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Dear Professor Federico Rossetti,

We are now resubmitting a revised version of our manuscript, originally entitled “A review and
evaluation of the methodology for digitising 2D fracture networks and topographic lineaments
in GIS”.

The original focus of the manuscript was to provide an insight into each step of the method and
the potential pitfalls, improving the quality of data in future studies and making the method
more accessible to a wider range of users. We never meant this manuscript as a review of all
fracture data capture methods, and perhaps this led to unrealistic expectations for the reviewers.
In the revised manuscript, we have refocussed on the detail of the methodology and its potential
uses rather than a review of digital fracture analysis, therefore, we are retitling the manuscript:
“Data acquisition by digitising 2D fracture networks and topographic lineaments in GIS: further
development and applications”. The paper is primarily aimed at workers without access to
expensive software or equipment and scientists outside of structural geology, such as
geotechnical engineers, geomorphologists and groundwater modellers.

We have reorganised the manuscript to 1) provide a clearer understanding of where this method
fits within the current literature, 2) provide a better understanding of the potential contribution
that the method will make to large-scale digital fracture datasets and 3) provide an important
outline of good practice for gathering digital fracture data for future studies.

Changes to the manuscript are in two parts, 1) a reorganisation of the introduction to address
issues around the novelty of the method, and 2) a development of the discussion to demonstrate
the usefulness of the method. The aim of this manuscript is to provide a detailed description
and discussion of the digital fracture network analysis methodology and to set out an important
standard for future studies. Furthermore, we aimed to make the technique more accessible to a
wider audience (in particular in developing countries), which is reason for the presentation of
the method using open-access software and publishing in an open-access journal. In the new
title and the restructured introduction, we have refocused the emphasis of the paper onto the
methodology, with some context in terms of how the methodology fits with 1D to 3D fracture
network analysis.



To address points 3 and 4, in regard to the usefulness of the technique we have added a new
case study, which is an example of how the method can be used on historic photographs of
sections that are no longer available and therefore it would otherwise be impossible to gather
fracture network data. Furthermore, we have developed the discussion to focus on the on digital
benefits of the method, in terms of generating large datasets across large areas, which is
particularly relevant in modern geoscience field campaigns. The refocussing of the discussion
onto the benefits in terms of digital data acquisition and management for broad range of studies
helps demonstrates the useful of the method for wide range of studies in a range of
circumstances where conventional analogue fracture network analysis is not applicable.

The review suggests the technique has limited useful as it does provide data on surface
orientation. In the various examples provided the parameters that are derived from digital
fracture network analysis include length, spacing, density and relative orientation. In these case
studies these fracture network parameters provide an important understanding in terms of rock
mass strength, groundwater properties and erodibility. We strongly disagree with the point as
there are number the 2D geometric and topological parameters that are used to understand
fracture networks in broad range of contexts.

Thank you for taking the time to consider our manuscript for publication with Solid Earth.
Yours sincerely,

Dr Romesh Palamakumbura
On behalf of the co-authors
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Data acquisition by digitising 2D fracture networks and

topographic lineaments in GIS: further development and

applications

Romesh Palamakumburat, Maarten Krabbendam?, Katie Whitbread! and Christian Arnhardt?

!British Geological Survey, The Lyell Centre, Research Avenue South, Edinburgh EH14 4AP, UK

2British Geological Survey, Nicker Hill, Keyworth NG12 5GG

Abstract. Understanding the impact of fracture networks on rock mass properties is an essential part of
a wide range of applications in geosciences, from understanding permeability of groundwater aquifers
and hydrocarbon reservoirs to erodibility properties and slope stability of rock masses for geotechnical
engineering. However, gathering high quality, oriented-fracture datasets in the field can be difficult and
time consuming, for example due to constraints on time or access (e.qg. cliffs). Therefore, a method for
obtaining accurate, quantitative fracture data from photographs is a significant benefit. In this paper we
describe and-evaluate-thea method for generating a series of digital fracture traces in GIS-environment,
in which spatial analysis of a fracture network can be carried out. The method is not meant to replace
the gathering of data in the field, but to be used in conjunction, and is well suited where fieldwork time
is limited, or where the section cannot be accessed directly. The basis of the method is the generation
of the vector dataset (shapefile) of a fracture network from a georeferenced photograph of an outcrop
in a GIS environment. From that shapefile, key parameters such as fracture density and orientation can
be calculated. Furthermore, in the GIS-environment more complex spatial calculations and graphical
plots can be carried out such as heat maps of fracture density. /Advantages land limitations compared to

other fracture network capture methods are discussed.Fhere-are-a—number-of-advantages-to-using—a

1 Introduction

Fractures are the main pathways of fluid flow in rocks, and exert a strong influence on rock mass
properties. The characterisation of fracture networks is an essential aspect of various applications in the
eEarth sciences, for example to understand and predict the behaviour of fluid flow in groundwater
aquifers (Singhal and Gupta, 2010;-{99%%.—29;49 and hydrocarbon reservoirs, and the erodibility
and slope stability of rock masses (Clarke and Burbank, 2010). Fracture network data are essential for

assessing future sites of nuclear waste repositories_(Follin et-aket al. 2007), predicting rock slope
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stability (Selby, 1982; Park et-ak;et al. 2005) and understanding intact rock strength for engineering of
infrastructure (Hoek and Brown, 1997; Zhan et-aket al. 2017; Ren et-alset al. 2017). Thus, fracture

network analysis is a critical component of applied geological characterisation required for ensuring

water and energy security, supporting infrastructure development, and protecting human health, which
are identified as key Sustainable Development Goals (ef-Schrodt et-al-et al. 2019).

