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Upper Jurassic carbonate buil dup:s
Polandi insights from seismic data interpretation
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Abstract. The geometry and internal architecture of the Upper Jurassic carbonate depositional system in the epicontinenta
basin of western and central Europe, and withénnorthern margin of the Tethyan shelf are hitherto only partly recognised,
especially in areas with thick Cretaceous and younger ¢
indispensable for analysis of a carbonate depositiontdraysn particular for identification of the carbonate buildups and the
enveloping strata. The study area is |l ocated in the cen
within the transition zone between the Polish part of evesind central European epicontinental basin and the Tethys Ocean.
This paper presents the results of interpretation of 2D seismic data calibrated by deep wells that document the presence ¢
large Upper Jurassic carbonate buildups. The lateral extemtriodytar structures is in the range of #0000 m, and their

heights are in range of 16B50 m. Interpretation of seismic data revealed that the depositional architecture of the subsurface
Upper Jurassic successi on i nythe presendtiofdacgh caskonate baildupdsurrosnded hya r
basinal (bedded) limestomearly deposits. These observations are compatible with depositional characteristics- of well
recognised Upper Jurassic carbonate sediments that crop out in the adjacena®maki st ochowa Upl and.
study provides new information about carbonate open shelf sedimentation within the transition zone in the Late Jurassic, whic
proves the existence of much more extensive system of organic buildups which flouridtiegarttof the basin. Obtained
results, due to high quality of available seismic data, provide also an excellent generic reference point for seisnat studies

carbonate buildups from other basins and of different ages.

1 Introduction

Carbonate buildupslisplay considerable vertical accretion to adapt to a gradual relative sea level rise (e.g. Kendall and
Schlager, 1981; Read, 198%arg, 1988Handford and Loucks, 199 c h|l ager , 2005). The term |
used in seismic stratigraphicustl i e s , refers to all ficarbonate deposits t
Hatlelid, 1977). Seismic data proved to be very useful for the identification of carbonate buildups, because they can clearly
show the differences in deposition&lacacteristics between the buildup and the enveloping strata. Carbonate beds are often
related to relatively high reflectivity of seismic data. Lateral and vertical variations of this reflectivity (includinigudenpl

and frequency characteristics, contigiof seismic horizons, etc.), and related considerable differences in seismic velocities



30

35

40

45

50

55

60

of particular rock packages are related to different lithologies within the carbonate buildups and surrounding deposits (see€
Fontaine et al., 1987; Macurda, 1997, dverview of seismic facies analysis of carbonate rocks).

Seismic expression of carbonate buildups may be rather diverse (Fig. 1). Classical interpretation, established during the
period of intense devel opment sesiimesevéra nedognition tritedal suohp asahe 1y |
moundshaped reflection configuration pattern, (2) lateral seismic facies changes between the buildups and enveloping beds
(3) reflections from the edges of buildups including hyperbolic diffractiop®rép of overlying strata, (5) drape effects over
the buildups, (6) the velocity pullp anomalies etc. (e.g. Bubb and Hatlelid, 1977; Veeken and Van Moerkerken, 2013;
Burgess et al., 2013). Also differential compaction (manifested tmpked compactio sag) might indicate the presence of a
carbonate buildup on seismic data.

Numerous papers dealing with various aspects of seismic interpretation of carbonate buildups of different ages have bee
published over the years, concerning various sedimentaigsauch as for example the Great Bahama Bank (e.g. Eberli et
al., 2004), Maldives (e.g. Belopolsky and Droxler, 2004), South OmgnBorgomano et al., 2004 prthern Australia (e.qg.

Isern et al., 2004; RosleBoerensen et al., 2012; Sagab Bodirget, 2016; Van Tuyl et al., 2018, 201Bjack Sea region

(e.g. Afanasenkov et al., 2007; Guo et al., 2011), offshore southern NorwaBHidifs et al., 2019) the Barents Sea, Norway

(e.g. Blendinger et al., 1997; Elvebakk et al., 2002; Colpaeit,2007; Rafaelsen et al., 2008; Di Lucia et al., 2017; Sayago

et al ., 2018) , Philippines (e.g. Gr°tsch and Mercadier,
Borgomano, 2007)South China Sea (e.g. Wu et al., 2009; Yubalgt2011; Chang et al., 2017), offshore Indonesia and
Malaysia (e.g. Epting, 1989; Kusumastuti et al., 20&#mnpetti et al., 2003, 2004; Bachtel et al., 2004; Posamentier et al.,
2010; Koga, 2015), or | ndus B a srelatvely f&saidmic @xdmpbes of dpper Jurassid 1 8
carbonate buildups from classic, geologically well recognised western and central European northern Tethyan shelf anc
surrounding region have been published to date (e.g. Ellis et al., 2i0@9er and We s e | vy , 1996; Ad§8mek,
2006,Bunes et al ., 2010; Har t mann dnPolant, also orfly0a¥efy papdrs;os selsreim e
interpretation of the Upper Jurassic carbonate buildups have been publishedsaalfyin local journals and focused mostly

on exploratiorarelated problemsQGliniak et al., 2000, 2002005;Gliniak and Urbaniec, 2001, 2008tisiarz, 2003;Misiarz

etal., 2004 n d r z eTyakowskaaet al.2005,2006 My S| i wi e)cRecertly saveal new Biiti@&ave been
identified andnterpreted using seismic data (Urbaniec, 2019). However those results represent more southern part of the basir
located beneath the Miocene of the Carpathian Foredeep Basin (about 50 km to the south fromadhea3tudy

This study fills this gap and provides a waticumented example of a system of carbonate buildups developed in the south
eastern segment of the transition zone between the European Late Jurassic epicontinental basin and the Tethys Ocean. Res
presented in this paper could also be used as a more universal reference point for seismic studies of carbonate depositior
systems, in particular of carbonate buildups and surrounding deposits, of different ages and from different sedimestary basin

Thest udy area is |l ocated in the central part of-eastthoem Mi e (
Krak:-w, in the vicinity nthiardahhe gepbrmetmynanddéposiiongarzhiteaturd of thegUpper3 )

Jurassic adoonate succession is relatively poorly recognised in comparison to adjacent parts of the basin in Poland and centra
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and western Europe. This is mostly due to the fact that the Jurassic succession is covered by relatively thick Cretaceous ar
younger depsits so previous studies were based almost entirely on data fromr deepe ar ch wel I s (cf .
2009).

