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Abstract. This work studies intensively the flow in fractures with finite hydraulic conductivity intersected by a well 

injecting/producing at constant pressure, either during an injection/production well test or the operation of a production well. 

Previous investigations showed that for a certain time the reciprocal of flow rate is proportional to the fourth root of time, 15 

which is characteristic of the flow regime known as bilinear flow. Using a 2D numerical model, we demonstrated that during 

the bilinear flow regime the transient propagation of isobars along the fracture is proportional to the fourth root of time. 

Moreover, we present relations to calculate the termination time of bilinear flow under constant injection or production well 

pressure, as well as, an expression for the bilinear hydraulic diffusivity of fractures with finite hydraulic conductivity. To 

determine the termination of bilinear flow regime, two different methods were used: (a) numerically measuring the transient 20 

flow rate in the well and (b) analyzing the propagation of isobars along the fracture. Numerical results show that for low 

dimensionless fracture conductivities the transition from bilinear flow to another flow regime (e.g. pseudo-radial flow) 

occurs before the pressure front reaches the fracture tip and for high dimensionless fracture conductivities it occurs when the 

pressure front arrives at the fracture tip. Hence, this work complements and advances previous research on the interpretation 

and evaluation of well test analysis under different reservoir conditions. Our results aim at improving the understanding of 25 

the hydraulic diffusion in fractured geologic media and as a result they can be utilized for the interpretation of hydraulic 

tests, for example to estimate the fracture length. 

 

Keywords: Bilinear flow; Rate transient analysis; Hydraulic diffusivity; Pressure diffusion; Porous and fractured geologic 

media. 30 

Highlights 

• The reciprocal of flow rate is proportional to the fourth root of time. 

• The migration of isobars in the fracture is proportional to the fourth root of time.  
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• For low dimensionless fracture conductivities, bilinear flow ends before the pressure front reaches the fracture tip. 

• For high dimensionless fracture conductivities, bilinear flow ends when the pressure front reaches the fracture tip. 35 

• Isobars accelerate when they approach to the fracture tip. 

1 Introduction 

     Understanding the different flow regimes in fractured reservoirs has always been key in the interpretation and evaluation 

of hydraulic well tests as well as in the production optimization of reservoirs. An in-depth description of the behavior of 

multiple flow regimes in fractures is extremely important to master the physics behind the modeling and simulation and, 40 

hence, to reliably interpret the results. Models considering a double porosity were first examined by Barenblatt et al. (1960). 

They introduced the basics of fluid dynamics in fissured rocks by deriving general equations of the seepage of liquid in 

porous media, taking into consideration its double-porosity condition. Cinco-Ley and Samaniego-V. (1981) differentiated 

clearly four flow regimes: fracture linear flow, bilinear flow (for the first time named in this way by them), formation linear 

flow, and pseudo-radial flow.  45 

Usually, reservoir properties are obtained from well test or production data at a constant flow rate (pressure transient 

analysis). However, in most cases, reservoir production is performed at a constant pressure. This is illustrated, for instance, 

by the case where fluid is produced from the reservoir by means of a separator or constant-pressure pipeline (e.g., gas wells; 

Ehlig-Economides, 1979). Open wells flow at constant atmospheric pressure, e.g., artesian water wells. Geothermal fluid 

production may propel a back-pressure steam turbine, where steam leaves the turbine at the atmospheric pressure or at a 50 

higher constant pressure. Other operational conditions that require to maintain a constant pressure are encountered in gas 

wells, where a fixed pressure must be maintained for sales purposes or in water injection wells, where the injection pressure 

is constant (Da Prat, 1990). In addition, reservoir production at constant pressure is conducted during rate decline periods of 

reservoir depletion  (Da Prat, 1990; Ehlig-Economides, 1979). Although the interpretation of data collected in well tests and 

production at constant flow rate (pressure transient analysis) has considerably improved, the rate transient analysis has not 55 

experienced such development (Houzé et al., 2018). Lately, a significant interest for the rate transient analysis has increased, 

which is attributed to the exploitation of unconventional hydrocarbon plays due to the extremely slow and long transient 

responses (Houzé et al., 2018). The production from unconventional plays has recently been made possible by creating 

fractures, which has strengthened the importance of having better tools and methods that allow to obtain information of the 

fractures considering either the transient analysis of pressure or flow rate or the combination of both. It is exceedingly 60 

difficult to maintain a constant flow rate during long times, especially in low permeability formations as in the case of 

unconventional plays (Kutasov and Eppelbaum, 2005). It is worth mentioning that constant-pressure tests have the advantage 

of minimizing changes in the wellbore storage coefficient  (Earlougher Jr., 1977).  The wellbore storage effects distort early-

time pressure evolution, subsequently, the constant-pressure well tests allow the analysis of early-time data and in this way 

information of the reservoir in the vicinity of the wellbore can be obtained (Nashawi and Malallah, 2007). Moreover, rate-65 
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transient tests are particularly suitable for the illustration of the long-term behavior of formations (Torcuk et al., 2013).  

Conceivably, one of the main reasons why constant pressure tests is not a more common technique in reservoir engineering 

arises from the fact that no analytical solutions are available for the pressure diffusivity equation when considering 

injection/production at constant pressure in fracture geologic media (Kutasov and Eppelbaum, 2005).  

     Arps (1945) presented an empirical production correlation for the rate history of a well during the boundary-dominated 70 

flow regime. Later, Locke and Sawyer (1975) generated type-curves for a vertically fractured reservoir producing at constant 

pressure with the objective of characterizing the behavior of flow rate. In this context, Agarwal et al. (1979) presented type-

curves to analyze the early time cases. In addition, they determined the dimensionless fracture conductivity 𝑇𝐷 by means of 

graphing the logarithm of the reciprocal of flow rate vs. the logarithm of time and utilizing type-curve matching techniques. 

Fetkovich (1980) introduced the rate decline analysis in the radial-flow system, similar to pressure transient analysis, 75 

however, only applicable to circular homogeneous reservoirs.  

     Guppy et al. (1981a) studied the effect of non-Darcy flow within a fracture. They concluded that the dimensionless 

fracture conductivity 𝑇𝐷 can be expressed as an apparent conductivity that is not constant over time. Subsequently, a major 

contribution was made by Guppy et al. (1981b), which consisted of presenting semi-analytical solutions for bilinear flow, 

both works considered constant pressure production. They demonstrated that the reciprocal of dimensionless flow rate is 80 

proportional to the fourth root of dimensionless time when producing at constant wellbore pressure. Guppy et al. (1988) 

contributed further to the previous works investigating deeply the cases with turbulent flow in the fracture and for the first 

time they examined a technique that concerns both buildup and drawdown data when the well is producing at constant 

pressure. Subsequently, a direct method to estimate the turbulent term considering high-velocity flow in variable rate tests 

was documented by Samaniego-V. and Cinco-Ley (1991). In addition, Berumen et al. (1997) developed a transient pressure 85 

analysis under both constant wellhead and bottom-hole pressure conditions considering high-velocity flow. Wattenbarger et 

al. (1998) presented decline curve analysis methods for tight gas wells producing at constant pressure with long-term linear 

behavior (fracture flow). Pratikno et al. (2003) prepared rate-time decline curves for fractured wells producing at constant 

pressure, including fracture lineal and bilinear flow. Follow-up investigations conducted by Nashawi (2006) presented semi-

analytical solutions when considering non-Darcy flow in a fracture and a method with which it is possible to quantify the 90 

turbulence in a fracture. Nashawi and Malallah (2007) developed a direct method to determine the fracture and reservoir 

parameters without having to use type-curve matching techniques. In this context, Heidari Sureshjani and Clarkson (2015) 

concluded that plotting techniques overestimate the fracture half-length, leading them to the formulation of an analytical 

methodology with which the fracture half-length is estimated more precisely.  

     Recently, Silva-López et al. (2018) introduced a new method to obtain Laplace-transform solutions, and as a result, they 95 

predicted new regions of flow behavior. This latter method is documented for injection at either constant flow rate or 

pressure. In addition, the theory of well testing has been improved by investigating the effects of non-uniform properties of 

hydraulic fractures (He et al., 2018). Moreover,  Wang et al. (2018) presented an enhanced model to simulate the 
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productivity of volume fractured wells and Dejam et al. (2018) documented a new semi-analytical solution applicable in 

dual-porosity formulations. 100 

     When it comes to studying the termination of bilinear flow regime and the spatiotemporal propagations of isobars, there is 

not much evidence of investigations considering injection or production at constant pressure. To the best of our knowledge, 

it has only been investigated when injecting at constant flow rate in the well (Cinco-Ley and Samaniego-V., 1981; Weir, 

1999). In this regard, new criteria to determine the end of bilinear flow, which are also used in this investigation, were 

introduced by Ortiz R. et al. (2013). From the industry point of view, accurately estimating the termination time of the 105 

bilinear flow is relevant since it can be used to assess a minimum value of fracture length when the dimensionless fracture 

conductivity 𝑇𝐷 ≥ 3 (Cinco-Ley and Samaniego-V., 1981). To underpin the latter, Ortiz R. et al. (2013) demonstrated that 

for 𝑇𝐷 approximately higher than 10 the fracture half-length can be estimated as 𝑥𝐹 = 𝐶(𝐷𝑏𝑡𝑒𝑏𝑙)
1 4⁄ , where  𝐶 is a constant, 

𝐷𝑏 is the bilinear hydraulic diffusivity, and 𝑡𝑒𝑏𝑙 the termination time of the bilinear flow. Moreover, for lower values of  𝑇𝐷 

the termination time of the bilinear flow can be used to restrict the minimum fracture length. This information is important to 110 

characterize and model a fractured reservoir. Having reliable data on fracture dimensions is critically important for 

production optimization strategies. 

