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Abstract. The Ligurian Basin is located in the Mediterranean Sea to the north-west of Corsica at the transition from the western 

Alpine orogen to the Apennine system and was generated by the south-eastward trench retreat of the Apennines-Calabrian 10 

subduction zone. Late Oligocene to Miocene rifting caused continental extension and subsidence, leading to the opening of 

the basin. Yet, it remains enigmatic if rifting caused continental break-up and seafloor spreading. To reveal its lithospheric 

architecture, we acquired a 130-km long seismic refraction and wide-angle reflection profile in the Ligurian Basin. The seismic 

line was recorded in the framework of SPP2017 4D-MB, the German component of the European AlpArray initiative, and 

trends in a NE-SW direction at the centre of the Ligurian Basin, roughly parallel to the French coastline. 15 

The seismic data were recorded on the newly developed GEOLOG recorder, designed at GEOMAR, and are dominated by 

sedimentary refractions and show mantle Pn arrivals at offsets of up to 70 km and a very prominent wide-angle Moho 

reflection. The main features share several characteristics (i.e. offset range, continuity), generally associated with continental 

settings rather than documenting oceanic crust emplaced by seafloor spreading. Seismic tomography results are complemented 

by gravity data and yield a ~6-8 km thick sedimentary cover and the seismic Moho at 11-13 km depth below the sea surface. 20 

Our study reveals that the oceanic domain does not extend as far north as previously assumed. Whether Oligocene-Miocene 

extension led to extreme thinned continental crust or exhumed subcontinental mantle with a low grade of mantle 

serpentinisation remains enigmatic. However, rifting failed before oceanic spreading was initiated, accompanied by the 

formation of mantle derived oceanic crust. Continental crust is thickening towards the NE within the northern Ligurian Basin. 

1 Introduction 25 

The Ligurian Sea is situated in the north-western Mediterranean Sea at the transition from the western Alpine orogen to the 

Apennine system. The geodynamic setting of the area is controlled by the convergence of the African and Eurasian plates (e.g. 

Dercourt et al., 1986). Despite the existing large collection of seismic and other geophysical data, the present-day crustal 

architecture of the Ligurian Basin is still under discussion and the kinematic boundaries are poorly resolved, in particular, the 
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continent-ocean transition (COT) along the margins as well as its termination to the north-northeast. Imaging clear fault 30 

structures within the crust has proven challenging due to the presence of thick Messinian salt layers and due to the masking 

effect of the first seafloor multiple which roughly coincides with the arrival of the reflection of the acoustic basement (Béthoux 

et al., 2008). Deep drilling data are lacking and the magnetic data are complex and anomalies discontinuous (Bayer et al., 

1973). Based on integrated seismic and magnetic data, maps indicating the extent of the oceanic domain were created (i.e. 

Burrus, 1984; Gueguen et al., 1998; Rollet et al., 2002), however, no axial ridge was imaged near the centre of the basin (Rollet 35 

et al., 2002). To explain the mismatch between the expected oceanic domain and the observed seismic signal, the crust in the 

north-eastern basin was interpreted to be ‘atypical’ oceanic crust (Mauffret et al., 1995; Chamot-Rooke et al., 1997; Contrucci 

et al., 2001; Rollet et al., 2002). A clear change from continental to oceanic crust was only shown for the southern area of the 

Ligurian Basin, in the Gulf of Lion and offshore Sardinia (Gailler et al., 2009). It is proposed that the oceanic domain is 

separated from the continental margins by a transitional domain characterised by a high-velocity lower crust (Fig. 1). An 40 

overview of seismic experiments until 2002 is presented in Rollet et al. (2002). Furthermore, the area was revisited or data 

were re-analysed with modern seismic techniques including the CROP deep seismic profiles (Finetti et al., 2005), the TGS-

NOPEC and the SARDINIA profiles (Gailler et al., 2009; Jolivet et al., 2015), as well as more recent studies along the French 

and Italian Riviera with the 3D seismic refraction GROSMarin project (Dessa et al., 2011) and an amphibious ambient noise 

study (Guerin et al., 2019). 45 

In the frame of the LOBSTER project, we obtained a new state-of-the-art seismic refraction line (Fig. 1, red line with orange 

and yellow triangles). Here, we present the analysis of the seismic refraction data from the central Ligurian Basin, which is the 

extension of a pre-existing seismic profile (Makris et al., 1999), which we call MAKRIS (Fig. 1, black line). We aim to unravel 

the present-day crustal structure and its nature in the centre of the Ligurian Basin, map the depth of the crust-mantle boundary 

(seismic Moho), and reveal the styles of deformation during the last extensional phase. We investigate the hypothesis that 50 

Oligocene-Miocene rifting led to either extended continental crust or exhumation of sub-continental mantle below post-rift 

sediments in the north-eastern Ligurian Basin.  

2 Geological structures and geodynamics of the Ligurian Sea and the Corsica-Sardinia block 

The Ligurian Sea has a width of ~150 km, reaching from the northern tip of Corsica to the Ligurian coast near the city of 

Sanremo. It widens towards the southwest to ~175 km between Calvi (Corsica) and Cannes. South of an imaginary line between 55 

Ajaccio (Corsica) and Toulon, the Ligurian Sea is roughly 225 km wide and opens entirely towards the Balearic Sea. The 

Ligurian Basin itself is smaller with a width of 70 km, 120 km, and 170 km, respectively, along the three dashed grey lines in 

Figure 1 and the seafloor reaches a depth of ~2700 m. The Ligurian margin is characterised by a narrow and steep slope (10-

20 km) with a few listric normal faults (Finetti et al., 2005). The Corsica slope is wider (20-50 km) and the margin is 

characterised by several listric faults extending over a wider area ( Contrucci et al., 2001; Rollet et al., 2002). 60 
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The Ligurian Sea formed as a back-arc basin at the transition from the western Alpine orogen to the Apennine system (e.g. 