In 2011, the Upper Jurassic carbonate succession in the study area was drilled by two exploratory well§, &ttbpin
Belvederel. These tw wells, together with 3 archive wells located in this area, were used to cafidliatteely dense
coverage of 2Dseismic reflection profiles. Synthetic seismograms were used to precisely tie wells to seismic profiles, and
seismestratigraphic approachag used to analyse depositional architecture of the Upper Jurassic carbonate system, including
carbonate buildups and surrounding deposits.

2 Geological Setting
2.1 The Permiani Mesozoic Polish Basin: an overview

The study area is located within the cehtrapart of the Miech- w Tr otegsternpaR ofghe 3) ,
SzczecinG- @i ech-w Symel afoi iewinc ¢ghat eas foanked durin@tife 1.dte Gretacé®aleogene
inversion of the PermidMesozoic Polish Basin.

The Permiaii Mesozoic Polish Basin formed the easternmost part of a system of epicontinental basins in western and
central Europe (Ziegler, 1990; Schedlenderoth et al., 2008; Pharaoh et al., 2010). Its most subsiding axiéltharlid-
Polish Trough evolved along the NWto SEtrending Teisseyrdornquist Zone (see Mazur et al., 2015 for a recent summary
and further references). The sowihstern part of the Polish Basin extended into the transition zone towards the Tethyan
domain, characterised by limit&&rmian and Triassic sedimentation. Since the Jurassic, the thickness and depositional pattern
in this part of the basin was affected by tectonic processes acting within the Polish Basin, and by increased regiemes subsid
in the Tethyan domain (e.g. Kue k and Ggazek, 1972; Po {Dszeyskaki99,d90dMargkt k o ,
and Pajchlowa, 1997; Dadlez et al., 1998; Kutek, 2001; Gutowski et al., 2005; Gutowski and Koyi, 2007; Krzywiec et al.,
2009).

The Polish Basin was inverted in the L&teetaceolisPaleogene (e.g. Dadlez et al., 1995; Krzywfi02, 2009; Resak
et al., 2008; Krzywiec et al., 2009, 2018). This basin inversion was associated with major uplift and erosion of the axial pa
of the basin (i.e. the Mi#Polish Trough), which watransformed into a regional anticlinal structuréne Mid-Polish Swell
(Mid-Pol i sh Anticlinorium;-Lewi EPbiUarysk8, ahd7 Br ocdiwa Tzi ewi
related formation of the MidPolish Swell, two regional syfinoria were formed along both its flanks, including the seuth
western Szczecis - @i ech-w Synclinorium, wher e t.Dalleattak, 000;Rig.3)r oug

2.2 Late Jurassic basin in S Poland

The Late Jurassic basin in Poland formed the eastern part of extensive shallow epicontinental basin that extended from th

United Kingdom, across the Netherlands and Ger many, i nt
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et al.,2008; Lott et al., 2010). Throughout much of the Jurassic, the basin was connected to the Tethys Oceasdutim the
(Lott et al ., 2010, see PieE®kowski et al ., 2008 fofr det
extensive dvelopment of carbonate buildups in the Tethyan domain and its margins (e.g. Leinfelder et al., 1994, 2002;
Matyszkiewicz, 1997a; Krajewski and Schlagintweit, 2018).

In the Late Jurassic, the sotghst (periCarpathian) segment of the basin was part @fEbropean shelf adjacent to the
Tethys Ocean from the north (cf. Ziegler, 1990; Golonka,
et al., 2008). The main factors that directly or indirectly controlled Late Jurassic sedimewittiarthe northern Tethyan
shelf in southern Poland included dewgel and climate change, and diversified subsidence triggered by reactivation of older
basement faults (e.g. Kutek, 19@3ytowski et al., 2005Matyszkiewicz et al., 2012, 2015a, 2016).

The Oxfordian and lower Kimmeridgian succession within the Polish part of the northern Tethyan shelf margin is
commonly interpreted as a carbonate ramp or an open shelf ddpagitMatyja et al., 1989; Kutek, 1994; Gutowski et al.,
2005; Matyja, 2009; Kajewski et al., 2011Fig. 43. These deposits sometimes termethe sponge megafacieae bulit of
spongesand microlilites and arepresentwithin the entire European part of the northern Tethyan shelf ma@yinnger,

1971; Matyja, 1977; Matyja and ifera, 1991; Matyja and Wierzbowski, 1995, 1996, 20f6;Matyszkiewicz, 1997a;
Gutowski et al., 2005, 2006).

Widespread carbonate sedimentation took place in the Oxfordian (upper TransvémBdtirgatus and Planula Zones),
when diverse reef faciadeveloped (Fig. & e.g. Matyszkiewicz et al., 2012, 2015b, 2016; Krajewski et al., 2016, 2018).
Several authors claim that development of carbonate platforms in this part of Europe may have been connected to the Middl
Oxfordian (Transversarium Zone) clie warming (Krajewski et al., 2017; see Leinfelder et al., 1996; Matyszkiewicz, 1997a;
Olivier et al., 2011; Wierzbowski, 2015)he Upper Jurassic carbonate buildups in southern Poland display a large diversity
of reef types, from siliceous sponge moutwmicrobiatsponge buildups and coral reefs, as all of these types were commonly
found in Europe where reefs were most widespread in the Late Jurassic (Kiessling et al., 1999; cf. Leinfelder et al., 1996;
Gliniak et al., 2005; Matyszkiewicz et al., 20Ktajewski et al., 2018). Outside of Europe reefs occurred less commonly in
Late Jurassic, and they represented mainly atwalinated reefs and biostromes (Kiessling et al., 1999). Common carbonate
buildup types that can be recognized from the seismi idaPoland are bioherms (e.g. Gliniak and Urbaniec, 2001, 2005;
Gliniak et al ., 2005) . Wor |l dwi de, these organic structu
al., 1999); in southern Poland they often developed as large bidksponge biohermal complexes (e.g. Matyja and
Wierzbowski, 2006).

