned. Note that s11’ is 578 

the reciprocal of the Young’s modulus for a given direction. Dauphiné twinning occurs more 579 

readily in those directions for which the strain energy difference (E) is larger, under a boundary 580 

condition of constant axial stress (the inverse is also true: under a condition of constant strain, the 581 

preferred directions of twinning are those that minimise E (Paterson, 1973)). The variation of 582 

s11’ with direction in -quartz is shown in Figure 18.  The stereogram is the same pattern shown in 583 

Thomas & Wooster (1951; their Figure 3a) and Tullis (1970; her Figure 2b). Also shown is a 3D 584 

representation surface of s11’, which emphasises the anisotropy of favoured directions for 585 

Dauphiné twins in -quartz. The significance of Dauphiné twinning in quartz has recently been 586 

described for sandstones compacted during diagenesis (Mørk and Moen, 2007), deformed in fault 587 

damage zones (Olierook et al., 2014), and deformed by meteorite impact (Wenk et al., 2011; Timms 588 

et al., 2019; Cox et al., 2019), and granitoid protomylonites (Menegon et al., 2011). In all cases, 589 

Dauphiné twins can be used to infer palaeostresses from deformed microstructures. In addition, 590 

Menegon et al. (2011) make the point that Dauphiné twins, formed early in a deformation history, 591 

may effectively store strain energy which is then consumed in later plastic deformation 592 

mechanisms. De Vore (1970) plotted the directional variation of compliances for quartz, ortho- and 593 

clino-pyroxene, hornblende and plagioclase and thereby extended the initial concept of Thomas & 594 

Wooster (1951). To our knowledge, detailed analyses of mechanical twins in these phases has not 595 

yet been related to the anisotropy of elastic compliance or the calculated variations in elastic strain 596 

energy for specific applied loads.  597 

598 
Figure 18. Anisotropy of s11’ for Dauphiné twinning in -quartz. s11’ is the difference in the 599 

compliance s11’ between the twinned and un-twinned orientations for each direction.  a) Stereogram 600 

(lower hemisphere, equal area projection) and b) a 3D representation surface, both with the 601 

crystallographic reference axes marked. The directions represented by pale yellow/green colours 602 

will be favoured for twinning, whereas the directions shown in blue will not.  603 
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The relationship between elastic anisotropy and deformation twinning has been investigated in 604 

zircon (Timms et al., 2018). In zircon, deformation twins can form as a response to shock 605 

conditions and are diagnostic of hypervelocity impact events (Timms et al., 2012; 2017; Erickson et 606 

al. 2013). Shock twinning in zircon, which is tetragonal, can occur in up to four symmetrically 607 

equivalent orientations, forming along {112} composition planes (the of invariant shear, or K1), and 608 

with shear direction η1 = <111>, resulting in a host-twin 65° / {110} misorientation relationship 609 

(Timms et al., 2018). Twinning in this mode has been shown to correspond to the lowest values of 610 

G (Gmin = G<111> = ~98 GPa) (Timms et al., 2018). Furthermore, the lowest values of  are along 611 

<111> in zircon, indicating that zircon is almost perfectly compressible in <111> (min = <111> >0 612 

and <<0.1) (Timms et al., 2018). These authors illustrate that elastic softness in shear (low G) and a 613 

lack of lateral strain in the shear plane (ν ~ 0) are favorable conditions for twinning in zircon 614 

(Timms et al. 2018). However, further work is required to determine the critically resolved shear 615 

stress for twinning in zircon. Nevertheless, the ability to calculate and visualize anisotropic elastic 616 

properties in specific crystallographic directions presented here will be very useful for detailed 617 

investigations of mechanical twinning in other phases. 618 

Polymorphic phase transformations  619 

Coherent phase transformations (or transitions) may also be related to the anisotropy of elastic 620 

properties, including the - transformation in quartz. Coe & Paterson (1969) describe experiments 621 

on oriented cores from single crystals of quartz heated to temperatures above the transformation 622 

temperature (573°C, at atmospheric pressure), and subjected to non-hydrostatic stress. They found 623 

that the temperature of transition was raised by different amounts depending on the orientation of 624 

the stress with respect to the crystal. Crystal cores stressed parallel to the c-axis showed the least 625 

change, whereas those loaded in the m-direction (perpendicular to c) showed the greatest increase 626 