Doglioni et al., 1997; Faccenna et al., 1997; Réhault et al., 1984). The Alpine transition is characterised by a change in 

subduction polarity between the two orogens (Jolivet and Faccenna, 2000; Handy et al., 2010). The Ligurian Basin is the oldest 

back-arc basin in the Western Mediterranean Sea and developed from Late Oligocene to Early Miocene (Réhault and Béthoux, 

1984; Roca and Desegaulx, 1992; Fernàndez et al., 1995; Jolivet and Faccenna, 2000; Rosenbaum et al., 2002; Finetti et al., 65 

2005; Advokaat et al., 2014). The extension is related to the south-east trench retreat of the Apennines-Calabrian subduction 

zone initiated in the Oligocene (Montigny et al., 1981; Réhault and Béthoux, 1984; Vigliotti and Langenheim, 1995; Gueguen 

et al., 1998; Rosenbaum et al., 2002; Faccenna et al., 2001).  

Rifting has initiated ~30 Ma ago at a rate of ~1 cm/yr in the NE and ~2 cm/yr in the SW (Rollet et al., 2002). The initiation is 

associated with magmatism on land along the western Ligurian margin (Rollet et al., 2002). At roughly 21 Ma, rifting 70 

terminated while an anticlockwise rotation of the Corsica-Sardinia block was initiated (Rollet et al., 2002; Speranza et al., 

2002). During this phase, the commencement of oceanic spreading was proposed (Pascal et al., 1993; Contrucci et al., 2001; 

Rollet et al., 2002; Finetti et al., 2005). These authors referred to tholeiitic volcanic edifices to solidify their interpretation and 

interpreted the pattern of magnetic data (Bayer et al., 1973) to be a result of two main discontinuous volcanic lineaments, sub-

parallel to the basin axis related to oceanic spreading and unroofing of mantle material. The opening of the Ligurian Basin 75 

ended ~16-15 Ma ago and was associated with a second calc-alkaline volcanic phase along the Corsican margin (Rollet et al., 

2002) that is linked to the migration of the subducting lithosphere towards the E-SE. The extension of the Ligurian Basin 

terminated and shifted to the Tyrrhenian Sea while the Apennines-Calabrian subduction zone continued to roll back further 

southeast until late the Messinian, ~6 Ma (Faccenna et al., 2001; Advokaat et al., 2014). The opening rate was calculated with 

7.8-10.3 mm/yr (Moeller et al., 2013). In the north of the Tyrrhenian Sea, extension led to continental crustal thinning (Moeller 80 

et al., 2013), while further south in the centre of the Tyrrhenian Basin, the mantle was exhumed and serpentinised and intruded 

by Mid-Ocean-Ridge type (MOR-type and intraplate basalts) (Prada et al., 2016). Similar to the Ligurian Basin, the Tyrrhenian 

Sea shows distributed, non-linear magnetic anomalies (Cella et al., 2008). Anomalies often coincide with volcanic islands, 

seamounts or other morphological units of igneous composition. During the Ocean Drilling Project (ODP) Leg 107 at site 651, 

serpentinised mantle rocks were drilled forming the top of the basement (Bonatti et al., 1990).  85 

Gueguen et al. (1998) and Rollet et al. (2002) suggest that the central Ligurian Basin is comprised of oceanic crust. These 

authors divided the basin into different zones of continental and oceanic domains based on seismic, magnetic and gravity data 

(Fig. 1): (1) atypical oceanic crust with (2) transitional zones to (3) continental crust. The location of the northeast-southwest 

trending continent-ocean transition is proposed to be situated in the vicinity of the volcanic Tristanites Massif (Fig. 1) (Makris 

et al., 1999) (yellow bar perpendicular to the MAKRIS profile in Figure 1). Based on re-analysed expanding spread profiles 90 

(ESP), Contrucci et al. (2001) proposed a 40 km wide area of oceanic crust near the Median Seamount (Fig. 1). 
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3 Data acquisition, processing, and modelling 

Data at different scales resolving the subsurface structure were acquired in the Ligurian Sea in February of 2018 during the 

cruise MSM71 aboard the German research vessel Maria S. Merian (Kopp et al., 2018). Active seismic refraction data were 95 

obtained along the centre of the basin. Our NE-SW trending seismic refraction and wide-angle reflection line is situated in the 

prolongation of an existing refraction profile in the northern Ligurian Basin (Makris et al., 1999) (Fig. 1). 

3.1 Data acquisition and processing 

The active seismic data were simultaneously recorded on short period ocean bottom seismometers (OBS) and ocean bottom 

hydrophones (OBH) as well as on a short streamer (280 m long) that was towed behind the vessel at 5 m water depth. 100 

Additionally, Parasound sediment echo sounding data were recorded along the profiles. The 127.5 km long refraction seismic 

profile consists of 15 OBH/OBS at a station spacing of ~ 8km (Fig. 1). A total of 1079 shots were fired by an ~89-liter (5420 

inch³) G-gun array, consisting of 2 sub-arrays. Each sub-array with a cluster of 2x8.5 litres (520 inch³), followed by a cluster 

in the middle of 2x6.2 litres (2x380 inch³, port) and 2x4.1 litres (2x250 inch³, starboard), and the third cluster again of 2x8.5 

litres for both sub-arrays. The array with a string distance of 12 m was towed at 8 m below the sea-surface and 40 m behind 105 

the vessel. A shot interval of 60 s resulted in a shot distance of ~123 m. The guns were shot at ~190 bar providing a dominant 

frequency band of approximately 5-70 Hz. The location of the stations on the seafloor was determined using the symmetry of 

the direct water arrivals from the shots on both sides. For this purpose, the direct arrival was picked and the deviation between 

computed and real travel times was minimised by adjusting the OBS’s position along the profile. Dislocation off-line cannot 

be corrected with this method. For 2D traveltime modelling, the stations were projected on to the profile. The airgun shots 110 

were recorded using newly developed GEOLOG data loggers designed at GEOMAR. All recorders operated reliably during 

the deployment of 2 days with a negligible absolute clock drift between -1.03 ms and +0.72 ms. The sampling frequency was 

250 Hz. The data processing included the conversion of the continuous data from GEOLOG format into the standard 

continuous SEG-Y format using the GEOLOG programming interface. Afterwards, the continuous SEG-Y data were converted 

into standard trace-based SEG-Y format (Fig. 2b). Simultaneously, the clock drift was corrected, a step important for OBS 115 

data, since the instruments cannot be continuously synchronized via GPS during deployment as commonly done onshore. A 

gated Wiener multi-trace deconvolution with an autocorrelation average of 51 traces was applied to the shot gathers to 

compress the basic wavelet, to leave the Earth’s reflectivity in the seismic trace and to remove the source signature and the 

hydrophone and geophone responses. 