The Callovian to Lower Kimmeridgian (up to Hypselocyclum Zone) deposits of the Polish Basin have been subdivided by
Kutek (1994) into two intervals related to distinct stages of teesedomentary evolution (Krajewski et al., 2QXT. Kutek,

1994). The first one embraces Callovi@xfordian, including the Planula Zone; it is commonly limited to the Upper
Oxfordian in the SutMediterranean subdivision®.g. Krajewski et al., 2017), whex®e the second interval encompass the
Lower Kimmeridgian (Platynoiddypselocyclum zones). Both intervals are separated by tuallsal Lowermost Marly

Horizon, included in the Lower Platynota Zone, which plays an important role of a regional isochrori@rsmsratigraphic
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correlations of the Upper Jurassic in central and southern Poland (Kutek, 1968, 1994). Between those two intervaly, significa
facies changes occurred (e.g. Kutek, 1994; Matyszkiewicz, 1996; Krajewski et al., 2017). They aredckyredsethe
disappearance of the Oxfordian organic buildups, (2) platform drowning in the Lower Platynota Zone linked with development

of marly facies, and (3), occurrence of graxigw deposits (e.g. Krajewski et al., 2017).

23The UpperJurassicsiccessi on in the Miech-w Trough

The Upper Jurassic succession of the Miech-w Trough is
Albiani Lower Maastrichtian (Fig. 3; e.g. Jurkowska, 2016), and, in its seagtern part, by the Miene deposits of the

Carpathian foredeep basin (eRjo Uar ys ki , 1977; tytko et al .-wedt9,88t h&r Wiy e
Trough bor der sCawi sttho ct hhoew aK r Lapkl - awn-dast, withindhe HalyaCnoss tsdgmentrobthre tMid
Polish Anticlinorium (Fig. 3; cf . PoUaryski, 1974; tela

The Upper Jurassic carbonate deposits outcropping alon

for many decades (e.g. D %) Matya@DK7i Matyjd éhdb Parkowskiy 1981k Trammer, 60832, 1 ¢
1985, 1989; Matyszkiewicz, 1989, 1993, 1996, 1997b, 1999, 2001; Matyszkiewicz and Felisiak, 1992; Matyja and
Wierzbowski, 1996, 2006; Matyja et al., 1989, 2006; Matyszkiewicz et al., 2006, 2W15q,2016; Krajewski et al., 2011,
2016, 2017, 2018). Numerous studies dealing with detailed aspects of the Upper Jurassic stratigraphy and sedimentology ha
been carried out also inthe more seeith st er n part of t he Mi esomtowardsitheCargathian i nc
foredeep, south from the Wisga river (cf. Fig. 3; Mor y.
Gutowski et al., 2005, 2007; Matyja and Barski, 2007; Matyja, 200&ewska et al., 20).2

The UpperJurasi ¢ succession in the Miech-w Tr aypegphatfornsfaciesdegr e s e
Kutek 1968, 1969Mat yj a et al ., 1989, 2006; Gutowski et al ., 200¢
2017; Fig. 4). Accordingt o Zgonki ewicz (2009), the Callovian and Uppe
resemble those from the sowtlestern margin of the Holy Cross Mts. (cf. Matyja et al., 1989), which prompted him to adopt
almost the same lithostratigrapliicor r el ati on scheme (Zgonki ewicz, 2009) .

During the Late Jurassic, the study area was located on the northern, passive margin of the Tethys Ocean (e.g. Matyja ar
Wierzbowski, 1995; Golonka, 2004; Matyja, 2009). Sequence stratigraphic scheme for thistparbasin, together with
regional correlation of main depositional systems, was proposed by Gutowski et al. (2005). This scheme can be generall
correlated with the main OxfordiaK i mmer i dgi an | it hol ogi cal uni t @ 4daiamdb).t he s
These key Upper Jurassic units include the Morawica Limestone Member, Siedlce Limestone Member and Massive Limeston
Member (Matyja et al ., 1989; Z§ o hkAbaemvhosezcarborzate tOmbers deapere w s
watermarly facies are present (Kutek, 1968). They are covered by deposit&aftykimmeridgian shallowwvater carbonate

platform, represented by various ooliptaty facies (Fig.8;, see Zgonki ewicz, 2009 for mor
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For the soutkeasternmospartof t he Mi ech-w Trough, |l ocated beneath tF
basin, detailed subdivision of the Upper Jurassic deposits has been recently proposed using biostratigraphic data (Matyja ar
Barski, 2007; Barski and Matyja, 2008; Matyj2009). According to this stratigraphic scheme, a complete Oxfdrdian
Valanginian succession is present in the most seasitern part of the basin, with significantly lower than previously assumed
thickness of the OxfordidiKimmeridgian deposits, and mughore extensive, in comparison to other areas of Poland,
stratigraphic range of the sponge megafacies, reaching up to the lower Tithonian (Matyjas @@0&) micropaleonotlogical
investigations allowed for stratigraphical reassessment of the Uppesidigtagta beneath the central part of the Carpathian
Foredeep basin, as well as for the regional correlations towards thewsestdrn Ukraine (Olszewska et al. 201Phese
findings could possibly also be applied in the future to stratigraphy of therUppassic succession of the area described in

this paper, although this would require extensive studies based on core material that is not currently available.

