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Response to the Anonymous Referee #1 

 
Answer to the main comments. 

 
1.1 Anonymous Referee #1’s main comments 5 

 

Dear Editor: 

 

This paper contains novel ideas about well-test analysis. In this work, the authors attempt to provide type curves for well-test 

analysis of fractured vertical wells at constant injection pressure using a numerical technique. Obtaining the time of 10 

termination of bilinear flow and spatiotemporal evolution of isobars are main outputs of this work. The application of the 

analysis proposed in this work, for instance, was shown in determination of hydraulic-fracture length. Various criteria are 

listed to determine the time for termination of bilinear flow; out of these criteria, reflection criterion lacks proper explanation 

of the mechanism for isobar reflection at fracture tip. 

 15 

The authors have highlighted the advantage of well test under constant injection pressure, as it leads to almost constant well 

storage coefficient and it improves analysis of early-time pressure data. However, they have not clearly explained, at an early 

section of this manuscript, why the time of termination of bilinear flow matters from industry point of view. 

 

The numerical technique is not explained in this manuscript. Also, to demonstrate the quality and transition of the results 20 

through various flow regimes, the authors should show a sample result of pressure contours through domain (e.g., in a 2D 

cross section) for a specific dimensionless fracture conductivity at various times (e.g., at three different times). 

 

Numerous verbal and technical comments including the above shortcomings are mentioned in the attached pdf file. The 

authors are encouraged to edit the manuscript based on these comments and resubmit the manuscript to the editorial office. 25 

 

Sincerely, Reviewer 1 

 

1.2 Author’s main response 

 30 

Dear Editor: 

 

In the first place we want to sincerely thank Anonymous Referee #1 for the detailed and extensive revision of the manuscript 

and for all his suggestions. They have helped us to substantially improve the manuscript and we have implemented to a large 

extent all the suggestions may by him. 35 

 

According to the reflection criterion considered in this work, the termination of bilinear flow occurs at the time at which a 

first variation of pressure is evident in the fracture tip. When lower isobars than the isobar under study have already reached 

the fracture tip, these isobars are partly reflected from the fracture tip toward the well, due to the hydraulic conductivity 

contrast experienced at the interphase between the fracture tip and the matrix. This hydraulic conductivity structure causes 40 
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the isobar reflection at the fracture tip back toward the well and the isobar transmission further into the matrix. Thus, the 

propagation velocity of all isobars decelerates when they leave the fracture tip and start to propagate through the matrix. The 

previous text was added at the beginning of the section 3.2.2 “Reflection criterion”, in order to make the explanation of the 

criterion more understandable. 

 45 

From the industry point of view, the termination time of the bilinear flow is relevant since it can be used to estimate a 

minimum value of fracture length when the dimensionless fracture conductivity 𝑇𝐷 ≥ 3. Moreover, for lower values of  𝑇𝐷 

the termination time of the bilinear flow can be used to restrict the minimum fracture length. This information is important to 

characterize and model a fractured reservoir. Having reliable data on fracture dimensions is critically important for 

production optimization strategies. The introduction was modified including this clarification as well as the corresponding 50 

cites. 

 

In relation to a more detailed description of the numerical model, additional information has been incorporated at the 

beginning of section 2.4 “Description of the model setup”. This information includes the following “We ran the numerical 

simulations in the Subsurface Flow Module of COMSOL Multiphysics® software program. The space- and time-dependent 55 

balance equations, described in section 2.1, together with their initial and boundary conditions are numerically solved in the 

entire modeling domain employing the finite-element method (FEM) in a weak formulation. The discretization of the partial 

differential equations (PDEs) results in a large system of sparse linear algebraic equations, which are solved using the linear 

system solver MUMPS (MUltifrontal Massively Parallel Sparse direct Solver), implemented in the finite element simulation 

software COMSOL Multiphysics®. Utilizing the Galerkin approach, Lagrange quadratic shape functions have been selected 60 

to solve the discretized diffusion equations for the pressure process variable. For the time discretization, a Backward 

Differentiation Formula (BDF, implicit method) of variable order has been chosen.”. We also incorporated two important 

remarks concerning studies of mesh- and boundary condition-independency of the solution in the modeling domain we are 

most interested in. The first one “That way, boundary condition-independency of the solution has been guaranteed for in the 

computational subdomain of most interest” (included in the manuscript in the corresponding place), and the second one at 65 

the end of section 2.4 “We performed mesh convergence studies refining the mesh, particularly, in the computational 

subdomain that contains steep hydraulic gradients, until the solution became mesh-independent.”. 

 

Additionally, in order to show the evolution of isobars we incorporated to the manuscript Figure 3 (added also to this reply), 

which displays simulation results of pressure contours through the computational domain in a 2D cross section for the 70 

dimensionless fracture conductivities 𝑇𝐷 = 0.3 and 𝑇𝐷 = 6.3 for three different times. We chose these values of 𝑇𝐷 because 

they represent two interesting and illustrative scenarios. Furthermore, we introduced the following text in section 3.1 

“Propagation of isobars along the fracture and the matrix”, just after the definition of 𝑃𝑁, “The isobars behave differently 

depending on the value of 𝑇𝐷. For cases with low 𝑇𝐷, it is distinguishable that after the termination of bilinear flow, the 

isobars reveal a tendency of progressing toward an elliptical or pseudo-radial flow while still propagating along the fracture 75 

(see, for example, 𝑇𝐷 =  0.3 in Fig. 3 a, b, c). The lower the value of 𝑇𝐷, the more pronounced this tendency becomes. On 

the other hand, for high 𝑇𝐷 the behavior of the isobars is similar to the formation linear flow beyond the fracture (see 𝑇𝐷 =

 6.3 in Fig. 3 d, e, f). Although the behavior of isobars after the termination of bilinear flow is also highly interesting, this 

aspect is not addressed in further detail in this work. It remains pending to be studied in a follow-up investigation.”. 

 80 

We expose below a list with some clarifications related to the manuscript (the most important ones are discussed above) as 

well as some minor corrections that the Anonymous Referee #1 suggested in the supplement. With the revisions and 

corrections made we hope that all the questions raised by the Anonymous Referee #1 have been addressed.  
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Sincerely, 85 

 

The authors (Patricio-Ignacio Pérez D., Adrián-Enrique Ortiz R., Ernesto Meneses Rioseco). 

 

1.3 Author’s main changes in the manuscript 

 90 

1.3.1 The following text was added at the beginning of the section 3.2.2 Reflection criterion “The reflection criterion 

quantifies the counterclockwise deviation of type-curves from the master curve in Fig. 2 due to isobar reflection at 

the fracture tip (Ortiz R. et al., 2013). When lower isobars than the isobar under study have already reached the 

fracture tip, these isobars are partly reflected from the fracture tip toward the well, due to the hydraulic conductivity 

contrast experienced at the interphase between the fracture tip and the matrix. This hydraulic conductivity structure 95 

causes the isobar reflection at the fracture tip back toward the well and the isobar transmission further into the 

matrix. Thus, the propagation velocity of all isobars decelerates when they leave the fracture tip and start to 

propagate through the matrix. This criterion it is used for high dimensionless fracture conductivities:”. 

 

1.3.2 The introduction was modified including the following clarification “From the industry point of view, accurately 100 

estimating the termination time of the bilinear flow is relevant since it can be used to assess a minimum value of 

fracture length when the dimensionless fracture conductivity 𝑇𝐷 ≥ 3 (Cinco-Ley and Samaniego-V., 1981). To 

underpin the latter, Ortiz R. et al. (2013) demonstrated that for 𝑇𝐷 approximately higher than 10 the fracture half-

length can be estimated as 𝑥𝐹 = 𝐶(𝐷𝑏𝑡𝑒𝑏𝑙)
1 4⁄ , where  𝐶 is a constant, 𝐷𝑏 is the bilinear hydraulic diffusivity, and 

𝑡𝑒𝑏𝑙 the termination time of the bilinear flow. Moreover, for lower values of  𝑇𝐷 the termination time of the bilinear 105 

flow can be used to restrict the minimum fracture length. This information is important to characterize and model a 

fractured reservoir. Having reliable data on fracture dimensions is critically important for production optimization 

strategies.”. 

 

1.3.3 The following information has been incorporated at the beginning of section 2.4 Description of the model setup “     110 

We ran the numerical simulations in the Subsurface Flow Module of COMSOL Multiphysics® software program. 

The space- and time-dependent balance equations, described in section 2.1, together with their initial and boundary 

conditions are numerically solved in the entire modeling domain employing the finite-element method (FEM) in a 

weak formulation. The discretization of the partial differential equations (PDEs) results in a large system of sparse 

linear algebraic equations, which are solved using the linear system solver MUMPS (MUltifrontal Massively 115 

Parallel Sparse direct Solver), implemented in the finite element simulation software COMSOL Multiphysics®. 

Utilizing the Galerkin approach, Lagrange quadratic shape functions have been selected to solve the discretized 

diffusion equations for the pressure process variable. For the time discretization, a Backward Differentiation 

Formula (BDF, implicit method) of variable order has been chosen.”. 

 120 

1.3.4 We incorporated the following remark in the corresponding place of section 2.4 Description of the model setup 

“That way, boundary condition-independency of the solution has been guaranteed for in the computational 

subdomain of most interest.”. 

 

1.3.5 We incorporated the following remark at the end of section 2.4 Description of the model setup “We performed 125 

mesh convergence studies refining the mesh, particularly, in the computational subdomain that contains steep 

hydraulic gradients, until the solution became mesh-independent.”. 
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1.3.6 We incorporated to the manuscript Figure 3. Due to the addition of Fig. 3 to the manuscript, the numbering of the 

subsequent figures as well as the references related to the concerned figures throughout the manuscript has been 130 

consequently shifted. 

 

1.3.7 We introduced the following text in section 3.1 “Propagation of isobars along the fracture and the matrix”, just after 

the definition of 𝑃𝑁, “The isobars behave differently depending on the value of 𝑇𝐷. For cases with low 𝑇𝐷, it is 

distinguishable that after the termination of bilinear flow, the isobars reveal a tendency of progressing toward an 135 

elliptical or pseudo-radial flow while still propagating along the fracture (see, for example, 𝑇𝐷 =  0.3 in Fig. 3 a, b, 

c). The lower the value of 𝑇𝐷, the more pronounced this tendency becomes. On the other hand, for high 𝑇𝐷 the 

behavior of the isobars is similar to the formation linear flow beyond the fracture (see 𝑇𝐷 =  6.3 in Fig. 3 d, e, f). 

Although the behavior of isobars after the termination of bilinear flow is also highly interesting, this aspect is not 

addressed in further detail in this work. It remains pending to be studied in a follow-up investigation.”. 140 

 

Answer to the relevant comments in the supplement. 

 

As suggested by the journal’s guidelines, only the most relevant comments are addressed here. Further minor comments can 

be read in the authors answer to the Anonymous Referee #1’s comments, previously uploaded to the interactive webpage. We 145 

want to indicate, however, that all changes made to the manuscript regarding the minor comments are displayed in the 

marked-up version of the manuscript. 

2.1 Anonymous Referee #1’s comment, P1L11 of the old version of the manuscript. 

 

Injection wells in operation usually do not work under constant pressure. They operate at specified injection rates. The 150 

authors should clarify about the operational mechanism that the constant-pressure injection is feasible. If there is not enough 

operational insights about this condition, the authors should limit this constant-pressure condition to producing wells. 

 

2.2 Author’s response 

 155 

You are right, in most cases operational injection wells work under constant flow rate. However, our investigation aims at 

contributing to a better understanding of the evaluation and interpretation of transient flow rate curves and pressure diffusion 

in fractured reservoirs for both producing wells and well tests. Some well tests are performed under a constant pressure 

condition, they have the advantage of minimizing changes in the wellbore storage coefficient  (Earlougher Jr., 1977). 

 160 

2.3 Author’s change in the manuscript 

 

Accordingly, the first sentence of the abstract was modified to “This work studies intensively the flow in fractures with finite 

hydraulic conductivity intersected by a well injecting/producing at constant pressure, either during an injection/production 

well test or the operation of a production well.”. 165 
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3.1 Anonymous Referee #1’s comment, P2L63 of the old version of the manuscript. 

 170 

At constant-pressure boundary condition? Please be clear about what conditions lead to no analytical solution for the 

pressure diffusion equation. 

 

3.2 Author’s response 

 175 

There is no analytical solution for the pressure diffusion equation when considering the case of injecting/producing water 

to/from a vertical fracture embedded in a matrix by means of a well. 

 

3.3 Author’s change in the manuscript 

 180 

Accordingly, in the manuscript the sentence was modified to “Conceivably, one of the main reasons why constant pressure 

tests is not a more common technique in reservoir engineering arises from the fact that no analytical solutions are available 

for the pressure diffusion equation when considering injection/production at constant pressure in fractured geologic media 

(Kutasov and Eppelbaum, 2005).” 

 185 

4.1 Anonymous Referee #1’s comment, P8L229 of the old version of the manuscript. 

 

What does "acceleration" mean here? The authors must clarify about its meaning in the manuscript. 

 

4.2 Author’s response 190 

 

We have considered the classic definition of acceleration, which is the rate of change of velocity with respect to time. 

 

4.3 Author’s change in the manuscript 

 195 

The previous statement was added to the manuscript (in the corresponding place) in order to clarify the meaning of 

acceleration. 

 

5.1 Anonymous Referee #1’s comment, P8L234 of the old version of the manuscript. 

 200 

Figure 5 contradicts with the statement that the higher the isobar, the sooner it migrates. For instance, consider a specific 

time (e.g., 10^-8). Isobar 0.66 reaches to x_iD of 0.02 whereas isobar 0.01 reaches to x_iD of 0.2. This shows that isobar 

0.01 is faster than isobar 0.66. Please revise the relevant statements to clarify this contradiction. 

 

5.2 Author’s response 205 

 

Considering the case you exposed related to Fig. 5 (now Fig. 6 in the new version of the manuscript), the isobar 0.66 reaches 

the grey line at 𝑥𝑖𝐷 = 0.02 and at 𝜏 =5 ∙ 10−10, and the isobar 0.01 reaches the grey line at 𝑥𝑖𝐷 = 0.2 and at 𝜏 =2 ∙ 10−9. We 

can see that the isobar 0.66 (in terms of time) reaches the grey line earlier than the isobar 0.01. This means that the isobar 

0.06 starts to behave according to the bilinear flow behavior earlier than the isobar 0.01. That is what we mean in the 210 

sentence “when discussing qualitatively about the early time we notice that the higher the value of the isobar 𝑃𝑁 the sooner it 

migrates proportional to the fourth root of time (Fig. 6)”. We do not state that the higher the value of isobar the faster it  is, 
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we state that the higher the isobar the sooner it starts to behave according to bilinear flow, that is propagating along the 

fracture proportional to the fourth root of time. However, after reading the sentence more carefully we find that the word 

combination “sooner it migrates” may be misleading. 215 

 

5.3 Author’s change in the manuscript 

To make it clearer, we slightly reformulated the sentence into “when discussing qualitatively about the early time we notice 

that the higher the value of the isobar 𝑷𝑵 the sooner it starts behaving proportional to the fourth root of time (Fig. 6)”. 

 220 

6.1 Anonymous Referee #1’s comment, P10L275 of the old version of the manuscript. 

 

According to Fig. 2, the terms 1/q_wDt and 2.60tau^1/4 should be replaced with log(1/q_wDt) and log(2.60tau^1/4) because 

Fig. 2 is in log-log plot. 

 225 

6.2 Author’s response 

 

We followed your recommendation. 

 

6.3 Author’s change in the manuscript 230 

 

We corrected the equation accordingly. This was also carried out for all concerned cases. 

 

7.1 Anonymous Referee #1’s comment, P10L276 of the old version of the manuscript. 

 235 

Not defined in the paper. The term in Fig. 2 is q_wD not q_wDt. 

 

7.2 Author’s response 

 

As you say, Fig. 2 is a graph showing 1/𝑞𝑤𝐷 vs. 𝜏 for different dimensionless fracture conductivities. The curves describing 240 

the behavior of the reciprocal of dimensionless flow rate over time for different dimensionless fracture conductivities, from 

𝑇𝐷 = 0.1 up to 𝑇𝐷 = 100, are referred to as type-curves (black lines in Fig. 2). We invoke the behavior of 𝑞𝑤𝐷  for the 

different type-curves as 𝑞𝑤𝐷𝑡. The latter is the term we compare to the master curve (in the case of reflection criterion) or the 

bilinear-fit-curve (in the case of transition criterion) through the definition of the criteria. 

 245 

7.3 Author’s change in the manuscript 

 

To clarify this, the following sentence has been now added to the manuscript “where 𝑞𝑤𝐷𝑡 represents the dimensionless flow 

rate 𝑞𝑤𝐷  of the specific type-curve under study (Fig. 2)”. 

 250 

8.1 Anonymous Referee #1’s comment, P10L283 of the old version of the manuscript. 

 

At infinity? What is infinity here? 
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8.2 Author’s response 255 

 

When we referred to “infinity”, we meant by that “an infinitely long fracture” 

 

8.3 Author’s change in the manuscript 

 260 

We reformulated the concerned sentence to “where 𝑞𝑤𝐷∞ denotes the dimensionless flow rate of the master curve (Fig. 2), 

which describes the behavior for the case of an infinitely long fracture.”. We hope now that this way the doubt has been 

removed. 

 

9.1 Anonymous Referee #1’s comment, P10L284 of the old version of the manuscript. 265 

 

This must be tau_t not tau_r, and different from the parameter in the following parentheses. 

 

9.2 Author’s response 

 270 

𝜏𝑡 represents the termination time of the bilinear flow regime when the transition criterion is used to identify the time at 

which bilinear flow ends. Analogously, 𝜏𝑟  represents the termination time when the reflection criterion is utilized to 

determine the time at which the bilinear flow regime culminates. Consequently, since we are presenting the reflection 

criterion, we must use 𝜏𝑟 within the parentheses. Please see also the next answer to the next comment. 