     This work addresses the challenging task of gaining a quantitative understanding of bilinear flow from rate transient 

analysis for wells producing at constant pressure, requiring a multidisciplinary approach. Expanding the understanding of 

bilinear flow regime in fractured reservoirs leads to a more precise analysis of well tests and production or injection data. 115 

This, in turn, makes it possible to characterize a reservoir more accurately and consequently have more reliable assessments 

of its behavior, leading to better concepts of production optimization during operation. Some of the methodologies used in 

this work are inspired by the study conducted by Ortiz R. et al. (2013) for wells operating at constant flow rate (pressure 

transient analysis). 

     Taking into account injection at constant pressure, this investigation presents for the first time: (a) the propagation of 120 

isobars 𝑃𝑁  along the fracture and the formation during bilinear flow regime, as well as the computation of the bilinear 

hydraulic diffusivity of fracture; and (b) the study of termination of bilinear flow regime utilizing criteria previously 

presented and a criterion firstly documented here. 

2 Background 

2.1 Governing equations and parameters  125 

     This study is carried out considering that single-phase fluid in both matrix and fracture obeys the Darcy’s law in a two-

dimensional confined and saturated aquifer. In a general formulation of a dual-porosity dual-permeability model, the 

equation utilized to describe the hydraulics of a single-phase compressible Newtonian fluid in a reservoir matrix is given by:  
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𝑠𝑚

𝜕𝑝

𝜕𝑡
=

𝑘𝑚

𝜂𝑓

(
𝜕2𝑝

𝜕𝑥2
+

𝜕2𝑝

𝜕𝑦2
),                                                                                                                                                       (1) 

where 𝑠𝑚 (Pa-1) represents the specific storage capacity of matrix, 𝑘𝑚 (m2) the matrix permeability, 𝜂𝑓 (Pa s) the dynamic 130 

fluid viscosity, and 𝑝 (Pa) the fluid pressure. It is worth noting that the storage coefficient depends on porosity of rock and 

compressibility of fluid and rock. For the fracture, the equation is given by: 

𝑠𝐹𝑏𝐹

𝜕𝑝

𝜕𝑡
=

𝑇𝐹

𝜂𝑓

𝜕2𝑝

𝜕𝑥2
+

𝑞𝐹(𝑥, 𝑡)

ℎ
,                                                                                                                                                (2) 

where 𝑠𝐹  (Pa-1) represents the specific storage capacity of fracture, 𝑏𝐹  (m) the aperture of fracture, 𝑇𝐹  (m3) the fracture 

conductivity, ℎ (m) the fracture height, and 𝑞𝐹(𝑥, 𝑡) the fluid flow between matrix and fracture (see Cinco L. et al., 1978 and 135 

Guppy et al., 1981b). In this study, 𝑠𝐹 is neglected because we assume that the fracture is nondeformable and the amount of 

fluid in the fracture is small enough to consider its compressibility as negligible. In addition, the porosity of the fracture is 

negligible in comparison to the porosity of the matrix. Note, however, that the pressure in the fracture is dictated by an 

inhomogeneous diffusivity equation, which contains a time-dependent source term 𝑞𝐹(𝑥, 𝑡)  but it does not involve an 

intrinsic transient term.  Thus, Eq. (2) reads: 140 

𝑇𝐹

𝜂𝑓

𝜕2𝑝

𝜕𝑥2
+

𝑞𝐹(𝑥, 𝑡)

ℎ
= 0.                                                                                                                                                             (3) 

The pressure diffusivity equations for matrix and fracture are coupled by the term 𝑞𝐹(𝑥, 𝑡), which is defined as: 

𝑞𝐹(𝑥, 𝑡)

ℎ
= 2

𝑘𝑚

𝜂𝑓

𝑑𝑝

𝑑𝑦
|

𝑦=0

,                                                                                                                                                          (4) 

where the factor 2 relates to the contact between matrix and fracture via its two surfaces.  

2.2 Dimensionless parameters   145 

     This study is conducted using dimensional properties, but the analysis of results is performed utilizing the conventional 

dimensionless definitions. The dimensionless flow rate is given by: 

1

𝑞𝑤𝐷

=
𝑘𝑚ℎ(𝑝𝑤 − 𝑝𝑖)

𝑞𝑤𝜂𝑓

,                                                                                                                                                              (5) 

where 𝑞𝑤 (m3 s-1) represents the flow rate in the well, 𝑞𝑤𝐷  the dimensionless flow rate in the well, ℎ (m) the fracture height, 

𝑝𝑖  (Pa) the initial pressure of the formation and fracture, and 𝑝𝑤 (Pa) the constant injection pressure. 150 

     The dimensionless fracture conductivity is defined as: 

𝑇𝐷 =
𝑇𝐹

𝑘𝑚𝑥𝐹

,                                                                                                                                                                                (6) 

where 𝑇𝐹 = 𝑘𝐹𝑏𝐹  (m3) denotes the fracture conductivity, 𝑥𝐹  (m) the fracture half-length, and 𝑘𝐹  (m2) the fracture 

permeability. Note that 𝑇𝐷 is the same as (𝑘𝑓𝑏𝑓)
𝐷

 used in Cinco-Ley and Samaniego-V. (1981) or 𝐹𝐶𝐷 used in Gidley et al. 

(1990). 155 
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     Instead of using the conventional definition of dimensionless time 𝑡𝐷 = 𝑡𝐷𝑚/𝑥𝐹
2, we prefer to use a modified definition 

presented by Ortiz R. et al. (2013): 

𝜏 =
𝑡𝐷

𝑇𝐷
2 =

𝐷𝑚𝑘𝑚
2

𝑇𝐹
2 𝑡,                                                                                                                                                                 (7) 

where 𝐷𝑚 = 𝑘𝑚/(𝜂𝑓𝑠𝑚) (m2 s-1) represents the hydraulic diffusivity of matrix and 𝜏 the dimensionless time. Finally, the 

dimensionless x-coordinate, which corresponds to the fracture axis (see Fig. 1), is defined as: 160 

𝑥𝐷 =
𝑥

𝑥𝐹

;                                                                                                                                                                                      (8) 

and the dimensionless y-coordinate, that represents the axis perpendicular to the fracture (see Fig. 1), is defined as: 

𝑦𝐷 =
𝑦

𝑥𝐹

.                                                                                                                                                                                      (9) 

2.3 Previous solutions for bilinear flow at constant wellbore pressure 

     As mentioned earlier, bilinear flow regime was firstly documented by Cinco-Ley and Samaniego-V. (1981). According to 165 

their proposed definition, it consists of an incompressible linear flow within the fracture and a slightly compressible linear 

flow in the formation. Moreover, a semi-analytical solution for a vertically fractured well producing at constant pressure 

during bilinear flow regime was presented by Guppy et al. (1981b). They demonstrated that the reciprocal of flow rate is 

proportional to the fourth root of time and the governing equation is given in dimensionless form by:  

1

𝑞𝑤𝐷

(𝜏) =
𝜋𝛤(3 4⁄ )

√2𝑇𝐷

𝑡𝐷
1/4 ≅ 2.722𝜏1/4 ,                                                                                                                           (10) 170 

     where 𝛤(3/4) represents the gamma function evaluated in 3/4. Silva-López et al. (2018) presented an analytical solution 

for an infinite fracture considering the case of variable flow rate for long-time in dimensionless form: 

1

𝑞𝑤𝐷

(𝑡𝐷) =
1

𝑓(𝑡𝐷)

𝜋1/4√𝑇𝐷

2𝛿
𝑡𝐷

1/4.                                                                                                                                       (11) 

     Note that Eq. (11) is written in the notation used in this paper. 𝑓(𝑡𝐷) represents a function that describes the transient 

behavior of pressure in the well and δ denotes a constant. 175 

2.4 Description of the model setup 

     We ran the numerical simulations in the Subsurface Flow Module of COMSOL Multiphysics® software program. The 

space- and time-dependent balance equations, described in section 2.1, together with their initial and boundary conditions are 

numerically solved in the entire modeling domain employing the finite-element method (FEM) in a weak formulation. The 

discretization of the partial differential equations (PDEs) results in a large system of sparse linear algebraic equations, which 180 

are solved using the linear system solver MUMPS (MUltifrontal Massively Parallel Sparse direct Solver), implemented in 

the finite element simulation software COMSOL Multiphysics®. Utilizing the Galerkin approach, Lagrange quadratic shape 
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functions have been selected to solve the discretized diffusivity equations for the pressure process variable. For the time 

discretization, a Backward Differentiation Formula (BDF, implicit method) of variable order has been chosen.  