3 Data and methods
3.1 Well data

Well calibration for seismic data in this study wasvided by the Chopii, Belvederel , Mi eShagwnwe A and g - w
Li p--Wkells Fig. 5. Two of these wells, Chopih and Belvederd, have been drilled in 2011 by the San Leon Energy
company (SLE); the other 3 wells were drilled in rtid® 6.0Therefae, the suitability of well data for detailed seismic
analysis was diverse. Both the SLE wells have a wide spectrum of modern well log data, includingrggnesastivity,

neutron porosity, sonic velocity and density logs, as well aslogging theylto wever havendét been co
descriptions are based on cuttings. The data used from three legacy wells includedrggmessstivity and sonic logs. All

the logs were available as standard LAS files and were loaded into the databasedhisestidy.

Stratigraphic information for the Upper Jurassic succession substantially differs between older wells and two newer SLE
wells. In the legacy wells, the Upper Jurassic interval was subdivided into Oxfordian, Rauracian and Astartian {Mikucka
Regugdga, 1968; Ur ban akuttk 1865n.d aSi,nd& @l@atleyedPEHEWHS, Rauraci a
been incorporated into the upper Oxfordian (Mgrycowa and Moryc, 1976Dn the other hand, the Upper Jurassic interval
in the SLE vells Chopinl and Belvederd was subdivided into Oxfordian and Kimmeridgiathis subdivision, however,
was based exclusively on lithological criteria derived from well cuttings and well logs interpretation, without any
biostratigraphical supporDydeka nd W- j ci k, 2011; Dudek et al ., 2011, L a
2011b) As a result, formation tops from new and legacy wells are not stratigraphic equivalents.

Because of those ambiguities exact stratigraphic position of the Uppesiduadponate buildups analysed in this paper
remains unclear. Results of recent biostratigraphic studies from the nearby area indicate that the age of similar carbonat
buildups ranges from Oxfordian up to Kimmeridgian, and sometimes even up to lowenidiittMatyja and Barski, 2007;

Matyja, 2009),and t mi ght be assumed that a similar stratigraphi

this paper. It should be stressed however that the precise stratigraphic position of the stpdiedutissic carbonate
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succession does not have any impact on interpretation of the seismic data presented in this paper; revised stratignegphic sche

might in the future allocate seismically identified carbonate buildups into slightly different Uppssidwstratigraphic units.

3.2 Seismic data

Two types of seismic data were used i n t hisdocaedinthgcentrdla) |
part of the Miech-w Trough, (b) §&ih. §rSeismicadata was satked aadstime ¢ q
mi grated, although some seismic artefacts such as diffi
velocity pultup effect could be observed that is distortinggeometry of the prdurassic basement.

Seismic vertical resolution for the Upper Jurassic intervali2@on for the SLE profiles, and 80 m for the older legacy

lines.

3.3 Methodology of well and seismic data integration and interpretation

Precisewell-to-seismic tiewasbasd on synthetic seismograms calculated using sonic and density logs for key calibration
wells Chopinl, Belvederelk and M3. dVellaogseismic tie using synthetic seismograms was also carried out for
supporting well, | g i{pwhndereaddidito lower quality of the sonic logs, the accuracy of this correlation
was significantly lower. Synthetic seismograms allowed correlation of depth well log data (stratigraphy, lithology) with time
(TWT) seismic data.

The first phase of seismic data inieetation was carried out for all the seismic profiles. It included identification of main
stratigraphic horizons (top Paleozoic, top Triassic, top Middle Jurassic, top Upper Jurassic, top Cenomanianyand the
faults.

The second phase of seismic datirpretation was focused on the Upper Jurassic interval, details of its depositional
architecture, and local fault pattern, and included interpretation of all key seismic horizons within the Upper Jurassic
succession, analysis of reflection pattearsl recognition of seismic facies related to organic buildups and the surrounding
deposits. The seismtratigraphic interpretation was carried out for the short SLE lines, and partly for the legacy lines, in the

close vicinity of the buildup complexes.

4 Results
4.1 Well to seismic tie

Synthetic seismograms were calculated using statistical wavelets, with a dominant frequen8p ¢i30vavelet length
varied between 12050 ms Figs 6and7). The t wo de e p e sit, wenl clHyahdfgtovided imidenaation on
the top of the Paleozoic basement, top Tria3sili-jnantik & o p
Wn ¢ h a-d @ellswOther stratigraphic boundariep of Upper Jurassic (J3), and top of Cenomanian (Kevgre tied to

seismic data using data from all five wells used in this study.

7
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4.2 1D seismic stratigraphic analysis

For the Chopirl and Belveredd wells, a detailed 1D seismic stratigraphic analysis was carried out in order to distinguish
the main seismgtratigraphic units within the Upper Jurassic interval, and to define relationship between the seismic data and
lithology and facies of the Upper Jurassic succession. The seismic stratigraphic 1D analysis was conducted using syntheti
seismograms calculked for wells Chopirl (Fig. 6) and Belvederd (Fig. 7). The precise timelepth model derived from the
synthetic seismograms allowed for a detailed correlation of formation topdpgelata and lithological profile with seismic
data. The analysed welbd data included gamnray, sonic, density and impedance curves. Lithological profiles for both
wells were constructed using wédlg data and information from core cuttinggu d e k and W- j cetadt, 201201 1 ;
Lach, 2011la, 201122%la,ilw)ed and W-jcik,

As a result, the top of the massive limestones, associated with the carbonate buildups, was defined on seismic data. Als
a correlation of well data with the main depositional systems within the study area following GutbwatKR005) was
completed.