Forthese-diverse-applicationsTo characterise fracture networks; a range of fracture network parameters<
need to be eaptured—and—analyseddetermined, including the fracture density, connectivity, and
orientations (e.g. Singhal and Gupta, 2010SHFE). These properties arecan be highly spatially variable
over a range of scales, and-their—variabihitywhich cannot be accurately predicted (Long et al.
19872CHE) ; thereforesethatThe comprehensive capture of observational data is typically required fer
apphied-fracture-analysisto characterise fracture network variability over large areas. Due to the limited
distribution of suitable rock exposures in many settings, eemprehensive-understanding -of-the variability

of fracture network parameters at regional scales requires sampling at multiple sites (e.qg. McCaffrey et

aket al. 2020). Practical constraints on samplingdata collection are therefore critical factors.:

Ceonstraints on the number of sites that can be sampledanalysed in a given study increases uncertainty

in estimations of fracture properties of the wider rock mass. ardThis uncertainty limits the scales at

which analyses can be reasonably applied-given-these-tneertainties,

A

The need for efficient and robust methods for quantitative capture of fracture data is well recognised,
and methods wtitisingusing statistically-based observational techniques (Mauldon etak-et al. 2001), and
systematic regional sampling (e.g. Watkins et-ak-et al. 2015) have previously been proposed. We build

on previous developments in fracture sampling by focusing on methods for digital data capture from

The ready availability of digital cameras and suitable open-source software means that the 2D digital

capture methods have potential for wider adoption across applied geoscience fields where traditional,

low-cost -1D and analogue sampling methods are still widely used (Siddique gt al, 2015; Panthee gt al,,

2016). Whilst advanced 3D methods for outcrop imaging and fracture analysis are now available
(EFFETavani et al, 2016; Bisdom et al, 2017).; Llimited access to necessary hardware, software and
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are impractical to use;; (3) where historic images (such as from quarries, canal excavations or road

cuttings) provide a valuable data source, or (4) for multi-scalar analysis utiisingusing micro (e.g. thin

section) to macro (e.g. satellite) scale images.

Here we describe levatuate-good practice in the use of low-cost 2D digital methods for efficient capture [r ted [WK7]: May not be the right word...

and visualisation of a range of fracture parameters and illustrate how these methods can be integrated
readHy-into-applied-studiesused across a range of applied geoscience fields (Figure 1). Although the

method has been used before (Krabbendam and Bradwell, 2014; Watkins et—al-et al, 2015a;
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Figure 1: Flowchart providing an overview of the methodology used for digitising linear features, from preparing
an image, digitising the features to output of data. Digital elevation model examples are taken from Next
map © in Scotland, and the satellite image of Oman example is taken from Google Earth ©.
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clustering (Manzocchi, 2002; Sanderson and Nixon, 2019). Finally, +ane-fracture eharacter—such-as
aperture, fracturefill and paragenesis history provide an important understanding of the fracture
network history, fluid flow and fracture strength (Carlsson, 1979; Laubach et-al-et al. 2019).-Seme-of

Fracture networks can be characterised in different dimensions using a number of approaches.

1D approaches include berehelefracture-anakysis-and-outcrop-based scanline surveys and (by necessity)

borehole fracture analysis, typically represented by the number of fractures per unit length, i.e.

frequency. 1D approaches are relatively rapid, but cannot directly constrain eertain-parameters such as
fracture length and connectivity. If the fracture network is anisotropic, {(which is commonly the
case), the characterisation is biased by the orientation of the scanline or the borehole (‘orientation bias’;
Singhal and Gupta, 2010; Zeeb et-aket al. 2013b; Watkins et-aket al. 2015b).

withina-ciretlarwindow-on-arock-outerop (Davies et al, 1996; Rohrbaugh etalet al. 2002; Watkins et

aket al. 2015a).; lin the field, —Generathy—for 2D-analysis-a—cireularscantine-orwindow-approach-is
taken- thisiscommonby-earried-outbyusinga circular ‘chalk line’ is drawn on an outcrop, within which
the fractures and-their attributeskey geometry’s are captured. Connectivity within two-dimensional

fracture networks can be parameterized by characterising the different types of fracture terminations

parameter, not a directly acquired one?
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and intersections, which can be used to understand fluid percolation potential (e.g. Manzocchi, 2002).

Full field-based capture is very time consuming, particularly when data from multiple sites are required,

and may be impractical or impossible for many outcrops, such as quarries, cliffs and coastal platforms.

Time constraints normally mean that field-based methods are also limited in their scale of application,

with typical sampling window diameters of 1 — 2 m being commonly used (e.g. Watkins et-al-et al.
2015; SHEethersProcter and Sanderson, 2018). This limitation means that variability in fracture
properties at scales greater than 5-10 m are typically not captured.

A

To overcome the time-constraints of the full 2D window approach, a circular scanline method was

developed (Mauldon et-aket al. 2001), in which only those fractures are captured that intersect the
particular circular scanline; in a sense it is similar to the 1D approach. The tn-theformer—fractures

recorded-Ccircular scanline metheds-areanalysis is more rapid than the full 2D[circular cireslarwindow
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analysismetheds and have-has less length and orientation bias compared to 1D methods_(Mauldon et
alzet al. 2001).- The circular scanline method A-cireular-seantine can be used to calculate proxies for
fracture density and length based on the ratio of the types of trace intersection (Mauldon et-alet al.

2001). This method; providesing a timen efficient means of deriving basic fracture parameters. The

Mauldon gt al. 2001 method only provides length and density proxies from the data collected in the
field, if other parameters are needed further field work would be required. Hewever—the-validity of
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Ideally, for any application, a full 3D characterisation of the rock mass is achieved. However, ttrue 3D

characterisation of a rock mass is currently only possible using CT scanning, and is restricted to very

small samples (Voorn etat-et al. 2015). Bigi i i
from-hHigh resolution ‘3D’ images of outcrop surfaces (more like ‘2.5D”) can be captured usiig-by

from-laser scanning, which can be ground based or UAV (e.q. Pless et al. 2015/ Bisdom et-alet al.