3.2 The GEOLOG recorder 120 

The GEOLOG is a 32-bit seismic data logger designed to digitise data from a three-component seismometer and a hydrophone. 

We recorded the hydrophone output on two channels (channels 1 and 5) at two different amplification levels providing well 

amplified long-range records (gain=16) and preventing clipped amplitudes from short-range airgun shots (gain=1) to minimise 
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difficulties with amplitude restoration because no gain range was implemented. The gain for the three seismometer channels 

2 to 4 was set to 16, which provided good signal to noise ratios for all record offsets without clipping of amplitudes. Two 125 

additional analogue pins can be used as general-purpose input/output (GPIO) for measuring power levels for example. 3.3 V 

and 5 V connectors can serve external devices. Sampling intervals between 50 Hz and 4 kHz are controlled either by an atomic 

clock or by a temperature compensated clock (SEASCAN). We used an external GPS receiver for synchronization of the 

internal clock prior and after deployment, which was driven by the GEOLOG itself. Our seismic data were stored on two micro 

SD cards with a volume of 32 GB each. The recorder has been tested and proved reliable for writing speeds and SD cards of 130 

up to 128 GB (larger capacities are possible). The low power consumption of 375 mW (average battery drain) allowed us to 

save batteries. We used only 8 alkaline batteries per station for our short-term deployment. Thus, using lithium batteries, long-

term deployments of more than 9 months can be performed. Battery power can further be saved by a delayed start of recording 

up to 31 days after programming. We set the recording parameters, i.e. the number of channels, gain and sampling rate, using 

a graphical user interface. The recorders can be programmed through any terminal program on a Windows or Linux operating 135 

system. The programming device was connected via RS232 using an RS232-USB adapter. A second RS232 interface can be 

used to drive external sensors (e.g. levelling of broadband seismometers). The GPS system used for the internal clock time 

synchronisation was developed together with the recorder and can operate with GPS, GLONASS, GALLILEO and QZSS 

enabling operation worldwide and in polar regions. Besides stable output of NMEA data (defined by the National Marine 

Electronics Association) and a PPS (pulse-per-second) time signal, the German DCF-77 code is also available. Moreover, the 140 

GPS system is available to deliver time or distance based trigger with TTL output, NMEA sequence and records of time stamps 

on an SD card. 

3.3 Data description and analysis 

The airgun shots can be followed for offsets up to 60 km on all 15 stations (Fig. 2). In general, the sections look very similar 

with clear sedimentary arrivals and wide-angle Moho reflections (PmP) as well as mantle phases (Pn) at a critical distance 145 

between 25 km and 35 km to the stations (Fig. 2a). Although phase arrivals show common features in all record sections 

(Fig. 2a), the characteristics of the seismic phases change slightly from south to north (Fig. 2b-2d). 

As a result of decreasing water depth towards the northeast, the direct wave through water (Pw) arrive later at the southern 

stations than at the northern stations (Fig. 2a). Arrivals from a shallow sedimentary reflection phase (PsP) occur approximately 

0.5 s to 1 s after the direct wave and result from the top of salts that become shallower towards the north (as imaged in the 150 

multichannel seismic data in Fig. 3a). The red picks (Ps1) and the orange picks (Ps2) (Fig. 2b-2d) are interpreted as refracted 

phases through Plio-Quaternary and older sediments, respectively. The apparent seismic velocity of the Ps2 is very constant 

at ~4.3 km/s to ~4.6 km/s. The phase shows many undulations and some shadow zones (Fig. 3b) caused by the salt unit that 

displays intense doming and is possibly disrupted by some volcanic structures that are imaged in the MCS (Fig. 3a) and the 

Parasound data (Fig. 3c). This phase continues as a secondary arrival (Ps3) with a similar apparent velocity of ~4.6 km/s at the 155 

southern stations but disappears at the northern stations. Based on the apparent velocity and forward modelling, we interpret 
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phase Ps3 as a refracted phase through the sediments. Simultaneously, when phase Ps3 disappears from OBS208 towards the 

north (compare to OBS209 (Fig. 2c), where Ps3 only occurs on the southern branch), an additional refracted phase (Pg) (green 

picks in Fig. 2c-2d) occurs with an increasing range of offsets observed on the stations northwards. The phase has an apparent 

velocity of ~6.2 km/s. At an offset of about 25 km, an abrupt change in the apparent seismic velocity to ~8 km/s occurs for the 160 

first arrival, as typically observed in the oceanic upper mantle. The yellow picks (Fig. 2b-2d) are refracted mantle phases (Pn) 

that show a similar apparent seismic velocity of ~8 km/s at the northern stations. However, the critical distance at the northern 

stations moves to slightly larger offsets of up to ~30 km. Furthermore, an earlier very short reflection occurs at 20-25 km 

offset. Pn phases at the southern stations are very weak, while the PmP is relatively strong compared to typical oceanic crust 

characteristics. The observed slight changes in the seismic signal are accompanied by slight changes in the free-air gravity 165 

anomaly around profile KM 60 (approx. 20 km south of OBS209), as discussed below. 