Results of 1D seismistratigraphic analysis for the Chopglrnwell are shown ifrigure 6 Formation tops for the Chopih
well included the top of the Cenomanian (Kcn), drilled at 587 m, and top of the Upper Jurassic (J3) drilled afaty5fm.
the Upper Jurassic is an erosional surface above which the Upper Cretaceous (Cenomanian and younger) rocks were deposit

Lithological profile for the well Chopii shows that the topmost part (7883 m) of the Upper Jurassic succession is
ratherdiverse, comprising limestones, marly limestones, marls and claygteige$). This lithological diversity is reflected
in variable seismic image Upper Jurassic top is related to higimplitude positive seismic horizon generated due to a
pronounced thological contrast between the Cenomanian sandstones and the Upper Jurassic limestones. Beneath th
Cenomanianthe Chopinl well encountered about 41 m of the Upper Jurassic limestones, mostly white to light grey and
mediumto hard. This interval couldebinterpreted as a mainly oolitic and platy limestone dominated succession, well known
from the Miech-w Trough (cf. Zgonkiewicz, 20009) . Bel ow,
of a total thickness of about 27 m is presenayStones, marls and marly limestones are expressed by high readings on the
gammaray log due to the increased content of clay minerals, so this interval (the marly #ge6) can at least partly be
correlated with the marly facies, including the Lomesst Marly Horizon, of Kutek (1968, 1994). Two lithological intervals
described above are characterised by generally high amplitudes of the seismic walvigfie®l ue to a strong vertical
velocity contrasts between the uppermost limestone packagbenthrly zone belowndfrequent alterations of marls and
marly limestones. Within the topmost part of the Upper Jurassic succession, the-stesgigi@phic unit termed J3U was
distinguished Kig. 6). It is characterised by high amplitude seismic haorizdt corresponds mainlto the ooliticplaty
limestone successioffrify. 6). Within this unit, four seismic horizons have been interpreted: 1J3U, 2J3U, 3J3U, 4J3U. The
horizon 1J3U corresponds to the very high amplitude negative reflection ploasibly interfered with the abodging Upper
Jurassic top horizon. Its amplitude might be also increased by vertical lithological changelémestone alternations?)

within the oolitic limestone interval, which is marked by a single peak on the gaaytag. The 2J3U horizon represents a
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very high amplitude positive reflection which can be associated vatgnificant increase of seismic velocities (from about
4500 to 5500 m/s)elated to those lithological diversity of the ooliptaty successionThe 3J3U horizon exhibits high
amplitude negative reflection which corresponds to a sharp lithological contrast between the oolitic limestones and the marl
claystone formation associated with the upper part of the marly zone. The 4J3U horizon is eXpyresseng positive
reflection related to vertical lithological variations within the lower part of the marly zone (from marls to marly lirsgstone
The interval located between the 3J3U and 4J3U horizons is characterised by high values on thagmgymadich indicate

a marly zone. However, because of seismic tuning effects, probably caused by frequdmessshe alternations, a more
precise identification of the marly zone is difficult.

Below the marly zone, a thick (approximat&y0 m) successn of hard limestones was drilleBi¢. 6). This succession
is related to the massive limestones that commonly form carbonate buildups (see e.g. Matyszkiewicz, 1993; Matyja anc
Wierzbowski, 2006). The top of the buildup (tcb) on the synthetic seismogrdreegsmic data is related to relatively fow
amplitude positive reflector, probably due to destructive interference from shallower enveloping boundaries (J3U unit). The
massive limestone succession is seismically rather homoger&gus) (

In Belvederel, the entire Upper Jurassic section located below the top of the carbonate buildup (tcb) is more heterogeneou:s
than in the Chopil well (Fig. 7). The bp of the carbonate buildup was located at the top of the massive limestone succession.
Accordingtote dr il Il ing report (Dudek and W-jcik, 2011; Lach, 2
into two parts by a package of moderately hard gikg/limestones encountered at abouti®¥s m. Similarly to the Chopin
1 well, above the capbnate buildup complex the marly zone is present in the Belvddeetl, comprising mainly marls and
marly limestones about P35 metresthick. The marly zone is lithologically diversified which is clearly illustrated by the
gammaray log as well as theonic log Fig. 7). Above the marly zone, a section comprises diverse opliity limestone
deposits (about 50 m thick), which belongs to the uppermost part of the Upper Jurassic, and this interval is assottiated with
interpreted seismstratigraphicJ3U unit Eig. 7). Seismic horizons for both the marly zone and the J3U interval are influenced
by intensive intrebedded signal interferences. This is possibly related to the presence-tifmastbne alternations.

4.3 Interpretation of seismic data

All the key seismic horizons (top Paleozoic, top Triassic, top Middle Jurassic, top Jurassic, top Cenomanian) have beel
interpreted on legacy and new (SLE) seismic profiles. However, due to lower seismic resolution of the legacy d#tagintra
Jurassic semmic horizons associated with the J3U unit have been interpreted only using new SLE profiles.

The presentlay structure of the study area is dominated by reverse faulting along the fault zones deeply rooted in the
Paleozoic and older basemehigs 8 10). Some of these faults might have been active in the Late Jurassic, but clearly their
main phase of activity was associated with the Late Cretaicealengene regional inversion of the Polish Basin (cf. Seheck
Wenderothet al, 2008; Krzywiecet al, 2009).

PreMesozoic (Precambrian to Carboni ferous) r ocekal 206lnpl e x

It is covered by the Triassic and Middle Jurassic deposits formed within the marginal part of the Polish Basin. The Upper
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Jurassic sucesion exhibits considerable lateral thickness changes caused by variable Late Jurassic local subsidence patterr
(cf. Zjonkiewicz, 2006), and | at eeastee. tovamidotie Holy CrossgWtslaeceu a | |
the axial, met subsithg part of the Polish Basjithe Mid-Polish Troughwas locatedFigs 8 10). The JurassicCretaceous
boundary is related to a subtle angular unconformity or disconformity that truncates the Upper Jurassic strata. The Lowel
Cretaceous is ngiresent in the study area. The fangllated folding related to inversion of this segment of the Polish Basin
could be observed for the entire Upper Cretaceous (Cenormdfaastrichtian) succession and indicates latest Cretakceous
Paleogene age of inversion

The Upper Jurassic isolated carbonate buildups havedragnally identified using legacgeismicprofiles. Carbonate
buildup drilled by the Chopii well is characterised by the most significant positive rekef.(8). Another organic buildup
is located approximately 2 km towards the neetist(Fig. 8). Both these buildups are characterised by a mahiaged
reflection pattern, a drape effect above the structure,
edges. Another pfile illustrates relatively smallebut a strongly mounghaped carbonate buildupig. 9. A significant
drape effect reaching up to the Cenomanian deposits could be observed above this buildup. Depositional wings are also clear
visible. Identificationof the base of this structure is ambiguous. Other examples of the Upper Jurassic carbonate buildups
identified on legacy data are shownhkig. 10 One of those relatively small buildups is located in close vicinity to the
Mi c h a&3gvellw

Lateral seismidacies changes within the Upper Jurassic succession are clearly visible on all analysed seismic profiles.
Mound-shaped seismic facies that represent carbonate buildups laterally pass into the parallel and continuous seismi
reflections related to beddedrbonate deposits.