(they also performed experiments on samples cored in the o and r’ directions). The temperature of 627 

phase transformation from - (trigonal) to - (hexagonal) quartz is therefore stress dependent. The 628 

theoretical analysis of Coe & Paterson (1969, their Appendix C) ascribes this dependence to an 629 

infinitesimal reversible transformation strain, based on the formalism of Eshelby (1957, 1959).  630 

Noting that the transformation is also marked by a ‘dramatic increase in the development of small-631 

scale Dauphine twins’, we have calculated the elastic strain energy per unit volume for each of the 632 

four core orientations tested by Coe & Paterson, using their values of applied stress (1 = –1 GPa, 633 

2 = 3 = –300 MPa; negative stress compressive) and the elastic constants of -quartz at 500°C 634 

(Lakshtanov et al., 2007). The results are shown in Figure 19, and clearly show an exact correlation 635 

with experimental data: the sample loaded in the m direction has the highest strain energy, and that 636 

in the c direction has the lowest. The overall sequence is W(m) > W(r’) > W(o) > W(c), which 637 

precisely mirrors that of the variation in ∂T/∂ listed for each direction in Coe & Paterson (1969, 638 

their Table 3). Therefore, we speculate that the mechanism of phase transformation of - to - 639 

quartz is probably not related to that of Dauphiné twinning in -quartz, as the temperature 640 

difference increases for those directions that maximise the elastic strain energy under a constant 641 

applied stress. We also note that similar phenomena may occur in pyroxenes (Coe, 1970; Coe & 642 

Muller, 1973; Clement et al., 2018).   643 
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644 
Figure 19. Variation in strain (normal and shear) and elastic strain energy for different applied 645 

loads in -quartz at 500 °C (Lakshtanov et al., 2007). The same compressive stress (1 = –1000 646 

MPa, 2 = 3 = –300 MPa) is applied along the c (row 1), m (row 2), r (row 3), and o (row 4) 647 

directions in a single crystal. The Reynolds (2nd column) and HWY (3rd column) glyphs show the 648 

normal and shear strains, respectively. The elastic strain energy per unit volume (W) is shown for 649 

each configuration. Note that W(m) > W(r) > W(o) > W(c).  650 

Visualisation of elastic anisotropy has been used to gain new insights into the effects of intrinsic 651 

elastic stiffness on the transformation from zircon to the high pressure ZrSiO4 polymorph reidite 652 

(Timms et al., 2018). The occurrence of lamellar reidite in shocked zircon from hypervelocity 653 

impact structures has been observed to be spatially limited to low-U domains that have not 654 

accumulated radiation damage of the lattice from the decay of U to Pb – a process known as 655 

metamictization (Cavosie et al., 2015; Erickson et al., 2017). Using elastic constants measured for 656 

variably metamict zircon (Özkan, 1976; Özkan and Jamieson, 1978), Timms et al. (2018) illustrated 657 

that the process of metamictization significantly reduces maxima of E, G and   in zircon resulting 658 

in a more compliant, isotropic structure. These authors argued that metamict domains in zircon 659 

grains are not elastically stiff enough to support sufficiently high stresses and pressures to facilitate 660 

the transformation to reidite, limiting reidite lamellae to highly crystalline non-metamict domains 661 
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during the same shock event. This finding illustrates the dependance of elastic properties on lattice 662 

defects and a potential role of intrinsic elastic properties in phase transofrmations. 663 