     The two-dimensional model setup in this work is composed of a vertical fracture embedded in a confined horizontal 185 

reservoir. The matrix and fracture are porous geologic media considered saturated, continuous, isotropic, and homogeneous. 

The gravity effects are neglected. Fluid flow enters or abandons the matrix-fracture system only through the well. This 

investigation is symmetric, i.e. the flow rate calculated in the well 𝑞𝑤 corresponds to the half of total flow rate for the case of 

studying the complete fracture length (see Fig. 1). The pressure in the well 𝑝𝑤 is set to 1 MPa during the entire simulation 

and the initial conditions for pressure in the matrix and the fracture 𝑝𝑖  is set to 100 kPa. We use these pressure conditions in 190 

order to ensure an injection of fluid from the well to the matrix-fracture system. The order of magnitude of (𝑝𝑤 − 𝑝𝑖) is 

similar to that utilized by Nashawi and Malallah (2007). No-flow boundary conditions are assigned to the boundaries of the 

reservoir since it is considered as confined. In order to ensure that the boundary conditions do not affect the modeling 

outcome, the system size was consecutively enlarged to double, triple, and quadruple, and the results were compared to each 

other and, in fact, they were identical. Additional studies have been conducted to further examine the independency of 195 

simulation results from the boundary conditions set for the simulation time considered. The pressure has been monitored at 

the boundary of the model for the case of imposing no-flow boundary condition (closed reservoir). No pressure variation has 

been detected at the boundaries of the model, which corroborates the previous observation that the simulation results have 

not been affected by the boundary condition set. Further, the boundary condition has been changed to constant pressure 

(open reservoir). Also, for this latter case, no changes were recognized in the simulation results. That way, boundary 200 

condition-independency of the solution has been guaranteed for in the computational subdomain of most interest. During the 

entire simulation the following parameters remained constant: 𝑘𝑚 = 1  𝜇D, 𝑘𝐹 = 1.5 × 10−13  m2, 𝑠𝑚 = 1 × 10−11  Pa-1, 

𝑏𝐹 = 1 × 10−3 m, and 𝜂𝑓 = 2.5 × 10−4 Pa s. Similarly as in Ortiz R. et al. (2013), the fracture half-length takes different 

values from 1.5 m up to 1500 m with the objective of varying the dimensionless fracture conductivity 𝑇𝐷 from 0.1 up to 100 

(see Eq. 6). The time steps used in these numerical simulations were 0.01 s from the start until the first 40 s, 20 s from 40 s 205 

until 600 s, 60 s from 600 s until 12000 s, 300 s from 12000 s until 72000 s, 1000 s from 72000 s until 5 × 105 s, and 

5 × 105 s from 5 × 105 s until 2 × 108 s (or until 6 × 108 s employed for the master curve, Fig. 2). 

     The mesh, composed of triangular elements, is relatively fine in the vicinity of the fracture and the well and it becomes 

gradually coarser when moving away from the fracture, since there is an extremely large hydraulic gradient near the fracture 

and the well (see Fig. 1b). The minimum element size is 0.0045 m near the well, the maximum element size is 80 m close to 210 

the boundaries of the reservoir, and the maximum element growth rate is 1.3 m. The number of elements varies according to 

the different size and mesh structure used to describe the respective model scenario. The minimum and maximum number of 

elements is 12,929 and 1,358,697, respectively. We performed mesh convergence studies refining the mesh, particularly, in 

the computational subdomain that contains steep hydraulic gradients, until the solution became mesh-independent. 
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3 Results 215 

     Numerical simulations show that during a time interval, the reciprocal of dimensionless flow rate in the well 1/𝑞𝑤𝐷 is 

proportional to the fourth root of dimensionless time τ1/4 (Fig. 2). This proportionality is in accordance with the behavior 

documented by Guppy et al. (1981b) and Silva-López et al. (2018). In particular, we can describe the variation of 

dimensionless flow rate in the well during the bilinear flow regime as:  

1

𝑞𝑤𝐷

(𝜏) = 𝐴 ∙ 𝜏1/4,                                                                                                                                                                  (12) 220 

where the constant 𝐴 is equal to 2.60. From now on, we will refer to this equation as bilinear-fit-curve (grey line in Fig. 2). 

Note that the coefficient A obtained by Guppy et al. (1981b) employing a semi-analytical solution is approximately 𝐴 =

2.722 (see Eq. 10). This slight difference between our and their result for 𝐴 might be due to the temporal and spatial 

discretization utilized by them. The reciprocal of dimensionless flow rate exhibits a behavior proportional to the fourth root 

of time (Eq. 12), which is characteristic of bilinear flow regime, hence we can corroborate the occurrence of it.  225 

     We define the master curve as the one that describes the behavior of an infinitely long fracture (red line in Fig. 2). The 

curves describing the behavior of the reciprocal of dimensionless flow rate over time for different dimensionless fracture 

conductivities, from 𝑇𝐷 = 0.1 up to 𝑇𝐷 = 100, are addressed as type-curves (black lines in Fig. 2). 

     Taking into account all the aspects previously described, when type-curves start departing from the bilinear-fit-curve (Fig. 

2), this indicates that the transition from bilinear flow regime to formation linear flow regime (cases with high 𝑇𝐷) or to 230 

pseudo-radial flow regime (cases with low 𝑇𝐷) begins (Ortiz R. et al., 2013). 

3.1 Propagation of isobars along the fracture and the formation 

     In order to characterize the different isobars, the following definition is used (Ortiz R. et al., 2013): 

𝑃𝑁 =
𝑝(𝑥, 𝑦, 𝑡) − 𝑝𝑖

𝑝𝑤 − 𝑝𝑖

,                                                                                                                                                              (13) 

where 𝑝(𝑥, 𝑦, 𝑡) denotes the pressure at the position (𝑥, 𝑦) in the fracture or the matrix at time 𝑡. The values of 𝑃𝑁 utilized in 235 

this study are 0.01 and 0.05, which are equivalent to the isobars of 109 kPa and 145 kPa, respectively. The isobars behave 

differently depending on the value of 𝑇𝐷. For cases with low 𝑇𝐷, it is distinguishable that after the termination of bilinear 

flow, the isobars reveal a tendency of progressing toward an elliptical or pseudo-radial flow while still propagating along the 

fracture (see, for example, 𝑇𝐷 =  0.3 in Fig. 3 a, b, c). The lower the value of 𝑇𝐷 , the more pronounced this tendency 

becomes. On the other hand, for high 𝑇𝐷 the behavior of the isobars is similar to the formation linear flow beyond the 240 

fracture (see 𝑇𝐷 =  6.3 in Fig. 3 d, e, f). Although the behavior of isobars after the termination of bilinear flow is also highly 

interesting, this aspect is not addressed in further detail in this work. It remains pending to be studied in a follow-up 

investigation. 
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     The results of this investigation show that initially the migration of isobars 𝑃𝑁  along the fracture (see Fig. 1) is 

proportional to the fourth root of time: 245 

𝑥𝑖𝐷 = 𝛼𝑏𝑇𝐷𝜏1/4,                                                                                                                                                                      (14) 

where 𝑥𝑖𝐷  represents the dimensionless distance of normalized isobars 𝑃𝑁  from the well along the 𝑥𝐷  axis and 𝛼𝑏  is a 

constant that depends on the studied isobar 𝑃𝑁 (see Fig. 4).  

      In addition, the migration of isobars 𝑃𝑁 in the matrix (perpendicular to the fracture and at 𝑥𝐷 = 0, see Fig. 1) for short 

times may be described by: 250 

𝑦𝑖𝐷 = 𝛼𝑚𝑇𝐷𝜏1/2,                                                                                                                                                                     (15) 

where 𝑦𝑖𝐷 denotes the dimensionless distance of normalized isobars 𝑃𝑁 from the well along the 𝑦𝐷  axis and  𝛼𝑚 is a constant 

for pressure diffusion in the matrix, that depends on the isobar under investigation.  

     When expressing equations (14) and (15) in dimensional form, for the 𝑥 axis Eq. (14) is given by: 

           𝑥𝑖(𝑡) = 𝛼𝑏(𝐷𝑏𝑡)1/4;                                                                                                                                                                (16) 255 

and for the 𝑦 axis Eq. (15) is given by: 

           𝑦𝑖(𝑡) = 𝛼𝑚(𝐷𝑚𝑡)1/2.                                                                                                                                                              (17) 

     In the Eq. (17), 𝐷𝑚 = 𝑘𝑚/(𝜂𝑓𝑠𝑚) (m2 s-1) is known as hydraulic diffusivity of matrix and is analogue to the definition of 

thermal diffusivity. Additionally, in the Eq. (16) 𝐷𝑏 = 𝑇𝐹
2 𝑘𝑚𝜂𝑓𝑠𝑚⁄  (m4 s-1) is referred to as effective hydraulic diffusivity of 

fracture during bilinear flow regime (Ortiz R. et al., 2013). 260 

     The numerical results are specified as migration-type-curves (see black lines in Figs. 4, 5, and 6) and the fit equations for 

the propagation of isobars are referred to as migration-fit-curves (see grey lines in Figs. 4, 5, and 6). It can be qualitatively 

noticed throughout the cases under study that for low dimensionless fracture conductivities, i.e. 𝑇𝐷 = 0.1 and 𝑇𝐷 = 0.3, the 

migration-type-curves, which describe the migration of isobars 𝑃𝑁  along both 𝑥𝐷  and 𝑦𝐷  axis, start departing from 

migration-fit-curves before the studied isobars reach the fracture tip (Figs. 4 a, b, c, d, and Fig. 5). In contrast, for the cases 265 

considering high dimensionless fracture conductivities, i.e.  𝑇𝐷 = 1.1 , 𝑇𝐷 = 6.3  and 𝑇𝐷 = 9.4 , there is no qualitative 

evidence of migration-type-curves departing from migration-fit-curves before the studied isobars 𝑃𝑁 arrive at the fracture tip 

(Figs. 4 e, f, g, h, i, j and Fig. 5). The latter results, however, show some exceptions for a slight acceleration exhibited by the 

isobars 𝑃𝑁 at times shortly before they reach the fracture tip. It is important to mention that this relatively small acceleration 

also occurs for cases with low dimensionless fracture conductivities (see Figs. 4 c, d). The same behavior was observed by 270 

Ortiz R. et al. (2013) for the injection at constant flow rate. The classic definition for acceleration was considered, which is 

the rate of change of velocity with respect to time.  