Much more detailed information on Upper Jurassic carbonate buildups was provided by new SLE seisfrigsdbia (
15). Figure 11shows results of the detailed interpretation of one of these seismic profiles that was acquired directly above the
large Upper Jurassic carbonate buildup that was drilled by the Ghopall. The carbonate buildup is characterised by
chaotic, lowamplitude seismic reflections. Estimated lateral extent of this buildup is up to 1 km. The thickness of the J3U
interval is different on both sides of the builduft increases from its east side, where several onlapping horizons are visible.
This might be relatd to local syrdepositional faulting within deeper substratdrne base of this buildup is not clearly imaged
due to (1) strong wavelet interference, (2) reflections

Several smalkcale faults ha been interpreted on this seismic profile. Deeper faults that dissect Padl&ozssid
Middle Jurassic interval might be partly related to older phases of tectonic evolution of the area. However, it sheakte str
that time seismic data might alsoffer from local velocity effects such as velocity pufl beneath the massivei.e.
seismically fast carbonates. Therefore, the interpreted geometry beneath the carbonate buildups should be treated with certail
caution and not regarded as an exactaggmtation of the sedpper Jurassic structure.

Upper Jurassic carbonate buildup drilled by the Belvedlexell is shown irFig. 12 This structure does not exhibit such
strong positive relief as the buildup shownFig. 11, and its outline is less vidé This carbonate buildup consists of two

massive limestone successions, separated byljkatliimestone strataHig. 7), and this might be one of the reasons for less
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clear seismic imaging. The western edge of this carbonate buildup is dissectedgldault, across which a slight thickness
increase of the J3U unit is observed, suggestingdsypositional activity.

The highest amplitudes and the most continuous seismic horizons are observed for the JBgsuhit &énd 1R This
might be relatedat a sharp lithological contrasts within this interval caused by the occurrence of limestones interbedded by
marls and marly limestones of the marly zone kéfis 6 and Y. Subhorizontal seismic horizons, associated with bedded
carbonates surroundirige carbonate buildups, are also clearly visilitgé 11 and 12

Finally, important differential compaction and related compaction sag effect could be observed above all the identified
carbonate buildups. Carbonate buildups, generally represented by agsivenlimestones, angoreresistant to compaction,
while the surrounding bedded carbonate facies are much more prone to compaction. This effect can be very clearly seen ¢
theseismic profile showim Fig. 13 Itis expressed by: (1) the drape effectwabthe buildup an evidence of lower compaction
(typical for resistant carbonate buildup deposits), and (2) compaction sag as evidence of higher compaction, typiaal for bedd
carbonates surrounding the buildups. This seismic pattern could be obserthedWgper Jurassic succession and, although
to a lesser degree, also within the lowermost part of the Upper Cretaceous succession. Differential compaction may have als
led to formation of some of the normal faults along the bordettseafarbonatéuildups Figs 11 and13).

The velocity pullup effect observed beneath the carbonate buildups (cf. Fig. 13) results from lateral seismic velocity
contracts between the massive and stratified (bedded) carbonates. The interval velocity of the madsivedjrdgied by
modern Chopirl and Belvederd wells, is about 500000 m/s and is significantly higher in comparison to seismic velocity
obtained fr odn drh el-INpacynwkell§ forthe corresponding stratified deposits that are inafrdar3800
5000 m/s. However, it should be taken into account that velocity information from these old wells should be treated only
tentatively, due to their uncertainty resulting from the lower quality of olderlogding data. Expected lateral seismi
velocity variations between the massive and bedded carbonates often exceed 10% and might be responsible for producir
some velocity pulups beneath the seismically faster carbonate buildups. Then, it is probable that at least for some of the
morphologi@l heights situated beneath the carbonate buildups in the analysed time seismic data, velapgynpight have
distorted their true geometries. The similar role of higlocity reefal intervals in production of velocity pulb effects
beneath the chonate buildups was described for time seismic data characterising the large Miocene buildups in Luconia,
Malaysia (e.g. Zampetti et al., 2004; Rankey et al. 2019) or numerous isolated buildups from thesiostielf of Australia
(Saquab and Bourget, 26).

The | ateral extent of the carbonate buildups identifie
in the range of 400L000 m, the present day total height of most structures is arouin@®én. Yet, present day observed
cumuative height of the two largest complexes, drilled by the Chapamd Belvederd wells, probably exceeds 250 m.
However, identification of the base of the buildups was ambiguous due to rather poor seismic imaging of the lowermost part

of the large buildp complexesKigs 11 and 1R Both structures are hundreafsmetredong (everup tol km,Figs 11 13).
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5 Discussion
5.1 Carbonate buildups on seismic data regional context

Results presented in this paper illustrate how and to what extent seisanéad#e used for analysis of carbonate depositional
systems, in particular for identification of the carbonate buildups and the enveloping strata. In this study, sevemidarge U
Jurassic carbonate buil dups i n théee seibhiically ientified md chagdteriseds o u t
Possible occurrences of carbonate buildups in the study area has been already tentatively proposed by several authors (
Gut ows ki et al., 2005; Matyja, 2009 idenc @fdheikpresence in this pagt 6f0 9 )
the basin has been presented. In southern Poland, where the Upper Jurassic strata is covered by thick Cretaceous and your
deposits, such as in the Miech-w Tr ouugthsing ipforreatian ramsoldest u d i
research wells only (cf. Zgonkiewicz, 2006, 2009)area,Avai |
is however, insufficient for detailed analysis of the geometry and architecture of theatartbepositional system, in particular

for identification of the carbonate buildups. In comparison to adjacent areas in Poland and central and western Europe, wher
the Upper Jurassic is wethown from outcrops (cf. Leinfelder et al., 1996; Matyszkiewd®97a), a carbonate succession in

the Miech-w Trough remained wuntil recently much | ess |
identification of large carbonate buildups and surrounding enveloping strata, and therefore providettiabmformation

on thelLate Jurassic depositional system in this part of the bBsisults of this study could also be used as a more universal
reference point for seismic studies of carbonate depositional systems of different ages from differentasgdiasns.