 275 

9.3 Author’s change in the manuscript 

 

This answer does not lead to any change in the manuscript. 

 

10.1 Anonymous Referee #1’s comment, P10L284 of the old version of the manuscript. 280 

 

According to Fig. 7, the high T_D, the shorter the reflection time (tau_r; box symbols) not termination time (tau_t; circle 

symbols). tau_t is almost constant with change of T_D. 

 

10.2 Author’s response 285 

 

The terminology termination time is generally involved in every criterion that aims at identifying the end of the bilinear flow 

regime. This terminology (termination time) is a general way to refer to the time at which bilinear flow ceases and it is not 

attributed to any specific criterion. For instance, the transition time 𝜏𝑡 and reflection time 𝜏𝑟 represent the termination time of 

bilinear flow, but for different ranges of 𝑇𝐷. 290 

 

10.3 Author’s changes in the manuscript 

 

10.3.1 To avoid confusion to the reader, we changed termination time to “transition time” in section 3.2.1, termination 

time to “reflection time” in section 3.2.2, termination time to “arrival time” in section 3.2.3, and termination time to 295 

“fracture time” in section 3.2.4. 
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10.3.2 Additionally, we added the following sentence in the introductory part of section 3.2 “It is noteworthy that the 

termination time is referred to differently, according to the criterion used to identify the time at which the bilinear 

flow regime ceases (e.g. transition time 𝜏𝑡, reflection time 𝜏𝑟, arrival time 𝜏𝑎, and fracture time 𝜏𝐹, introduced in the 300 

subsections 3.2.1, 3.2.2, 3.2.3, and 3.2.4, respectively).”. 

 

11.1 Anonymous Referee #1’s comment, P10L288 of the old version of the manuscript. 

 

A criterion is a conditional statement which determines a condition upon satisfaction of the equality in a criterion. Because 305 

of that, Eq. 22 in this section must be an inequality such as epsilon>0. Provided that epsilon>0, bilinear flow switches to 

radial flow. Right? 

Please clarify all above criteria (reflection criterion, transition criterion) following this comment. 

 

11.2 Author’s response 310 

 

As you raise the question, it may be expected to be radial flow, but it may be elliptical or pseudo-radial as well. In our 

investigation we did not go deeper to prove it, thus we cannot confirm it.  

 

11.3 Author’s changes in the manuscript 315 

 

11.3.1 We followed your advice of substituting “=” by “<” in the epsilon definitions in the respective criteria. 

 

11.3.2 The following explanation was added at the end of the introductory part of section 3.2 “Further, criteria generally 

aim at defining the deviation of curves obtained by numerical simulations from analytical fit curves that correspond 320 

to bilinear flow. The deviation is quantified by introducing the quantity 𝜀 (see subsections 3.2.1, 3.2.2, and 3.2.4). 

That is, the numerical results differ from the analytical bilinear fit curves by a value of ε due to the transition to 

another flow regime. Throughout the manuscript we use, for instance, 𝜀 = 0.01 or 𝜀 = 0.05 corresponding to 1% 

and 5% deviation, respectively. This employed notation is intended to express that when a separation between 

numerical results and fit curves is greater than 1% or 5%, the termination of bilinear flow is evidenced.”. We hope 325 

now that this contributes to a better understanding of the epsilon definitions in the criteria and the use of epsilon 

values throughout the manuscript. 

 

12.1 Anonymous Referee #1’s comment, P12L337 of the old version of the manuscript. 

 330 

A deceleration? Figs. 3g-j show that the isobars decelerate once they reach the fracture tip. 

 

12.2 Author’s response 

 

We recognize that the statement used is not clear in English and therefore we reformulated it, hoping that it is now clear 335 

what we mean. In Figs. 3g-j (now Figs. 4g-j in the new version of the manuscript) we refer to the increase of velocity just 

before the isobars arrives at the fracture tip, what correspond to an acceleration. The latter was demonstrated in the last part 

of section 3.1 “Propagation of the isobars along the fracture and the matrix”. 

 

 340 
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12.3 Author’s change in the manuscript 

 

We rephrased the words concerned and now we write the following “at times shortly before the isobars reach the fracture 

tip”. We went through the manuscript and whenever this previous “confusing phrase” was present we corrected accordingly.  

 345 

13.1 Anonymous Referee #1’s comment, P12L362 of the old version of the manuscript. 

 

What epsilon is this one? There are three definitions of epsilon in Eqs. 20-22. 

 

13.2 Author’s response 350 

 

When we use the expression 𝜀 and 𝑃𝑁 = 0.01, it means that we are studying the case of the isobar 𝑃𝑁 = 0.01 and we are 

considering that for values of 𝜀 greater than 0.01, the bilinear flow ends. In the concerned sentence we are referring to Fig. 

7a (now Fig. 8a in the new version of the manuscript), where the four criteria presented in this manuscript play a role. 

Therefore, this epsilon is related to the relevant criteria exhibiting a value of 0.01 according to their respective definitions 355 

(Eq. 20 – 22). It is important to note that only one criterion can be fulfilled at a time. In Fig. 7b (now Fig. 8b in the new 

version of the manuscript), we consider 𝜀 and 𝑃𝑁 = 0.05, that is we are studying the isobar 𝑃𝑁 = 0.05 and we are using a 

value of 𝜀 = 0.05 to determine the termination of bilinear flow, for all pertinent criteria. 

 

13.3 Author’s changes in the manuscript 360 

 

13.3.1 To make it more understandable for the reader, we incorporated the following clarification in the introductory part 

of section 3.2 “It is important to mention that only one criterion can be fulfilled at a time”. 

 

13.3.2 We incorporated the following clarification in the corresponding place (right after Eq. 24) “It is worth noting that 365 

when using the expression 𝜀 and 𝑃𝑁 = 0.01, it means that we are studying the case of the isobar 𝑃𝑁 = 0.01 and we 

are considering that for values of 𝜀 greater than 0.01, the bilinear flow ends. Note further that when considering 𝜀 

and 𝑃𝑁 = 0.05, we are studying the isobar 𝑃𝑁 = 0.05 and we are using a value of 𝜀 = 0.05 to determine the 

termination of bilinear flow, for all pertinent criteria.” . 

 370 

14.1 Anonymous Referee #1’s comment, P13L364 of the old version of the manuscript. 

 

Not clear. Explain more with magnifying the area of interest out of Fig. 7 for this statement. 

 

14.2 Author’s response 375 

 

In order to clarify this, we modified the concerned sentence. We now hope that this new statement better explains this 

striking feature observed in Fig. 7a and Fig. 7b (now Fig. 8a and Fig. 8b in the new version of the manuscript), within the 

considered ranges. That said, we further hope that magnifying the areas in the graphs, where this feature is exposed, is no 

longer necessary. We believe that magnifying the area will not give substantial information to the reader. 380 
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14.3 Author’s change in the manuscript 385 

 

In order to clarify this, we modified the concerned sentence to “Note that for the case 𝜀 and 𝑃𝑁 = 0.01 and 2 < 𝑇𝐷 < 3 (see 

Fig. 8a), it is observed that values (non-filled circles) depart from the fit-curve linked to the transition criterion and start 

converging toward the fit-curve associated with the reflection criterion. A similar behavior is also observed for the case 𝜀 

and 𝑃𝑁 = 0.05 and 1.1 < 𝑇𝐷 < 2 (see Fig. 8b). A comprehensive study is required to unravel more precisely what occurs 390 

within those ranges of 𝑇𝐷. Based on their work, Ortiz R. et al. (2013) came to the same conclusion.”. 

 

 

 

 395 
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Response to the Anonymous Referee #2 

Anonymous Referee #2’s comment 

 430 

“This paper investigates the flow in a fracture from an injection well into a confined reservoir. The paper seeks for a 

numerical solution to be compared with an analytical solution already existed. To me the paper does not have a novelty and 

as written does not add additional value. The authors have previously published a similar paper on the subject: "Two-

dimensional numerical investigations on the termination of bilinear flow in fractures" by Ortiz and Renner 2013.” 

 435 

Author’s response 

 

Dear Editor:  

 

We are grateful to the Anonymous Referee #2 for his devoted time and his feedback, which allows us to enhance the quality 440 

of our manuscript and clarify some observations made by the Referee #2. In particular, we want to thank the Anonymous 

Referee #2 also for his relatively negative opinion, which may have originated from a series of misunderstandings while 

reading the manuscript. That motivated and encouraged us to make some points in the manuscript even clearer so that such 

possible misunderstandings are avoided. In the following we want to clear up those misunderstandings. 

 445 

A.1 Anonymous Referee #2’s statement 

 

“The paper seeks for a numerical solution to be compared with an analytical solution already existed”. 

 

A.2 Author’s response  450 

 

The comparison between the numerical simulation result with the semi-analytical (not analytical) solution proposed by 

Guppy et al. (1981b) was performed solely with the objective of verifying that our numerical model was well set. 

Subsequently, by using (i) the validated numerical solution and (ii) different methodologies, we were able to produce novel 

results that are presented and documented for the first time in our work for the case of constant pressure in the well. As 455 

explained below, it is important to strengthen the point that the numerical experiments conducted in this study and the extent 

of the analyses performed go far beyond the study of the transient flow rate done by Guppy et al. (1981b).  

 

A.3 Author’s change in the manuscript 

 460 

This answer does not lead to any change in the manuscript. 

 

B.1 Anonymous Referee #2’s statement  

 

“To me the paper does not have a novelty and as written does not add additional value”. 465 
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B.2 Author’s response 470 

 

Since it may be the case that the novelty of our present work has not been clearly highlighted in the manuscript, we present 

the new findings of this work for the case of injecting/producing at constant pressure in the well:  

 

i. In this work, we present for the first time for the case of injection/production at constant pressure in the well the equation 475 

describing the spatiotemporal evolution of the isobars along the fracture during the bilinear flow regime (Eq. 16).  

 

ii. In this study, expressions are presented for the first time that quantitatively identify the termination time of bilinear flow 

when injecting/producing at constant pressure into/from the fracture. The criteria used to quantitatively identify the 

termination of bilinear flow are explained in detail in sections 3.2.1, 3.2.2, 3.2.3, and 3.2.4. In this work two methodologies 480 

are employed to detect the termination of bilinear flow under constant pressure conditions in the well: (a) considering the 

transition of flow rate in the well and (b) considering the propagation of isobars 𝑃𝑁 along the fracture (highlighted in section 

3.2 “Termination of bilinear flow”). 

 

iii. In this investigation, a new methodology is exposed to constrain the fracture length, based on the end time of the bilinear 485 

flow and using the Eq. 16 that describes the spatiotemporal evolution of the isobars along the fracture during the bilinear 

flow regime (see section 4.1). 

 

iv. In this manuscript, an expression is presented for the first time that allows to determine the time at which a specific isobar 

arrives at the fracture tip. In terms of dimensionless parameters, this expression is dependent only on 𝑇𝐷 (see section 3.2.3 490 

and τ𝑎 in Fig. 7 of the manuscript version read by the Referee #2).  

 

v. A study is conducted for the first time in this work with the purpose of analyzing the velocity of the isobars along the 

fracture, aiming at distinguishing that the isobars experience an acceleration shortly before they arrive at the fracture tip, 

which differs from their previous behavior (see end of section 3.1). 495 

 

The comments made by the Referee #2 encouraged us to carry out an extensive and detailed revision of the manuscript. We 

acknowledge that the novelty of the results and the key points in our work might have not been highlighted enough in the old 

version of the manuscript. Therefore, we highlighted the most significant findings of this work in the conclusion section, 

making it clearer what the novelty of this work is. 500 

 

B.3 Author’s change in the manuscript  

 

The conclusion section has been restructured and reformulated in the new version of the manuscript as follows: 

 505 

“Numerical results obtained in this work corroborated the relation of proportionality previously presented by Guppy et al. 

(1981b) between the reciprocal of dimensionless flow rate 1/𝑞𝑤𝐷  and the fourth root of dimensionless time 𝜏 during the 

bilinear flow regime for the case of injection/production at constant pressure in the well. Guppy et al. (1981b) obtained the 

proportionality factor 𝐴 =  2.722 (Eq. 10), which is slightly greater than the factor obtained here 𝐴 =  2.60 (Eq. 12). This 

discrepancy may be attributed to our finer spatial and temporal discretization in comparison with the discretization used by 510 

Guppy et al. (1981b). 

The most significant findings of this work are: 
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i) During the bilinear flow regime, the migration of isobars along the fracture is described as: 𝑥𝑖(𝑡) = 𝛼𝑏(𝐷𝑏𝑡)1/4, where 

𝐷𝑏 = 𝑇𝐹
2 𝑘𝑚𝜂𝑓𝑠𝑚⁄  (m4 s-1) is the effective hydraulic diffusivity of fracture during the bilinear flow regime. In addition, the 515 

migration of isobars in the matrix is given by: 𝑦𝑖(𝑡) = 𝛼𝑚(𝐷𝑚𝑡)1/2, where 𝐷𝑚 = 𝑘𝑚/(𝜂𝑓𝑠𝑚) (m2 s-1) denotes the hydraulic 

diffusivity of matrix. This simulation results are in line with the study conducted by Ortiz R. et al. (2013) for the case of 

wells injecting/producing at constant flow rate.  

 

ii) The termination of bilinear flow obtained from transient flow rate analysis is given by (a) the transition time 𝜏𝑡 520 

(circumferences in Fig. 8 and Eq. 20), valid for low 𝑇𝐷 and (b) the reflection time 𝜏𝑟 (squares in Fig. 8 and Eq. 21), valid for 

high 𝑇𝐷.  

 

iii) From the physical point of view, it is of interest to study the propagation of isobars along the fracture, for which the 

termination of bilinear flow has been found in this work to be given by (a) the fracture time 𝜏𝐹 (filled circles in Fig. 8 and 525 

Eq. 22), valid for low 𝑇𝐷 and (b) the arrival time 𝜏𝑎 (triangles in Fig. 8), valid for high 𝑇𝐷. However, this methodology may 

encounter technological obstacles in real field situations. 

 

iv) A new methodology is presented to constrain the fracture length (section 4.1), based on the end time of the bilinear flow 

and using Eq. (16) that describes the spatiotemporal evolution of the isobars along the fracture during the bilinear 530 

flow regime. 

 

v) In terms of dimensionless parameters, the time at which a specific isobar arrives at the fracture tip is dependent only on 𝑇𝐷 

(see section 3.2.3 and τ𝑎 in Fig. 8).  

 535 

Similarly as in Ortiz R. et al. (2013), it is observed that the isobars exhibit a peak of acceleration shortly before they arrive at 

the fracture tip (Figs. 4 and 6). This acceleration was verified by studying the velocity of isobars using the graphs 𝑣𝑖𝐷  vs. 𝜏 

and 𝑣𝑖𝐷  vs. 𝑥𝑖𝐷  (Fig. 7). It was concluded that for a fixed dimensionless position in the fracture 𝑥𝑖𝐷 , the velocity 𝑣𝑖𝐷  is higher 

for lower values of normalized isobars 𝑝𝑁 as well as for higher dimensionless fracture conductivities 𝑇𝐷 (see Figs. 7b and 

7d). 540 

In a follow-up study, it would be interesting to include the effect of fracture storativity and investigate, utilizing an analogue 

method to that discussed in this work, the behavior of a fracture with conductivity high enough to lead to fracture and 

formation linear flow.” 

 

C.1 Anonymous Referee #2’s statement  545 

 

“The authors have previously published a similar paper on the subject: "Two-dimensional numerical investigations on the 

termination of bilinear flow in fractures" by Ortiz and Renner 2013.”. 

 

C.2 Author’s response 550 

 

Although, the present work uses some of the methodologies presented by Ortiz R. et al. (2013), the present work considers, 

among other aspects, a different study case. Ortiz R. et al. (2013) studied the behavior of the bilinear flow regime in a 

fracture and matrix formation injecting/producing at constant flow rate in the well, whereas we investigate in the present 

work the case of injecting/producing at constant pressure in the well. In addition, we want to clarify that only one of the 555 

present authors published the article cited by the Referee #2. 
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Our work constitutes a complement and a further development of the work previously published by Ortiz R. et al. (2013). 

 

C.3 Author’s change in the manuscript 

 560 

Despite the fact that we refer to the previous work conducted by Ortiz R. et al. (2013) in the introduction section while 

addressing the state of the art in the topic in question, we additionally refer to the study of Ortiz R. et al. (2013) in the new 

version of this manuscript by adding the following sentence in the introduction, in the line 106 of the manuscript version 

read by the Referee #2: “Some of the methodologies used in this work are inspired by the study conducted by Ortiz R. et al. 

(2013) for wells operating at constant flow rate (pressure transient analysis)”. 565 

 

1.1.1 Anonymous Referee #2’s statement  

 

“The problem statement is very simplified.”. 

 570 

1.1.2 Author’s response 

 

This observation may have derived from the Referees #2’s assumption that the authors did not use a dual-porosity dual-

permeability model. As we explain later, the general formulation of the physical problem in question is performed using a 

dual-porosity dual-permeability approach (see few lines below). Further, we use a fit-for-purpose model and with the aim of 575 

investigating the behavior of isobars along a fracture with finite conductivity, the model captures the main physical processes 

and reliably represents reservoir structure and property distribution (dual-porosity dual-permeability).  

 

1.1.3 Author’s change in the manuscript 

 580 

This answer does not lead to any change in the manuscript. 