Metamorphic reactions and equilibrium thermodynamics 664 

The role of elastic deformation in the thermodynamics of preferred orientations and reactions at the 665 

scale of individual grains has long been controversial (Macdonald, 1960; Brace, 1960; Kamb, 1961 666 

and discussion thereof; Paterson, 1973; Wheeler, 2017). Debate has centred on the role, if any, of 667 

the elastic strain energy, W. Macdonald (1960) and Brace (1960) defined the Gibbs free energy of 668 

non-hydrostatically stressed minerals in terms of the elastic strain energy, and thereby implicitly 669 

defined equilibrium under these conditions. They went on to assert that preferred orientations would 670 

develop by the (re-)orientation of a crystals in a given stress system such that their elastic strain 671 

energies were maximised. Wheeler (2017), following Kamb (1961) and Paterson (1973), asserts 672 

that there is no definable equilibrium in non-hydrostatically stressed systems. Therefore, it is wrong 673 

to equate the Gibbs energy for stressed systems of polycrystals to the elastic strain energy. 674 

Moreover, the contribution of the elastic strain energy to the chemical potentials along stressed 675 

interfaces, through the Helmholtz free energy term, is second order and therefore negligible 676 

(Wheeler, 2018).    677 

Brittle cracking, decrepitation and dehydration  678 

The magnitude of stresses around fluid-filled pores and cracks developed within single crystalline 679 

grains under load can be important for a variety of natural processes. The decrepitation of fluid 680 

inclusions occurs when the stresses around the pore exceed the local tensile strength, and the fluid 681 

will then drain away. Previous analyses have been rooted in linear elastic fracture mechanics, under 682 

an assumption of elastic isotropy. Similarly, in reacting systems the dehydration of hydrous phases 683 

can lead to pore fluid overpressures which crack the reacting grain and produce dehydration 684 

embrittlement (e.g. Raleigh & Paterson, 1965; Jung et al., 2004). Accurate predictions of the stress 685 

levels sustainable by intracrystalline pores and cracks are therefore vital to understanding these 686 

fundamental mechanisms. Jaeger & Cook (1969; and repeated by Pollard & Fletcher (2005)) 687 

asserted that the elastic anisotropy of rocks, measured as the ratio of Young’s moduli Emax/Emin, is 688 

rarely as high as 2, and therefore the effects of elastic anisotropy are minor to negligible. Davis et 689 

al. (2017) used 3D boundary element models to show that Poisson’s ratio and void (pore or crack) 690 

shape can exert significant control on the local stresses at the void-matrix boundary as a precursor 691 

to tensile or shear failure.   692 

We have calculated the circumferential stresses around crack-like voids developed within single 693 

elastically anisotropic grains of selected minerals (Figures 20 & 21). The model configuration 694 

follows that of Jaeger & Cook (1969; derived from Green & Taylor, 1939), and is based on a thin 695 

2D orthotropic plate with a single crack of aspect ratio 5:1. The assumption of orthotropy reduces 696 

the required elastic constants to five (E1, E2, G, 21, 12). We calculated the appropriate values of E, 697 

G and  from polar plots of anisotropy for the [010] crystallographic plane in each mineral using 698 

AnisoVis (see Figure 4d, 5d, 5e-f). For an applied uniaxial tensile load (0 in Figure 20) and a plane 699 

strain assumption, the resulting anisotropy of circumferential stress () at the void-matrix 700 

boundary is shown for four different minerals in Figure 21. Each polar plot shows the  701 

normalised by the applied load 0 in the [010] plane, and for two different configurations of the 702 

anisotropy with respect to the load: 0 parallel to the direction of Emax (red curves), and 703 
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perpendicular to the direction of Emax (blue curves). For both of the hydrous sheet silicates talc (c1; 704 

Mainprice et al., 2008) and lizardite (Reynard et al., 2007), the stresses display significant 705 

anisotropy (Figure 21a and b), with amplifications of 6-7 times the stress predicted by assuming the 706 

crystal is isotropic (black curves, calculated with VRH averages of E and ). These stresses are 707 

likely significant for the failure of cracks or narrow fluid-filled pores in dehydrating subducting 708 

slabs (Healy et al., 2009; Ji et al., 2018). For the two feldspar examples, albite (Brown et al., 2016) 709 

and sanidine (Waeselmann et al., 2016), the amplification of circumferential stress is also 710 

significant, at 4-5 times the isotropic prediction. Again, these stresses imply that fluid-filled pores in 711 

phenocrysts of these phases may fail sooner than currently predicted under the assumption of elastic 712 