     On the one hand, when discussing qualitatively about the early time we notice that the higher the value of the isobar 𝑃𝑁 

the sooner it starts behaving proportional to the fourth root of time (Fig. 6). For example, at the same time (𝜏 =5 ∙ 10−10) the 

isobar 𝑃𝑁 = 0.66 (the greater isobar under investigation) starts to migrate along the fracture proportional to the fourth root of 275 

time whereas the isobar 𝑃𝑁 = 0.01 (the smaller isobar under study) has not yet started to propagate proportional to the fourth 
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root of time. Moreover, the greater the isobar 𝑃𝑁 the shorter its distance from the well 𝑥𝑖𝐷  in comparison to other smaller 

isobars when considering the same time 𝜏, which is logical since the isobars migrate one after the other. On the other hand, 

when discussing qualitatively about the long time, we notice that the smaller isobar 𝑃𝑁 = 0.01 departs from the migration-

fit-curve when it reaches the fracture tip. In contrast, the greater isobar 𝑃𝑁 = 0.66 departs from the migration-fit-curve 280 

before its arrival at the fracture tip (Fig. 6). Additionally, it can be seen that the higher the value of isobar 𝑃𝑁 the farthest 

from the fracture tip or, closer to the well, it starts departing from the migration-fit-curve. Thus, taking into consideration the 

migration of isobars, it is reasonable to conclude that for high dimensionless fracture conductivities 𝑇𝐷, the bilinear flow 

regime ends when the pressure front reaches the fracture tip. 

     Previously, we referred to the observation concerning the acceleration that isobars experience at times shortly before they 285 

arrive at the fracture tip (see Figs. 4, 6), which was also documented in Ortiz R. et al. (2013) for the case of fluid injection at 

constant flow rate. To prove that it is truly an acceleration, the velocity of isobars is determined by calculating ∆𝑥𝑖𝐷/∆𝜏 and 

it is graphed versus time 𝜏 as well as versus the distance of isobars from the well 𝑥𝑖𝐷  (see Fig. 7). The existence of this 

acceleration in 𝑥𝑖𝐷 = 1 (fracture tip, see Fig. 7) can be clearly noticed. The velocity of isobars 𝑣𝑖𝐷  during their migration 

along the fracture decreases almost for the complete intervals of time considered (Figs. 7 a, c), except for its evident increase 290 

at times shortly before the isobars reach the fracture tip. The velocity of isobars can be described within the intervals of time 

used as:  

𝑣𝑖𝐷(𝜏) = 𝛽𝑏𝑇𝐷𝜏−3/4,                                                                                                                                                              (18) 

where 𝛽𝑏 is a constant that depends on the isobar under study. The velocity of isobars in terms of their distances from well 

and within the ranges of distance used can be described as:  295 

𝑣𝑖𝐷(𝑥𝑖𝐷) = 𝛾𝑏𝑇𝐷𝑥𝑖𝐷
−3,                                                                                                                                                          (19) 

where 𝛾𝑏 is a constant that depends on the isobar under study. 

     Before the isobars reach the fracture tip and at the same time 𝜏, the velocity of isobar 𝑃𝑁 = 0.01 is higher than the 

velocity of 𝑃𝑁 = 0.05 (Figs. 7 a, c). Furthermore, we can see that the arrival at the fracture tip of 𝑃𝑁 = 0.05 occurs after the 

arrival of 𝑃𝑁 = 0.01, what is also distinguishable in Figs. 4 and 6. The latter modeling results make sense since isobars 300 

migrate one after the other, being the smaller of them 𝑃𝑁 = 0.01 first in the propagation along the fracture. Moreover, before 

the arrival of isobars at the fracture tip and at a certain point belonging to the fracture the velocity of the isobar 𝑃𝑁 = 0.01 is 

higher than the velocity of 𝑃𝑁 = 0.05 (Figs. 7 b, d). 

3.2 Termination of bilinear flow 

     Concerning the study related to the termination of bilinear flow considering fluid injection at constant flow rate, Ortiz R. 305 

et al. (2013) introduced three criteria: the transition criterion, the reflection criterion, and the arrival criterion. The transition 

and reflection criteria take into account measurements of flow rate in the well and the arrival criterion considers 

measurements of the migration of isobars 𝑃𝑁 along the fracture. In this work, a fracture criterion is presented for the first 
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time. This criterion quantifies the separation between the migration-type-curves and the migration-fit-curves (see Fig. 4). 

The time at which this separation occurs is defined as the fracture time. It is important to mention that only one criterion can 310 

be fulfilled at a time. To sum up, there exist two methodologies to quantitatively identify the termination of bilinear flow: (a) 

considering the transition of pressure/flow rate in the well and (b) considering the propagation of isobars  𝑃𝑁  along the 

fracture. It is noteworthy that the termination time is referred to differently, according to the criterion used to identify the 

time at which the bilinear flow regime ceases (e.g. transition time 𝜏𝑡, reflection time 𝜏𝑟, arrival time 𝜏𝑎, and fracture time 𝜏𝐹, 

introduced in the subsections 3.2.1, 3.2.2, 3.2.3, and 3.2.4, respectively). Further, criteria generally aim at defining the 315 

deviation of curves obtained by numerical simulations from analytical fit curves that correspond to bilinear flow. The 

deviation is quantified by introducing the quantity 𝜀 (see subsections 3.2.1, 3.2.2, and 3.2.4). That is, the numerical results 

differ from the analytical bilinear fit curves by a value of 𝜀 due to the transition to another flow regime. Throughout the 

manuscript we use, for instance, 𝜀 = 0.01 or 𝜀 = 0.05 corresponding to 1% and 5% deviation, respectively. This employed 

notation is intended to express that when a separation between numerical results and fit curves is greater than 0.01 or 0.05, 320 

the termination of bilinear flow is evidenced.  

3.2.1 Transition criterion 

     This criterion quantifies the clockwise deviation of type-curves from the bilinear-fit-curve in Fig. 2 and it is 

fundamentally utilized for low dimensionless fracture conductivities of 𝑇𝐷 = 1.1 down to 𝑇𝐷 = 0.1:  

𝜀 < 1 − (
𝑙𝑜𝑔 (

1
𝑞𝑤𝐷𝑡

)

𝑙𝑜𝑔(2.60𝜏1/4)
),                                                                                                                                                              (20) 325 

where 𝑞𝑤𝐷𝑡  represents the dimensionless flow rate 𝑞𝑤𝐷  of the specific type-curve under study (Fig. 2). Note that 1/𝑞𝑤𝐷  vs. 𝜏 

is associated with equation 2.60𝜏1/4 in a log-log plot (bilinear-fit-curve). The cases that are under the study of the transition 

criterion are not affected by the fracture tip and the transition time is similar for all type-curves for which this criterion is 

applicable (see 𝜏𝑡 in Fig. 8). The transition time 𝜏𝑡 defines the end of bilinear flow when 1/𝑞𝑤 is no longer proportional to 

𝑡1/4. 330 

3.2.2 Reflection criterion 

     The reflection criterion quantifies the counterclockwise deviation of type-curves from the master curve in Fig. 2 due to 

isobar reflection at the fracture tip (Ortiz R. et al., 2013). When lower isobars than the isobar under study have already 

reached the fracture tip, these isobars are partly reflected from the fracture tip toward the well, due to the hydraulic 

conductivity contrast experienced at the interphase between the fracture tip and the matrix. This hydraulic conductivity 335 

structure causes the isobar reflection at the fracture tip back toward the well and the isobar transmission further into the 
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matrix. Thus, the propagation velocity of all isobars decelerates when they leave the fracture tip and start to propagate 

through the matrix. This criterion it is used for high dimensionless fracture conductivities:  

𝜀 < 1 − (
𝑙𝑜𝑔 (

1
𝑞𝑤𝐷∞

)

𝑙𝑜𝑔 (
1

𝑞𝑤𝐷𝑡
)

),                                                                                                                                                                (21) 

where 𝑞𝑤𝐷∞ denotes the dimensionless flow rate of the master curve (Fig. 2), which describes the behavior for the case of an 340 

infinitely long fracture. The cases that are under the study of this criterion are affected by the fracture tip, hence the higher 

𝑇𝐷 the shorter the reflection time (see 𝜏𝑟 in Fig. 8). The reflection time 𝜏𝑟 refers to the time at which a first variation of 

pressure is evident in the fracture tip. 