 

1.2.1 Anonymous Referee #2’s statement  

 

“Numerical solutions already exist” 585 

 

1.2.2 Author’s response 

 

To the best of our knowledge, only a semi-analytical solution for the transient well flow rate exists when imposing a constant 

pressure in the well, which has been presented by Guppy et al. (1981b). No numerical investigation has been documented for 590 

(i) the study of the advancement of isobars along the fracture and (ii) the termination time of bilinear flow, when operating 

with constant pressure in the well. We want to emphasize that finding a numerical solution to be compared with a semi-

analytical solution documented by Guppy et al. (1981b) does not constitute the main purpose of our investigation. This 

comparison was performed only with the purpose of corroborating that our numerical experimental design was well posed. 

Subsequently, by using the validated numerical solution we were able to produce the novel results mentioned previously in 595 

this letter. 

 

We carefully revised each publication mentioned by the Referee #2. It is correct that all these investigations seek for 

analytical or semi-analytical solutions, however, with the exception of Guppy et al. (1981b), none of them consider the 

problem statement with a constant pressure in the well. As mentioned earlier, the semi-analytical solution documented by 600 
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Guppy et al. (1981b) was used in our work solely to validate the numerical solution obtained using the simulation software 

COMSOL Multiphysics.  

 

We kindly ask the Referee #2 to have a look at the further remarks 1-2 included at the end of this reply. 

 605 

1.2.3 Author’s change in the manuscript 

 

This answer does not lead to any change in the manuscript. 

 

2.1 Anonymous Referee #2’s comment  610 

 

“Use of a reservoir simulator is recommended than COMSOL. Please check the literature on numerical solutions of reservoir 

simulations. Numerical solutions using reservoir simulations provide additional options necessary for this work: dual-

porosity dual-permeability models. Authors might be able to use Comsol porous media flow module. However, there might 

be more updates in reservoir simulations packages. I checked the underlying equations and there is no porosity or indication 615 

of porous medium. A dual-porosity dual-permeability model must be used in this case. Similar research using this approach: 

Dejam, M., Hassanzadeh, H. and Chen, Z., 2018. Semianalytical solution for pressure transient analysis of a hydraulically 

fractured vertical well in a bounded dual-porosity reservoir. Journal of hydrology, 565, pp.289-301.” 

 

2.2 Author’s response 620 

 

We want to clarify that we did not use “Comsol Porous Media Flow Module”. The Comsol Multiphysics module we used is 

“Subsurface Flow Module”, which includes groundwater flow in porous and fractured geologic media. This is clearly stated 

in our manuscript (see section 2.4 of the new version of the manuscript). For further details we kindly ask the Referee #2 to 

have a look at:  625 

 

i. COMSOL Multiphysics Reference Manual, version 5.4, COMSOL, Inc, www.comsol.com 

  

ii. Subsurface Flow Module User's Guide, version 5.4, COMSOL, Inc, www.comsol.com. Chapter 3 Porous Media and 

Subsurface Flow Interfaces, and specially Subchapter The Darcy’s Law Interface and Subchapter The Fracture Flow 630 

Interface. 

 

It is worth noting that dual-porosity dual-permeability models set up in COMSOL Multiphysics have been successfully 

tested, validated and benchmarked in numerous published works (e.g. Shao et al. 2014). 

 635 

We agree with the Referee #2 that for the question at hand one must use a dual-porosity dual-permeability model and so we 

did indeed in our work. We kindly encourage the Referee #2 to carefully read the Eqs. (1) and (2) (see 𝑘𝑚 (m2) and 𝑇𝐹  (m3)), 

where we explicitly consider two permeabilities, one for the matrix formation and one for the fracture. 

 

As for porosity of the matrix rock and the fracture, these are considered in the respective diffusivity equations (Eqs. 1 and 2, 640 

respectively). In our work, porosity is implicitly included in the respective specific storage capacity for the matrix and the 

fracture (𝑠𝑚 (Pa-1) and 𝑠𝐹 (Pa-1), see Eqs. 1 and 2, respectively). The value of 𝑠𝑚 (Pa-1) used in our work is documented in 

section 2.4 and the value of 𝑠𝐹 (Pa-1) is neglected since the fracture is considered nondeformable and the amount of fluid in 

the fracture is considered small enough to consider its compressibility as negligible. In addition, the porosity of the fracture 

http://www.comsol.com/
http://www.comsol.com/
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is negligible in comparison to the porosity of the matrix. The pressure in the fracture is dictated by an inhomogeneous 645 

diffusivity equation, which contains a time-dependent source term 𝑞𝐹(𝑥, 𝑡) but it does not involve an intrinsic transient term. 

The storativity or more precisely the storage coefficient depends on porosity of rock and compressibility of fluid and rock. 

We kindly ask the Referee #2 to have a look at: 

 

- Singhal and Gupta 2010, Chapter 8 Hydraulic Properties of Rocks, and specifically Eqs. 8.11 and 8.12, as well as 650 

Subchapter 8.2.1 Relationship of Hydraulic Conductivity with Fracture Aperture and Spacing, Eq. 8.15. 

 

- Maliva 2016, Chapter 1 Aquifer Characterization and Properties, and specially Subchapter 1.4.3 Storativity. 

 

- Bear 2007, Chapter 5 Mathematical Statement of the Groundwater Forecasting Problem, and more precisely Subchapter 655 

5.1 Aquifer Storativity and Subchapter 5.2 Basic Continuity Equation, Eqs. 5.20 – 5.29. 

 

- Bear and Cheng 2010, Chapter 5.1 Mass Balance Equations, and particularly Subchapter 5.1.2 Deformable Porous Medium 

and Subchapter 5.1.3 Specific Storativity, Eqs. 5.1.30 – 5.1.32 and Eqs. 5.1.47 – 5.1.50; to mention a few. 

 660 

In particular, we kindly ask the Referee #2 to have a look at the following link for the physical and numerical formulation of 

dual-porosity dual-permeability model in COMSOL Multiphysics:  

 

- https://www.comsol.com/model/discrete-fracture-691 

 665 

For the formulation of the groundwater flow equation (so-called “diffusivity equation”), which is a result of the combination 

of the impulse (Darcy equation) and mass (continuity equation) balance equations, in terms of the storage coefficient we 

kindly ask the Referee #2 to have a look at: 

 

- Singhal and Gupta 2010, Subchapter 7.1.3 General Equation of Flow, Eqs. 7.19-7.25, Subchapter 19.5 Modeling of 670 

Homogeneous Porous Aquifer, Eqs. 19.1, 19.3 and 19.4. 

 

- Bear 2018, Chapter 5 Modeling Single-Phase Mass Transport, and specifically Subchapter 5.3.1 Deriving 2-D Balance 

Equations by Integration, A. Confined Aquifer, Eqs. 5.3.26 – 5.3.33. 

 675 

- Bear 2007, Chapter 5 Mathematical Statement of the Groundwater Forecasting Problem, and more precisely Subchapter 

5.1 Aquifer Storativity and Subchapter 5.2 Basic Continuity Equation, Eqs. 5.20 – 5.29. 

 

- Bear and Cheng 2010, Chapter 5.1 Mass Balance Equations, and in particular Subchapter 5.1.4 Flow equations, Eqs. 5.1.73 

– 5.1.76.  680 

 

- To mention a few.  

 

In reservoir engineering, it is more typical for the transient diffusivity equation to be given explicitly in terms of porosity of 

the formation and compressibility of fluid and rock. In groundwater hydraulics and hydrogeology, it is more common to 685 

express the transient diffusivity equation in terms of the storage coefficient as we did in our work. 

 

https://www.comsol.com/model/discrete-fracture-691
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That said, we want to point out that dual-porosity dual-permeability models have been successfully mathematically modelled 

and simulated using the simulation software COMSOL Multiphysics (e.g. Shao et al. 2014 and references therein). As for the 

mathematical physics, as described in section 2.1, in our work the dual-porosity dual-permeability model, implemented in 690 

COMSOL Multiphysics, is examined by considering the diffusivity equation for the rock matrix and for the fracture (Eqs. 1 

and 2, respectively), each containing their respective permeability and porosity (read above) parameters (𝑘𝑚 (m2), 𝑇𝐹  (m3) 

and 𝑠𝑚 (Pa-1), 𝑠𝐹 (Pa-1)). The coupling between the two equations is given by the term 𝑞𝐹(𝑥, 𝑡) (Eq. 4), which expresses the 

mass exchange between fracture and matrix. We hope that it is now clear that the general formulation of our numerical 

model is expressed in terms of a dual-porosity dual-permeability approach. 695 

 

We kindly ask the Referee #2 to have a look at the further remarks 3-7 included at the end of this reply. 

 

Please note that all the references of this answer are included at the end of this reply.  

 700 

2.3 Author’s changes in the manuscript 

 

2.3.1 We added in the new version of the manuscript the following clarifying statement right before Eq. (3) “In addition, 

the porosity of the fracture is negligible in comparison to the porosity of the matrix. Note, however, that the 

pressure in the fracture is dictated by an inhomogeneous diffusivity equation, which contains a time-dependent 705 

source term 𝑞𝐹(𝑥, 𝑡) but it does not involve an intrinsic transient term.”. 

2.3.2 To avoid possible misunderstandings and make this point even clearer in the new version of the manuscript, we 

rephrased the second sentence of the beginning of section 2.1 “governing equations and parameters”. Now we write 

in the revised manuscript “In a general formulation of a dual-porosity dual-permeability model, the equation 

utilized to describe the hydraulics of single-phase compressible Newtonian fluid in a reservoir matrix is given by:”. 710 

Additionally, right after the presentation of Eq. (1) and when referring to the storage coefficient, we write the 

following “It is worth noting that the storage coefficient depends on porosity of rock and compressibility of fluid 

and rock”. The Referee #2 will be able to see these clarifications in the revised version of the manuscript. We hope 

now that this fundamental misunderstanding is cleared up. 

 715 

3.1 Anonymous Referee #2’s comment  

 

“The effect of boundary condition can be investigated by changing the boundary condition from close to open and even 

partially open boundary condition instead of changing the size of the domain. The effect of boundary condition must be 

investigated. The termination of bilinear flow and transition to boundary dominated flow is dictated by the boundary. It is 720 

recommended to change the boundary condition for a specific domain and analyze the results or investigate the effect of 

distance to a closed boundary on the results.” 

 

3.2 Author’s response 

 725 

We agree with the Referee #2 that the effect of boundary condition must be investigated. There are different ways to conduct 

such study. As explained in the manuscript version read by the Referee #2, we performed such a study of the effect of 

boundary condition on the simulation results. For the concrete model described in the present work, we chose the method of 

enlarging the modeling domain size until a boundary-condition-independent simulation outcome was observed. That is, the 

boundaries of the model were set far enough that the chosen boundary condition (no-flow) had no impact on the simulation 730 

results.  
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The Referee #2 proposed to study the effect of boundary conditions by changing them from close to open reservoir. We 

followed Referee #2’s suggestion since it represents another way of proving that in our model the boundary conditions do 

not affect the results for the interested simulation time. We see here an opportunity to make this point clearer and avoid 

misunderstandings. 735 

 

In Fig. 1 of this answer (see at the end of this response) we show a similar graph to that used in the manuscript to study the 

behavior of the reciprocal of flow rate in the well vs. time (Fig. 2 in the manuscript). We find this graph appropriate to 

investigate the influence of changing the boundary condition from no-flow to constant pressure (𝑝 = 100 𝑘𝑃𝑎, equal to the 

initial condition in the fracture-matrix system). In this work, we studied a range of 𝑇𝐷 from 0.1 up to 100, therefore we 740 

accordingly chose the following three representative examples: 𝑇𝐷  = 0.3, 6.3 and 50. We can see in Fig. 1 of this reply that 

we obtain the same simulation results when considering no-flow or constant pressure boundary condition for the simulation 

time considered in our investigation. Thus, boundary condition-independency of the simulation results is guaranteed for the 

simulation time considered in our numerical experiments. In Fig. 1 of this reply the termination time of bilinear flow, which 

is the time window of most interest from the entire simulation time for this work, for the case of 𝑇𝐷 = 50, 6.3 and 0.3 is 745 

τ𝑟 = 3.86 × 10−8, τ𝑟 = 1.69 × 10−4, and τ𝑡 = 1.78 × 10−2, respectively. It is worth noting that the termination time of 

bilinear flow regime is identified by the deviation of the respective type-curves from the bilinear-fit-curve. 

 

Alternatively, for the case of no-flow boundary condition considered in the present work, monitoring the pressure at the 

boundaries of the model constitutes another way of studying the effects of the imposed boundary condition on the simulation 750 

results. If the pressure at the boundaries does not change during the entire simulation time considered, this means more 

evidently that the boundary condition does not affect the modeling outcomes. We additionally conducted such a study for 

three selected points at the boundaries of the modeling domain (see Figs. 2 and 3 of this answer, at the end of this response). 

We were able to observe that the pressure does not change, representing this a strong indication that the no-flow boundary 

condition set does not affect the simulation results.  755 

 

We now hope that the study of the effect of different boundary conditions on the simulation results is clarified. We offer to 

include these additional studies in the supplement of the online version of the paper. Furthermore, we offer to upload the data 

related to the model setup and simulation results obtained with COMSOL Multiphysics to provide the interested reader with 

the possibility of testing and verifying the model.  760 

 

3.3 Author’s change in the manuscript 

 

3.3.1 The following sentence was added to the manuscript in the corresponding place of section 2.4 Description of the 

model setup “Additional studies have been conducted to further examine the independency of simulation results 765 

from the boundary conditions set for the simulation time considered. The pressure has been monitored at the 

boundary of the model for the case of imposing no-flow boundary condition (closed reservoir).  No pressure 

variation has been detected at the boundaries of the model, which corroborates the previous observation that the 

simulation results have not been affected by the boundary condition set. Further, the boundary condition has been 

changed to constant pressure (open reservoir). Also, for this latter case, no changes were recognized in the 770 

simulation results.” 

 

 

 

 775 
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We hope that all the questions raised by the Anonymous Referee #2 have been addressed.  

 

Sincerely, 

 

The authors (Patricio-Ignacio Pérez D., Adrián-Enrique Ortiz R., Ernesto Meneses Rioseco). 780 

 

Further remarks of the answer (Anonymous Referee #2): 

 

1. Had our proposed model been oversimplified, we would not have been able to validate our numerical results with the 

semi-analytical solution suggested by Guppy et al. (1981b) for the bilinear flow regime. As demonstrated in our work, as a 785 

first step we validated our numerical results with the semi-analytical solution introduced by Guppy et al. (1981b) for the 

bilinear flow regime. 

 

2. Had our proposed model not considered flow in fractured and porous media (dual permeability model), it would not have 

been possible to obtain bilinear flow. As it has been proven in our work, we were able to numerically simulate bilinear flow 790 

regime. 

 

3. Validated physical models that credibly simulate physical reservoir processes such as groundwater flow in fractured 

porous media with COMSOL Multiphysics have been successfully documented and published in international, peer-review 

journals (see item 5. below). From the point of view of the authors, what matters is a rigorously formulated, mathematically 795 

validated simulator that reliably represents the physics of the reservoir processes. As a matter of example: tested, 

benchmarked and generally validated reservoir models, including a variety of coupled reservoir processes have been 

simulated with COMSOL Multiphysics, e.g: 

 

- https://www.comsol.de/blogs/modeling-geothermal-processes-comsol-software/ 800 

 

We kindly ask the Referee #2 to have a look at a large list of validated models in different research fields that have been 

simulated with COMSOL Multiphysics and the corresponding published literature on the following link (COMSOL 

Verification and Validation Models): 

 805 

- https://www.comsol.com/verification-models/?sort=popularity 

 

In addition, we kindly ask the Referee #2 to check an extensive literature on published works, documenting modeling and 

simulation of reservoir processes with COMSOL Multiphysics on the following link: 

 810 

- https://www.comsol.de/papers-presentations 

 

(Relevant contributions can be filtered by the Referee #2 by entering the concerned keywords). 

 

Multiphysics is certainly one of the strengths of COMSOL. Rigorously modeling and simulating the multiphysical nature of 815 

reservoir processes in fractured porous geologic media constitutes one of the strengths of COMSOL Multiphysics. Slightly 

different PDEs, e.g. for heat and solute transport, are coupled with the flow equations, both in porous and fractured geologic 

media. 
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4. Alternatively, and/or additionally, benchmarking our model has been an important step to show that the simulation 

software COMSOL Multiphysics is suitable. Generally speaking, various sources for benchmarking fracture-flow can be 820 

found e.g.: 

 

- https://git.iws.uni-stuttgart.de/benchmarks/fracture-flow 

 

(see also “Benchmarks for single-phase flow in fractured porous media" by B. Flemisch et al. 2017). 825 

 

As mentioned previously, as a first step we have corroborated our numerical results concerning the bilinear flow regime with 

the semi-analytical solution suggested by Guppy et al. (1981b). 

 

5. Further, we kindly encourage the Referee #2 to check numerous published works in reservoir engineering that address 830 

flow in fractures and matrix formation using COMSOL Multiphysics as reservoir simulator: 

 

https://www.onepetro.org/search?q=COMSOL+Multiphysics&peer_reviewed=&published_between=&from_year=&to_year

=&rows=25 

 835 

(COMSOL Multiphysics as keyword). 

 

The robustness of the simulation software COMSOL Multiphysics for groundwater flow in fractured porous media has been 

shown in several works published in international and peer-reviewed journals, e.g.: 

 840 

-  Zhang, Q., Ju, Y., Gong, W., Zhang, L., Sun, H.: Numerical simulations of seepage flow in rough single rock fractures, 

Petroleum, Vol. 1, Issue 3, pp. 200-205, https://doi.org/10.1016/j.petlm.2015.09.003, 2015. 

 

- Qu, Z.-q., Zhang, W., Guo, T.-k.: Influence of different fracture morphology on heat mining performance of enhanced 

geothermal systems based on COMSOL, International Journal of Hydrogen Energy, Vol. 42, Issue 29, pp. 18263 – 18278, 845 

https://doi.org/10.1016/j.ijhydene.2017.04.168, 2017. 