2017; Gao etalet al. 2017:-Sengeretal 2015: Wiistefeld etak.et al. 2018). From the laser scans, 3D

images of the outcrop surface (3D ‘virtual outcrop’) can be generated using techniques such as structure

from motion (SfM) photogrammetry (Vasuki et—alset al. 2014). These can provide additional

information on fracture orientation through the use of advanced image analysis techniques (Wistefeld
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et al. 2018ePlessetal2015). Theseis methods haves been used }.—ane-are-therefore valuableto
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informfor advanced fracture network analysis and modelling for applications related to fluid flow, gas )

migration and engineering/construction (e.q. Bisdom et-al-et al. 2017; Menegoni etak-et al. 2019;
Strijker et-ak-et al. 2012; Tavani et-aket al. 2016). —hewever These 3D scanning techniques require

sophisticated hardware, proprietary software and training that; potentially limiting—en—s their
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The 2D fracture network can be captured in the field as well as from image tracing (e.g. Watkins et-alet

al. 2015). 2D digital data capture methods can be used at a greater range of scales, permit data capture

from inaccessible sites, and provides a reproducible approach from which a digital dataset suitable for

numerical and statistical analysis can be readily derived. Digital 2D data capture can be applied to

photographs of an outcrop or thin section, aerial photographs, or satellite imagery. (E+FE)-The 2D

digital capture methods typically rely on GIS-type functions for the visualisation and analysis of images,

and uses standard GIS tools. More sophisticated, —further-analysis can be carried out using software

applications such as proprietary CHECK DigiFract lwhich is based on customised QGIS functions

(Hardebol and Bertotti, 2012), the open-source tool FracPag for Matlab (Healy et-ak-et al. 2017) and
NetworkGT for QGIS (Nymberg et-ak-et al. 2018). These tools provide enhanced functions for efficient

capture of data from images and advance data analysis.; andHowever, these methods are targeted for

application in structural geology research contexts.

al—2016-Healy-etal-—20%7)-In its basic form the 2D digital method Fhe-aceessibitity-of the-method:
whieh-requires only a digital camera, a measuring stick and access to GIS (such as open-source QGIS).
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—and-thisThe low-cost.Jew-threshold naturealse-can-be-used-systematically-on-arange-of typesof
image; of the method means that this is potentially a powerful tool for enhancing geological

investigations across a range of applied studies, such as engineering geology and hydrogeology. We

comprehensively describe good practise for 2D digital fracture capture and analysis. In: particularky we
focusing on the practical aspects of image capture, preparation and analysis using QGIS and
availableother open-source tools and plugins, \We thenpresent £Four case studies thatare presented to

{
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We demonstrate some simple fracture analysis tools that can be applied to the captured data. Finally,
wWe then-evaluate the benefits and drawbacks of 2D-digital-eapturea digital method for capturing
fracture data.-compared-to-other (1D-or 3D} methods.
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32 Digital 2D fracture analysis method

The method in essence captures a set of digital traces (vectors) of a 2D linear feature network in a GIS
project from a georeferenced image. Here, we use open source GIS software (QGIS), making the
method accessible to all potential users. A number of open tools within QGIS can be used for more

advanced analysis of the digitised fracture network.
32.1 Outcrop selection

A suitable outcrop for digital fracture analysis must be first selected. Where spatial understanding of
the distribution or diversity of fracture characteristics in a region is an important element of study, the
implications of site selection choice on subsequent spatial analysis must also be considered (\Watkins et
al. 2015a). The outcrop selected will depend on the nature of the study being undertaken and the type
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of fracture network parameters required. It is important to consider whether the outcrop is representative
of the rock mass as a whole or whether multiple sites would better represent the diversity erdistributions
of fracture characteristics. Outcrop selection has significant implications on the final results, i.e.
whether the outcrop is a proxy for wider-scale fracture network characteristics at depth or if it is the
outcrop itself that is being studied in isolation at-the-surface-(Laubach et al 2019; Ukar et al 2019).

32.2 Outcrop image preparation

The first step is to capture or prepare a suitable photograph or image of the outcrop to be analysed. The
image can be a photograph of a fracture network at outcrop of various scales from centimetres to 10s
of metres. It is important that the fractures can be clearly identified in the photograph, and that not too
much of the image is occupied by vegetation or broken ground (Figure 2a). It is important to include
an accurate and clearly identifiable scale; a strip of plywood with duct tape works very well. However,
in some dangerous outcrops (e.g. working quarries) this may be impractical and quarry machinery or
other features of known dimensions may be used as a scale in the photograph. This also applies to
historic photographs. The photograph should be taken at right angles (or as much as possible) to the

outcrop to minimise the issues created by a distortion of the image. The camera should have a focal
length of 35mm (analogue 35 mm equivalent) or longer, to prevent further distortion. Horizontal
outcrops should be photographed vertically to again minimise the distortion of the fractures. Mounting
the camera on a stick is useful to increase the distance and capture a larger field of view (Figure 2b, c);
or drones could also be used. For horizontal outcrops it is convenient to orient the measuring stick
accurately to the north, using a compass (Figure 2c), this will help in capturing the correct orientations

of the fractures.
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Figure 2: Examples of photographs and DEM images that can be used for digitising 2D linear features, including:
(a-c) photographs of fracture networks of various scale from southern India and improvised methods for taking
parallel photographs; (d) a DEM image from southern India of larger kilometre scale features that could also be
digitised; and (e) an aerial photography from Namibia (adapted from Krabbendam and Bradwell, 2014).
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32.3 Georeferencing the images

To aid robust georeferencing, the photograph needs to have a square of known size (e.g. 1 x 1 m)
embedded in it. This ean-be-doneis done by importing the photograph into a graphics software package
(such as Inkscape), and drawing a square based on the scale included in the original photograph (Figure
3). The photograph with the embedded 1 x 1 m square is then imported into a new GIS project file. The
GIS project file needs a projection in metres; we recommend a Mercator projection, (such as
EPSG:3857). Within the GIS project, a ‘vector grid” (fishnet grid) is created, with a grid extent that is
larger than the imported photograph and with a vertical and horizontal spacing of 1.0 m. Finally,
georeference-the square on the photograph is georeferenced to a square on the fishnet grid;-thus-ereating
a-goareorepecebashatosmphiainthe-Cle s ieet (Figure 3a).
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Figure 3: Images showing (a (i-ii)) how to georeference an image to a fishnet grid (black) from a square of a
known scale (white); and (b) the tools available for digitising fractures in QGIS, including (i) a fully manual
method; and (ii) a semi-automatic method such as Geotrace.