3.4 P-wave traveltime tomography modelling strategy and parameters 

A preliminary seismic velocity model was build using RAYINVR (Zelt, 1999) to (1) reveal the overall structure of the profile, 

(2) manually assign the picked phases to certain layers, and (3) serve as starting point for the travel time tomography. Travel 

times were picked on the hydrophone channels using the interactive analysis tool for wide-angle seismic data PASTEUP (Fujie 170 

et al., 2008). The overall quality of the hydrophone data was slightly better compared to the vertical geophone channel, 

however, the vertical component was used for picking to confirm and to complement the picks observed on the hydrophone 

channel. In addition, multiples were picked when above the noise level (because of constructive interference) and where 

primary waves are below the noise level (Meléndez et al., 2014).  Picks of water layer multiple phases were used during the 

forward modelling approach to confirm the layer boundaries and seismic velocities. Thereafter, a travel time tomographic 175 

inversion (tomo2D from Korenaga et al., 2000) was applied to invert the seismic P-wave velocity model and yield model 

uncertainties. The picks were assigned pick uncertainties ranging from 20 ms for clear near offset phases (Ps1), 30 ms for 

intermediate offsets (Ps2 and Pg), and up to 50-70 ms for picks at larger offset (Pn and PmP) taking into account the decreased 

resolution due to the increased wave length of the seismic signal and the decreased signal-noise-ratio. Subsequently, all first 

arrivals and the mantle reflections were inverted with a set of starting models that converged to chi² values of less than 1 within 180 

5 iterations. To test the model space and its limits, starting models, ranging from velocities between 1.8 km/s and 2.5 km/s at 

the seafloor with different velocity gradients, and ranging from 4.5 km/s to 7.5 km/s at 12-13.5 km depth to mimic the different 

types of crust, were manually created using RAYINVR (Zelt, 1999). The starting models used in the analysis were 1D hanging 

below the seafloor (Fig. 4c). To carefully evaluate the resulting velocity models, we used three criteria: (1) travel times need 

to fit the data (Fig. 2a), (2) travel time residuals, RMS misfit and chi² had to be low (i.e. chi² ~ 1), and (3) the gravity response 185 

(calculated after a velocity-density conversion after Korenaga et al., 2001) of the resulting density model must yield 

comparable results to the satellite gravity data. Based on this evaluation, 17 models (Fig. 4c) were chosen to generate an 

average model for the crustal part (Fig. 4a, above the Moho) and the standard deviation was calculated (Fig. 4b). Overall, the 

standard deviation in the crust down to the acoustic basement is smaller than 0.15 km/s, indicating small differences between 
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the inverted velocity models and hence an excellent resolution. Random Gaussian noise was not added, to the travel time picks, 190 

however, during modelling re-picking of phases (mainly fine adjustments to the picks) did not lead to major differences in the 

resulting velocity model. In a further step, the average model was edited by adding different 1D profiles with mantle velocities 

underneath the crust-mantle boundary (inlay in Fig. 4d). A set of 14 mantle velocity starting models was used to invert for 

refracted mantle phases, while the model above the seismic Moho was overdamped. Again, an average model and the standard 

deviation for the mantle were calculated (Fig. 4d). Standard deviations for the mantle P-wave velocities are small (<0.1 km/s), 195 

indicating a good resolution of upper mantle velocities. Lastly, the very short reflected phases interpreted to result from the 

top of continental crust were calculated as a floating reflector without implementing a velocity discontinuity into the model to 

confirm the top of crust, i.e. the crystalline basement. 

4 Results 

4.1 Seismic P-wave velocity distribution 200 

In general, the average P-wave velocity along the profile (Fig. 4a) shows only minor lateral variations, mainly caused by the 

salt layers and the corresponding tectonic features at 4-6 km depth. The uppermost portion of the velocity model is 

characterised by a strong velocity gradient of ~1 s-1 that is laterally constant. P-wave velocities increase from 2.2 km/s at the 

seafloor to 3.5 km/s approximately 1.3 km depth below the seafloor. We interpret this unit as Plio-Quaternary sediments mixed 

with the upper evaporite unit after Rollet et al. (2002), using their multi-channel seismic data profile MA24 (Fig. 1, inlay 205 

profile 6). The Plio-Quaternary sediments are imaged as horizontally layered strata in the multi-channel seismic data in Figure 

3a. This high velocity-gradient layer thins towards the north, from 1.5 km to 1.2 km thickness and shows slightly slower 

velocities at the southern end (2.2 km/s) compared to the northern end (2.4 km/s) at the seafloor. Between ~4 km and 6 km 

depth, the velocities range from 3.5 km/s to 4.5 km/s, and there are areas where minor velocity inversions are observed. These 

low velocity units have a lateral extent of up to 10 km and a velocity contrast of up to ~0.2 km/s. We identify this section as 210 

the Messinian salt unit. From 6 km to ~10 km depth, the seismic velocities increase from ~4.5 km/s at the top to 5.7 km/s at 

the bottom. We interpret this section as syn-rift sediments, possibly Aquitanian according to Jolivet et al. (2015), to post-rift 

sediments, until Pre-Messinian. 

In the north-eastern half of the profile, starting roughly at profile KM 70, we determine the crystalline basement (CB) (red 

dashed line in Fig. 4a) at a depth of 10 km to 11.5 km below the sea surface. The basement velocities increase from 5.8 km/s 215 

to 6.6 km/s (marked with “Y” in Fig. 4a); they are interpreted, based on absolute velocities, as continental crust, thickening 

towards the north. The acoustic basement here is at a depth of ~10 km below the sea surface. At the opposite southern half of 

the profile, we could not identify the CB in the OBS data. However, a strong velocity jump occurs from 5.7 km/s to ≥7.3 km/s 

that we interpret as the crust-mantle boundary (Moho). The uppermost mantle is characterised by seismic velocities >7.3 km/s 

that increase to ~8 km/s over a depth interval of 2-3 km. The histogram (Fig. 4f) images a gap in seismic velocities between 220 

6.6 km/s and 7.3 km/s, which suggests that no fresh oceanic crust material (gabbroic rocks) is present along the profile. 
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4.2 Gravity modelling 