 

- Wang, L., Cardenas, M. B., Slottke, D. T., Ketcham, R. A., Sharp, J. M.: Modification of the Local Cubic Law of fracture 

flow for weak inertia, tortuosity, and roughness, Water Resources Research, 51, pp. 2064–2080, 

https://doi.org/10.1002/2014WR015815, 2015. 850 

 

- Chen B., Song E., Cheng X.: Plane-Symmetrical Simulation of Flow and Heat Transport in Fractured Geological Media: A 

Discrete Fracture Model with Comsol, In: Laloui L., Ferrari A. (eds) Multiphysical Testing of Soils and Shales, Springer 

Series in Geomechanics and Geoengineering, Springer, Berlin, Heidelberg, https://doi.org/10.1007/978-3-642-32492-5_17, 

2013. 855 

 

- Saeid, S., Al-Khoury, R., Barends, F.: An efficient computational model for deep low-enthalpy geothermal systems, 

Computers & Geosciences, 51, pp. 400 – 409, https://doi.org/10.1016/j.cageo.2012.08.019, 2013. 

 

- Ekneligoda, Th. Ch. & Min, K.-B.: Determination of optimum parameters of doublet system in a horizontally fractured 860 

geothermal reservoir, Renewable Energy, 65, pp. 152 – 160, https://doi.org/10.1016/j.renene.2013.08.003, 2014. 

 

https://www.onepetro.org/search?q=COMSOL+Multiphysics&peer_reviewed=&published_between=&from_year=&to_year=&rows=25
https://www.onepetro.org/search?q=COMSOL+Multiphysics&peer_reviewed=&published_between=&from_year=&to_year=&rows=25
https://doi.org/10.1002/2014WR015815
https://doi.org/10.1007/978-3-642-32492-5_17
https://doi.org/10.1016/j.cageo.2012.08.019
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- Kristinof, R., Ranjith, P.G. & Choi, S.K.: Finite element simulation of fluid flow in fractured rock media, Environ Earth 

Sci, 60, pp. 765–773, https://doi.org/10.1007/s12665-009-0214-2, 2009. 

 865 

- Li, Q., Ito, K. Wu, Z., Lowry, Ch. S., Loheide, S. P.: COMSOL Multiphysics: A Novel Approach to Ground Water 

Modeling, Ground Water, Edi. Zheng, Ch, Vol. 47, No. 4, https://doi.org/10.1111/j.1745-6584.2009.00584.x, 2009. 

 

- To mention a few. 

 870 

6. Other reservoir simulators widely used in academics and industry for one-phase, compressible groundwater flow in 

saturated, confined aquifers, that use the same formulation for the description of flow in fractures and formation matrix in 

terms of the storage coefficient as COMSOL Multiphysics, are FEFLOW® (developed by DHI WASY) and MODFLOW 

(developed by the USGS) – to mention a few. We kindly ask the Referee #2 to have a look at, e.g.: 

 875 

- Diersch 2014, Chapter 9 Flow in Saturated Porous Medium: Groundwater Flow, and more specifically Subchapter 9.2.1 

Basic Equations, Eqs. 9.1 – 9.2; and Chapter 4 Discrete Features. (Diersch, H.-J.G.: FEEFLOW: Finite Element Modeling 

of Flow, Mass and Heat Transport in Porous and Fractured Media, Springer Science + Business Media B.V., 

https://doi.org/10.1007/978-3-642-38739-5, 2014.) 

 880 

-https://www.usgs.gov/mission-areas/water-resources/science/modflow-and-related-programs?qt-

science_center_objects=0#qt-science_center_objectsc and the documentation for the MODFLOW 6 Groundwater Flow 

Model (Chapter 55 of Section A, Groundwater, Book 6 Modeling Techniques, Eq. 2-2, 

https://pubs.usgs.gov/tm/06/a55/tm6a55.pdf). 

 885 

- Vázquez-Báez, V., Rubio-Arellano, A., García-Toral, D., Rodríguez-Mora, I.: Modeling an Aquifer: Numerical Solution to 

the Groundwater Flow Equation, Mathematical Problems in Engineering, Vol. 2019, Article ID 1613726, 

https://doi.org/10.1155/2019/1613726, 2019. 

 

- Kumar, C. P. & Singh, S.: Concepts and Modeling of Groundwater System, International Journal of Innovative Science, 890 

Engineering & Technology – IJISET, Vol. 2, issue 2, 2015. 

 

7. Although the Referee #2 suggests using another reservoir simulator where the diffusivity equation for transient flow is 

explicitly expressed in terms of porosity and compressibility and where dual-porosity dual permeability models can also be 

designed, no concrete reservoir simulator is proposed by the Referee #2. In case more commercial reservoir simulators, 895 

perhaps more widely used in petroleum engineering for multi-phase flow of black oil and gas such as MultiSimTM and 

Schlumberger Eclipse are meant, we want to refer to the strengths and limitations of those simulation software. We kindly 

ask the Referee #2 to have a look at, e.g.: 

 

- Chin, W. C. & Zhuang, X. 2020, Chapter 3 Reservoir Simulation – Strengths, Limitations and Strategies. (Chin, W. C. & 900 

Zhuang, X.: Reservoir Simulation and Well Interference: Parent-child, Multilateral Well and Fracture Interactions, 

Handbook of Petroleum Engineering, Scrivener Publishing LCC, First Edition by John Wiley & Sons, Inc, 2020.) 

 

- EGL Eclipse Reservoir Simulation Software, Eclipse Reference Manual, Version 2018.1. 

 905 

https://pubs.usgs.gov/tm/06/a55/tm6a55.pdf
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The strengths and limitations of different simulation software for fluid flow in fractured porous geologic media are attributed 

to numerous aspects, such as: Assumption and approximations in the mathematical physics considered, implementation of 

the specific numerical method used (FDM, FEM, VEM, etc...), space and time discretization algorithms, mesh generator 

capabilities (Cartesian, rectangular or curvilinear coordinates), linearization techniques, stabilization, convergence, speed, 

visualization techniques, test, validation, etc...). It is beyond the scope of our answer to compare several reservoir simulators 910 

in terms of their strengths and limitations.  

 

Although some industries claim to have developed “All-purpose”, “comprehensive” reservoir simulators, for every 

application there are several reservoir simulators revealing advantages and disadvantages. Every simulation study 

(experiment design) of fluid flow in fractured porous media constitutes a unique series of actions, initiating from the aquifer 915 

characterization to the ultimate examination of results. We kindly ask the Referee #2 to have a look at, e.g.: 

 

- Islam, M. R., Hossain, M. E., Moussavizadegan, S. H., Mustafiz, S., Abou-Kassem, J. H.: Advanced Petroleum Reservoir 

Simulation: Towards Developing Reservoir Emulators, Second Edition, Scrivener Publishing LLC, Co-published by John 

Wiley & Sons, Inc. Hoboken, New Jersey, 2012. 920 

 

- Chin, W. C.: Reservoir Engineering in Modern Oilfields: Vertical, Deviated, Horizontal and Multilateral Well Systems, 

Handbook of Petroleum Engineering Series, Vol.1, Scrivener Publishing LCC, Co-published by John Wiley & Sons, Inc. 

Hoboken, New Jersey, 2016. 

 925 

- Chin, W. C. & Zhuang, X.: Reservoir Simulation and Well Interference: Parent-child, Multilateral Well and Fracture 

Interactions, Handbook of Petroleum Engineering, Scrivener Publishing LCC, First Edition by John Wiley & Sons, Inc, 

2020. 
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Figures of the answer (Anonymous Referee #2): 

 950 

 
Figure 1: Model results displayed as 𝟏/𝒒𝒘𝑫 vs. τ in log-log scale. Bilinear-fit-curve (grey line) and type-curves for different 

boundary conditions: no-flow and constant pressure. 
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Figure 2: Representation of the main features of the model (not scaled). Note the 3 points at the boundaries of the model where the 

pressure was monitored during the simulation time (see Fig. 3 of this reply). 960 
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Figure 3: Monitored pressure at three different points located at the boundaries of the model (see Fig. 2 of this reply) for three 

representative cases of 𝑻𝑫 displayed in Fig. 1 of this reply, when imposing no-flow boundary condition.  
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Abstract. This work studies intensively the flow in fractures with finite hydraulic conductivity intersected by a well 985 

injecting/producing at constant pressure This work studies intensively the flow in fractures with finite hydraulic conductivity 

intersected by a well injecting/producing at constant pressure, either during an injection/production well test or the operation 

of a production well. Previous investigations showed that for a certain time the reciprocal of flow rate is proportional to the 

fourth root of time, which is characteristic of the flow regime known as bilinear flow. Using a 2D numerical model, we 

demonstrated that during the bilinear flow regime the transient propagation of isobars along the fracture is proportional to the 990 

fourth root of time. Moreover, we present relations to calculate the termination time of bilinear flow under constant injection 

or production well pressure, as well as, an expression for the bilinear hydraulic diffusivity of fractures with finite hydraulic 

conductivity. To determine the termination of bilinear flow regime, two different methods were used: (a) numerically 

measuring the transient of flow rate in the well and (b) analyzing the propagation of isobars along the fracture. Numerical 

results show that for low dimensionless fracture conductivities the transition from bilinear flow to another flow regime (e.g. 995 

pseudo-radial flow) occurs before the pressure front reaches the fracture tip and for high dimensionless fracture 

conductivities it occurs when the pressure front arrives at the fracture tip. Hence, this work complements and advances 

previous research on the interpretation and evaluation of well test analysis under different reservoir conditions. Our results 

aim at improving the understanding of the hydraulic diffusion in fractured geologic media and as a result they can be utilized 

for the interpretation of hydraulic tests, for example to estimate the fracture length. 1000 

 

Keywords: Bilinear flow; Rate transient analysis; Hydraulic diffusivity; Pressure diffusion; Porous and fractured geologic 

media. 

Highlights 

• The reciprocal of flow rate is proportional to the fourth root of time. 1005 

• The migration of isobars in the fracture is proportional to the fourth root of time.  
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• For low dimensionless fracture conductivities, bilinear flow ends before the pressure front reaches the fracture tip. 

• For high dimensionless fracture conductivities, bilinear flow ends when the pressure front reaches the fracture tip. 

• Isobars accelerate when they approach to the fracture tip. 

1 Introduction 1010 

     Understanding the different flow regimes in fractured reservoirs has always been key in the interpretation and evaluation 

of hydraulic well tests as well as in the production optimization of reservoirs. An in-depth description of the behavior of 

multiple flow regimes in fractures is extremely important to master the physics behind the modeling and simulation and, 

hence, to reliably interpret the results. Models considering a double porosity were first examined by Barenblatt et al. (1960). 

They introduced the basics of fluid dynamics in fissured rocks by deriving general equations of the seepage of liquid in 1015 

porous media, taking into consideration its double-porosity condition. Cinco-Ley and Samaniego-V. (1981) differentiated 

clearly four flow regimes: fracture linear flow, bilinear flow (for the first time named in this way by them), formation linear 

flow, and pseudo-radial flow.  

Usually, reservoir properties are obtained from well test or production data at a constant flow rate (pressure transient 

analysis). However, in somemost cases, reservoir production is performed at a constant pressure. This is illustrated, for 1020 

instance, by the case where fluid is produced from the reservoir by means of a separator or constant-pressure pipeline (e.g., 

gas wells; Ehlig-Economides, 1979). Open wells flow at constant atmospheric pressure, e.g., artesian water wells. 

Geothermal fluid production may propel a back-pressure steam turbine, where steam leaves the turbine at the atmospheric 

pressure or at a higher constant pressure. Other operational conditions that require to maintain a constant pressure are 

encountered in gas wells, where a fixed pressure must be maintained for sales purposes or in water injection wells, where the 1025 

injection pressure is constant (Da Prat, 1990). In addition, reservoir production at constant pressure is conducted during rate 

decline periods of reservoir depletion  (Da Prat, 1990; Ehlig-Economides, 1979). Although the interpretation of data 

collected in well tests and production at constant flow rate (pressure transient analysis) has considerably improved, the rate 

transient analysis has not experienced such development (Houzé et al., 2018). Lately, a significant interest for the rate 

transient analysis has increased, which is attributed to the exploitation of unconventional hydrocarbon plays due to the 1030 

extremely slow and long transient responses (Houzé et al., 2018). The production from unconventional plays has recently 

been made possible by creating fractures, which has strengthened the importance of having better tools and methods that 

allow to obtain information of the fractures considering either the transient analysis of pressure or flow rate or the 

combination of both. It is exceedingly difficult to maintain a constant flow rate during long times, especially in low 

permeability formations as in the case of unconventional plays (Kutasov and Eppelbaum, 2005). It is worth mentioning that 1035 

constant-pressure tests have the advantage of minimizing changes in the wellbore storage coefficient  (Earlougher Jr., 1977).  

The wellbore storage effects distort early-time pressure evolution, subsequently, the constant-pressure well tests allow the 

analysis of early-time data and in this way information of the reservoir in the vicinity of the wellbore can be obtained 
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(Nashawi and Malallah, 2007). Moreover, rate-transient tests are particularly suitable for the illustration of the long-term 

behavior of formations (Torcuk et al., 2013).  Conceivably one of the main reasons why constant pressure tests is not a more 1040 

common technique in reservoir engineering arises from the fact that in some cases no analytical solutions are available for 

the pressure diffusion equation (Kutasov and Eppelbaum, 2005). Conceivably, one of the main reasons why constant 

pressure tests is not a more common technique in reservoir engineering arises from the fact that no analytical solutions are 

available for the pressure diffusivity equation when considering injection/production at constant pressure in fracture geologic 

media (Kutasov and Eppelbaum, 2005).  1045 

     Arps (1945) presented an empirical production correlation for the rate history of a well during the boundary-dominated 

flow regime.  Later, Locke and Sawyer (1975) generated type-curves for a vertically fractured reservoir producing at 

constant pressure with the objective of characterizing the behavior of flow rate. In this context, Agarwal et al. (1979) 

presented type-curves to analyze the early time cases. In addition, they determined the dimensionless fracture conductivity 

𝑇𝐷 by means of graphing the logarithm of the reciprocal of flow rate vs. the logarithm of time and utilizing type-curve 1050 

matching techniques. Fetkovich (1980) introduced the rate decline analysis in the radial-flow system, similar to pressure 

transient analysis, however, only applicable to circular homogeneous reservoirs.  

     Guppy et al. (1981a) studied the effect of non-Darcy flow within a fracture. They concluded that the dimensionless 

fracture conductivity 𝑇𝐷 hascan be expressed as an apparent conductivity that is not constant over time. Subsequently, a 

major contribution was made by Guppy et al. (1981b), which consisted of presenting semi-analytical solutions for bilinear 1055 

flow, - both works considered constant pressure production. They demonstrated that the reciprocal of dimensionless flow 

rate is proportional to the fourth root of dimensionless time when producing at constant wellbore pressure. Guppy et al. 

(1988) contributed further to the previous works investigating deeply the cases with turbulent flow in the fracture and for the 

first time they examined a technique that concerns both buildup and drawdown data when the well is producing at constant 

pressure. Subsequently, a direct method to estimate the turbulent term considering high-velocity flow in variable rate tests 1060 

was documented by Samaniego-V. and Cinco-Ley (1991). In addition, Berumen et al. (1997) developed a transient pressure 

analysis under both constant wellhead and bottom-hole pressure conditions considering high-velocity flow. Wattenbarger et 

al. (1998) presented decline curve analysis methods for tight gas wells producing at constant pressure with long-term linear 

behavior (fracture flow). Pratikno et al. (2003) prepared rate-time decline curves for fractured wells producing at constant 

pressure, including fracture lineal and bilinear flow. Follow-up investigations conducted by Nashawi (2006) presented semi-1065 

analytical solutions when considering non-Darcy flow in a fracture and a method with which it is possible to quantify the 

turbulence in a fracture. Nashawi and Malallah (2007) developed a direct method to determine the fracture and reservoir 

parameters without having to use type-curve matching techniques. In this context, Heidari Sureshjani and Clarkson (2015) 

concluded that plotting techniques overestimate the fracture half-length, leading them to the formulation of an analytical 

methodology with which it the fracture half-length is estimated more precisely.  1070 

     Recently, Silva-López et al. (2018) introduced a new method to obtain Laplace-transformed solutions, and as a result, 

they predicted new regions of flow behavior. This latter method is documented for injectionng at either constant flow rate or 
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pressure. In addition, the theory of well testing has been improved by investigating the effects of non-uniform properties of 

hydraulic fractures (He et al., 2018). Moreover,  Wang et al. (2018) presented an enhanced model to simulate the 

productivity of volume fractured wells and Dejam et al. (2018) documented a new semi-analytical solution applicable in 1075 

dual-porosity formations formulations. 

     When it comes to studying the termination of bilinear flow regime and the spatiotemporal propagations of isobars, there is 

not much evidence of investigations considering injection or production at constant pressure. To the best of our knowledge, 

it has only been investigated when injecting at constant flow rate in the well (Cinco-Ley and Samaniego-V., 1981; Weir, 

1999). In this regard, new criteria to determine the end of bilinear flow, which are also used in this investigation, were 1080 

introduced by Ortiz R. et al. (2013). From the industry point of view, accurately estimating the termination time of the 

bilinear flow is relevant since it can be used to assess a minimum value of fracture length when the dimensionless fracture 

conductivity 𝑇𝐷 ≥ 3 (Cinco-Ley and Samaniego-V., 1981). To underpin the latter, Ortiz R. et al. (2013) demonstrated that 

for 𝑇𝐷 approximately higher than 10 the fracture half-length can be estimated as 𝑥𝐹 = 𝐶(𝐷𝑏𝑡𝑒𝑏𝑙)
1 4⁄ , where  𝐶 is a constant, 

𝐷𝑏 is the bilinear hydraulic diffusivity, and 𝑡𝑒𝑏𝑙 the termination time of the bilinear flow. Moreover, for lower values of  𝑇𝐷 1085 

the termination time of the bilinear flow can be used to restrict the minimum fracture length. This information is important to 

characterize and model a fractured reservoir. Having reliable data on fracture dimensions is critically important for 

production optimization strategies. 