32.4 Using DEM, satellite and air_photo images

DEMs (Digital Elevation Models) (and their hill-shaded derivatives), satellite images and
(orthorectified) aerial photographs commonly show good topographic lineaments that likely represent
fracture zones, or master joints (Fig. 2d,e). Such imagery siis commonly already -H-georeferenced and

can be used direetly-without further preparation. It should be noted however that aerial photographs,
DEMs and satellite images do not directly show fracture traces, rather they show the topographic
expression of these. Thus, fracture density is likely to be underestimated, because fractures without
topographic expression will not be captured. Figure 2d is an example of a DEM image from southern
India showing kilometre-scale 2D topographic lineaments: in some parts lineaments are well developed,
in other parts fracture zones have no expression and presumably occur beneath a continuous layer of

regolith. Furthermore, such imagery is limited by the on-ground resolution, so that smaller-scale
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(smaller aperture) fractures may not appear. Hill-shade DEM images, as well as satellite imagery and
aerial photographs have the problem of bias by a particular direction of illumination, so that lineaments
of one orientation may be clearer than others. For DEMs, hill-shades derivatives with different
illumination direction can be made; for satellite imagery, sometimes imagery taken at a different time
of day are available. Lineaments in DEM images also have the problem of illumination, which may
result in bias depending on the orientation of the lineament relative to the illumination orientation.
Hence, for DEM-scale interpretations it is important to take a multi-data type approach (e.g. geological

maps and satellite images) to guide digitisation, similar to that of Pless (2012).

25 3.5 Data capture «

32.5.1 Seleet-Create analysis window

reguired—or-thiseCreate a line or polygon shapefile and digitise around the area that is to be analysed.

An example is shown in Figure 3b as two circular windows, in white, digitised onto a photograph in
GIS. Itis important to create a different id number for each shape that includes details of the photograph

or image that is being digitised.

252352 Digitise linear features -

&

This step aims to create a series of digital line traces from the georeferenced image. Create a new line
shapefile in the GIS project to hold the linear trace data. The shapefile needs to include an id column in
the attribute table so that the linear traces can be associated with a specific window and photograph.
Two methods can be used to create digital traces of the linear features. Firstly, the individual features
can be digitised manually in the GIS project, using the “add line features” tool. Alternatively, the plugin
tool ““GeoTrace” can be used to semi-automate the digitising process. The GeoTrace plugin tool in
QGIS allows one to click on the start and end of each fracture and GeoTrace creates a line vector
between these points. For this method the photograph must be in grey scale, because the plugin follows
the linear feature based on low raster values and requires a sharp contrast between the feature and the
background. When digitising fracture traces it is important to only digitise in one orientation: if a
feature has multiple orientations along its length then multiple line segments should be digitised. Figure
3b is an example of both (i) manual digitisation and (ii) semi-automated digitisation with GeoTrace. In
both the manual and semi-automated methods, connecting fractures should be properly snapped against

each other, and to the surrounding circular window.
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A practical difficulty when analysing field outcrops will depend on whether the outcrop is natural or
anthropogenic. In a quarry or excavated section it can be challenging to distinguish natural joints from
those arising from quarrying processes, such as blast damage or drilling related fractures. Using field
observations, blast damage can be separated from natural joints (Figure 2a). Joints arising from blast

damage can easily be distinguished from natural joints as they do not fit with the overall fracture pattern

of the-section, and are generally surrounded by small radiating fractures. [Fhe type of fractures digitised

32.6 Data output and further analysis

The final step is to generate basic parameters and calculate dimensions from the digital traces of the
linear features. There are a number of different ways that the vector data can be processed, which
include: 1) using the field calculator in QGIS; 2) as an exported spreadsheet; or 3) using a programming

language such as Python or R to make calculations from the spreadsheet or directly from the shapefile.

Primary parameters such length and orientation of individual fracture traces can be calculated within
the field calculator in the QGIS attribute table. The area of the circular window can also be calculated
in the attribute table using the field calculator. For further processing, the attribute table containing the
primary fracture data (length, orientation and reference to the circular window) needs to be exported as
a spreadsheet, e.g. in CSV format. Fracture density (D) within the circular window can now be
calculated using total length of fractures (XL) within the area of the circular window (A), following
Singhal & Gupta, (1999):

D =Z3L/A (inm?) (1)

Fracture spacing (S) can be easily derived, as this is the reciprocal of fracture density, and is given by
(Singhal & Gupta, 1999):

S§=4/ZL (inm). )

Fracture intersections (points) within the fracture network, important to constrain connectivity
(Manzocchi, 2002) can be created as a separate point shapefile with the ‘line intersection’ tool. The
digitised fracture traces can also be used to derive block size parameters, using the ‘polygonise’ tool to
convert the line vectors into polygons. As before, parameters such as area can be derived using the field

calculator in the attribute table and exported as a spreadsheet.