To constrain the crustal structure along the profile, we calculated the gravity response (Talwani et al., 1959) of the final seismic 

velocity model and compared it to the free-air gravity anomaly derived from satellite data (Sandwell et al., 2014). The fact that 

the profile is situated in the centre of the basin allows us to assume that only minor 3D side-effects occur in our 2D-modelling 225 

approach, caused by topography. The velocity-depth distribution was used to assign densities by applying different density-

velocity relations. The water layer is assumed to have a density of 1.03 g/cm³. Gardeners rule, ρ = 1.74 * Vp0.25, valid for 

sediments between 1.5 km/s < Vp < 6.1 km/s (Gardner et al., 1974), was used for the sedimentary layers. For crystalline (non-

volcanic) rocks the relation: ρ = 0.541 + 0.3601 * Vp (Christensen and Mooney, 1995) was used. A density of 3.3 g/cm³ was 

assigned to the mantle. In areas with reduced seismic mantle velocities, the mantle density was reduced to 3.15 g/cm³ (Carlson 230 

and Miller, 2003). The converted densities explain the observed free-air gravity anomaly for the part covered by our deployed 

instruments. We extended the profile further northeast over the marine part of the MAKRIS line (Fig. 1, inlay profile 4). From 

profile KM 127.5 northwards, we related the gross density model structure to the results of the MAKRIS line (Makris et al., 

1999). However, we removed a large step of 10 km in Moho depth and replaced it by a more gradually deepening Moho, which 

closely follows the top of the layer of underplating in the MAKRIS line. The fit of observed and calculated gravity data 235 

reasonably well supports the interpretation of a thickening continental crust towards the northeast. 

 

5 Discussion 

5.1 Nature of the crust 

The seismic velocity model along our refraction profile (Fig. 4a) shows no common features of oceanic crust. Oceanic crust 240 

typically consists of a high-velocity gradient in Layer 2 and a lower velocity gradient in Layer 3 (e.g. White et al., 1992; 

Grevemeyer et al., 2018; Christeson et al., 2019). The absolute seismic velocities are highly variable, however, for a gabbroic 

crust, velocities are typically between 6.7 km/s and 7.2 km/s (Grevemeyer et al., 2018; Christeson et al., 2019). The histogram 

in Figure 4f shows a gap for this range of velocities suggesting that no typical oceanic crust and no thick layer of gabbroic 

rocks is present along the profile. In any case, the lack of seismic velocities expected for oceanic crust does not support the 245 

occurrence of larger units of oceanic crust as observed in the Tyrrhenian Sea (Prada et al., 2014). 

Continental crust is characterised by a low seismic velocity gradient throughout the crystalline crustal layers and shows typical 

velocities of ~5.8 to ~6.6 km/s (Christensen and Mooney, 1995). We observe this velocity range in the northern half of the 

profile, starting from profile KM 70, at a depth of 10 km to 13 km (marked with “Y” in Fig. 4a). The observed seismic velocities 

provide only two possible interpretations: (1) hyper-extended continental crust or (2) a laterally isolated magmatic intrusion 250 

within the sedimentary units feeding the volcanic extrusion observed in the MCS and Parasound data (Fig. 3c). Based on the 
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gravity model (Fig. 5), we favour the first scenario of extremely thinned continental crust, which is decreasing in thickness 

towards the SWand may even lead to exhumed mantle during the rifting phase in the south.  

The velocity model for the southern half along our refraction profile is well constrained, however, the lower part (9 km to 

11 km depth), above the Moho, shows higher uncertainty compared to the shallow, sedimentary units. The depth of the crust-255 

mantle boundary is well constrained with an uncertainty range of ±0.25 km along the southern profile half in contrast to 

±0.75 km along the northern profile half (Fig. 4b). We observe seismic velocities >5.5 km/s that we interpret as fast syn-rift 

sediments due to a missing crystalline basement reflection. Alternatively, the change from sediments to the crystalline 

basement might not be characterised by a high impedance contrast, and thus, not imaged in our refraction seismic data as a 

strong in amplitude reflection event (compare to Fig. 2) and is expressed in a high uncertainty of the determined CB at the 260 

northern profile end (Fig. 4). The MCS line MA24 (Rollet et al., 2002) (Fig. 1, inlay profile 6) records the acoustic basement 

at ~6.5 s two-way traveltime (stwt), while the seafloor occurs at 3.6 stwt (~2.7 km below sea surface). By means of a simple 

time to depth conversion using an average seismic velocity of 4.2 km/s, we estimate a minimum sedimentary thickness of 

~6.1 km (2.9 stwt), resulting in an acoustic basement depth of ~8.8 km, as a most shallow approximation (drawn as a red dotted 

line in figure 4a). This line roughly fits the 5.5 km/s isoline accounting for a standard deviation of 0.2 km/s (Fig. 4b). For the 265 

southern half of our profile, this leaves a maximum continental crustal thickness of 2-2.5 km, thickening northwards. 

Based on the refraction seismic data along our profile (southern half) we are not able to distinguish between sediments with 

high seismic velocities and extremely thinned continental crust. However, we can give a minimum and maximum continental 

crustal thickness, ranging from 0 km to 2.5 km. Based on the velocity model (Fig. 4a) it is not possible to distinguish whether 

the crystalline basement is upper, middle, or lower continental crust. A continental crustal thickening towards the north-east is 270 

as well supported by the modelling of the free air anomaly (Fig. 5). Additionally, a thickening crustal layer supports the 

interpretation as continental crust, since we would expect the COT to be manifested in an abrupt change from oceanic to 

continental crust or to gradually thin out towards the NE, towards the rotational pole (Rosenbaum et al., 2002), depending on 

the position of the profile with respect to the proposed spreading axis.  

An expanding spread profile (ESP) (Le Douaran et al., 1984; Contrucci et al., 2001) crosses the northern end of our profile 275 

(Fig. 1, inlay profile 5). There the crust-mantle boundary was defined at a depth of 13-15 km while the acoustic basement was 

observed at ~9 km depth. Contrucci et al. (2001) retrieved crustal velocities of 6.3 - 6.9 km/s for the basin centre, which in 

general, is in good agreement with our results. Based on MCS data (LISA01) (Contrucci et al., 2001) with an observed major 

step in the basement on the Ligurian margin, they interpreted the central basin as an oceanic domain. On the Corsica margin, 

this major step was not observed; however, magnetic anomalies were used to constrain the interpretation. The MCS data 280 

resolve only the sedimentary portion of the crust and yield no information on the internal structures of the crystalline basement 

itself. Thus, a different explanation for the major step in the basement near the Ligurian margin could be that upper-crustal 

blocks sit on top of continental mantle similar to the Galicia margin (Nagel and Buck, 2004). Our profile only provides 

information on the basin centre where the absolute velocities of Le Douaran et al. (1984) and Contrucci et al. (2001) fit 
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continental crust velocities very well and support our interpretation of mantle material beneath thinned continental crust 285 

observations. 