isotropy. The restriction to 2D may appear limiting in these simple illustrative models, but pending 713 

the development and analysis of fully 3D finite or boundary element models of stresses around 714 

voids in elastically anisotropic media, they can provide useful insights into the relative magnitude 715 

of local stresses and brittle failure. Moreover, we refute the suggestion from Jaeger & Cook (1969) 716 

that as the anisotropy of Young’s modulus in rocks is low, the anisotropy of stresses around pores 717 

and cracks is therefore unimportant.   718 

 719 

 720 

Figure 20. Schematic outline for models of narrow cracks in thin 2D orthotropic plates.  The crack 721 

is subjected to a uniaxial tensile stress, and plane strain is assumed. The colours of the crack 722 

outlines correspond to the circumferential stress predictions in Figure 21.  723 

 724 
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 725 

Figure 21. Predictions of stresses around cracks in thin 2D orthotropic plates.  Curves show the 726 

directional variations in the circumferential stress () normalised by the applied uniaxial tensile 727 

load (0).  a) Talc (c1, triclinic), (010) plane. b) Lizardite, (010) plane. c) Albite, (010). d) 728 

Sanidine, (010).    729 

 730 

6. Summary  731 

We reiterate a key point made by Marmier et al. (2010) in their analysis of chemical compounds: 732 

it’s only by visualising elastic anisotropies, preferably in 3D, that we can truly perceive them and 733 

quantify their directions; this then allows us to relate these elastic properties to the underlying 734 

crystal structure and explore the consequences for their behaviour. In developing AnisoVis and 735 

using it to quantify the anisotropy of a specific mineral, we have presented multiple alternative 736 

visualisations of the directional variation of commonly used elastic properties such as Young’s 737 

modulus (E), Poisson’s ratio (), shear modulus (G) and linear compressibility (). Used in 738 

combination, these depictions serve to increase our understanding of the relationships between the 739 

anisotropy of elastic properties and the underlying crystal symmetry and structure.  740 

For example, we note previously unreported directions in certain minerals with negative Poisson’s 741 

ratios and negative linear compressibilities. A potentially important consequence of these findings 742 

is that there must also be specific directions along which these properties – Poisson’s ratio and 743 

linear compressibility – are 0. These directions will form surfaces in 3D which represent the 744 

boundary between: a) domains of positive and negative Poisson’s ratio (both ‘regular’ and areal), 745 
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along which a uniaxially applied load will produce no lateral strain; and b) domains of positive and 746 

negative linear compressibility, along which an applied hydrostatic load will produce no shortening 747 

or stretching. These surfaces and directions in rock-forming minerals may yet lead to new 748 

discoveries in the physical behaviour of natural systems and novel applications in materials science 749 

or engineering (e.g. Wu et al., 2015).  750 

Considering the results from the database of 246 sets of elastic properties, we observe that: 751 

• significant elastic anisotropy of rock-forming minerals is much more common than previously 752 

reported e.g. many minerals – 33 of the 86 we analysed – have auxetic directions, and some are 753 

areally auxetic;    754 

• the elastic anisotropy of rock-forming minerals is wider than previously reported, with 755 

commonly assumed ‘natural limits’ frequently exceeded e.g. Poisson’s ratio for many minerals 756 

is either < 0 or > 0.5.  757 

For specific minerals, we also observe that:  758 

• elastic anisotropy has consequences for intracrystalline stresses under applied strain (and vice 759 

versa); the difference between an assumption of isotropy and using the full elastic anisotropy is 760 

often of the order of tens of MPa (even for small strains) – i.e. likely to be significant for the 761 

deformation around voids such as pores and cracks, especially in dehydrating or decrepitating 762 

systems;  763 

• elastic anisotropy is important for mechanical (deformation) twining, especially Dauphiné 764 

twinning in quartz but probably in other minerals too;  765 

• coherent phase transformations, such as the - transition in quartz, show a clear correlation 766 

with the magnitude of elastic strain energy per unit volume and the stress dependence of the 767 

transition temperature.  768 

Further work  769 

We are not currently limited by data; we need to process the elasticity data we have and use it to 770 

improve our understanding of Earth processes. In theoretical terms, perhaps the biggest advance 771 

would come from a solution to the Eshelby problem for an anisotropic inclusion in an anisotropic 772 

host, for ellipsoids of general shape and orientation, for the points inside and outside the inclusion. 773 