43 Case studies
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To illustrate the use of systematic 2D digital fracture analysis methods to enhance applied geoscience

investigation we present a number of case studies selected to highlight a range of geoscience

applications and illustrate key benefits, including: (1) [Rapid data collection to support regional

hydrogeological assessment (India); (2) Enabling quantitative, rather than typical qualitative,

assessment of key parameters for engineering Rock Mass Strength evaluation (India); (3) Analysing

catchment-scale variability in sediment source characteristics for applied geomorphic studies in

erosional terrains (Scotland), and; (4) Fracture network analysis from historical images for sites where

modern exposures are unavailable (Sweden). |

43.1 Understanding fracture connectivity and permeability, southern India

Characterisation of fracture networks is an-importantaspect-of-tryingessential -to understand local and

regional-scale aquifer properties such as connectivity and permeability, in particular —Fhis—type-of
understanding-is-partictlarlyrelevant-for-groundwater-studies-in fractured ‘hard-rock’ aquifers, where
fractures are the primary water stores and pathways (e.g. Stober and Bucher, 2007; Singhal and Gupta
2010). An example is given here of the Peninsular Gneiss in the Cauvery Catchment in southern India.
The groundwater properties of the Cauvery Catchment hashave been an area of ongoing research
(Maréchal et-alet al. 20086, Perrin et-al;et al. 2011, Collins et-aket al. 2020) as the spatial and temporal
variability of groundwater availability for irrigation has great implications for communities. Two
contrasting basement fracture networks can be identified (Figure 4a-b): firstly, massive gneiss with few
fractures, dominated by a widely spaced ‘background jointing” and sheeting joints close to the surface;
and secondly ‘fracture zones’ that are characterised by a very dense fracture network. Data were

collected during a very short, reconnaissance-type fieldwork.

Length-weighted rose plots show the variation in orientation of fractures (in a vertical section) in the
two identified domains_(Figure 4c, d). In the massive gneiss the fractures are generally orientated sub-
horizontally, with several short connecting vertical fractures. In contrast, fractures in the fracture zones
are generally orientated sub-vertically with short connecting sub-horizontal fractures. The fracture
density in the fracture zones is an order of magnitude higher than in the massive gneiss (Table 1). Using
NetworkGT (Nyberg etal-et al. 2018), the fracture branches and nodes (intersections and fracture trace

end-points) were characterised based on the topology of the branch intersections (IManzocchi, 2002;

Sanderson and Nixon, 2015). The massive gneiss is dominated by I-type nodes, whereas the fracture
zones predominantly contain a combination of Y- and X-type nodes (Figure 4a-b; for node types see

Figure 4g) (Table 1). Heat maps of intersection clustering illustrate the higher fracture connectivity
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463  within the fracture zones. To quantify the connectivity, the connections per line and dimensionless
464  intensity (a proxy for intensity that reflects average fracture length) were calculated (following
465  Sanderson and Nixon, 2015), (Table 1; Figure 4h). The number connections (X- and Y-nodes) per line
466  length is an indication of the percolation potential of a fracture network (Sanderson and Nixon, 2018).
467  The fracture zones have the highest connections per line length and dimensionless intensity, suggesting
468  they have the highest potential connectivity. In contrast, the background gneiss has the lowest
469  connections per line and intensity, suggesting a relatively low potential connectivity. h’he coefficient of

470  variation (Cv) was calculated by dividing the standard deviation of the fracture spacing by the mean

471 fracture spacing (Gillespie et-al-et al. [1999; Watkins et-al-et al. 2015b) and was used to quantify the [Commented [KM38]: Better to give the formula? J
472 how clustered a fracture network is (Table 1) (Odling et-akset al. 1999). The Cv ratios show that the Commented [PRN39R38]: | don’t think this is necessary,
doesn’t add much more than the text.

473 massive gneiss generally has havirgregularly-spaced fractures, while the fractures in the fracture zones
474 are highly clustered (Table 1, Figure 4h).

476  Table 1: Summary fracture network statistics from the Peninsular Gneiss in the Cauvery Catchment, Formatted: Justified

477 southern India. Formatted: Justified

Formatted: Justified

475
Rock type Area | Mean 2D | u X Y Dimensionless | Connections Coefficienl{ Formatted: Justified ]
(m?) | length density intensity per of
(m) (m?) line variation

(Cv)
Fracturezone | 4.6 | 0.2 17.8 157.0 | 61.0 | 121.0 | 517.0 | 3.3 3.8 1.4+ [ Formatted: Justified ]
Massive gneiss 15.0 0.6 1.4 41.0 100 | 1.0 11.0 0.8 0.9 0.2« [ Formatted: Justified ]
Massive gneiss 11.9 1.0 1.9 19.0 15.0 | 0.0 10.0 1.9 1.4 0.6+ [ Formatted: Justified ]

Massive gneiss 26.8 0.5 3.9 136.0 | 32.0 | 18.0 157.0 | 2.0 2.4 0.8«
Massive gneiss | 85 | 0.3 8.8 130.0 | 40.0 | 38.0 |204.0 |27 2.9 1.3+ | Formatted: Justified }
Massive gneiss 137.8 | 2.9 0.7 21.0 10.0 | 6.0 23.0 |19 2.6 0.9+« [ Formatted: Justified J
Fracture zone 452 | 0.9 3.9 139.0 | 38.0 | 45.0 174.0 | 3.4 2.8 1.4+ [ Formatted: Justified ]
Fracture zone 38.5 1.7 1.6 139.0 | 38.0 | 45.0 174.0 | 2.6 2.8 1.3« [Formatted: Justified J
Fracture zone 81.6 2.6 1.1 23.0 16.0 | 6.0 25.0 2.8 2.6 1.2+ [ Formatted: Justified ]