3.2.3 Arrival criterion 

     The arrival criterion represents the moment at which the isobars arrive at the fracture tip. The cases that are under the 345 

study of this criterion are affected by the fracture tip, hence the higher 𝑇𝐷 the shorter the arrival time (see 𝜏𝑎 in Fig. 8). 

3.2.4 Fracture criterion 

     Basically, the fracture criterion states that the separation between the migration-type-curves and the migration-fit-curves 

(see Fig. 4) is representative of the end of bilinear flow regime and it is applicable to low dimensionless fracture 

conductivities. In this work, the propagation along 𝑦𝐷  is not a criterion for the termination of bilinear flow, it is only a 350 

contribution to the study of its behavior. Usually, for the analysis of bilinear flow at constant injection or production flow 

rate the transient wellbore pressure is studied, thus the bilinear flow occurs when the wellbore pressure is proportional to the 

fourth root of time (Cinco-Ley and Samaniego-V., 1981; Ortiz R. et al., 2013; Weir, 1999). Similarly, for constant wellbore 

pressure as in this work, the bilinear flow can be recognized by the proportionality between 1/𝑞𝑤𝐷 and τ1/4. The fracture 

criterion, instead of using the transition of 1/𝑞𝑤𝐷  quantifies the separation of migration-type-curves from migration-fit-355 

curves (Fig. 4) and is defined as: 

𝜀 < 1 − (
𝑙𝑜𝑔(𝑥𝑖𝐷𝑓)

𝑙𝑜𝑔(𝑥𝑖𝐷𝑡)
),                                                                                                                                                                      (22) 

where 𝑥𝑖𝐷𝑡  denotes the propagation 𝑥𝑖𝐷  of migration-type-curves and 𝑥𝑖𝐷𝑓  represents the propagation 𝑥𝑖𝐷  of migration-fit-

curves. The latter have the form  𝛼𝑏𝑇𝐷𝜏1/4 (see Eq. 14 and Fig. 4). The cases that are under the study of the fracture criterion 

are not affected by the fracture tip and the fracture time is similar for all migration-type-curves for which this criterion is 360 

applicable (see 𝜏𝐹 in Fig. 8). Summarizing, this criterion takes into consideration only the movement of isobars 𝑃𝑁 along the 

fracture and not the change of 1/𝑞𝑤𝐷  in the well, and it is suitable for low dimensionless fracture conductivities 𝑇𝐷. 

     In the framework of this study, when we consider the transition of flow rate in the well, the criteria that can be utilized are 

the transition criterion (see section 3.2.1) and the reflection criterion (see section 3.2.2). When we consider the propagation 
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of isobars along the fracture, the criteria that can be used are the arrival criterion (see section 3.2.3) and the fracture criterion 365 

(see section 3.2.4). 

     Despite the values for the transition criterion and the fracture criterion are different, their behaviors are similar. They 

present almost constant values within the range of 𝑇𝐷 in which these criteria are applied. Note that the values of fracture 

criterion are always higher than the values of transition criterion. The fracture criterion can give us a reliable estimate of the 

termination of bilinear flow when considering the low dimensionless fracture conductivities 𝑇𝐷 for which this criterion is 370 

applicable. The transition and fracture criteria make sense only until the isobars 𝑃𝑁 reach the fracture tip (see Fig. 8).  

     As we exposed earlier, it does not make sense to discuss about the occurrence of bilinear flow after the pressure front has 

already arrived at the fracture tip. Nevertheless, the results show (Fig. 8) that the reflection time 𝜏𝑟 (related to the flow rate 

calculated in the well) is greater than the arrival time 𝜏𝑎 (related to the moment at which the isobars reach the fracture tip). It 

means that the reciprocal of dimensionless flow rate calculated in the well is proportional to the fourth root of time even 375 

when the pressure front has already reached the fracture tip. 

4 Discussion 

     The dimensionless time was not defined using the conventional definition 𝑡𝐷, but a modified definition 𝜏 presented by 

Ortiz R. et al. (2013). It turned out to be convenient in terms of interpreting the results for bilinear flow since it was possible 

to graph the behavior of 1/𝑞𝑤𝐷 vs. 𝜏 for all dimensionless fracture conductivities 𝑇𝐷 in the same graph (Fig. 2).  380 

     As for the comparison between the coefficient 𝐴 = 2.60  obtained by us (Eq. 12) and the coefficient 𝐴 = 2.772 

documented by Guppy et al. (1981b), we can observe a discrepancy between these results of approximately 6%. This 

discrepancy can be considered rather low. 

     Some type-curves bend clockwise and some other bend counterclockwise from bilinear-fit curve (Fig. 2). Among the 

cases of dimensionless fracture conductivities 𝑇𝐷 studied, the type-curves that bend clockwise are 𝑇𝐷 = 0.1, 0.3 and 1.1, and 385 

those that bend counterclockwise are 𝑇𝐷 = 3.1, 6.3, 9.4, 20, 31, 50, and 100. Similar results were obtained by Ortiz R. et al. 

(2013) for the case of injection at constant flow rate. For the interval of time utilized in the simulation, the behavior of 

1/𝑞𝑤𝐷  versus 𝜏 for dimensionless fracture conductivities 𝑇𝐷 = 0.1 and 0.3 is identical to the behavior of an infinitely long 

fracture (master curve, red line in Fig. 2) since the separation of the mentioned type-curves from the master curve shall occur 

at time greater than the simulation time utilized here. 390 

     Our results concerning the propagation of isobars along the fracture and the matrix (Eqs. 14, 15) are similar to the results 

previously presented by Ortiz R. et al. (2013) regarding the migration of isobars. The values of 𝛼𝑏 obtained by us for  𝑃𝑁 =

0.01 and 0.05 are quantitatively different from the values documented by them in 4.6% and 5.8%, respectively. 

     At times shortly before the isobars reach the fracture tip, they exhibit an acceleration along the fracture (see Figs. 4, 6). 

Subsequently, once the isobars arrive at the fracture tip, they no longer progress through the matrix over a certain period of 395 

time. Afterward, they experience another acceleration along the fracture with which the migration of isobars seems to 
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approach to a propagation proportional to the square root of time (see Fig. 4). An identical behavior was observed by Ortiz 

R. et al. (2013) and they attributed it to the reflection of isobars at the fracture tip, which makes sense and could be 

confirmed in this study. The acceleration nearby the fracture tip can be observed more clearly when analyzing the velocity 

along the fracture (see Figs. 7 b, d). During the intervals of time used, the migration of isobars along the fracture experiences 400 

a constant deceleration, except when they approach to the fracture tip. This deceleration is qualitatively identical for 𝑃𝑁 =

0.01 and 𝑃𝑁 = 0.05 (see Figs. 7 a, c). It is evident that for all fixed dimensionless positions in the fracture and considering 

the same dimensionless fracture conductivity 𝑇𝐷 , the velocity 𝑣𝑖𝐷  is higher for low values of normalized isobars 𝑝𝑁  (see 

Figs. 7 b, d). One reason of this observation is that once the deceleration begins, 𝑃𝑁 = 0.01 propagates faster than 𝑃𝑁 = 0.05 

since the initial velocity (when the isobar leaves the well) of the isobar 𝑃𝑁 = 0.01 is higher than initial velocity of the isobar 405 

𝑃𝑁 = 0.05. This behavior is explained based on the fact that the pressure gradient between the well and the fracture is bigger 

when  𝑃𝑁 = 0.01 is leaving the well than when 𝑃𝑁 = 0.05 is leaving it. Furthermore, for all fixed dimensionless positions in 

the fracture and considering the same isobar 𝑃𝑁, the velocity 𝑣𝑖𝐷  is higher for high dimensionless fracture conductivities (see 

Figs. 7 b, d). 

     Using Eq. (18) and Eq. (19) the migration of isobars along the fracture can be described as: 410 

𝑥𝑖𝐷 = (
𝛽𝑏

𝛾𝑏

)
−1/3

𝜏1/4.                                                                                                                                                              (23) 

Note that Eq. (23) has the same form that Eq. (14), thus: 

(
𝛽𝑏

𝛾𝑏

)
−1/3

= 𝛼𝑏𝑇𝐷 .                                                                                                                                                                   (24) 

It is possible to verify the validity of Eq. (24) by introducing the required values. 

     For the case of injection at constant flow rate the results obtained by Ortiz R. et al. (2013) for the arrival time, the 415 

reflection time, and the transition time, are similar to ours (see Table 1). It is worth noting that when using the expression 𝜀 

and 𝑃𝑁 = 0.01, it means that we are studying the case of the isobar 𝑃𝑁 = 0.01 and we are considering that for values of 𝜀 

greater than 0.01, the bilinear flow ends. Note further that when considering 𝜀 and 𝑃𝑁 = 0.05, we are studying the isobar 

𝑃𝑁 = 0.05 and we are using a value of 𝜀 = 0.05 to determine the termination of bilinear flow, for all pertinent criteria. 