This problem is non-trivial but would be of direct relevance to the inclusion-host studies estimating 774 

pressure histories, and for mechanical problems involving voids and cracks in anisotropic crystals, 775 

including reacting systems. Numerical modelling studies of the deformation around voids and 776 

cracks might usefully incorporate a wider range of values of E and . Visualisation of direction-777 

specific elastic properties will be useful for future investigations of the mechanics of twinning, 778 

dislocations, and fractures in a wide range of minerals. Earthquake focal mechanisms are known to 779 

depend on the elastic anisotropy of the source region (Vavrycuk, 2005), and better understanding of 780 

the anisotropies in rock-forming minerals is informing models of fabrics in subducting slabs (Li et 781 

al., 2018) and interpretations of microseismicity from commercial hydraulic fracturing operations 782 

(Jia et al., 2018). A practical assessment of the contribution of elastic strain energy to metamorphic 783 

reactions might involve the systematic mapping of major element chemistry around specific 784 

inclusions.   785 
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We believe that publicly available and easy-to-use software tools like AnisoVis may be useful in 786 

teaching environments to guide understanding of the links between mineral properties (elastic, 787 

acoustic, optical) and their underlying symmetry and lattice structure. Following Nye’s original 788 

text, other properties such as piezolectric and thermal conductivities, could also be added and 789 

visualised (Tommasi, 2001; Mainprice et al., 2015). Our AnisoVis MATLAB source code and 790 

sample elasticity files have been made available in open repositories so that other developers and 791 

researchers will optimise and extend the functionality, and that “given enough eyeballs, all bugs are 792 

shallow” (Raymond, 1999).  793 

 794 

Code & Data Availability  795 

AnisoVis, including MATLAB source code, a basic user guide and data files for mineral elasticity 796 

from published sources, is freely available on: 797 

• GitHub (https://github.com/DaveHealy-Aberdeen/AnisoVis) and  798 

• Mathworks FileExchange (https://uk.mathworks.com/matlabcentral/fileexchange/73177-799 

anisovis).   800 
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Appendix A – benchmarks to previously published anisotropic elastic properties  818 

The outputs from AnisoVis, and the calculations underlying them, have been benchmarked against 819 

previously published examples, chiefly from chemistry and materials science literature. Figures 820 



 

Page 38 of 49 

produced by AnisoVis are shown below, with one example per symmetry group, formatted to 821 

mimic the plots in the original publication.  822 

 823 

Figure A1. Benchmarks to Rovati (2004, their Figure 4) for monoclinic cesium dihydrogen 824 

phosphate. Note the extreme auxeticity (negative Poisson’s ratio) shown by this material.   825 

 826 

   

   

Figure A2. Benchmarks to Tan et al. (2015, their Figures 2, 3 and 4) for orthorhombic ZIF-4, a 827 

zeolite. Plots shown for Young’s modulus, shear modulus and Poisson’s ratio.   828 
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 829 

   

   

Figure A3. Benchmarks to Tan et al. (2015, their Figures 2, 3 and 4) for tetragonal ZIF-zni, a 830 

zeolite. Plots shown for Young’s modulus, shear modulus and Poisson’s ratio.   831 

 832 

 
 

Figure A4. Benchmarks to Marmier et al. (2010, their Figure 5 and 6) for cubic cesium. Note the 833 

auxetic nature of Poisson’s ratio.   834 

 835 
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Figure A5. Benchmarks to Gunton & Saunders (1972, their Figures 3 and 6) for trigonal arsenic.  836 

 837 

  

  

  

Figure A6. Benchmarks to Li (1976, their Figure 3) for hexagonal thallium.  838 
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Figure A7. Benchmarks to Mainprice et al. (2008, their Figure 5) for triclinic talc (c1) at 0.0 GPa 839 

(left) and 3.9 GPa (right). The lower pressure example shows auxetic behaviour.     840 
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