 

5.2 Low degree of mantle serpentinisation  

Seismic velocities of ~7.3 km/s and higher are too fast for magmatic crust (Grevemeyer et al., 2018; Christeson et al., 2019). 

Seismic velocities of unaltered mantle are >7.8 km/s (Carlson and Miller, 2003; Grevemeyer et al., 2018). Based on the seismic 290 

P-wave velocities, we interpret the uppermost mantle to be serpentinised at a low grade, which is supported by the Pn phases 

that are weak in amplitude at the southern stations (Fig. 2). P-wave velocities of ~7.5 km/s in the south-western half of the 

profile (Fig. 4a) are in-line with up to ~20% serpentinisation (Carlson and Miller, 2003). From OBS204 to OBS207, the PmP 

phase is extremely high in amplitude and unusually clearly visible over a wide distance of up to 20 km (in ~10 km to ~30 km 

offset to the station). This area (profile KM 40-KM 60) is marked by Vp > 7.8 km/s directly underneath the basement (“Z” in 295 

Fig. 4a), possibly an area of unaltered mantle due to a left over (and possibly rotated) block of continental crust as observed in 

other magma-poor passive margins (Bayracki et al., 2016) or a result of a mafic intrusion. The fact that the mantle is only 

partly serpentinised suggests that syn-rift sediments (nowadays showing high P-wave velocities) may have been directly 

deposited on top of the mantle or brittle continental crust (Pérez-Gussinyé, 2013). Thus, structurally, the Ligurian Sea is 

mimicking the Atlantic non-volcanic passive margins of Iberia (Minshull et al., 2014) and Goban Spur (Bullock and Minshull, 300 

2005). However, the fast mantle in the Ligurian Sea would support a much lower degree of serpentinisation when compared 

to the Atlantic margin. 

In comparison to the Tyrrhenian Sea, the P-wave velocities of the upper mantle in the Ligurian Sea are high (Fig. 4a). P-wave 

velocities of the upper mantle in the Tyrrhenian Sea Domain #3 are significantly lower with 4.5 km/s at the top of the mantle 

(Prada et al., 2016). We observe significant differences between both basins: (1) Along the southern half of our profile we 305 

observe strong PmP reflections indicating a high-velocity contrast at the crust-mantle boundary, while in Domain #3 in the 

Tyrrhenian Sea PmP reflections are absent. (2) The Ligurian Basin has a thick sedimentary cover of ~6-8 km, while the 

Tyrrhenian Sea Domain #3 shows a sedimentary cover of ~1-2 km (Prada et al., 2014). Further, (3) the Ligurian Basin was 

stretched ~150 km during the ~16 million year opening phase, while the Tyrrhenian Sea was stretched ~300 km within 

9-10 million years. Although the extension in the Ligurian Basin lasted longer and occurred earlier, the sedimentation rate is 310 

significantly higher compared to the Tyrrhenian Sea. Syn-rift sedimentation was recorded in MCS data (Fig. 1, inlay profile 3) 

in the Gulf of Lion (Jolivet et al., 2015). Sediments are known to reduce the permeability and thus, the amount of water that 

reaches the mantle rocks, necessary for serpentinisation (Ruepke et al., 2013). Two other factors can play a role for the degree 

of mantle serpentinisation in the Ligurian Basin: Ruepke et al. (2013) show in thermo-tectono-stratigraphic basin models the 

effects of sedimentary blanketing and low stretching factors on serpentinisation. Hence our seismic velocity model (Fig. 4a) 315 

can be well explained if mantle rocks have been partially exhumed from continental crust, without being directly exposed to 

sea water due to syn-rift sedimentation. However, also the interpretation of extremely thinned brittle continental crust requires 



 

11 

 

syn-rift sedimentation since the stretching might open fluid pathways through the crust down to the mantle (Nagel and Buck, 

2004). 

 320 

5.3 Continent-ocean transition and magmatic intrusions 

The MCS line MA24 (Rollet et al., 2002) was shot along an ESP profile consisting of four measurements with a spacing of 

~35 km (Le Douaran et al., 1984). The two transects are crossing our profile at the southern end (Fig. 1, inlay profile 6). The 

MCS data resolve sedimentary units, while the seismic velocities retrieved along the ESP profile show no absolute seismic 

velocities similar to oceanic crust. Both transects do not map a spreading axis. Further west along the Ligurian margin, a 325 

multichannel seismic study (Jolivet et al., 2015) and a wide-angle refraction seismic study (Gailler et al., 2009) of the Ligurian 

margin (Fig. 1, inlay profiles 2a and 3), in the Gulf of Lion, show a wide continent-ocean transition zone. The travel time 

tomography model along the OBS profiles (Gailler et al., 2009) images a succession of three domains: (1) continental, (2) 

transitional, and (3) oceanic towards the basin centre, following the zonation of Rollet et al. (2002). The same succession was 

found for both continental margins, though, the Corsica margin’s transitional zone is much narrower. The transitional domain 330 

is interpreted to consist of a mixture of continental crust, exhumed mantle, and magmatic intrusions (Gailler et al., 2009; Rollet 

et al., 2002). In contrast, Jolivet et al. (2015) interpret the transitional zone as exhumed lower continental crust overlying the 

continental mantle which is in the distal part exhumed and serpentinised. The exhumation of lower continental crust in the 

Gulf of Lion is still debated. For example, numerical modelling of continental rifting at the magma-poor Galicia margin showed 

that the lower crust is scarcely preserved or absent in the continental tip (Nagel and Buck, 2004). Our velocity model at the 335 

base of the continental crust is not well enough resolved (Fig. 4b) to distinguish between upper and lower continental crust, 

but we emphasize again, that we can exclude oceanic crust based on the seismic velocity structure (Fig. 4f) and the results of 

gravity modelling (Fig. 5) along our seismic profile. The oceanic domain on both conjugated margins in the Gulf of Lion (Fig. 