     When it comes to the criteria that consider the transition of 1/𝑞𝑤𝐷  some observations can be made: (a) in the case of Fig. 420 

8a the transition criterion is fulfilled up to a value of 𝑇𝐷 approximately 2 and for values of 𝑇𝐷 above 3 the reflection criterion 

is fulfilled; and (b) in the case of Fig. 8b the transition criterion is fulfilled up to a value of 𝑇𝐷 approximately 1.1 and for 

values of  𝑇𝐷 above 2 the reflection criterion is fulfilled. Note that for the case 𝜀 and 𝑃𝑁 = 0.01 and 2 < 𝑇𝐷 < 3 (see Fig. 

8a), it is observed that values (non-filled circles) depart from the fit-curve linked to the transition criterion and start 

converging toward the fit-curve associated with the reflection criterion. A similar behavior is also observed for the case 𝜀 425 

and 𝑃𝑁 = 0.05 and 1.1 < 𝑇𝐷 < 2 (see Fig. 8b). A comprehensive study is required to unravel more precisely what occurs 

within those ranges of 𝑇𝐷. Based on their work, Ortiz R. et al. (2013) came to the same conclusion. 
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     Finally, there are two ways to determine the termination of bilinear flow: (I) by numerically measuring the transient flow 

rate in the well and obtaining the transition time 𝜏𝑡 for low 𝑇𝐷 and the reflection time 𝜏𝑟 for high 𝑇𝐷, and (II) according to the 

migration of isobars along the fracture (not measurable in the well), obtaining the fracture time 𝜏𝐹 for low 𝑇𝐷 and the arrival 430 

time 𝜏𝑎 for high 𝑇𝐷 (see Table 2). 

4.1 Application to well testing problems 

     In practical terms, when analyzing the transient flow rate in a well only the transition time 𝜏𝑡 and the reflection time 𝜏𝑟 

can be determined. With the current field methods, it is not possible to determine the termination of bilinear flow utilizing 

the progress of the pressure front along the fracture, although this is more physically reasonable. Nevertheless, the fracture 435 

length can be constrained indirectly, for instance by computing the time at which the pressure arrives at the fracture tip and 

its relation with respect to the reflection time. The relation between the arrival time 𝜏𝑎 and the reflection time 𝜏𝑟 is given by: 

𝜏𝑎 ≅ 0.0579𝜏𝑟                                                                                                                                                                         (25) 

for 𝜀 and 𝑃𝑁 = 0.01 (see Fig. 8a); and 

𝜏𝑎 ≅ 0.0736𝜏𝑟                                                                                                                                                                         (26) 440 

for 𝜀 and 𝑃𝑁 = 0.05 (see Fig. 8b). 

     In the following, we present two artificial cases in which synthetic curves were constructed to illustrate how the 

measurements of the flow rate in wells during hydraulic tests at constant pressure are used to estimate or restrict the length of 

fractures with finite hydraulic conductivity (bilinear flow). The synthetic curves are not obtained from measurements of 

realistic well tests, but computed utilizing the validated porous and fracture model included in COMSOL Multiphysics® and 445 

in previous papers. 

4.1.1 Case 1: high dimensionless fracture conductivities 𝑻𝑫 

     We proceed to elaborate a method to estimate the fracture length using measurements of the flow rate in the well. This is 

motivated by its usefulness for cases with high 𝑇𝐷 in which the reflection criterion is applicable, i.e., provided that the isobar 

that is under study reaches the fracture tip while bilinear flow is still in progress. In this example, the values of the 450 

dimensional fracture conductivity 𝑇𝐹  as well as the fracture length 2𝑥𝐹  are restricted by a synthetic curve representing the 

transient flow rate in the well. The synthetic curve is performed assuming that 𝑝𝑤 = 1 MPa, 𝑝𝑖 = 100 kPa, 𝑘𝑚 = 1 𝜇D, 

𝑇𝐹 = 1.5 × 10−16 m3, 𝑠𝑚 = 10−11 Pa-1, 𝜂𝐹 = 2.5 × 10−4 Pa s, and 𝑥𝐹 = 23.81 m (see Fig. 9). The procedure is described in 

series of steps as follows:  

1. Dimensionally graphing the reciprocal of flow rate vs. time. It is worthwhile noting that the counterclockwise 455 

separation of the synthetic curve (red line) from the bilinear-fit-curve (grey line) represents the moment of arrival of 

the pressure front at the fracture tip, defining the end of bilinear flow.  
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2. Calculate 𝑇𝐹  as is typically done (see, e.g., Guppy et al., 1981b), i.e., based on the slope of bilinear-fit-curve 

1/𝑞𝑤 = 𝑚𝑡1/4 (Eq. 12). The dimensional fracture conductivity is determined as follows:  

𝑇𝐹 = (
2.61𝜂𝐹

3/4

𝑘𝑚
1/4

𝑠𝑚
1/4

ℎ(𝑝𝑤 − 𝑝𝑖)𝑚
 )

2

.                                                                                                                                        (27) 460 

According to this example, 𝑇𝐹  is obtained as 1.5 × 10−16 m3. This value is the same as the one employed to perform 

the synthetic curve.  

3. Read from the graph the termination of bilinear flow defined by the separation of the curve that represents the 1/𝑞𝑤 

measured in the well (red curve) from the curve proportional to 𝑡1/4 (grey curve). This time corresponds to the 

reflection time. In practical terms, it is considered a calculation error in the separation of 5%, which corresponds 465 

approximately to the visual estimation of the point at which these curves start departing from each other. In this case 

study, the reflection time 𝑡𝑟 is approximately 104 s. 

4. Introduce the value of reflection time 𝑡𝑟 calculated in the previous step in the relation 𝜏𝑎 ≅ 0.0736𝜏𝑟 and obtain the 

arrival time of the isobars at the fracture tip. For the example at hand 𝑡𝑎 = 736 s. 

5. Determine the value of 𝐷𝑏  from its definition:  470 

𝐷𝑏 =
𝑇𝐹

2

𝑘𝑚𝜂𝐹𝑠𝑚

.                                                                                                                                                                       (28) 

For the present case study, taking into account the example and the parameters of the simulation, 𝐷𝑏  is obtained as 9 

m4 s-1. 

6. Introduce the value of 𝑡𝑎, obtained at step 4, and the value of 𝐷𝑏 , calculated at step 5, in the equation of migration 

of isobars along the fracture (Eq. 16) and, in this way, calculate the fracture half-length. In this case, the isobar 475 

under study is 𝑃𝑁 = 0.05, as a result the constant 𝛼𝑏 = 2.23. Utilizing Eq. (16) we have:  

𝑥𝐹 = 𝛼𝑏(𝐷𝑏𝑡𝑎)1/4.                                                                                                                                                                  (29) 

When introducing the corresponding values of the considered example, 𝑥𝐹  is obtained as 20.12 m. 

7. Finally, the fracture length is approximately 40.24 m (2𝑥𝐹). It can be noted that this result is slightly lower than 

47.62 m, which is the value that denotes the real magnitude used to represent the synthetic curve. It is possible to 480 

obtain more accurate results by quantitively calculating the separation between the curves of the considered 

example instead of visually estimating it. For instance, when calculating explicitly a counterclockwise 5% 

separation of the synthetic curve (red line) from the bilinear-fit-curve (grey line), an arrival time of 865.5 s and a 

fracture length of 41.9 m are obtained. 
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4.1.2 Case 2: low dimensionless fracture conductivities 𝑻𝑫 485 

     In the case of low 𝑇𝐷, it is not possible to estimate the fracture length utilizing the bilinear flow theory, since this flow 

regime ends before the isobar at study arrives at the fracture tip. This is expressed in terms of the pressure field by the 

observation of the premature occurrence of a significant pressure change in the fracture tip. However, it is possible to restrict 

the minimum fracture length. In the following example, the values of the dimensional fracture conductivity 𝑇𝐹  as well as the 

minimum fracture length 2𝑥𝐹  are constrained by a synthetic curve representing the transient flow rate in the well. This latter 490 

curve is computed assuming that 𝑝𝑤 = 1 MPa, 𝑝𝑖 = 100 kPa, 𝑘𝑚 = 1 𝜇D, 𝑇𝐹 = 1.5 × 10−16  m3, 𝑠𝑚 = 10−11  Pa-1, 𝜂𝐹 =

2.5 × 10−4 Pa s, and 𝑥𝐹 = 136.36 m (see Fig. 10). The procedure is outlined in the following steps: 

1. Dimensionally graphing the reciprocal of flow rate vs. time.  

2. Calculate the value of 𝑇𝐹  as commonly conducted in the related literature (See, e.g., Guppy et al., 1981b), i.e., based 

on the slope of bilinear-fit-curve 1/𝑞𝑤 = 𝑚𝑡1/4 (Eq. 12). The dimensional fracture conductivity is determined as 495 

follows:  

𝑇𝐹 = (
2.61𝜂𝐹

3/4

𝑘𝑚
1/4

𝑠𝑚
1/4

ℎ(𝑝𝑤 − 𝑝𝑖)𝑚
 )

2

.                                                                                                                                        (30) 

According to this example, 𝑇𝐹  is obtained as 1.5 × 10−16 m3. This value is the same as the one used to calculate the 

synthetic curve.  