The seismically interpreted carbonate buildups from the study area formed part of the vast Late Jurassic carbonate
depositional system that developed along the northern, passive shelf of the Tethys, forming in Europe a belt extending fron
Pottugal through Spain, France, southern Germany, Poland to Ukraine and Romania (Leinfelder et al., 1996). Quality of the
presented seismic examples is quite unique in comparison to other few papers dealing with seismic interpretation of Uppe
Jurassic carbate buildups in central and western Europe. In comparison to the Upper Jurassic carbonate buildups seismically
recognised from Southern Germany (cf. Hart mann et al .,
paper are much bettenaged on seismic data. The present day observed cumulative heights of carbonate buildups from the
Mi ech-w Trough are distinctly |l arger than in the sei s mi
total thickness of the reef successidoes not exceed 180 m (Hartmann et al., 2012). This confirms that carbonate
sedimentation in the Polish part of the northern Tethyan shelf was more intense than in southern Germany (cf. Matyja anc
Wierzbowski, 1996). Observed vertical size of the caab@mbuildups described in this study is similar to the Upper Jurassic
reefs recognised on seismic data from the Western Caucasus and Black Sea region (Afanasenkov et al., 2007; Guo et al., 201
This suggests that in both areas local depositional enveonh(including paleo-bathymetry and subsidence) was at least
generally similar.

The Upper Jurassiarbonate buildups have been also recognized using seismic data in Pdl&0dkmGouth from the

study area within the s o oughhtbat in cogserd ydlintenesddiments f thel Carpathianw
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Foredeep Basin (Misiarz, 2003; Gliniak@d Ur bani e c, 2005; G|l i frycakéwska et ala 2006). 2 0 (
Vertical and lateral size of those structures is generally comparable tof siarbonate buildups described in this paper. This
suggests that growth of all these structures took place in a relatively unified depositional environment that charaisterized t
part of the basinRecently, Urbaniec (2019) provided seismic examplddpgfer Jurassic carbonate buildups of similar size
that are located about 50 km sowfdst from the study area. Those buildups are characterised by complex geometries and
probably consist of several levels of the massive limestones.

Presented results ofisic interpretation of carbonate buildups have also more uniagptitation They can be used as
a reference point for analysis of carbonate buildups and elements of depositional system using seismic data from othe
sedimentary basins. The quality bétseismic image is comparable to some case studies of this typeafioosareas in the
world (cf. Elvebakk et al., 2002; Zampetti et al., 2004).

5.2 Geometry and depositional architecture of the Upper Jurassic basin

Depositional architecture of tHépper Jurassic carbonate succession in the study area recognised on seismic data (Figs 11
15) resembles a classic carbonate systembkvello wn fr om out crops | oc &tzaidks twicthhoiwa tUh
(Figs 3 and 4A). Itis characterised by preseaf carbonate buildup complexes surrounded by diverse bedded carbonate facies
(DUOugyEski, 1952; Matyja and Wierzbowski, 1996, 2006; |
Jurassic succe€si®noc ho th @diudHigadrisicharaEteriged by strong local vertical and lateral
thickness, and facies variability. This is mainly related to differentiated relief at the top of Paleozoic substratutedssocia
with local differentiation in subsidence caused by theiopenice of Permian intrusions, sgadimentary tectonics, and local,

mostly aggradational growth of organic buildups, as well as differential compaction of carbonate sediments (Matyszkiewicz,
1999; Matyszkiewicz et al2006, 2012, 201,8Kochman & Matyszkéwicz, 2013; Matyszkiewicz and Kochman, 2DIbhe
Upper Jurassic su€edédssioecmown tUpeaKdakowsi sts of: (1) b
deposits of gravity flows (Matyszkiewicz et al., 2012). Massive and bedded limeatieg lielong to the sponge megafacies
deposits (Matyja and Wierzbowski, 2006). This succession, characterised by the abundant presence of siliceous sponges a
microbial structures, is common within the northern Tethyan shelf margin of central and i&stgra in the Late Jurassic

(e. g. Matyja and Pisera, 1991; Matyja and WierzbowsKki,
Cznstochowa Upl and, massive | imestones constituteddedl arg
limestones and marls that were formed within wittéldup subbasins, or much wider (up to several km long) Hiteildup

basins (cf. Matyja and Wierzbowski, 1996). Massive facies (carbonate buildups) passes laterally into bedded facies (Gutowsk
etal., 2005, 2006; Matyja and Wierzbowski, 2006, see Fj.Similar elements of depositional architecture can be observed

on seismic data from the study area (Figé1B}. Moundshaped seismic facies that represent carbonate buildups laterally
pass intdhe parallel and continuous seismic reflections related to bedded carbonate deposits represeitdintiubbasins

(Figs 14 15). Present day cumulative heights (380 m) and lateral extents (4d®M00 m) of the structures identified on
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seismicdatarfom t he Miech-w Trough are generally comparable w
KrakGCzwistochowa Upland (cf. Matyja and Wierzbowski, 1996¢

Presente@xamples strongly suggest that (1) similar basin geometries (e.g. carbonate buildupsjldumsubbasins),
and (2) main facies relationship (i.e. massive facies versus bedded facies) for the Upper Jurassic succession colyld be reliak
distinguishedon seismic data from the study area. Seismic image of bedded facies revealed significant vertical lithological
variations which are expressed by higplitude continuous seismic reflections (see Figslg¥ This might be related to
strong vertical lithad gi cal variability known fiCamse pueihvavlae Utpl| dhenplo s iw
facies commonly include several meter thick marls and-limagstone alternations (e.g. Matyja and Wierzbowski, 2006;
Matyszkiewicz, 2008). Such distindgthological contrasts (bedded limestones alternated by marls), are probably responsible
for producing these characteristic strong,-Bobizontal seismic horizons (Fig. A&ndd, compare with Figs 145).