     This work addresses the challenging task of gaining a quantitative understanding of bilinear flow from rate transient 

analysis for wells producing at constant pressure, requiring a multidisciplinary approach. Expanding the understanding of 1090 

bilinear flow regime in fractured reservoirs leads to a more precise analysis of well tests and production or injection data. 

This, in turn, makes it possible to characterize a reservoir more accurately and consequently have more reliable assessments 

of its behavior, leading to better concepts of production optimization during operation. Some of the methodologies used in 

this work are inspired by the study conducted by Ortiz R. et al. (2013) for wells operating at constant flow rate (pressure 

transient analysis). 1095 

     Taking into account injection at constant pressure, this investigation presents for the first time: (a) the propagation of 

isobars 𝑃𝑁  along the fracture and the formation during bilinear flow regime, as well as the computation of the bilinear 

hydraulic diffusivity of fracture; and (b) the study of termination of bilinear flow regime utilizing criteria previously 

presented and a criterion firstly documented here. 

2 Background 1100 

2.1 Governing equations and parameters  

     This study is carried out considering that single-phase fluid in both matrix and fracture obeys the Darcy’s law in a two-

dimensional confined and saturated aquifer. The selected software-simulator for numerically modeling groundwater flow in 
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the reservoir is COMSOL Multiphysics. For the matrix, the equation utilized to describe the hydraulics of compressible 

Newtonian fluid in a fractured reservoir is given by: This study is carried out considering that single-phase fluid in both 1105 

matrix and fracture obeys the Darcy’s law in a two-dimensional confined and saturated aquifer. In a general formulation of a 

dual-porosity dual-permeability model, the equation utilized to describe the hydraulics of a single-phase compressible 

Newtonian fluid in a reservoir matrix is given by: 

𝑠𝑚

𝜕𝑝

𝜕𝑡
=

𝑘𝑚

𝜂𝑓

(
𝜕2𝑝

𝜕𝑥2
+

𝜕2𝑝

𝜕𝑦2
),                                                                                                                                                       (1) 

where 𝑠𝑚 (Pa-1) represents the specific storage capacity of matrix, 𝑘𝑚 (m2) the matrix permeability, 𝜂𝑓 (Pa s) the dynamic 1110 

fluid viscosity, and 𝑝 (Pa) the fluid pressure. It is worth noting that the storage coefficient depends on porosity of rock and 

compressibility of fluid and rock. For the fracture, the equation is given by: 

𝑠𝐹𝑏𝐹

𝜕𝑝

𝜕𝑡
=

𝑇𝐹

𝜂𝑓

𝜕2𝑝

𝜕𝑥2
+

𝑞𝐹(𝑥, 𝑡)

ℎ
,                                                                                                                                                (2) 

where 𝑠𝐹  (Pa-1) represents the specific storage capacity of fracture, 𝑏𝐹  (m) the aperture of fracture, 𝑇𝐹  (m3) the fracture 

conductivity, ℎ (m) the fracture height, and 𝑞𝐹(𝑥, 𝑡) the fluid flow between matrix and fracture (see Cinco L. et al., 1978 and 1115 

Guppy et al., 1981b). In this study, 𝑠𝐹 is neglected because we assume that the fracture is non-deformable and the amount of 

fluid in the fracture is small enough to consider its compressibility as negligible. In addition, the porosity of the fracture is 

negligible in comparison to the porosity of the matrix. Note, however, that the pressure in the fracture is dictated by an 

inhomogeneous diffusivity equation, which contains a time-dependent source term 𝑞𝐹(𝑥, 𝑡)  but it does not involve an 

intrinsic transient term. Thus, Eq. (2) reads: 1120 

𝑇𝐹

𝜂𝑓

𝜕2𝑝

𝜕𝑥2
+

𝑞𝐹(𝑥, 𝑡)

ℎ
= 0.                                                                                                                                                             (3) 

The pressure diffusivityon equations for matrix and fracture are coupled by the term 𝑞𝐹(𝑥, 𝑡), which is defined as: 

𝑞𝐹(𝑥, 𝑡)

ℎ
= 2

𝑘𝑚

𝜂𝑓

𝑑𝑝

𝑑𝑦
|

𝑦=0

,                                                                                                                                                          (4) 

where the factor 2 relates to the contact between matrix and fracture via its two surfaces.  

2.2 Dimensionless parameters   1125 

     This study is conducted using dimensional properties, but the analysis of results is performed utilizing the conventional 

dimensionless definitions. The dimensionless flow rate is given by: 

1

𝑞𝑤𝐷

=
𝑘𝑚ℎ(𝑝𝑤 − 𝑝𝑖)

𝑞𝑤𝜂𝑓

,                                                                                                                                                              (5) 

where 𝑞𝑤 (m3 s-1) represents the flow rate in the well, 𝑞𝑤𝐷  the dimensionless flow rate in the well, ℎ (m) the fracture height, 

𝑝𝑖  (Pa) the initial pressure of the formation and fracture, and 𝑝𝑤 (Pa) the constant injection pressure. 1130 

     The dimensionless fracture conductivity is defined as: 
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𝑇𝐷 =
𝑇𝐹

𝑘𝑚𝑥𝐹

,                                                                                                                                                                                (6) 

where 𝑇𝐹 = 𝑘𝐹𝑏𝐹 (m3) denotes the fracture conductivity and 𝑥𝐹  (m) the fracture half-length. where 𝑇𝐹 = 𝑘𝐹𝑏𝐹 (m3) denotes 

the fracture conductivity, 𝑥𝐹  (m) the fracture half-length, and 𝑘𝐹 (m2) the fracture permeability. Note that 𝑇𝐷 is the same as 

(𝑘𝑓𝑏𝑓)
𝐷

 used in Cinco-Ley and Samaniego-V. (1981) or 𝐹𝐶𝐷 used in Gidley et al. (1990). 1135 

     Instead of using the conventional definition of dimensionless time 𝑡𝐷 = 𝑡𝐷𝑚/𝑥𝐹
2, we prefer to use a modified definition 

presented by Ortiz R. et al. (2013): 

𝜏 =
𝑡𝐷

𝑇𝐷
2 =

𝐷𝑚𝑘𝑚
2

𝑇𝐹
2 𝑡,                                                                                                                                                                 (7) 

where 𝐷𝑚 = 𝑘𝑚/(𝜂𝑓𝑠𝑚) (m2 s-1) represents the hydraulic diffusivity of matrix and 𝜏 the dimensionless time. Finally, the 

dimensionless x-coordinate, which corresponds to the fracture axis (see Fig. 1), is defined as: 1140 

𝑥𝐷 =
𝑥

𝑥𝐹

;                                                                                                                                                                                      (8) 

and the dimensionless y-coordinate, that represents the axis perpendicular to the fracture (see Fig. 1), is defined as: 

𝑦𝐷 =
𝑦

𝑥𝐹

.                                                                                                                                                                                      (9) 

2.3 Previous solutions for bilinear flow at constant wellbore pressure 

     As mentioned earlier, bilinear flow regime was firstly documented by Cinco-Ley and Samaniego-V. (1981). According to 1145 

their proposed definition, it consists of an incompressible linear flow within the fracture and a slightly compressible linear 

flow in the formation. Moreover, a semi-analytical solution for a vertically fractured well producing at constant pressure 

during bilinear flow regime was presented by Guppy et al. (1981b). They demonstrated that the reciprocal of flow rate is 

proportional to the fourth root of time and the governing equation is given in dimensionless form by:  

1

𝑞𝑤𝐷

(𝜏) =
𝜋𝛤(3 4⁄ )

√2𝑇𝐷

𝑡𝐷
1/4 ≅ 2.722𝜏1/4 .                                                                                                                           (10) 1150 

     where 𝛤(3/4) represents the gamma function evaluated in 3/4. Silva-López et al. (2018) presented an analytical solution 

for an infinite fracture considering the case of variable flow rate for long-time in dimensionless form: 

1

𝑞𝑤𝐷

(𝑡𝐷) =
1

𝑓(𝑡𝐷)

𝜋1/4√𝑇𝐷

2𝛿
𝑡𝐷

1/4.                                                                                                                                       (11) 

     Note that Eq. (11) is written in the notation used in this paper. 𝑓(𝑡𝐷) represents a function that describes the transient 

behavior of pressure in the well and δ denotes a constant. 1155 
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2.4 Description of the model setup 

     We ran the numerical simulations in the Subsurface Flow Module of COMSOL Multiphysics® software program. The 

space- and time-dependent balance equations, described in section 2.1, together with their initial and boundary conditions are 

numerically solved in the entire modeling domain employing the finite-element method (FEM) in a weak formulation. The 

discretization of the partial differential equations (PDEs) results in a large system of sparse linear algebraic equations, which 1160 

are solved using the linear system solver MUMPS (MUltifrontal Massively Parallel Sparse direct Solver), implemented in 

the finite element simulation software COMSOL Multiphysics®. Utilizing the Galerkin approach, Lagrange quadratic shape 

functions have been selected to solve the discretized diffusivity equations for the pressure process variable. For the time 

discretization, a Backward Differentiation Formula (BDF, implicit method) of variable order has been chosen.  

     The two-dimensional model set up in this work is composed of a vertical fracture embedded in a confined horizontal 1165 

reservoir. The matrix and fracture are porous geologic media considered saturated, continuous, isotropic, and homogeneous. 

The gravity effects are neglected. Fluid flow enters or abandons the matrix-fracture system only through the well. This 

investigation is symmetric, i.e. the flow rate calculated in the well 𝑞𝑤 corresponds to the half of total flow rate for the case of 

studying the complete fracture length (see Fig. 1). The pressure in the well 𝑝𝑤 is set to 106 Pa1 MPa  during the entire 

simulation and the initial conditions for pressure in the reservoirmatrix and the fracture 𝑝𝑖  is set to 105 Pa100 kPa. We use 1170 

these pressure conditions in order to ensure an injection of fluid from the well to the matrix-fracture system. The order of 

magnitude of (𝑝𝑤 − 𝑝𝑖) is similar to that utilized by Nashawi and Malallah (2007). No-flow boundary conditions are 

assigned to the boundaries of the reservoir since it is considered as confined. In order to ensure that the boundary conditions 

do not affect the modeling outcome, the system size was consecutively enlarged to double, triple, and quadruple, and the 

results were compared to each other and, in fact, they were identical. Additional studies have been conducted to further 1175 

examine the independency of simulation results from the boundary conditions set for the simulation time considered. The 

pressure has been monitored at the boundary of the model for the case of imposing no-flow boundary condition (closed 

reservoir). No pressure variation has been detected at the boundaries of the model, which corroborates the previous 

observation that the simulation results have not been affected by the boundary condition set. Further, the boundary condition 

has been changed to constant pressure (open reservoir). Also, for this latter case, no changes were recognized in the 1180 

simulation results. That way, boundary condition-independency of the solution has been guaranteed for in the computational 

subdomain of most interest. During the entire simulation the following parameters remained constant: 𝑘𝑚 = 1 𝜇𝐷1 · 10−18 

m2 , 𝑘𝐹 = 1.5 ·× 10−13 m2, 𝑠𝑚 = 1 ·× 10−11 Pa-1, 𝑏𝐹 = 1 ·× 10−3 m, and 𝜂𝑓 = 2.5 ·× 10−4 Pa s. Similarly as in Ortiz R. et 

al. (2013), the fracture half-length takes different values from 1.5 m up to 1500  m with the objective of varying the 

dimensionless fracture conductivity 𝑇𝐷 from 0.1 up to 100 (see Eq. 6). The time steps used in these numerical simulations 1185 

were 0.01 s from the start until the first 40 s, 20 s from 40 s until 600 s, 60 s from 600 s until 12.000 s, 300 s from 12000 

s until 72000 s, 1000 s from 72000 s until 5 ·× 105 s, and 5 ·× 105 s from 5 ·× 105 s until 2 ·× 108 s (or until 6 ·× 108 s 

employed for the master curve, Fig. 2). 
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     The mesh is comparatively The mesh, composed of triangular elements, is relatively fine in the vicinity of the fracture 

and the well and it becomes gradually coarser when moving away from the fracture, since there is an extremely large 1190 

hydraulic gradient near the fracture and the well (see Fig. 1b). The minimum element size is 0.0045 m near the well, the 

maximum element size is 80 m close to the boundaries of the reservoir, and the maximum element growth rate is 1.3 m. The 

number of elements varies according to the different size and mesh structure used to describe the respective model scenario. 

The minimum and maximum number of elements is 12,929 and 1,358,697, respectively. We performed mesh convergence 

studies refining the mesh, particularly, in the computational subdomain that contains steep hydraulic gradients, until the 1195 

solution became mesh-independent. 

3 Results 

     Numerical simulations computed show that during an interval of time time interval, the reciprocal of dimensionless flow 

rate in the well 1/𝑞𝑤𝐷  is proportional to the fourth root of dimensionless time τ1/4  (Fig. 2). This proportionality is in 

accordance with the behavior documented by Guppy et al. (1981b) and Silva-López et al. (2018). In particular, we can 1200 

describe the variation of dimensionless flow rate in the well during the bilinear flow regime as:  

1

𝑞𝑤𝐷

(𝜏) = 𝐴 ∙ 𝜏1/4,                                                                                                                                                                  (12) 

where the constant 𝐴 = 2.60 is equal to 2.60. From now on, we will refer to this equation as bilinear-fit-curve (grey line in 

Fig. 2). Note that the coefficient A obtained by Guppy et al. (1981b) employing a semi-analytical solution is approximately 

𝐴 = 2.722 (see Eq. 10). This slight difference between our and their result for 𝐴 might be due to the temporal and spatial 1205 

discretization utilized by them. This issue is discussed in the next subsection of this paper. The reciprocal of dimensionless 

flow rate exhibits a behavior proportional to the fourth root of time (Eq. 12), which is characteristic of bilinear flow regime, 

hence we can corroborate the occurrence of it.  

     We define the master curve as the one that describes the behavior of an infinitely long fracture (red line in Fig. 2). The 

curves describing the behavior of the reciprocal of dimensionless flow rate over time for different dimensionless fracture 1210 

conductivities, from 𝑇𝐷 = 0.1 up to 𝑇𝐷 = 100, are addressed as type-curves (black lines in Fig. 2). 

     Taking into account all the aspects previously described, when type-curves start departing from the bilinear-fit-curve (Fig. 

2), this indicates that the transition from bilinear flow regime to formation linear flow regime (cases with high 𝑇𝐷) or to 

pseudo-radial flow regime (cases with low 𝑇𝐷) begins (Ortiz R. et al., 2013). 

3.1 Propagation of isobars along the fracture and the formation 1215 

     In order to characterize the different isobars, the following definition is used (Ortiz R. et al., 2013): 

𝑃𝑁 =
𝑝(𝑥, 𝑦, 𝑡) − 𝑝𝑖

𝑝𝑤 − 𝑝𝑖

,                                                                                                                                                              (13) 
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where 𝑝(𝑥, 𝑦, 𝑡) denotes the pressure at the position (𝑥, 𝑦) in the fracture or the matrix at time 𝑡. The values of 𝑃𝑁 utilized in 

this study are 0.01 and 0.05, which are equivalent to the isobars of 109 kPa and 145 kPa, respectively. The isobars behave 

differently depending on the value of 𝑇𝐷. For cases with low 𝑇𝐷, it is distinguishable that after the termination of bilinear 1220 

flow, the isobars reveal a tendency of progressing toward an elliptical or pseudo-radial flow while still propagating along the 

fracture (see, for example, 𝑇𝐷 =  0.3 in Fig. 3 a, b, c). The lower the value of 𝑇𝐷 , the more pronounced this tendency 

becomes. On the other hand, for high 𝑇𝐷 the behavior of the isobars is similar to the formation linear flow beyond the 

fracture (see 𝑇𝐷 =  6.3 in Fig. 3 d, e, f). Although the behavior of isobars after the termination of bilinear flow is also highly 

interesting, this aspect is not addressed in further detail in this work. It remains pending to be studied in a follow-up 1225 

investigation. 

     The results of this investigation show that initially the migration of isobars 𝑃𝑁  along the fracture (see Fig. 1) is 

proportional to the fourth root of time: 

𝑥𝑖𝐷 = 𝛼𝑏𝑇𝐷𝜏1/4,                                                                                                                                                                      (14) 

where 𝑥𝑖𝐷  represents the dimensionless distance of normalized isobars 𝑃𝑁  from the well along the 𝑥𝐷  axis and 𝛼𝑏  is a 1230 

constant that dependsing on the studied isobar 𝑃𝑁 (see Fig. 34).  

      In addition, the migration of isobars 𝑃𝑁 in the matrix (perpendicular to the fracture and at 𝑥𝐷 = 0, see Fig. 1) for short 

times may be described by: 

𝑦𝑖𝐷 = 𝛼𝑚𝑇𝐷𝜏1/2,                                                                                                                                                                     (15) 

where 𝑦𝑖𝐷 denotes the dimensionless distance of normalized isobars 𝑃𝑁 from the well along the 𝑦𝐷  axis and  𝛼𝑚 is a constant 1235 

for pressure diffusion in the matrix, respectively that dependsing on the isobar under investigation.  