3. Read from the graph the termination of bilinear flow defined by the clockwise separation of the curve that 500 

represents the 1/𝑞𝑤 measured in the well (blue curve) from the curve proportional to 𝑡1/4 (grey curve). This time is 

defined as transition time and it is similar for all cases with low 𝑇𝐷. Similar to the previous case, a calculation error 

in the separation of 5% is considered, which corresponds approximately to the visual estimation of the point at 

which both curves start departing from each other. In this example, the transition time 𝑡𝑡 is approximately 106 s. 

4. Introduce the value of transition time 𝑡𝑡, calculated in the previous step, in the relation 𝜏𝑎 ≅ 0.0736𝜏𝑡 and obtain 505 

the fictitious arrival time of the isobars at the fracture tip. For the contemplated case example, 𝑡𝑎 = 73600 s. 

5. Determine the value of 𝐷𝑏  from its definition:  

𝐷𝑏 =
𝑇𝐹

2

𝑘𝑚𝜂𝐹𝑠𝑚

.                                                                                                                                                                       (31) 

In the context of the example at hand and considering the parameters of the simulation, 𝐷𝑏  is obtained as 9 m4 s-1. 

Introduce the value of 𝑡𝑎, obtained at step 4, and the value of 𝐷𝑏  computed at step 5, in the equation of migration of 510 

isobars along the fracture (Eq. 16) and, in this way, calculate the fictitious fracture half-length. In this case, the 

isobar under study is 𝑃𝑁 = 0.05, as a consequence the constant 𝛼𝑏 = 2.23. Utilizing Eq. (16) we have:  
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𝑥𝐹 = 𝛼𝑏(𝐷𝑏𝑡𝑎)1/4.                                                                                                                                                                  (32) 

When incorporating the corresponding values of this example, 𝑥𝐹  is obtained as 63.62 m. 

6. Finally, the minimum fracture length is approximately 127.23 m (2𝑥𝐹), whereas the real value used to represent the 515 

synthetic curve is 272.72 m. 

     In the cases described previously, the practical use of Eq. (16) to constrain the length of a fracture with finite conductivity 

has been demonstrated by analyzing the transient behavior of flow rate in the well during a hydraulic test at constant 

pressure.  

     The expressions obtained in this work for the end time of bilinear flow, the pressure propagation, and the bilinear 520 

diffusivity 𝐷𝑏, complement the limited theory that exists about data analysis from wells producing or injecting at constant 

pressure. The clarity and simplicity of these equations allows these to be used quickly to estimate the length of fractures with 

finite conductivity. The bilinear diffusivity 𝐷𝑏 , firstly introduced by Ortiz R. et al. (2013) for constant well flow rate and 

demonstrated in this work to also hold for the case of constant well pressure, could in principle be estimated in the laboratory 

by means of Eq. (16). In addition, this bilinear diffusivity allows, on the one hand, for a relatively uncomplicated comparison 525 

between finite conductivity fractures. On the other hand, these equations could in one way or another be integrated into more 

general methods such as the transient rate analysis for the interpretation of production data. Finally, the diffusivity equations 

of pressure in the matrix and the fracture (Eqs. 16, 17) are also useful to reduce the associated risks related to induced 

seismicity generated by changes of pressure in fractured reservoirs or faults, as a consequence of massive fluid injection (e.g. 

Shapiro, 2015; Shapiro and Dinske, 2009). By knowing and understanding the physics behind the migration of isobars it is 530 

possible to minimize the associated risks with changes in pores pressure. 

5 Conclusion 

     Numerical results obtained in this work corroborated the relation of proportionality previously presented by Guppy et al. 

(1981b) between the reciprocal of dimensionless flow rate 1/𝑞𝑤𝐷  and the fourth root of dimensionless time 𝜏 during the 

bilinear flow regime for the case of injection at constant pressure in the well. Guppy et al. (1981b) obtained the 535 

proportionality factor 𝐴 =  2.722 (Eq. 10), which is slightly greater than the factor obtained here 𝐴 =  2.60 (Eq. 12). This 

discrepancy may be attributed to our finer spatial and temporal discretization in comparison with the discretization used by 

Guppy et al. (1981b). 

     The most significant findings of this work are: 

i) During the bilinear flow regime, the migration of isobars along the fracture is described as: 𝑥𝑖(𝑡) =540 

𝛼𝑏(𝐷𝑏𝑡)1/4 , where 𝐷𝑏 = 𝑇𝐹
2 𝑘𝑚𝜂𝑓𝑠𝑚⁄  (m4 s-1) is the effective hydraulic diffusivity of fracture during the 

bilinear flow regime. In addition, the migration of isobars in the matrix is given by: 𝑦𝑖(𝑡) = 𝛼𝑚(𝐷𝑚𝑡)1/2, 

where 𝐷𝑚 = 𝑘𝑚/(𝜂𝑓𝑠𝑚) (m2 s-1) denotes the hydraulic diffusivity of matrix. This simulation results are in line 
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with the study conducted by Ortiz R. et al. (2013) for the case of wells injecting/producing at constant flow 

rate.  545 

ii) The termination of bilinear flow obtained from transient flow rate analysis is given by (a) the transition time 𝜏𝑡 

(circumferences in Fig. 8 and Eq. 20), valid for low 𝑇𝐷  and (b) the reflection time 𝜏𝑟 (squares in Fig. 8 and Eq. 

21), valid for high 𝑇𝐷.  

iii) From the physical point of view, it is of interest to study the propagation of isobars along the fracture, for 

which the termination of bilinear flow has been found in this work to be given by (a) the fracture time 𝜏𝐹  (filled 550 

circles in Fig. 8 and Eq. 22), valid for low 𝑇𝐷  and (b) the arrival time 𝜏𝑎  (triangles in Fig. 8), valid for high 𝑇𝐷. 

However, this methodology may encounter technological obstacles in real field situations. 

iv) A new methodology is presented to constrain the fracture length (section 4.1), based on the end time of the 

bilinear flow and using Eq. (16) that describes the spatiotemporal evolution of the isobars along the fracture 

during the bilinear flow regime. 555 

v) In terms of dimensionless parameters, the time at which a specific isobar arrives at the fracture tip is dependent 

only on 𝑇𝐷 (see section 3.2.3 and τ𝑎 in Fig. 8).  

 

     Similarly as in Ortiz R. et al. (2013), it is observed that the isobars exhibit a peak of acceleration shortly before they 

arrive at the fracture tip (Figs. 4, 6). This acceleration was verified by studying the velocity of isobars using the graphs 𝑣𝑖𝐷  560 

vs. 𝜏 and 𝑣𝑖𝐷  vs. 𝑥𝑖𝐷  (Fig. 7). It was concluded that for a fixed dimensionless position in the fracture 𝑥𝑖𝐷 , the velocity 𝑣𝑖𝐷  is 

higher for lower values of normalized isobars 𝑝𝑁 as well as for higher dimensionless fracture conductivities 𝑇𝐷 (see Figs. 7 

b, d). 

     In a follow-up study, it would be interesting to include the effect of fracture storativity and investigate, utilizing an 

analogue method to that discussed in this work, the behavior of a fracture with conductivity high enough to lead to fracture 565 

and formation linear flow. 
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Nomenclature 

𝐴 constant, Eq. (12) 

𝑏𝐹 aperture of fracture, m 

𝑐𝑎  coefficient of fit equation for the arrival time, Table 1 and Fig. 8 

𝑐𝑟 coefficient of fit equation for the reflection time, Table 1 and Fig. 8 

𝑐𝑡 coefficient of fit equation for the transition time, Table 1 and Fig. 8 

𝐷𝑏  effective hydraulic diffusivity of fracture during bilinear flow regime, Eq. (16), m4 s-1 

𝐷𝑚 hydraulic diffusivity of matrix, Eq. (17), m2 s-1 

𝑓(𝑡𝐷) transient behavior of pressure in the well, Eq. (11), Pa 

ℎ height of the open well section, fracture height, Eq. (5), m 

𝑘𝐹 fracture permeability, m2 

𝑘𝑚 matrix permeability, m2 

𝑝𝑖  initial pressure of matrix and fracture, Eq. (5), Pa 

𝑃𝑁  normalized pressure difference, Eq. (13) 

𝑝𝑤 constant injection pressure, Eq. (5), Pa 

𝑝(𝑥, 𝑦, 𝑡) pressure at the position (𝑥, 𝑦) in the fracture or the matrix at time 𝑡, Eq. (13), Pa 

𝑞𝑤 flow rate in the well, Eq. (5), m3 s-1 

𝑞𝑤𝐷  dimensionless flow rate in the well, Eq. (5) 

𝑞𝑤𝐷𝑡 dimensionless flow rate of type-curves, Eqs. (20) and (21), Fig. 2 

𝑞𝑤𝐷∞ dimensionless flow rate of the master curve, Eq. (21), Fig. 2 

𝑞𝐹(𝑥, 𝑡) fluid flow between matrix and fracture, m2 s-1 

𝑠𝐹 specific storage capacity of fracture, Pa-1 

𝑠𝑚  specific storage capacity of matrix, Pa-1 
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𝑡 dimensional time, Eq. (7), s 