The results of the seismic interpretation coudcbrrelated with the main Upper Jurassic lithofacies scheme proposed by
Zgonkiewicz (2009) f or t heb). Ee tpparneost phirt efchie Upper Jurassic mterval whiehe F
corresponds to the J3U seisksitatigraphic unit, charactergdoy high-amplitude flat seismic horizor(igs 6 7 and Figs
14i 15) can be related to the shallevater carbonate platform, represented predominantly by oolitic platy deposits, comprising
mai nly | imestones, mar |y | i me ute, 19868; Matyjadcet aim 4989, 2006( Gufpwski kti e w
al., 2005, 2006; Krajewski et al., 2017, see Fi). Massive limestones, which represent carbonate buildups, might be related
to the Massive Limestone Member, and, the bedded facies could refer heténegeneous Siedlce Limestone Member
(Matyj a, 1977; Zgonki ewi cz, 20009, see Figs 4B and 14).
associated with the Morawica Limestone Member and with lowermostqthaslyni nat e d swicz, 2a0D% se€ig g o n Kk i
4b).

Above the top of large carbonate buildupigs 11 12), the higher gammeay log values clearly indicate the presence of
marly and marly limestones deposits those are related to the marly zone interpreted from the 1D s¢igrahétranalysis
(seeFigs 6 7). This intervalmight be associated with the disappearance of the organic buildupsclaaage irsedimentary
conditions related to drowning of the carbonate ramipich isevidert from deposition ofdeepeiwater marly fecies (cf.
Krajewskiet al, 2017; see also Kutek, 1968, 1994

6 Conclusions

This paper provides new important information on the Late Jurassic sedimentationt h e Mi e thét was lochtedo u g h
within the transition zone between epicontinental basiwestern anaentral Europeand the Tethys Ocean. This area has
been hithertdess recogniseth comparisonto adjacent areas in Poland atehtral andwestern Europe, where the Upper
Jurassic deposits are wéthown from outcrops. The results of seisrdiata interpretation from thstudy aregproved the
presence of the large carbonate buildups in this part of the Upper Jurassic basin in Southerfitigoldedtified carbonate

buildups exhibit significant positive relief; lateral extent of particulanglexes is in range of 400000 m, and observed
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cumulative height of the most structures is in ramigeb0r 250 m. This study revealed the distinctive depositional architecture
of the carbonate Upper Jurassiccession. The oundshaped seismic facies thepresenkargecarbonate buildupsiterally

pass into th@arallel and continuous seismic reflections relateti¢ovellbeddedasinaldepositglimestones and marls) that
were formed within the intrauildup subbasins or wider intebuildup basinsThe geometry and architecture of the Upper
Jurassic basi n irasembléthe wstiecegnibespen shelf canbgriate depositional systerm the adjacent

Kr akGzwi st oc h o.wseismld udit a3ikhat overliesthe open shelf deposits, repeat younger, shallowater
carbonate platform successi@etween the J3U unit and the top of carbonate buildups, the distinctive marly zone has been
interpreted from the 1D seismétratigraphic analysiand the gammaay logs This interval is represesd by deepewater
faciesthat might beelated to the carbonate platform drowning dediseof the organic buildupsThe results shown in this
paper fill the gapn recognition ofthe Late Jurassic mmogeography of southefoland and providevell-documented
example of a system of carbonate buildups developed in the sastigrn segment of the transition zone between the European

Late Jurassic epicontinental basin and the Tethys Ocean.
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Figure 1. Common types of seismic expression of carbonate buildups used for their seismic identification and characteristic8(lzsed on
& Hatlelid, 1977; Veeke & Moerkerken, 2013; modified)ja) velocity pulkup and differential compactiofh) reflection free with drape
effect, (c) reflectionfree with diffractions on edgéd) compaction sag and transgressive onlap.
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Shallow-marine carbonate Present day and possible former distribution

and sandy facies of sponge megafacies
Siliciclastic facies Continental facies
or nondeposition
=== ; Location of previous seismic interpretation studies/papers
- -| Marly facies . . . ]
== = Y . dealing with the Upper Jurassic carbonate buildups

900 Figure 2. Simplified paleogeographic sketohap of central and western Europe for the middke Oxfordian (after Wierzbowski et al.,
2016); red points show location of the previously published seismic interpretation studies/papers dealing with the Efiperaibeamate
buildups from the northarTethyan shelf margin and adjacent arda&l(is et al., 19902. Bunes et al., 201@. Hartmann et al., 2012,
L¢eschen e85 Zimnier and VW2eBsély] 1696.Ad § me k , 7. Qifiak &nd Wbaniec, 2001; 8Gliniak et al., 2005see text for
more detailg
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Figure 4. (a) Simplified, idealse d st r ati graphic scheme of the
Trough, showing main depositional systems and cyclicity (after Gutowski et al., 2005); Submediterranean ammoiaitdo EviEEoNS:
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Lat e

910
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highstand, LSW lowstand wedge, TST transgressive, MFS (C$)maximum floodng surface (condensed sectioft)) details of the
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Figure 5. Detailed view of the study area with location of wells and seismic data. Solid lines (red and blue) mark the sectiseiswithe
profiles shown in the Figsi85. Background geological mgpa f t er Dadl ez et al ., 2fothFig. 3{sgetfiok o et
description).
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