1, inlay profile 2a) and offshore Sardinia (Fig. 1, inlay profile 2b) was imaged in the travel time tomographic approach with 

the typical pattern observed at mid-ocean ridges (Gailler et al., 2009), with a high velocity gradient in the upper oceanic crust 340 

and a low velocity gradient in the lower crust. 

The extension process in the Ligurian Basin stopped roughly 16 Ma and was replaced by the extension and opening of the 

Tyrrhenian Sea as the Apennines-Calabrian subduction zone continued to roll back. The magnetic data (Bayer et al., 1973; 

Cella et al., 2008) in both basins show a similar anomaly distribution with discontinuous, partially isolated anomalies. Prada 

et al. (2014) analysed a seismic refraction profile crossing the Tyrrhenian Sea from Sardinia to Italy mainland. Similar to the 345 

Ligurian Basin, the western margin is more elongated than the eastern margin. They divide the analysed profile into 3 different 

domains from Sardinia to the central basin: In domain #1 continental crust thins from 22 km to 13 km over a distance of 80 

km. Domain #2 is interpreted as magmatic back-arc crust with blocks of continental crust and stretches over a distance of ~80 

km on the Corsican side of the basin (Prada et al., 2014). The change from continental to magmatic crust is marked by an 

abrupt increase of seismic velocities to >7 km/s in the lower crust, similar to the observation of Gailler et al. (2009) on the 350 
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Ligurian Basin side of Sardinia. Prada et al. (2014) interpret the seismic velocities, which are slightly lower than found in 0-7 

Ma old-oceanic crust, to be a result of back-arc spreading close to the active volcanic arc. Domain #3 is interpreted to be 

composed of serpentinised mantle to a depth of 5-6 km with basaltic intrusions and shows a width of ~140 km. Prada et al., 

(2014) suggest that rifting in the Central Tyrrhenian Basin started with extension of continental crust, continued with back-arc 

spreading, followed by mantle exhumation. Later, the area underwent magmatic episodes with magmatic intrusions into the 355 

sedimentary layer or cropping out, forming volcanoes. These volcanoes and magmatic intrusions could be related to magnetic 

anomalies (Prada et al., 2016). Using the Tyrrhenian Sea as an analogy, we suggest that many of the isolated magnetic 

anomalies in the Ligurian Sea are caused by magmatic intrusions or extrusions manifested as volcanic edifices (Median 

Seamount, Tristanites Massif, Monte Doria; see Fig. 1) (Rollet et al., 2002), rather than related to a spreading axis, which was 

indeed not mapped in MCS data so far. However, in MCS data, intrusions of volcanic sills into younger sediments were 360 

observed (Finetti et al., 2005). At the Monte Doria Seamount, 11-12 Ma old basalts with a calc-alkaline signature were sampled 

by dredges and submersible dives (Rollet et al., 2002; Réhault et al., 2012), clearly indicating post-rift magmatism. Further, 

volcanism related to the slab roll-back of the Apennines-Calabrian subduction zone was observed at the Ligurian continental 

margin and dated to the initiation of the rifting phase (Rollet et al., 2002). Volcanism was as well associated with the end of 

the opening of the Ligurian Basin and related to the trench retreat of the Apennines-Calabrian subduction zone (Rollet et al., 365 

2002). This implies that volcanism also occurred during the rifting phase and could add to the discontinuous magnetic 

anomalies. 

 

5.4 Opening of the Ligurian Basin 

The opening of the Ligurian Basin in a back-arc position during late Oligocene and early Miocene was driven by the south-370 

east retreating Apennines-Calabria-Maghrebides subduction zone (e.g. Doglioni et al., 1997; Faccenna et al., 1997; Réhault et 

al., 1984; Carminati et al., 1998). The shift of active expansion from the Ligurian Basin to the Tyrrhenian Sea is considered a 

result of the Alpine collision that locked the Corsica-Sardinia drift towards the east and slab break-offs along the northern 

African margin and along the Apennines (Carminati et al., 1998). Thus, the opening of the Ligurian Basin was limited in time 

and space. Two different conceptual scenarios of rifting could explain our observations: (1) Rifting causing continental crust 375 

to thin until continental lower crust and mantle are exhumed and afterwards oceanic spreading is induced as observed in the 

Gulf of Lion (Gailler et al., 2009; Jolivet et al., 2015). (2) Rifting causing continental crust to thin until back-arc spreading is 

initiated and the continuation of extension leads to exhumation of mantle with magmatic intrusions (Prada et al., 2016). 

Depending on the scenario, our profile is situated in the Ligurian transitional domain #2 or in the Tyrrhenian domain #3. 

Rifting scenario (2) would imply that well developed oceanic back-arc crust should occur southeast and northwest of the 380 

profile. The transect reaches into the area of a 3D seismic study of the Ligurian margin offshore Sanremo (Dessa et al., 2011). 

The authors state that they were surprised not to see a distinct change in the velocity field at the COT. Dessa et al. (2011) could 

not find clear evidence for a kind of back-arc crust as shown by Prada et al. (2014) or Gailler et al. (2009). However, continental 



 

13 

 

crustal thinning is well imaged. Considering these aspects, we rather favour rifting scenario (1) which is also supported by the 

conceptual model described by Decarlis et al. (2017) for the evolution of magma-poor rifted margins. The model includes 385 

three phases of extension: (1) An initial stretching phase forming widely distributed half-grabens in the upper crust. Afterwards 

(2) a thinning phase leads to hyper-extended crust and is followed by (3) an exhumation phase during which subcontinental 

mantle rocks were exhumed. 