𝑡𝑎 dimensional arrival time, s 

𝑡𝐷 conventional dimensionless time, Eq. (7) 

𝑇𝐷 dimensionless fracture conductivity, Eq. (6) 

𝑇𝐹  fracture conductivity, Eq. (6), m3 

𝑣𝑖𝐷  dimensionless velocity of isobars along the fracture, Eqs. (18) and (19) 

𝑥, 𝑦 spatial coordinates along, normal to the fracture with origin at the well, Eqs. (8) and (9), 

respectively, m 

𝑥𝐹  fracture half-length, Eq. (6), m 

𝑥𝐷 , 𝑦𝐷 dimensionless coordinates, Eqs. (8) and (9), respectively 

𝑥𝑖𝐷 , 𝑦𝑖𝐷  dimensionless distances of isobars from the well (along the 𝑥𝐷 and 𝑦𝐷  axis, Eqs. (14) and (15), 

respectively 

𝑥𝑖𝐷𝑓  dimensionless propagation of migration-fit-curves, Eq. (22), Fig. 4 

𝑥𝑖𝐷𝑡 dimensionless propagation of migration-type-curves, Eq. (22), Fig. 4 

𝛼𝑏 constant for pressure diffusion in the fracture during bilinear flow, Eqs. (14) and (16) 

𝛼𝑚 constant for pressure diffusion in the matrix, Eqs. (15) and (17) 

𝛽𝑏 constant for velocity in the fracture depending on time, Eq. (18) 

𝛾𝑏 constant for velocity in the fracture depending on space, Eq. (19) 

𝛿 constant, Eq. (11) 

𝜀 quantification of error in the termination of bilinear flow, Eqs. (20), (21) and (22), Fig. 8 

𝜂𝑓 dynamic fluid viscosity, Pa s 

𝜏 dimensionless time, Eq. (7) 

𝜏𝑎  dimensionless arrival time, Fig. 8 

𝜏𝐹  dimensionless fracture time, Fig. 8 

𝜏𝑟 dimensionless reflection time, Fig. 8 

𝜏𝑡 dimensionless transition time, Fig. 8 
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Figure 1: (a) 2D representation of model structure; (b) utilized mesh for simulation; and (c) 3D representation of model structure.  660 
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Figure 2: Model results displayed as 𝟏/𝒒𝒘𝑫 vs. τ in log-log scale. Bilinear-fit-curve (grey line), master curve (red line), and type-

curves (black lines).   



27 

 

  

Figure 3: Spatial evolution of isobars 𝑷𝑵 = 𝟎. 𝟎𝟏 and 𝑷𝑵 = 𝟎. 𝟎𝟓 over time through the modeling domain, for the dimensionless 665 
fracture conductivities 𝑻𝑫 = 𝟎. 𝟑 (a, b, c) and 𝑻𝑫 = 𝟔. 𝟑 (d, e, f). Note that for the case of 𝑻𝑫 = 𝟎. 𝟑, the scale of the graph (a) is 

different from that used for the graphs (b) and (c). Read text in section 3.1 for a more detailed description of the graphs. 
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Figure 4: Model results display 𝒙𝒊𝑫 and 𝒚𝒊𝑫 vs. τ in log-log scale. Propagation of isobars 𝑷𝑵 = 𝟎. 𝟎𝟏 (a, c, e, g, i) and 𝑷𝑵 = 𝟎. 𝟎𝟓 (b, 670 
d, f, h, j) along the fracture and the formation considering the following dimensionless fracture conductivities: 𝑻𝑫 = 𝟎. 𝟏 (a, b), 𝟎. 𝟑 

(c, d), 𝟏. 𝟏 (e, f), 𝟔. 𝟑 (g, h), and 𝟗. 𝟒 (i, j). The dashed lines represent the arrival at the fracture tip of the specific isobars indicated 

in the graphs.  
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Figure 5: Model results in terms of 𝒙𝒊𝑫 vs. 𝑻𝑫 ∙ 𝝉𝟏/𝟒 in log-log scale. Propagation of isobars 𝑷𝑵 along the fracture considering the 675 
following dimensionless fracture conductivities: 𝑻𝑫 = 𝟎. 𝟏, 𝟎. 𝟑, 𝟏. 𝟏, 𝟑. 𝟏, 𝟔. 𝟑, 𝟗. 𝟒, 𝟐𝟎, 𝟑𝟏, and 𝟓𝟎. (a) Model scenarios with 𝑷𝑵 =
𝟎. 𝟎𝟏 and 𝜶𝒃 = 𝟑. 𝟐𝟓; (b) model scenarios with 𝑷𝑵 = 𝟎. 𝟎𝟓 and 𝜶𝒃 = 𝟐. 𝟐𝟑. The dashed lines represent the arrival at the fracture 

tip of the specific isobars indicated in the graphs. 
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Figure 6: Modeling results in terms of 𝒙𝒊𝑫 vs. 𝝉 in log-log scale. Propagation of isobars 𝑷𝑵 = 𝟎. 𝟎𝟏, 𝟎. 𝟎𝟓, 𝟎. 𝟐𝟐, 𝟎. 𝟒𝟒, and 𝟎. 𝟔𝟔 

with 𝑻𝑫 = 𝟔. 𝟑. The dashed line represents the arrival at the fracture tip of the specific isobars indicated in the graph. 
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Figure 7: Model results showing 𝒗𝒊𝑫 vs. 𝝉 and 𝒗𝒊𝑫 vs. 𝒙𝒊𝑫 in log-log scale. Velocity of isobars 𝑷𝑵 = 𝟎. 𝟎𝟏 and 𝟎. 𝟎𝟓 considering 

𝑻𝑫 = 𝟎. 𝟑 (a, b) and 𝟑. 𝟏 (c, d). The dashed lines represent the arrival of the specific isobars at the fracture tip. (a) The circle and 

triangle symbols represent the transition time 𝝉𝒕 for 𝑷𝑵 = 𝟎. 𝟎𝟏 and 𝟎. 𝟎𝟓, respectively (see Eq. 20). (c) The circle and triangle 

symbols represent the arrival time 𝝉𝒂 for 𝑷𝑵 = 𝟎. 𝟎𝟏 and 𝟎. 𝟎𝟓, respectively (see Fig. 8).  690 
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Figure 8: Model results displaying 𝝉𝒕, 𝝉𝒓, 𝝉𝑭 , and 𝝉𝒂  vs. 𝑻𝑫  in log-log scale. 𝝉𝒕, 𝝉𝒓, 𝝉𝑭 , and 𝝉𝒂  denote the transition time, the 

reflection time, the fracture time, and the arrival time, respectively. The fit-curves for reflection time and arrival time are 695 
represented by black lines, for transition time by dashed lines, and for fracture time by grey lines. (a) Numerical simulations with 

𝜺 and 𝑷𝑵 = 𝟎. 𝟎𝟏; and (b) numerical simulations with 𝜺 and 𝑷𝑵 = 𝟎. 𝟎𝟓 (see Eqs. 20, 21 and 22).   
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Figure 9: 𝟏/𝒒𝒘 (s m-3) vs. 𝒕 (s) in log-log scale. The synthetic curve is represented by the red line and the bilinear-fit-curve is 700 
displayed with the grey line. 
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Figure 10: 𝟏/𝒒𝒘 (s m-3) vs. 𝒕 (s) in log-log scale. The synthetic curve is represented by the blue line and the bilinear-fit-curve is 705 
indicated with the grey line.  
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Paper Coefficient With 𝜀 and 𝑃𝑁 = 0.01 With 𝜀 and 𝑃𝑁 = 0.05 

Ortiz R. et al. (2013) 

𝑐𝑎 3.40 2.49 

𝑐𝑟 1.73 1.25 

𝑐𝑡 6.44 2.53 

This work 

𝑐𝑎 3.71 2.63 

𝑐𝑟 1.82 1.37 

𝑐𝑡 7.39 2.74 

Table 1: Comparison of coefficients of fit equations for the arrival time, the reflection time, and the transition time, which have the 

form 𝝉𝒂 = (𝒄𝒂 ∙ 𝑻𝑫)−𝟒, 𝝉𝒓 = (𝒄𝒓 ∙ 𝑻𝑫)−𝟒, and 𝝉𝒕 = (𝒄𝒕)−𝟒, respectively (see Fig. 8). 710 
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Case Termination time With 𝜀 and 𝑃𝑁 = 0.01 With 𝜀 and 𝑃𝑁 = 0.05 

I 
𝜏𝑡 𝑇𝐷 < 2 𝑇𝐷 < 1.1 

𝜏𝑟 𝑇𝐷 > 3 𝑇𝐷 > 2 

II 
𝜏𝐹 𝑇𝐷 <  1.2 𝑇𝐷 < 0.9 

𝜏𝑎 𝑇𝐷 > 1.2 𝑇𝐷 > 0.9 

Table 2: Criteria utilized to calculate the termination of bilinear flow. See discussion for the definition of the case I and II. 