     When expressing equations (14) and (15) in dimensional form, for the 𝑥 axis Eq. (14) is given by: 

           𝑥𝑖(𝑡) = 𝛼𝑏(𝐷𝑏𝑡)1/4;                                                                                                                                                                (16) 

and for the 𝑦 axis Eq. (15) is given by: 

           𝑦𝑖(𝑡) = 𝛼𝑚(𝐷𝑚𝑡)1/2.                                                                                                                                                              (17) 1240 

     In the Eq. (17), 𝐷𝑚 = 𝑘𝑚/(𝜂𝑓𝑠𝑚) (m2 s-1) is known as hydraulic diffusivity of matrix and is analogue to the definition of 

thermal diffusivity. Additionally, in the Eq. (16) 𝐷𝑏 = 𝑇𝐹
2 𝑘𝑚𝜂𝑓𝑠𝑚⁄  (m4 s-1) is referred to as effective hydraulic diffusivity of 

fracture during bilinear flow regime (Ortiz R. et al., 2013). 

     The numerical results are specified as migration-type-curves (see black lines in Figs. 34, 45, and 56) and the fit equations 

for the propagation of isobars are referred to as migration-fit-curves (see grey lines in Figs. 34, 45, and 56). It can be 1245 

qualitatively noticed throughout the cases under study that for low dimensionless fracture conductivities, i.e. 𝑇𝐷 = 0.1 and 

𝑇𝐷 = 0.3, the migration-type-curves, which describe the migration of isobars 𝑃𝑁 along both 𝑥𝐷 and 𝑦𝐷  axis, start departing 

from migration-fit-curves before the studied isobars reach the fracture tip (Figs. 34 a, b, c, d, and Fig. 45). In contrast, for the 

cases considering high dimensionless fracture conductivities, i.e.  𝑇𝐷 = 1.1, 𝑇𝐷 = 6.3 and 𝑇𝐷 = 9.4, there is no qualitative 
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evidence of migration-type-curves departing from migration-fit-curves before the studied isobars 𝑃𝑁 arrive at the fracture tip 1250 

(Figs. 34 e, f, g, h, i, j and Fig. 45). The latter results, however, show some exceptions for a slight acceleration exhibited by 

the isobars 𝑃𝑁 when they are reaching at times shortly before they reach the fracture tip. It is important to mention that this 

relatively small acceleration also occurs for cases with low dimensionless fracture conductivities (see Figs. 34 c, and 3d). 

The same behavior was observed by Ortiz R. et al. (2013) for the injection at constant flow rate. The classic definition for 

acceleration was considered, which is the rate of change of velocity with respect to time. 1255 

     On the one hand, when discussing qualitatively about the early time we notice that the higher the value of the isobar 𝑃𝑁 

the sooner it migrates proportional to the fourth root of time (Fig. 5) On the one hand, when discussing qualitatively about 

the early time we notice that the higher the value of the isobar 𝑃𝑁 the sooner it starts behaving proportional to the fourth root 

of time (Fig. 6). For example, at the same time (𝜏 =5 ∙ 10−10) the isobar 𝑃𝑁 = 0.66 (the greater isobar under investigation) 

starts to migrate along the fracture proportional to the fourth root of time whereas the isobar 𝑃𝑁 = 0.01 (the smaller isobar 1260 

under study) has not yet started to propagate proportional to the fourth root of time. Moreover, the greater the isobar 𝑃𝑁 the 

shorter its distance from the well 𝑥𝑖𝐷  in comparison to other smaller isobars when considering the same time 𝜏, which is 

logical since the isobars migrate one after the other. On the other hand, when discussing qualitatively about the long time, we 

notice that the smaller isobar 𝑃𝑁 = 0.01 departs from the migration-fit-curve when it reaches the fracture tip. In contrast, the 

greater isobar 𝑃𝑁 = 0.66 departs from the migration-fit-curve before its arrival at the fracture tip (Fig. 56). Additionally, it 1265 

can be seen that the higher the value of isobar 𝑃𝑁 the farthest from the fracture tip or, closer to the well, it starts departing 

from the migration-fit-curve. Thus, taking into consideration the migration of isobars, it is reasonable to conclude that for 

high dimensionless fracture conductivities 𝑇𝐷, the bilinear flow regime ends when the pressure front reaches the fracture tip. 

     Previously, we referred to the observation concerning the acceleration that isobars experience when they are arriving at at 

times shortly before they arrive at the fracture tip (see Figs. 34, and 56), which was also documented in Ortiz R. et al. (2013) 1270 

for the case of fluid injection at constant flow rate. To prove that it is truly an acceleration, the velocity of isobars is 

determined by calculating ∆𝑥𝑖𝐷/∆𝜏 and it is graphed versus time 𝜏 as well as versus the distance of isobars from the well 𝑥𝑖𝐷  

(see Fig. 67). The existence of this acceleration in 𝑥𝑖𝐷 = 1 (fracture tip, see Fig. 67) can be clearly noticed. The velocity of 

isobars 𝑣𝑖𝐷  during their migration along the fracture decreases almost for the complete intervals of time considered (Figs. 67 

a, and 6c), except for its evident increase at times when isobars are reaching shortly before the isobars reach the fracture tip. 1275 

The velocity of isobars can be described within the intervals of time used as:  

𝑣𝑖𝐷(𝜏) = 𝛽𝑏𝑇𝐷𝜏−3/4,                                                                                                                                                              (18) 

where 𝛽𝑏 is a constant depending that depends on the isobar under study. The velocity of isobars in terms of their distances 

from well and within the ranges of distance used can be described as:  

𝑣𝑖𝐷(𝑥𝑖𝐷) = 𝛾𝑏𝑇𝐷𝑥𝑖𝐷
−3,                                                                                                                                                          (19) 1280 

where 𝛾𝑏 is a constant depending that depends on the isobar under study. 
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     Before the isobars reach the fracture tip and at the same time 𝜏, the velocity of isobar 𝑃𝑁 = 0.01 is higher than the 

velocity of 𝑃𝑁 = 0.05 (Figs. 67 a, and 6c). Furthermore, we can see that the arrival at the fracture tip of 𝑃𝑁 = 0.05 occurs 

after the arrival of 𝑃𝑁 = 0.01, what is also distinguishable in Figs. 34 and 56. The latter modeling results make sense since 

isobars migrate one after the other, being the smaller of them 𝑃𝑁 = 0.01  first in the propagation along the fracture. 1285 

Moreover, before the arrival of isobars at the fracture tip and at a certain point belonging to the fracture the velocity of the 

isobar 𝑃𝑁 = 0.01 is higher than the velocity of 𝑃𝑁 = 0.05 (Figs. 67 b, and 6d). 

3.2 Termination of bilinear flow 

     Concerning the study related to the termination of bilinear flow considering fluid injection at constant flow rate, Ortiz R. 

et al. (2013) introduced three criteria: the transition criterion, the reflection criterion and the arrival criterion. The transition 1290 

and reflection criteria consider data regarding the well and the arrival criterion considers data related to the migration of 

isobars 𝑃𝑁 along the fracture. In this work, is presented for the first time the fracture criterion, which considers data related 

to the propagation of isobars along the fracture. To sum up, we can say that there exist two methodologies to quantify the 

termination of bilinear flow: (a) considering the transient of pressure/flow rate in the well and (b) considering the 

propagation of isobars 𝑃𝑁 along the fracture. Concerning the study related to the termination of bilinear flow considering 1295 

fluid injection at constant flow rate, Ortiz R. et al. (2013) introduced three criteria: the transition criterion, the reflection 

criterion, and the arrival criterion. The transition and reflection criteria take into account measurements of flow rate in the 

well and the arrival criterion considers measurements of the migration of isobars 𝑃𝑁  along the fracture. In this work, a 

fracture criterion is presented for the first time. This criterion quantifies the separation between the migration-type-curves 

and the migration-fit-curves (see Fig. 4). The time at which this separation occurs is defined as the fracture time. It is 1300 

important to mention that only one criterion can be fulfilled at a time. To sum up, there exist two methodologies to 

quantitatively identify the termination of bilinear flow: (a) considering the transition of pressure/flow rate in the well and (b) 

considering the propagation of isobars  𝑃𝑁  along  the fracture. It is noteworthy that the termination time is referred to 

differently, according to the criterion used to identify the time at which the bilinear flow regime ceases (e.g. transition time 

𝜏𝑡 , reflection time 𝜏𝑟 , arrival time 𝜏𝑎 , and fracture time 𝜏𝐹 , introduced in the subsections 3.2.1, 3.2.2, 3.2.3, and 3.2.4, 1305 

respectively). Further, criteria generally aim at defining the deviation of curves obtained by numerical simulations from 

analytical fit curves that correspond to bilinear flow. The deviation is quantified by introducing the quantity 𝜀  (see 

subsections 3.2.1, 3.2.2, and 3.2.4). That is, the numerical results differ from the analytical bilinear fit curves by a value of 𝜀 

due to the transition to another flow regime. Throughout the manuscript we use, for instance, 𝜀 = 0.01  or 𝜀 = 0.05 

corresponding to 1% and 5% deviation, respectively. This employed notation is intended to express that when a separation 1310 

between numerical results and fit curves is greater than 0.01 or 0.05, the termination of bilinear flow is evidenced. 
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3.2.1 Transition criterion 

     This criterion quantifies the clockwise deviation of type-curves from the bilinear-fit-curve in Fig. 2 and it is 

fundamentally utilized for low dimensionless fracture conductivities of 𝑇𝐷 = 1.1 down to 𝑇𝐷 = 0.1:  

𝜀 = 1 − (

1
𝑞𝑤𝐷𝑡

2.60𝜏
1
4

),                                                                                                                                                              (20) 1315 

𝜀 < 1 − (
𝑙𝑜𝑔 (

1
𝑞𝑤𝐷𝑡

)

𝑙𝑜𝑔(2.60𝜏1/4)
),                                                                                                                                                              (20) 

where 𝒒𝒘𝑫𝒕 represents the dimensionless flow rate of type-curves (Fig. 2). The cases that are under the study of the transition 

criterion are not affected by the fracture tip and the termination time is similar for all type-curves for which this criterion is 

applicable (see 𝝉𝒕 in Fig. 7). where 𝒒𝒘𝑫𝒕 represents the dimensionless flow rate 𝒒𝒘𝑫 of the specific type-curve under study 

(Fig. 2). Note that 𝟏/𝒒𝒘𝑫 vs. 𝝉 is associated with equation 𝟐. 𝟔𝟎𝝉𝟏/𝟒 in a log-log plot (bilinear-fit-curve). The cases that are 1320 

under the study of the transition criterion are not affected by the fracture tip and the transition time is similar for all type-

curves for which this criterion is applicable (see 𝝉𝒕 in Fig. 8). The transition time 𝝉𝒕 defines the end of bilinear flow when 

𝟏/𝒒𝒘 is no longer proportional to 𝒕𝟏/𝟒. 

3.2.2 Reflection criterion 

     It quantifies the counterclockwise deviation of type-curves from the master curve in Fig. 2 due to their reflection at the 1325 

fracture tip (Ortiz R. et al., 2013) and it is used for high fracture conductivities: The reflection criterion quantifies the 

counterclockwise deviation of type-curves from the master curve in Fig. 2 due to isobar reflection at the fracture tip (Ortiz R. 

et al., 2013). When lower isobars than the isobar under study have already reached the fracture tip, these isobars are partly 

reflected from the fracture tip toward the well, due to the hydraulic conductivity contrast experienced at the interphase 

between the fracture tip and the matrix. This hydraulic conductivity structure causes the isobar reflection at the fracture tip 1330 

back toward the well and the isobar transmission further into the matrix. Thus, the propagation velocity of all isobars 

decelerates when they leave the fracture tip and start to propagate through the matrix. This criterion it is used for high 

dimensionless fracture conductivities:  

𝜀 = 1 − (

1
𝑞𝑤𝐷∞

1
𝑞𝑤𝐷𝑡

) = 1 − (
𝑞𝑤𝐷𝑡

𝑞𝑤𝐷∞

),                                                                                                                                    (21) 

𝜀 < 1 − (
𝑙𝑜𝑔 (

1
𝑞𝑤𝐷∞

)

𝑙𝑜𝑔 (
1

𝑞𝑤𝐷𝑡
)

),                                                                                                                                                                (21) 1335 
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where 𝒒𝒘𝑫∞ denotes the dimensionless flow rate of the master curve (Fig. 2). The cases that are under the study of this 

criterion are affected by the fracture tip, hence the higher 𝑻𝑫 the shorter the termination time (see 𝝉𝒓 in Fig. 7). where 𝒒𝒘𝑫∞ 

denotes the dimensionless flow rate of the master curve (Fig. 2), which describes the behavior for the case of an infinitely 

long fracture. The cases that are under the study of this criterion are affected by the fracture tip, hence the higher 𝑻𝑫 the 

shorter the reflection time (see 𝝉𝒓 in Fig. 8). The reflection time 𝝉𝒓 refers to the time at which a first variation of pressure is 1340 

evident in the fracture tip. 

3.2.3 Arrival criterion 

     It represents the moment at which the isobars arrive at the fracture tip. The cases that are under the study of this criterion 

are affected by the fracture tip, hence the higher 𝑇𝐷 the shorter the termination time (see 𝜏𝑎 in Fig. 7).     The arrival criterion 

represents the moment at which the isobars arrive at the fracture tip. The cases that are under the study of this criterion are 1345 

affected by the fracture tip, hence the higher 𝑇𝐷 the shorter the arrival time (see 𝜏𝑎 in Fig. 8). 

3.2.4 Fracture criterion 

     Basically, it the fracture criterion states that the separation between the migration-type-curves and the migration-fit-

curves (see Fig. 34) is representative of the end of bilinear flow regime and it is applicable to low dimensionless fracture 

conductivities. In this work, the propagation along 𝑦𝐷  is not a criterion for the termination of bilinear flow, it is only a 1350 

contribution to the study of its behavior. Usually, for the analysis of bilinear flow at constant injection or production flow 

rate the transient wellbore pressure is studied, thus the bilinear flow occurs when the wellbore pressure is proportional to the 

fourth root of time (Cinco-Ley and Samaniego-V., 1981; Ortiz R. et al., 2013; Weir, 1999). Similarly, for constant wellbore 

pressure as in this work, the bilinear flow can be recognized by the proportionality between 1/𝑞𝑤𝐷 and τ1/4. The fracture 

criterion, instead of using the transitionents of 1/𝑞𝑤𝐷  it quantifies the separation of migration-type-curves from migration-1355 

fit-curves (Fig. 34) and is defined as: 

𝜀 = 1 − (
𝑥𝑖𝐷𝑓

𝑥𝑖𝐷𝑡

),                                                                                                                                                                      (22) 

𝜀 < 1 − (
𝑙𝑜𝑔(𝑥𝑖𝐷𝑓)

𝑙𝑜𝑔(𝑥𝑖𝐷𝑡)
),                                                                                                                                                                      (22) 

where 𝑥𝑖𝐷𝑡  denotes the propagation 𝑥𝑖𝐷  of migration-type-curves and 𝑥𝑖𝐷𝑓  represents the propagation 𝑥𝑖𝐷  of migration-fit-

curves. The latter have the form  𝛼𝑏𝑇𝐷𝜏1/4 (see Eq. 14 and Fig. 34). The cases that are under the study of the fracture 1360 

criterion are not affected by the fracture tip and the terminationfracture time is similar for all migration-type-curves for 

which this criterion is applicable (see 𝜏𝐹 in Fig. 78). Summarizing, this criterion takes into consideration only the movement 

of isobars 𝑃𝑁 along the fracture and not the change of 1/𝑞𝑤𝐷  in the well, and it is suitable for low dimensionless fracture 

conductivities 𝑇𝐷. 
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     In the framework of this study, when we consider the transitionent of flow rate in the well, the criteria that can be utilized 1365 

are the transition criterion (see section 3.2.1) and the reflection criterion (see section 3.2.2). When we consider the 

propagation of isobars along the fracture, the criteria that can be used are the arrival criterion (see section 3.2.3) and the 

fracture criterion (see section 3.2.4). 

     Despite the values for the transition criterion and the fracture criterion are different, their behaviors are similar. They 

present almost constant values within the range of 𝑇𝐷 in which these criteria are applied. Note that the values of fracture 1370 

criterion are always higher than the values of transition criterion. The fracture criterion can give us a reliable estimate of the 

termination of bilinear flow when considering the low dimensionless fracture conductivities 𝑇𝐷 for which this criterion is 

applicable. The transition and fracture criteria make sense only until the isobars 𝑃𝑁 reach the fracture tip (see Fig. 78).  

     As we exposed earlier, it does not make sense to discuss about the occurrence of bilinear flow after the pressure front has 

already arrived at the fracture tip. Nevertheless, the results show (Fig. 78) that the reflection time 𝜏𝑟 (related to the flow rate 1375 

calculated in the well) is greater than the arrival time 𝜏𝑎 (related to the moment at which the isobars reach the fracture tip). It 

means that the reciprocal of dimensionless flow rate calculated in the well is proportional to the fourth root of time even 

when the pressure front has already reached the fracture tip. This aspect is discussed afterward in a subsequent section in 

more detail. 

4 Discussion 1380 

     The dimensionless time was not defined using the conventional definition 𝑡𝐷, but a modified definition 𝜏 presented by 

Ortiz R. et al. (2013). It turned out to be convenient in terms of interpreting the results for bilinear flow since it was possible 

to graph the behavior of 1/𝑞𝑤𝐷 vs. 𝜏 for all dimensionless fracture conductivities 𝑇𝐷 in the same graph (Fig. 2).  

     As for the comparison between the coefficient 𝐴 = 2.60  obtained by us (Eq. 12) and the coefficient 𝐴 = 2.772 

documented by Guppy et al. (1981b), we can observe a discrepancy between theseboth results of approximately 6%. This 1385 

discrepancy can be considered rather low. This difference could be attributed to the spatial and temporal discretization 

utilized in our work, which is more sophisticated than the discretization used by Guppy et al. (1981b). 