Massive gneiss 359.4 | 11.9 0.2 5.0 4.0 1.0 1.0 2.0 1.3 1.8«
Massive gneiss | 31.1 | 5.3 07 30 |50 |00 |00 |36 0.0 1.1+ [ Formatted: Justified J
Fracture zone 9.2 1.5 14 4.0 6.0 0.0 6.0 21 2.4 0.7+ [ Formatted: Justified ]
Massive gneiss 133 |21 0.9 2.0 80 |[0.0 2.0 1.9 2.0 0.5+ [ Formatted: Justified ]
Massive gneiss 10.5 1.9 0.9 2.0 5.0 2.0 1.0 1.7 4.0 0.7« [Formatted: Justified J
Massive gneiss 1196 | 2.1 0.8 41.0 12.0 | 4.0 27.0 1.6 1.8 0.4+« [ Formatted: Justified ]
Massive gneiss 95.4 2.3 1.0 29.0 19.0 | 5.0 30.0 2.4 2.4 0.5« { }
[ )
[ 1




478
479

480
481
482
483
484
485

(a) Digital fracture traces on massive gneiss

(c) Heat map of
intersection density

Right

Bottom

(e) Rose plot of fractures
in background gneiss
(n=176)

(d) Heat map of
intersection density

Right

Bottom

(f) Rose plot of fractures
from fracture and shear

il zones (n=1104)
(g) Node types (h) Connectivity plot
175 2 o Mo
Y-type g .
l-type yp .5.4 125 & 2
2 o
,—E 100 °
3 = o
% '§ 078 o ”
U-type (intersection 5 . °
X-type < Wwith analysis window) Soso °* o
S o
0.25
o

10 35

Dimensionless intensity (Pzng
Figure 4: Fracture analysis from the Peninsular Gneiss, South India, including: field photographs with
digitised fracture branches and intersection types on (a) a massive gneiss example; and (b) from a fracture
zone; (c-d) heat maps illustrate variations in fracture intersection density (massive gneiss: 0-5 nodes/m?
and fracture zones: 0-18 nodes/m?); (e-f) length-weighted rose plots showing the variation in orientation
of fractures traces in the background gneiss and fracture zones; (g) a schematic illustration of the various
types of fracture connections (as defined by Manzocchi, 2002); (h) a plot of connections per line against
dimensionless intensity (defined by Sanderson and Nixon, 2015) to show variations in connectivity.
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At the near-surface, the Peninsular Gneiss has a bimodal fracture density distribution with fracture
zones with high fracture density that make up a relatively small proportion of the bedrock, and the
majority of the crystalline basement containing a low-density fracture pattern. Derived cConnectivity
parameters prexies;-such-as-connections-per-tine-indicate the highest potential permeability is found in
that the fracture zones-have-the-highestpetential-permeability, whereas the permeabiity-potential-of-the

background gneiss is-has significantly lower potential permeabilityhighby-variable-butstit-significanthy

In this case study, field time was limited and the digital method provided a quick and flexible way of
gathering fracture network data. It was possible to carry out a reconnaissance survey covering an area
over 30,000 km? and then retrospectively select the most suitable sites for fracture analysis. Key fracture
parameters such as fracture length, orientation and density, which impacts on aquifer characteristics
such as connectivity and permeability across the Peninsular Gneiss in the Cauvery River catchment,
where then calculated and used to constrain local and regional-scale groundwater models (Collins et
aket al. 2020).

43.2 Rock mass strength estimates (Geological Strength Index)

A

Structural discontinuities are an important control on the engineering behaviour of a rock mass (Muller,«
1974; Hoek 1983, Hoek & Brown 1997). Slopes, foundations and shallow underground excavations in
hard rock can be strongly be affected by the presence of discontinuities; for example, the intersection

of structural features can lead to falling and sliding of blocks or wedges from the surface.

In the last decade, rock mass classification systems have been applied extensively in engineering design
and construction (Liu, 2007). The Geological Strength Index (GSI) system provides a numerical
representation of the overall geotechnical properties of a rock mass, which is estimated using a standard
matrix chart and field observations of (a) the ‘blockiness’ of a rock mass and (b) the surface conditions
of any discontinuities. The GSI Index is based upon an assessment of the lithology, structure and
condition of discontinuity surfaces in the rock mass and it is estimated from visual examination of the
rock mass exposed in surface excavations such as roadcuts, in tunnel faces and in borehole core
(Marinos and Hoek, 2000). Both the ‘blockiness’ and surface conditions, however, are determined in a
qualitative and descriptive manner, which is subjective and dependent on the interpreter. Sénmez and
Ulusay (1999; 2002) suggested that the ‘blockiness’ or Structure Rating should be quantified by using
the Volumetric Joint (fracture) Count (Jv, in m). This parameter is defined as the sum of the number

of joints per meter for each joint set present (Sénmez & Ulusay, 1999):
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where S is the spacing of the joints in a set and n is the number of joint sets. The 2D fracture digitisation

method can clearly be applied to determine a-merean accurate representation of Jv from an image.

The procedure for quantifying rock mass strength parameters in jointed rocks is illustrated using
massive and fractured gneiss exposures in India (Figure 4). Using the qualitative method (Hoek, 1983)
the massive gneiss, with ‘good” fracture surfaces, has a GSI index of 70-85 whereas the fractured gneiss,
with ‘fair’ fracture surfaces, has a GSI index of 30-45. To quantify this, the modified GSI methodology
after Sbnmez & Ulusay (1999) is used. In this example, the massive gneiss has a horizontal joint spacing
of 0.81 m (J1) and a vertical joint spacing of 6.19 m (J2). The fractured gneiss has a horizontal joint
spacing of 0.17 m (J1) and a vertical joint spacing of 0.08 m (J2). Applying equation 3, this gives a Jv
value of 1.4 for the massive gneiss and 17.7 for the fractured gneiss. Based on similar estimates of
roughness (5), weathering (3) and infill (6) the fracture surface condition rating (SCR) is 14 in both the
massive gneiss and the fracture zones. Finally, the GSI values calculated are c. 76 for the massive gneiss

and only c. 44 for the fractured gneiss, demonstrating an accurate representation of the rock mass

strength differences of the massive and fractured gneiss.