Furthermore, the Ligurian Basin width in our study area (70 - 120 km) is much narrower than further south (~200 km) where 

domain #2 is cumulating to ~100 km in length for both conjugated margins together, which would entirely fill the basin in our 390 

study area, leaving little or no space for oceanic spreading. This is i.e. supported by petrological and geophysical observations 

at the West Iberia margin, that suggest that a COT zone can reach a width of up to 200 km (Pérez-Gussinyé, 2013). 

Additionally, the opening rate becomes lower towards the north and the amount of stretching becomes less, which is probably 

caused by the anti-clockwise rotation of the Corsica-Sardinia block. Stretching of the crust as a result of the opening of the 

basin becomes less intense towards the north and thus controls the NE termination of the ultra-thin continental crust. Further, 395 

the extension of the basin decreases towards the north and assuming oceanic crust to be present, the crust should become less 

thick towards the proposed ridge axis tip. However, our seismic data and gravity data indicate a gradual thickening of the 

crystalline crust, at least a gradual deepening of the mantle, indicating thickening continental crust northwards. This is as well 

supported by the magnetic data (Bayer et al., 1973), which do not show the typical oceanic crust pattern of magnetisation 

stripes, but rather a lateral patchy pattern of magmatic domains. This could imply that oceanic spreading was not initiated 400 

during the Oligocene-Miocene extension in the northern Ligurian Basin, along our seismic line. Continuing further north, 

extension led to extreme thinning of continental crust, but lasted not long enough to exhume mantle. 

 

6 Conclusion 

The P-wave velocity model determined in this study images the uppermost lithospheric structure of the central Ligurian Basin. 405 

Syn- and post-rift sediments of ~6-8 km thickness filled the basin during and after the 15 Ma long lasting opening phase. Based 

on the image of the seismic velocity distribution along the southern half of the profile it remains enigmatic if the mantle is 

overlain directly by sediments or by extremely thinned continental crust of up to 2.5 km. The degree of mantle serpentinisation 

with up to 20% is low. The northern half of the profile indicates a northward thickening of continental crust and a deepening 

crust-mantle boundary from 11 km to 13 km. Based on the retrieved velocity distribution, gravity modelling and results of 410 

surrounding studies, we conclude that the extension of the Ligurian Basin led to:  

(1) Extended and very thin continental crust or exhumed, partially serpentinised mantle 

(2) Continental crustal thinning from north to south related to the increase of extension with increasing distance from the 

rotation pole of the anti-clockwise rotation of the Corsica-Sardinia block.  

Furthermore, our study documents that: 415 
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(3) Seafloor spreading and formation of mantle-derived oceanic crust was not initiated during the extension of the Ligurian 

Basin.  

Thus, we conclude that the oceanic domain does not extend as far north as previously stated and that the transition from the 

continental domain and the real oceanic domain with a potential spreading axis is situated south or south-west, however, nearby 

our seismic line. 420 
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Figure 1: Relief map (GMRT data, Ryan et al., 2009) of the study area with the seismic refraction line (thick red line) and OBH/OBS 600 
locations that extend the MAKRIS profile (thick long black line) (Makris et al., 1999). Thin black polygones and grey shaded areas 

mark volcanic extrusion after Rollet et al. (2002). The different crustal domains (Rollet et al., 2002) are marked by thin orange and 

red lines and are labelled with: AOD - atypical oceanic domain, CCM - Corsica continental margin, LCM - Ligurian continental 

margin, TD - transitional domain. A thin yellow line marks the oceanic domain (ODG) after Gueguen et al. (1998). Thin red dashed 

lines show proposed fracture zones (Rollet et al., 2002). Short thick yellow bar perpendicular to the MAKRIS profile marks the 605 
continent-ocean transition (COT) (Makris et al., 1999). Green triangles and thin dotted black lines are the OBS locations and shot 

profiles of Dessa et al. (2011). The black and white inset in the lower left corner show previous seismic refraction and reflection lines: 

1 - Prada et al. (2014), 2a/2b - Gailler et al. (2009), 3 - Jolivet et al. (2015), 4 - Makris et al. (1999), 5 - Contrucci et al. (2001), 6 - 

MA24 from Rollet et al. (2002). 
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Figure 2: (a) Stacked travel time picks of all 15 stations showing very similar arrivals suggesting an almost 1D structure along the 

profile. (b) Record section of station OBS205 (time reduced with a velocity of 8 km/s). The lower panel shows the calculated travel 

time picks from the final velocity model superimposed on the seismic data. (c) Record section and calculated travel times of station 

OBS209 (d) Record section and calculated travel times of station OBH212. 615 
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Figure 3: (a) Multi-channel seismic data (MCS data) simultaneously shot with the refraction seismic line. The orange/yellow triangles 

mark the OBS/OBH positions along the profile. (b) Upper panel shows OBS205 from shot point 300 to shot point 600 with a reduction 

velocity of 4.5 km/s. The lower panel is a zoom into the MCS section (black box in a). The white lines show that the undulations in 620 
the sedimentary phases fit well with faults and salt diapers. (c) Parasound sediment echo sounder data (orange box in 3a). 
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Figure 4: (a) Final velocity model based on the averaged velocities from the plausible starting models. The red dashed line marks 

the crystalline basement (CB) as determined from the refraction seismic data. The red dotted line presents the CB inferred from 625 
MCS data (CB-MCS) crossing our profile (details given in the text). The solid red line marks the crust-mantle boundary (Moho); 

(b) Standard deviation for 17 inverted velocity models, covering the crustal part down to the Moho; (c) Starting models used in the 

inversion and to calculate the resulting average model in 4a. (d) Standard deviation for 14 inverted velocity models (starting models 

in the inlay), covering the upper mantle up to the Moho; (e) Ray coverage for the final average velocity model; (f) Histogram with 

the velocity distribution of the final average velocity model. 630 
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Figure 5: Density model (lower panel) converted from seismic velocities to densities (details given in the text) for the SW part covered 

by seismic stations. The profile was extended towards the NE using the marine part of the seismic refraction line of Makris et al. 

(1999). The upper panel shows the data fit between the satellite derived free-air anomaly data (Sandwell et al., 2014 ) (dashed blue) 

and the model response (solid red line). 635 

 