     Some type-curves bend clockwise and some other bend counterclockwise from bilinear-fit curve (Fig. 2). Among the 

cases of dimensionless fracture conductivities 𝑇𝐷 studied, the type-curves that bend clockwise are 𝑇𝐷 = 0.1, 0.3 and 1.1, and 

those that bend counterclockwise are 𝑇𝐷 = 3.1, 6.3, 9.4, 20, 31, 50, and 100. Similar results were obtained by Ortiz R. et al. 1390 

(2013) for the case of injection at constant flow rate. For the interval of time utilized in the simulation, the behavior of 

1/𝑞𝑤𝐷  versus 𝜏 for dimensionless fracture conductivities 𝑇𝐷 = 0.1 and 0.3 is identical to the behavior of an infinitely long 

fracture (master curve, red line in Fig. 2) since the separation of the mentioned type-curves from the master curve shall occur 

at time greater than the simulation time utilized here. 
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     Our results concerning the propagation of isobars along the fracture and the matrix (Eqs. 14, and 15) are similar to the 1395 

results previously presented by Ortiz R. et al. (2013) regarding the migration of isobars. The values of 𝛼𝑏 obtained by us for  

𝑃𝑁 = 0.01 and 0.05 are quantitatively different from the values documented by them in 4.6% and 5.8%, respectively. 

     At times when isobars are reaching shortly before the isobars reach the fracture tip, they exhibit an acceleration along the 

fracture (see Figs. 34, and 56). Subsequently, after arriving at the fracture tip, their progress along the fracture keep relatively 

constant. Subsequently, once the isobars arrive at the fracture tip, they no longer progress through the matrix over a certain 1400 

period of time. Afterward, they experience another acceleration along the fracture with which the migration of isobars seems 

to approach to a propagation proportional to the square root of time (see Fig. 34). An identical behavior was observed by 

Ortiz R. et al. (2013) and they attributed it to the reflection of isobars at the fracture tip, which makes sense and could be 

confirmed in this study. The acceleration nearby the fracture tip can be observed more clearly when analyzing the velocity 

along the fracture (see Figs. 67 b, and 67d). During the intervals of time used, the migration of isobars along the fracture 1405 

experiences a constant deceleration, except when they approach to the fracture tip. This deceleration is qualitatively identical 

for 𝑃𝑁 = 0.01 and 𝑃𝑁 = 0.05 (see Figs. 67 a, and 67c). It is evident that for all fixed dimensionless positions in the fracture 

and considering the same dimensionless fracture conductivity 𝑇𝐷, the velocity 𝑣𝑖𝐷  is higher for low values of normalized 

isobars 𝑝𝑁  (see Figs. 67 b, and 67d). One reason of this observation is that once the deceleration begins, 𝑃𝑁 = 0.01 

propagates faster than 𝑃𝑁 = 0.05 since the initial velocity (when the isobar leaves the well) of the isobar 𝑃𝑁 = 0.01 is higher 1410 

than initial velocity of the isobar 𝑃𝑁 = 0.05. This behavior is explained based on the fact that the pressure gradient between 

the well and the fracture is bigger when  𝑃𝑁 = 0.01 is leaving the well than when 𝑃𝑁 = 0.05 is leaving it. Furthermore, for 

all fixed dimensionless positions in the fracture and considering the same isobar 𝑃𝑁 , the velocity 𝑣𝑖𝐷  is higher for high 

dimensionless fracture conductivities (see Figs. 67 b, and 67d). 

     Using Eq. (18) and Eq. (19) the migration of isobars along the fracture can be described as: 1415 

𝑥𝑖𝐷 = (
𝛽𝑏

𝛾𝑏

)
−1/3

𝜏1/4.                                                                                                                                                              (23) 

Note that Eq. (23) has the same form that Eq. (14), thus: 

(
𝛽𝑏

𝛾𝑏

)
−1/3

= 𝛼𝑏𝑇𝐷 .                                                                                                                                                                   (24) 

It is possible to verify the validity of Eq. (24) by introducing the required values. 

     For the case of injection at constant flow rate the results obtained by Ortiz R. et al. (2013) for the arrival time, the 1420 

reflection time, and the transition time, are similar to ours (see Table 1). It is worth noting that when using the expression 𝜀 

and 𝑃𝑁 = 0.01, it means that we are studying the case of the isobar 𝑃𝑁 = 0.01 and we are considering that for values of 𝜀 

greater than 0.01, the bilinear flow ends. Note further that when considering 𝜀 and 𝑃𝑁 = 0.05, we are studying the isobar 

𝑃𝑁 = 0.05 and we are using a value of 𝜀 = 0.05 to determine the termination of bilinear flow, for all pertinent criteria. 

     When it comes to the criteria that consider the transitionient of 1/𝑞𝑤𝐷  some observations can be made: (a) in the case of 1425 

Fig. 78a the transition criterion is fulfilled up to a value of 𝑇𝐷 approximately 2 and for values of 𝑇𝐷 above 3 the reflection 
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criterion is fulfilled; and (b) in the case of Fig. 78b the transition criterion is fulfilled up to a value of 𝑇𝐷 approximately 1.1 

and for values of  𝑇𝐷 above 2 the reflection criterion is fulfilled. Note that for the case 𝜀 and 𝑃𝑁 = 0.01 and for 2 < 𝑇𝐷 < 3 

as well as for the case 𝜀 and 𝑃𝑁 = 0.05 and for 1.1 < 𝑇𝐷 < 2, it is not clear what happens with the transition criterion since 

it seems that the values converge to the fit-curve for the reflection criterion (see Fig. 7). A deeper study is required to 1430 

determine more precisely what occurs within those ranges of 𝑇𝐷. Ortiz R. et al. (2013) concluded the same based on their 

work. Note that for the case 𝜀 and 𝑃𝑁 = 0.01 and 2 < 𝑇𝐷 < 3 (see Fig. 8a), it is observed that values (non-filled circles) 

depart from the fit-curve linked to the transition criterion and start converging toward the fit-curve associated with the 

reflection criterion. A similar behavior is also observed for the case 𝜀 and 𝑃𝑁 = 0.05 and 1.1 < 𝑇𝐷 < 2 (see Fig. 8b). A 

comprehensive study is required to unravel more precisely what occurs within those ranges of 𝑇𝐷. Based on their work, Ortiz 1435 

R. et al. (2013) came to the same conclusion. 

     Finally, there are two ways to determine the termination of bilinear flow: (I) by numerically measuring the transient flow 

rate in the well and obtaining the transition time 𝜏𝑡 for low 𝑇𝐷 and the reflection time 𝜏𝑟 for high 𝑇𝐷, and (II) according to the 

migration of isobars along the fracture (not measurable in the well), obtaining the fracture time 𝜏𝐹 for low 𝑇𝐷 and the arrival 

time 𝜏𝑎 for high 𝑇𝐷 (see Table 2). 1440 

4.1 Application to well testing problems 

     In practical terms, when analyzing the transient flow rate in a well only the transition time 𝜏𝑡 and the reflection time 𝜏𝑟 

can be determined. The transition time defines the end of bilinear flow when 1/𝑞𝑤 is no longer proportional to 𝑡1/4, and the 

reflection time refers to the moment at which a variation of pressure is evident in the fracture tip. With the current field 

methods, it is not possible to determine the termination of bilinear flow utilizing the progress of the pressure front along the 1445 

fracture, although this is more physically reasonable. Nevertheless, the fracture length can be constrained indirectly, for 

instance by computing the time at which the pressure arrives at the fracture tip and its relation with respect to the reflection 

time. The relation between the arrival time 𝜏𝑎 and the reflection time 𝜏𝑟 is given by: 

𝜏𝑎 ≅ 0.0579𝜏𝑟                                                                                                                                                                         (25) 

for 𝜀 and 𝑃𝑁 = 0.01 (see Fig. 78a); and 1450 

𝜏𝑎 ≅ 0.0736𝜏𝑟                                                                                                                                                                         (26) 

for 𝜀 and 𝑃𝑁 = 0.05 (see Fig. 78b). 

     In the following, we present two artificial cases in which synthetic curves were constructed to illustrate how the 

measurements of the flow rate in wells during hydraulic tests at constant pressure are used to estimate or restrict the length of 

fractures with finite hydraulic conductivity (bilinear flow). The synthetic curves are not obtained from measurements of 1455 

realistic well tests, but computed utilizing the validated porous and fracture model included in COMSOL Multiphysics® and 

in previous papers. 
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4.1.1 Case 1: high dimensionless fracture conductivities 𝑻𝑫 

     We proceed to elaborate a method to estimate the fracture length using measurements of the flow rate in the well. This is 

motivated by its usefulness for cases with high 𝑇𝐷 in which the reflection criterion is applicable, i.e., provided that the isobar 1460 

that is under study reaches the fracture tip while bilinear flow is still in progress. In this example, the values of the 

dimensional fracture conductivity 𝑇𝐹  as well as the fracture length 2𝑥𝐹  are restricted by a synthetic curve representing the 

transient flow rate in the well. The synthetic curve is performed assuming that 𝑝𝑤 = 106 Pa1 𝑀𝑃𝑎, 𝑝𝑖 = 105 Pa100 kPa, 

𝑘𝑚 = 1 𝜇𝐷10−18  m2, 𝑇𝐹 = 1.5 ·× 10−16  m3, 𝑠𝑚 = 10−11    Pa-1, 𝜂𝐹 = 2.5 ·× 10−4  Pa s, and 𝑥𝐹 = 23.81 m (see Fig. 89). 

The procedure is described in series of steps as follows:  1465 

1. Dimensionally graphing the reciprocal of flow rate vs. time. It is worthwhile noting that the counterclockwise 

separation of the synthetic curve (red line) from the bilinear-fit-curve (grey line) represents the moment when is 

exhibited in the well the of arrival of the pressure front at the fracture tip, defining the end of bilinear flow.  

2. Calculate 𝑇𝐹  as is typically done (see, e.g., Guppy et al., 1981b), i.e., based on the slope of  bilinear-fit-curve 

1/𝑞𝑤 = 𝑚𝑡1/4 (Eq. 12). The dimensional fracture conductivity is determined as follows:  1470 

𝑇𝐹 = (
2.61𝜂𝐹

3/4

𝑘𝑚
1/4

𝑠𝑚
1/4

ℎ(𝑝𝑤 − 𝑝𝑖)𝑚
 )

2

.                                                                                                                                        (27) 

According to this example, it is obtained𝑇𝐹  is obtained as 𝑇𝐹 = 1.5 ·× 10−16 m3. This value is the same as the one 

employed to perform the synthetic curve.  

3. Read from the graph the termination of bilinear flow defined by the separation of the curve that represents the 1/𝑞𝑤 

measured in the well (red curve) from the curve proportional to 𝑡1/4 (grey curve). This time corresponds to the 1475 

reflection time. In practical terms, it is considered a calculation error in the separation of 5%, which corresponds 

approximately to the visual estimation of the point at which boththese curves start departing from each other. In this 

case study, the reflection time 𝑡𝑟 is approximately 104 s. 

4. Introduce the value of reflection time 𝑡𝑟 calculated in the previous step in the relation 𝜏𝑎 ≅ 0.0736𝜏𝑟 and obtain the 

arrival time of the isobars at the fracture tip. For the example at hand 𝑡𝜏𝑎 = 736 s. 1480 

5. Determine the value of 𝐷𝑏  from its definition:  

𝐷𝑏 =
𝑇𝐹

2

𝑘𝑚 𝜂𝐹𝑠𝑚

.                                                                                                                                                                       (28) 

For the present case study, taking into account the example and the parameters of the simulation, it is obtained𝐷𝑏  is 

obtained as 𝐷𝑏 = 9 m4 s-1. 

6. Introduce the value of 𝑡𝑎, obtained at step 4, and the value of 𝐷𝑏 , calculated at step 5, in the equation of migration 1485 

of isobars along the fracture (Eq. 16) and, in this way, calculate the fracture half-length. In this case, the isobar 
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under study is 𝑃𝑁 = 0.05, as a result the constant 𝛼𝑏 = 2.23. Utilizing the Eq. (16) documented for the first time in 

this work we have:  

𝑥𝐹 = 𝛼𝑏(𝐷𝑏𝑡𝑎)1/4.                                                                                                                                                                  (29) 

When introducing the corresponding values of the considered example, it is obtained 𝑥𝐹 = 20.12 m𝑥𝐹  is obtained 1490 

as 20.12 m. 

7. Finally, the fracture length is approximately 40.24 m (2𝑥𝐹). It can be noted that this result is slightly lower than 

47.62 m, which is the value that denotes the real magnitude used to represent the synthetic curve. It is possible to 

obtain more accurate results by quantitively calculating the separation between the curves of the considered 

example instead of visually estimating it. For instance, when calculating exactly the point at which the separation is 1495 

5% it is obtained an arrival time of 865.5 s and a fracture length of 41.9  m. For instance, when calculating 

explicitly a counterclockwise 5% separation of the synthetic curve (red line) from the bilinear-fit-curve (grey line), 

an arrival time of 865.5 s and a fracture length of 41.9 m are obtained. 

4.1.2 Case 2: low dimensionless fracture conductivities 𝑻𝑫 

     In the case of low 𝑇𝐷, it is not possible to estimate the fracture length utilizing the bilinear flow theory, since this flow 1500 

regime ends before the isobar at study arrives at the fracture tip. This is expressed in terms of the pressure field by the 

observation of the premature occurrence of a significant pressure change in the fracture tip. However, it is possible to restrict 

the minimum fracture length. In the following example, the values of the dimensional fracture conductivity 𝑇𝐹  as well as the 

minimum fracture length 2𝑥𝐹  are constrained by a synthetic curve representing the transient flow rate in the well. This latter 

curve is computed assuming that 𝑝𝑤 = 106  Pa1 MPa, 𝑝𝑖 = 105  Pa100 kPa, 𝑘𝑚 = 1 𝜇𝐷10−18  m2, 𝑇𝐹 = 1.5 ·× 10−16  m3, 1505 

𝑠𝑚 = 10−11    Pa-1, 𝜂𝐹 = 2.5 ·× 10−4 Pa s, and 𝑥𝐹 = 136.36 m (see Fig. 910). The procedure is outlined in the following 

steps: 

1. Dimensionally graphing the reciprocal of flow rate vs. time.  

2. Calculate the value of 𝑇𝐹  as commonly conducted in the related literature (See, e.g., Guppy et al., 1981b), i.e., based 

on the slope of bilinear-fit-curve 1/𝑞𝑤 = 𝑚𝑡1/4 (Eq. 12). The dimensional fracture conductivity is determined as 1510 

follows:  

𝑇𝐹 = (
2.61𝜂𝐹

3/4

𝑘𝑚
1/4

𝑠𝑚
1/4

ℎ(𝑝𝑤 − 𝑝𝑖)𝑚
 )

2

.                                                                                                                                        (30) 

According to this example, 𝑇𝐹  is obtained as it is obtained 𝑇𝐹 = 1.5 ·× 10−16 m3. This value is the same as the one 

used to calculate the synthetic curve.  

3. Read from the graph the termination of bilinear flow defined by the clockwise separation off the curve that 1515 

represents the 1/𝑞𝑤 measured in the well (blue curve) from the curve proportional to 𝑡1/4 (grey curve). This time is 
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defined as transition time and it is similar for all cases with low 𝑇𝐷. Similar to the previous case, a calculation error 

in the separation of 5% is considered, which corresponds approximately to the visual estimation of the point at 

which both curves start departing from each other. In this example, the transition time 𝑡𝑡 is approximately 106 s. 

4. Introduce the value of transition time 𝑡𝑡, calculated in the previous step, in the relation 𝜏𝑎 ≅ 0.0736𝜏𝑡 and obtain 1520 

the fictitious arrival time of the isobars at the fracture tip. For the contemplated case example, 𝑡𝜏𝑎 = 73600 s. 

5. Determine the value of 𝐷𝑏  from its definition:  

𝐷𝑏 =
𝑇𝐹

2

𝑘𝑚 𝜂𝐹𝑠𝑚

.                                                                                                                                                                       (31) 

In the context of the example at hand and considering the parameters of the simulation, 𝐷𝑏it is obtained as 𝐷𝑏 = 9 

m4 s-1. 1525 

6. Introduce the value of 𝑡𝑎, obtained at step 4, and the value of 𝐷𝑏  computed at step 5, in the equation of migration of 

isobars along the fracture (Eq. 16) and, in this way, calculate the fictitious fracture half-length. In this case, the 

isobar under study is 𝑃𝑁 = 0.05, as a consequence the constant 𝛼𝑏 = 2.23. Utilizing the Eq. (16) documented for 

the first time in this work we have:  

𝑥𝐹 = 𝛼𝑏(𝐷𝑏𝑡𝑎)1/4.                                                                                                                                                                  (32) 1530 

When incorporating the corresponding values of this example, 𝑥𝐹  it is obtained as 𝑥𝐹 = 63.62 m. 

7. Finally, the minimum fracture length is approximately 127.23 m (2𝑥𝐹), whereas the real value used to represent the 

synthetic curve is 272.72 m. 

     In the cases described previously, the practical use of Eq. (16) to constrain the length of a fracture with finite conductivity 

has been demonstrated by analyzing the transient behavior of flow rate in the well during a hydraulic test at constant 1535 

pressure.  

     The expressions obtained in this work for the ending time of bilinear flow, the pressure propagation, and the bilinearl 

diffusivity 𝐷𝑏, complement the limited theory that exists about data analysis from wells producing or injecting at constant 

pressure. The clarity and simplicity of these equations allows these to be used quickly to estaimate the length of fractures 

with finite conductivity. The bilinearl diffusivity  𝐷𝑏 , firstly introduced by Ortiz R. et al. (2013) for constant well flow rate 1540 

and demonstrated in this work to also hold for the case of constant well pressure, could in principle be estimated in the 

laboratory by means of Eq. (16). In addition, this bilinearl diffusivity allows, on the one hand, for a relatively uncomplicated 

comparison beweenbetween finite conductivity fractures. On the other hand, these equations could in one way or another be 

integrated into more general methods such as the transient rate analysis for the interpretation of production data. Finally, the 

diffusivityon equations of pressure in the matrix and the fracture (Eqs. 16, and 17) are also useful to reduce the associated 1545 

risks related to induced seismicity generated by changes of pressure in fractured reservoirs or faults, as a consequence of 
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massive fluid injection (e.g. Shapiro, 2015; Shapiro and Dinske, 2009). By knowing and understanding the physics behind 

the migration of isobars it is possible to minimize the associated risks with changes in pores pressure. 