43.3 Block size and rock erodibility, Codleteith Burn catchment, Southern Scotland|

Geohazards related to active geomorphic processes such as debris flows and landslides affect many

upland areas. Pre-existing fractures are a significant factor in the preconditioning of rock masses for
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erosion at the Earth’s surface_(e.g. Roy et-al;et al. 2016; Clarke and Burbank, 2010).; and-aAreas of

intensely fractured rocks are thus more likely to be associated with higher susceptibility to debris flow

and landslide hazards. This susceptibility is likely to be driven both by higher volumes of material being

produced from hillslopes underlain by highly fractureds rocks, and by the size distribution of sediment

aket al. 2016). To understand the controls exerted by the rock mass properties on geomorphic systems,
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the spatial variability in fracture networks in bedrock needs to be adequately characterised at catchment

scales. This characterisation is challenging in many upland settings as short length-scales of variability

mean that intensive-sampling-isrequiredlarge data sets from multiple sites are required, yet practical
difficulties accessing sites are common in steep terrain.

The 2D fracture digitisation method is here used to assess the spatial distribution of block-size and
fracture FMensi{y#—density of metasandstone of low metamorphic grade in the Southern Uplands,

[
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southern Scotland (Figure 5). The use of the 2D digital method alloweds for a nested sampling approach,

to characterise variability atacross a range of length scales, from meter (Figure 5C), to decimetre (Figure

5B), to catchment (Figure 5A). Block density can be expressed as blocks per square metre, which is

easily derived from a polygonised set of fracture traces, and is related to the fracture density (Figure
5D). H-sheuld-be-neted-that-w\Whether this 2D block size measure is representative for the true 3D
block size depends on the anisotropy of the fracture system and the average block shape. Despite

consistent bedrock type (metasandstone) across the study area, fault-related fracturing gives rise to

highly variable fracture density across the study area, and variations in 2D block size estimates the

number-of blocks-sampled-per-unit-measuring-area from <50 to >1000 blocks per m? (Figure 5D). [Zlims
These data ean-help to quantify the way in which rock mass parameters such as fracture density
influence key geomorphic process elements such as block size.; previding-parameterisationkey-controls
on-the-influence-of facture-intensity-on-block-sizewhich-may-be-used-to This type of data can be used

to inform modelling of erosion and sediment movement within landscapes,
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Figure 5. Multi-scalar fracture network and block-size analysis ; for the Codleteith
Burn catchment Waeke-sandstone-in the Southern Uplands of Scotland_(A). Sites 1 (B) and 2 (not shown) are
sub-catchment hillslope source areas sampled at high resolution. Variability at the outcrop -scale was czﬂ:)tured
using multiple sampling windows per image (C). i
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4.4 Application to historic photographs of shallow basement fractures, eastern Sweden, -~

During the construction of the Forsmark nuclear power plant in east Sweden in the 1970s, a series of

excavations for shafts, tunnels and cooling water canals were dug out in basement gneiss rocks. In

these excavations, numerous subhorizontal fractures were encountered, many of which were dilated and

filled with water-lain silt. Many aspects of this shallow fracture network were documented at the time,
including fracture—aperture and roughness, fracture-density, fracture—orientation, fracture—coatings

(chlorite, epidote etc), as well as a characterisation of the sediment fills (Stephansson & Ericsson 1975;

Carlsson and Olsson, 1976; Carlsson 1979). Since these studies, the original excavations were graded,

or concreted over or filled with water and not available for study anymore, even though they remained

of interest to establish the potential of groundwater overpressure and hydraulic jacking of basement
fractures (e.g. Pusch et al, 1990; Talbot 1999; Lénnqvist & Hokmark, 2013; Talbot 2014), relevant for

the safety of a proposed deep nuclear waste repository nearby.

Interest in these fracture networks was rekindled as it was recognised that the sediment-filled fractures

discussed ....
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accurately. ~Digitisation followed the methods described in this paper. Fractures aperture characteristic

were attributed to the digital traces based on their appearance in the photograph. The shapefile of

fracture traces was imported into python, where spatial parameters such as orientation were calculated

and fractures were separated into subhorizontal and subvertical. Total fracture trace length was

calculated for each 1 m depth interval and fracture density for each interval was subsequently also

calculated,, The results,are plotted as a density-depth profile, and a cubic interpolation is used to smooth

the curve (Figure 6), ;/ROMESH: SAY SOMETHING ABOUT THE SMOOTHING!. Results showa

clear difference in fracture density between different sections (Figure - 6XAA, Bb).— A further

difference is that in some sections, (e.g. SKB-003) both the subvertical and subhorizontal fracture \

densities increase towards rockhead, whilst in other sections (SKB-036) only the subhorizontal fracture

density show a marked increase.
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Figure 6. 2D fracture analysis applied to historic photographs of excavations during the construction of the

Forsmark nuclear power plant, eastern Sweden. Open and tight fractures (red/blue) were digitised. Fracture

density was calculated separately for subvertical and horizontal fractures.
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different applications-during-beth-data-colection-and-data—analysis-phases. The Cauvery Catchment

case study demonstrates how the digital method provided flexibility to gather data for estimation of

regional aquifer properties while-on a short reconnaissance-style field-campaign, with fracture data

collected retrospectively from photographs taken at key localities. The 2D digital dataset allows for
further-evolved quantitative and graphical data analysis, such as heat maps of fracture intersections to

better understand connectivity. For engineering geology purposes, commonly-used qualitative

approaches for estimating key rock mass strength parameters such as the geological strength index

(GSI) are subject to variability through interpretation bias and practitioner experience, giving rise to

increased uncertainties, potentially leading to higher project risks and costs. In the case study presented

here, the 2D digital method is shown to provide a more accurate and consistent representation of the

geological strength index (GSI) of a rock mass_than the commonly-used qualitative estimators (e.qg.
(Hoek, 1983; Sénmez & Ulusay, 1999)-\ i imati

083- SHNMez & y 00Q o)

In geomorphic studies, quantitative characterisation of rock mass strength is increasingly important for

parameterisation of process and landscape-evolution models (e.g. Roy et-ak-et al. 2016; Sklar et-al-et
al. 2017). The Codleteith Burn Catchment study demonstrates the potential of the 2D digital method

for multi-scalar fracture analysis in challenging terrain, such analyses can provide a key foundation for

enhanced process modelling. In eastern Sweden, the historic photographs were the best source for

assessing the fractures in the shallow basement, and the 2D digital method is the only possible way to

retrospectively gather this data.

A number of modern applied geoscience studies, such as inlgroundwater modelling (Babadagli, 2001),

geothermal energy (Hitchmough et al., 2007) and geotechnical engineering (Bandpey et al., 2019) use

field-based methods to gather fracture network datal. Field measurements of geometry and density of

[ Formatted: Highlight
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fractures networks are used to understand the mechanical and hydraulic properties of a rock mass
(Babadagli, 2001; Maréchal et al., 2004; Siddigue et al., 2015). The digital method described would be

ideally suited to such case studies to improve the quality of data collected and allowing for more

advanced analysis. In these studies, field time and accessibility of the outcrop are a major consideration

for the type and amount of fracture data collected. When time is limited a 1D method is used to collect

fracture data (Bandpey et al. 2017), whereas the new digital method would allow full 2D fracture traces

to be collected efficiently. In studies that look at slope stability on narrow mountain roads in the

Himalayas (Siddigue et al., 2015), limited fracture data is used in rock quality calculations, which is

likely due a combination of time constrains and the inaccessibility of the outcrop. The digital method

would provide a more accurate estimate of fractures geometries when modelling slope processsres
(Pradhan and Siddigue, 2020).<<Add-sentence-about-the-Swedish-study>>

repeated a lot, so it is very repetitive. At the moment, the
statements about limitations and benefits are still too vague.

[ Commented [PRN61R60]: Reworded this paragraph

)




669
670
671
672
673

674

675
676
677
678
679

680

681

682
683
684
685
686
687
688
689
690
691
692
693
694
695
696

697
698
699
700

701
702

[Formatted: Font: Italic J
[Formatted: Font: Not Italic J
{Formatted: Font: Not Italic ]

(c

ted [KM62]: | think we said this stuff already... ]

The case studies demonstrate that Fthe 2D digital method described herein represents a valuable tool

for enhanecing-thecharacterisation-ofanalysing fracture networks, facilitating the efficient capture of
guantitative datasets through a systematic and reproducible approach. Nevertheless, there are benefits

and limitations compared to other fracture capture methods.

The 2D digital method is as rapid, if not more so, than a 1D scan-line survey. However, the 2D digital

method does not capture the direct field observations such as orientation, roughness, aperture and any
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secondary fills. —These factors ané—are useful when—for understanding rock mass strength or

permeability=

(Carlsson, 1979;
Laubach et-al-et al. 2019). If such direct observational data are required for the study (and practical on

the outcrop in question), it is perfectly possible to first perform the 2D digital fracture capture as

described herein, and then return to the study site and augment the dataset with further observational

data as attributes; portable PC tablets are ideal for this purpose.

A major drawback of the 2D digital method is that it captures the fractures that are at a high angle to

the outcrop plane, but not those that are subparallel to it.- It is these fractures that will be particularly

important for slope stability studies. This can be mitigated by analysing outcrop faces at different angles,

but this may not always be possible. In these cases, an additional scan-line survey, focusing on fracture

orientations, may be added to the study, or — if resources allow it — a 3D scanning survey could be
addedundertaken.

The 3D scanning method does gather more data, including orientation of exposed fracture surfaces.

This method is probably preferred for intense, localised studies, such has local, high-value infrastructure

projects, or other key sites. However, 3D scanning methods are resource intensive, and likely not cost-

effective if a fracture network analysis of multiple sites across a region is required, for instance for long

infrastructure projects or regional groundwater studies.
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3 y 3 W W ~Finally, the use
of 2D digital method is particularly—suitable—forthe only method to capture—gathering valuable
informationdata from historic images—{SeetionXX)—, Fhis-capabiity-is-valuable for the retrospective
analysis of temporary sections during construction and-development-werks-or quarrying, which can be
crucial if existing; and-can-supportimere-extensive-analysis-in-areas-of timited-exposure is limited. ;
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The aim of this paper is to describe, evaluate and develop a simple but robust, low-cost Fhe-aim-ef-this
paperis-toreview-and-evaluate-the-methodelegy for digitising-capturing 2D fracture network_datas in

GIS, and make it more accessible to a broader range of users in both academia and industry. We present

a breakdown of the key steps in the methodology, which provides an understanding of how to avoid

error and improve the accuracy of the final dataset.

The digital method can be used to interpret traces of 2D linear features of a wide variety of scales from
the local metre-scale to the kilometre scale, including, fractures at outcrop scale to regional-scale
structural lineaments that are visible on aerial photographs or DEMs.

An important aspect of applied geosciences, such as hydrogeology and geotechnical engineering, is the
accurate parameterisation of fracture networks in bedrock. The methodology that is commonly used is
a qualitative description and can be time consuming. The digital 2D fracture trace capture method is an
accurate and rapid way of quantifying 2D linear networks such as fracture zones using open access
software packages. It offers a robust, cost-effective methodology that can used in academy and industry
to gather accurate 2D fracture network data. The low-cost nature of the method means that it can be

applied to a large number of outcrops, so that in studies where the spatial variability of fracture networks

is important, large datasets can be generated cost effectively. Systematic capture and publication of 2D

digital fracture datasets has significant potential to enhance future geoscience research by making

aggregated analysis (meta-analysis) possible.
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