5 Conclusion 

     The results of our study suggest that the reciprocal of dimensionless flow rate 1/𝑞𝑤𝐷  is proportional to the fourth root of 1550 

dimensionless time 𝜏 during the bilinear flow regime for the case of injection at constant pressure in the well. Previously, 

Guppy et al. (1981b) obtained the factor 𝐴 = 2.722 (Eq. 10), which is slightly greater than the factor obtained here 𝐴 = 2.60 

(Eq. 12). This discrepancy is attributed to our finer spatial and temporal discretization in comparison with the discretization 

used by Guppy et al. (1981b).  

     During bilinear flow regime the migration of isobars along the fracture is described as: 𝑥𝑖(𝑡) = 𝛼𝑏(𝐷𝑏𝑡)1/4, where 𝐷𝑏 =1555 

𝑇𝐹
2 𝑘𝑚𝜂𝑓𝑠𝑚⁄  (m4 s-1) is defined in the same way as in Ortiz R. et al. (2013) as the effective hydraulic diffusivity of fracture 

during bilinear flow regime. Moreover, the migration of isobars in the matrix is given by: 𝑦𝑖(𝑡) = 𝛼𝑚(𝐷𝑚𝑡)1/2, where 𝐷𝑚 =

𝑘𝑚/(𝜂𝑓𝑠𝑚) (m2 s-1) denotes the hydraulic diffusivity of matrix. 

     As for the transient of flow rate in the well, the termination of bilinear flow is given by (a) the transition time 𝜏𝑡 

(circumferences in Fig. 7 and Eq. 20), valid for low 𝑇𝐷 and (b) the reflection time 𝜏𝑟 (squares in Fig. 7 and Eq. 21), valid for 1560 

high 𝑇𝐷. 

     When it comes to the propagation of isobars along the fracture, the termination of bilinear flow is given by (a) the fracture 

time 𝜏𝐹 (filled circles in Fig. 7 and Eq. 22), valid for low 𝑇𝐷 and (b) the arrival time 𝜏𝑎 (triangles in Fig. 7), valid for high 𝑇𝐷. 

     Similarly as in Ortiz R. et al. (2013), it was observed that isobars accelerate when they approach to the fracture tip (Figs. 

3 and 5). This acceleration was verified by studying the velocity of isobars using the graphs 𝑣𝑖𝐷  vs. 𝜏 and 𝑣𝑖𝐷  vs. 𝑥𝑖𝐷  (Fig. 6). 1565 

It was concluded that for a fixed dimensionless position in the fracture 𝑥𝑖𝐷 , the velocity 𝑣𝑖𝐷  is higher for low values of 

normalized isobars 𝑝𝑁 as well as for high fracture conductivities 𝑇𝐷 (see Figs. 6b and 6d). 

     In a follow-up study, it would be interesting to include the effect of fracture storativity and investigate, utilizing an 

analogue method to that discussed in this work, the behavior of a fracture with conductivity high enough to lead to fracture 

and formation linear flow. 1570 

     Numerical results obtained in this work corroborated the relation of proportionality previously presented by Guppy et al. 

(1981b) between the reciprocal of dimensionless flow rate 1/𝑞𝑤𝐷  and the fourth root of dimensionless time 𝜏 during the 

bilinear flow regime for the case of injection at constant pressure in the well. Guppy et al. (1981b) obtained the 

proportionality factor 𝐴 =  2.722 (Eq. 10), which is slightly greater than the factor obtained here 𝐴 =  2.60 (Eq. 12). This 

discrepancy may be attributed to our finer spatial and temporal discretization in comparison with the discretization used by 1575 

Guppy et al. (1981b). 

     The most significant findings of this work are: 
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i) During the bilinear flow regime, the migration of isobars along the fracture is described as: 𝑥𝑖(𝑡) =

𝛼𝑏(𝐷𝑏𝑡)1/4 , where 𝐷𝑏 = 𝑇𝐹
2 𝑘𝑚𝜂𝑓𝑠𝑚⁄  (m4 s-1) is the effective hydraulic diffusivity of fracture during the 

bilinear flow regime. In addition, the migration of isobars in the matrix is given by: 𝑦𝑖(𝑡) = 𝛼𝑚(𝐷𝑚𝑡)1/2, 1580 

where 𝐷𝑚 = 𝑘𝑚/(𝜂𝑓𝑠𝑚) (m2 s-1) denotes the hydraulic diffusivity of matrix. This simulation results are in line 

with the study conducted by Ortiz R. et al. (2013) for the case of wells injecting/producing at constant flow 

rate.  

ii) The termination of bilinear flow obtained from transient flow rate analysis is given by (a) the transition time 𝜏𝑡 

(circumferences in Fig. 8 and Eq. 20), valid for low 𝑇𝐷 and (b) the reflection time 𝜏𝑟 (squares in Fig. 8 and Eq. 1585 

21), valid for high 𝑇𝐷.  

iii) From the physical point of view, it is of interest to study the propagation of isobars along the fracture, for 

which the termination of bilinear flow has been found in this work to be given by (a) the fracture time 𝜏𝐹 (filled 

circles in Fig. 8 and Eq. 22), valid for low 𝑇𝐷 and (b) the arrival time 𝜏𝑎 (triangles in Fig. 8), valid for high 𝑇𝐷. 

However, this methodology may encounter technological obstacles in real field situations. 1590 

iv) A new methodology is presented to constrain the fracture length (section 4.1), based on the end time of the 

bilinear flow and using Eq. (16) that describes the spatiotemporal evolution of the isobars along the fracture 

during the bilinear flow regime. 

v) In terms of dimensionless parameters, the time at which a specific isobar arrives at the fracture tip is dependent 

only on 𝑇𝐷 (see section 3.2.3 and τ𝑎 in Fig. 8).  1595 

 

     Similarly as in Ortiz R. et al. (2013), it is observed that the isobars exhibit a peak of acceleration shortly before they 

arrive at the fracture tip (Figs. 4, 6). This acceleration was verified by studying the velocity of isobars using the graphs 𝑣𝑖𝐷  

vs. 𝜏 and 𝑣𝑖𝐷  vs. 𝑥𝑖𝐷  (Fig. 7). It was concluded that for a fixed dimensionless position in the fracture 𝑥𝑖𝐷 , the velocity 𝑣𝑖𝐷  is 

higher for lower values of normalized isobars 𝑝𝑁 as well as for higher dimensionless fracture conductivities 𝑇𝐷 (see Figs. 7 1600 

b, d). 

     In a follow-up study, it would be interesting to include the effect of fracture storativity and investigate, utilizing an 

analogue method to that discussed in this work, the behavior of a fracture with conductivity high enough to lead to fracture 

and formation linear flow. 
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Nomenclature 

𝐴 constant, Eq. (12) 

𝑏𝐹 aperture of fracture, m 

𝑐𝑎  coefficient of fit equation for the arrival time, Table 1 and Fig. 78 

𝑐𝑟 coefficient of fit equation for the reflection time, Table 1 and Fig. 78 

𝑐𝑡 coefficient of fit equation for the transition time, Table 1 and Fig. 78 

𝐷𝑏  effective hydraulic diffusivity of fracture during bilinear flow regime, Eq. (16), m4 s-1 

𝐷𝑚 hydraulic diffusivity of matrix, Eq. (17), m2 s-1 

𝑓(𝑡𝐷) transient behavior of pressure in the well, Eq. (11), Pa 

ℎ height of the open well section, fracture height, Eq. (5), m 

𝑘𝐹 fracture permeability, m2 

𝑘𝑚 matrix permeability, m2 

𝑝𝑖  initial pressure of matrix and fracture, Eq. (5), Pa 

𝑃𝑁  normalized pressure difference, Eq. (13) 

𝑝𝑤 constant injection pressure, Eq. (5), Pa 

𝑝(𝑥, 𝑦, 𝑡) pressure at the position (𝑥, 𝑦) in the fracture or the matrix at time 𝑡, Eq. (13), Pa 

𝑞𝑤 flow rate in the well, Eq. (5), m3 s-1 

𝑞𝑤𝐷  dimensionless flow rate in the well, Eq. (5) 

𝑞𝑤𝐷𝑡 dimensionless flow rate of type-curves, Eqs. (20) and (21), Fig. 2 

𝑞𝑤𝐷∞ dimensionless flow rate of the master curve, Eq. (21), Fig. 2 

𝑞𝐹(𝑥, 𝑡) fluid flow between matrix and fracture, m2 s-1 

𝑠𝐹 specific storage capacity of fracture, Pa-1 

𝑠𝑚  specific storage capacity of matrix, Pa-1 
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𝑡 dimensional time, Eq. (7), s 

𝑡𝑎 dimensional arrival time, s 

𝑡𝐷 conventional dimensionless time, Eq. (7) 

𝑇𝐷 dimensionless fracture conductivity, Eq. (6) 

𝑇𝐹  fracture conductivity, Eq. (6), m3 

𝑣𝑖𝐷  dimensionless velocity of isobars along the fracture, Eqs. (18) and (19) 

𝑥, 𝑦 spatial coordinates along, normal to the fracture with origin at the well, Eqs. (8) and (9), 

respectively, m 

𝑥𝐹  fracture half-length, Eq. (6), m 

𝑥𝐷 , 𝑦𝐷 dimensionless coordinates, Eqs. (8) and (9), respectively 

𝑥𝑖𝐷 , 𝑦𝑖𝐷  dimensionless distances of isobars from the well (along the 𝑥𝐷 and 𝑦𝐷  axis, Eqs. (14) and (15), 

respectively 

𝑥𝑖𝐷𝑓  dimensionless propagation of migration-fit-curves, Eq. (22), Fig. 34 

𝑥𝑖𝐷𝑡 dimensionless propagation of migration-type-curves, Eq. (22), Fig. 34 

𝛼𝑏 constant for pressure diffusion in the fracture during bilinear flow, Eqs. (14) and (16) 

𝛼𝑚 constant for pressure diffusion in the matrix, Eqs. (15) and (17) 

𝛽𝑏 constant for velocity in the fracture depending on time, Eq. (18) 

𝛾𝑏 constant for velocity in the fracture depending on space, Eq. (19) 

Δ𝛿 constant, Eq. (11) 

𝜀 quantification of error in the termination of bilinear flow, Eqs. (20), (21) and (22), Fig. 78 

𝜂𝑓 dynamic fluid viscosity, Pa s 

𝜏 dimensionless time, Eq. (57) 

𝜏𝑎  dimensionless arrival time, Fig. 78 

𝜏𝐹  dimensionless fracture time, Fig. 78 

𝜏𝑟 dimensionless reflection time, Fig. 78 

𝜏𝑡 dimensionless transition time, Fig. 78 
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Figure 1: (a) 2D representation of model structure; (b) utilized mesh for simulation; and (c) 3D representation of model structure.  
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Figure 2: Model results displayed as 𝟏/𝒒𝒘𝑫 vs. τ in log-log scale. Bilinear-fit-curve (grey line), master curve (red line), and type-1700 
curves (black lines).  
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Figure 3: Spatial evolution of isobars 𝑷𝑵 = 𝟎. 𝟎𝟏 and 𝑷𝑵 = 𝟎. 𝟎𝟓 over time through the modeling domain, for the dimensionless 

fracture conductivities 𝑻𝑫 = 𝟎. 𝟑 (a, b, c) and 𝑻𝑫 = 𝟔. 𝟑 (d, e, f). Note that for the case of 𝑻𝑫 = 𝟎. 𝟑, the scale of the graph (a) is 

different from that used for the graphs (b) and (c). Read text in section 3.1 for a more detailed description of the graphs. 1705 
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Figure 34: Model results display 𝒙𝒊𝑫 and 𝒚𝒊𝑫 vs. τ in log-log scale. Propagation of isobars 𝑷𝑵 = 𝟎. 𝟎𝟏 (a, c, e, g, i) and 𝑷𝑵 = 𝟎. 𝟎𝟓 

(b, d, f, h, j) along the fracture and the formation considering the following dimensionless fracture conductivities: 𝑻𝑫 = 𝟎. 𝟏 (a, b), 

𝟎. 𝟑 (c, d), 𝟏. 𝟏 (e, f), 𝟔. 𝟑 (g, h),  and 𝟗. 𝟒 (i, j). The dashed lines represent the arrival at the fracture tip of the specific isobars 1710 
indicated in the graphs.  
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Figure 45: Model results in terms of 𝒙𝒊𝑫 vs. 𝑻𝑫 ∙ 𝝉𝟏/𝟒 in log-log scale. Propagation of isobars 𝑷𝑵 along the fracture considering the 

following dimensionless fracture conductivities: 𝑻𝑫 = 𝟎. 𝟏, 𝟎. 𝟑, 𝟏. 𝟏, 𝟑. 𝟏, 𝟔. 𝟑, 𝟗. 𝟒, 𝟐𝟎, 𝟑𝟏, and 𝟓𝟎. (a) Model scenarios with 𝑷𝑵 =
𝟎. 𝟎𝟏 and 𝜶𝒃 = 𝟑. 𝟐𝟓; (b) model scenarios with 𝑷𝑵 = 𝟎. 𝟎𝟓 and 𝜶𝒃 = 𝟐. 𝟐𝟑. The dashed lines represent the arrival at the fracture 1715 
tip of the specific isobars indicated in the graphs. 
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Figure 56: Modeling results in terms of 𝒙𝒊𝑫 vs. 𝝉 in log-log scale. Propagation of isobars 𝑷𝑵 = 𝟎. 𝟎𝟏, 𝟎. 𝟎𝟓, 𝟎. 𝟐𝟐, 𝟎. 𝟒𝟒, and 𝟎. 𝟔𝟔 1720 
with 𝑻𝑫 = 𝟔. 𝟑. The dashed line represents the arrival at the fracture tip of the specific isobars indicated in the graph. 
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Figure 67: Model results showing 𝒗𝒊𝑫 vs. 𝝉 and 𝒗𝒊𝑫 vs. 𝒙𝒊𝑫 in log-log scale. Velocity of isobars 𝑷𝑵 = 𝟎. 𝟎𝟏 and 𝟎. 𝟎𝟓 considering 1725 
𝑻𝑫 = 𝟎. 𝟑 (a, b) and 𝟑. 𝟏 (c, d). The dashed lines represent the arrival of the specific isobars at the fracture tip. (a) The circle and 

triangle symbols represent the transition time 𝝉𝒕 for 𝑷𝑵 = 𝟎. 𝟎𝟏 and 𝟎. 𝟎𝟓, respectively (see Eq. 20). (c) The circle and triangle 

symbols represent the arrival time 𝝉𝒂 for 𝑷𝑵 = 𝟎. 𝟎𝟏 and 𝟎. 𝟎𝟓, respectively (see Fig. 78).  
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 1730 

 
Figure 78: Model results displaying 𝝉𝒕, 𝝉𝒓, 𝝉𝑭  ,and 𝝉𝒂  vs. 𝑻𝑫  in log-log scale. 𝝉𝒕, 𝝉𝒓, 𝝉𝑭 ,  and 𝝉𝒂  denote the transition time, the 

reflection time, the fracture time, and the arrival time, respectively. The fit-curves for reflection time and arrival time are 

represented by black lines, for transition time by dashed lines, and for fracture time by grey lines. (a) Numerical simulations with 

𝜺 and 𝑷𝑵 = 𝟎. 𝟎𝟏; and (b) numerical simulations with 𝜺 and 𝑷𝑵 = 𝟎. 𝟎𝟓 (see Eqs. 20, 21 and 22).   1735 
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Figure 89: 𝟏/𝒒𝒘 (s m-3) vs. 𝒕 (s) in log-log scale. The synthetic curve is represented by the red line and the bilinear-fit-curve is 

displayed with the grey line. 
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Figure 910: 𝟏/𝒒𝒘 (s m-3) vs. 𝒕 (s) in log-log scale. The synthetic curve is represented by the blue line and the bilinear-fit-curve is 

indicated with the grey line.  
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Paper Coefficient With 𝜀 and 𝑃𝑁 = 0.01 With 𝜀 and 𝑃𝑁 = 0.05 

Ortiz R. et al. (2013) 

𝑐𝑎 3.40 2.49 

𝑐𝑟 1.73 1.25 

𝑐𝑡 6.44 2.53 

This work 

𝑐𝑎 3.71 2.63 

𝑐𝑟 1.82 1.37 

𝑐𝑡 7.39 2.74 

Table 1: Comparison of coefficients of fit equations for the arrival time, the reflection time, and the transition time, which have the 

form 𝝉𝒂 = (𝒄𝒂 ∙ 𝑻𝑫)−𝟒, 𝝉𝒓 = (𝒄𝒓 ∙ 𝑻𝑫)−𝟒, and 𝝉𝒕 = (𝒄𝒕)−𝟒, respectively (see Fig. 8). 
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Case Termination time With 𝜀 and 𝑃𝑁 = 0.01 With 𝜀 and 𝑃𝑁 = 0.05 

I 
𝜏𝑡 𝑇𝐷 < 2 𝑇𝐷 < 1.1 

𝜏𝑟 𝑇𝐷 > 3 𝑇𝐷 > 2 

II 
𝜏𝐹 𝑇𝐷 <  1.2 𝑇𝐷 < 0.9 

𝜏𝑎 𝑇𝐷 > 1.2 𝑇𝐷 > 0.9 

Table 2: Criteria utilized to calculate the termination of bilinear flow. See discussion for the definition of the case I and II. 


