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Abstract. Active fumarolic solfataric zones represent important structures of dormant volcanoes, but unlike emitted fluids, 

their mineralizations are omitted in the usual monitoring activity. This is the case of the Campi Flegrei caldera in Italy, among 10 

the most hazardous and best-monitored explosive volcanoes in the world, where the landscape of Puteolis is characterized by 

an acid sulfate alteration that is active at least since Roman time. This paper provides temperature, mineralogical, textural, 

compositional and stable isotope data for those solfataric terrains sampled at the crater and Pisciarelli slope of the Solfatara 

volcano between 2013 and 2019. Temperatures vary between 40 ° and 95 °C. Minerals include alunite with grain sizes 

generally larger than 20 µm, alunogen, native sulfur, well-ordered kaolinite, and, common at Pisciarelli, pyrite, illite and NH4-15 

sulfates. Sulfate terrains have higher contents of Ti, Ba, Au, As, Hg and Tl relative to their parent substrate. The Pisciarelli 

slope is anomalous in terms of the presence of NH4. δ34S values for sulfides and native S range between -3.00 and 0.49 ‰ and 

from -4.42 to 0.80 ‰, respectively. Sulfates show δ 34S and δ 18O values in the range of -3.35 to 3.80 ‰ and between 0.3 and 

31.33 ‰, respectively. The style of mineralization and the stable isotope geochemistry do produce complex and not completely 

consistent classifications and genetic constraints. We merge our data with volcanological information, data from exploration 20 

drillings and geophysical results. With the conceptual model, we suggest a series of shallow and deep aquifers interconnected 

like “communicating vessels” through a main fault system that downthrows Solfatara with respect to Pisciarelli.  Fluid outflow 

from the different discrete aquifers hosted in sediments – and possibly bearing organic imprints – is the main dataset that 

allows determination of the steam-heated environment with a supergene setting superimposed. Supergene conditions and high-

sulfidation relicts, together with the narrow sulfate alteration zone buried under the youngest volcanic deposits, point to the 25 

existence of an evolving paleo-conduit. The data will contribute to monitor and evaluate the volcanic hazards. 

 

1 Introduction 

Active solfataric landscapes are among the most peculiar and fascinating environments on the Earth that may be considered as 

planetary analogues (e.g., White and Hedenquist, 1990; Rye et al., 1992; Lowe et al. 1993; Zillig et al., 1996; Ciniglia et al., 30 

2005; Rye, 2005; Glamoclija et al., 2004; Sgavetti et al., 2008).  Their peculiarity arises from the stringent interaction between 

inorganic (mineral assemblages and geochemistry) and organic (biota) substances under extreme ambient conditions (pH, 

temperature, salinity, oxygen deficiency, etc.) associated with endogenous degassing (i.e., H2O, CO2, CH4, H2S, SO2, HCl, 

HF, etc.) and hot water fluid circulation (hydrothermal/geothermal systems) on dormant volcanoes.  They allow investigating 

a variety of processes in the field of geology (i.e., magma and volcano dynamics), biology (i.e., physiological adaptation to 35 

environmental stresses and the origin of the life), medicine, astrology and archaeology (i.e., thermal bath and antibacterial 

applications), with possible future medical and biotechnological applications.   

The Solfatara volcano (Campi Flegrei, CF, Italy; Fig. 1a) is perhaps the most famous and hazardous geothermal solfataric 

setting in the world (e.g., Rittmann, 1950; Rosi and Sbrana, 1987; De Vivo et al., 1989; Barberi et al., 1991; Piochi et al., 2014) 
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with exploration since Greek times up to Medieval age (e.g., Photos-Jones et al., 2016).  The generation of new minerals 

(herein after referred to as neogenesis) received limited discussion in the recent literature (Cortecci et al., 1978; Valentino et 

al., 1999; Piochi et al., 2015; Russo et al., 2017). In contrast, several studies relate to bradyseism phenomena addressing the 

various aspects of seismicity, ground deformation and outgassing (e.g., Corrado et al., 1976; Barberi et al., 1984; Chiodini et 

al., 2016; Cardellini et al., 2017; Moretti et al., 2017), life in these environments (e.g., Zillig et al., 1996; Glamoclija et al., 5 

2004; Sgavetti et al., 2008), and a continuous interest into the use of hydrothermal products as thermal bath and for medical 

care (e.g., Photos-Jones et al., 2016; Giacomelli and Scandone, 2012).   

This paper focuses on the solfataric mineral assemblages updating our previous research (Piochi et al., 2015) and presenting 

the result of our progressing work on the CF solfataric volcano. Results derive from temperature determinations contextually 

to sampling, and investigations by Optical Microscope (OM), X-Ray Powder Diffraction (XRDP), Electron Microscopy (EDS-10 

BSEM), Diffuse Fourier Infrared Spectroscopy (DRIFT-FTIR), whole-rock geochemistry (WRG) and stable isotope 

geochemistry (SIG) of sulphur and oxygen. By merging new and published information (Celico, 1986; Guglielminetti, 1987; 

Rosi and Sbrana, 1987; Chiodini et al., 1988; Celico et al., 1992; Aiuppa et al., 2006; Caliro et al., 2007; Piochi et al., 2014; 

Di Giuseppe et al., 2017; Moretti et al., 2017), we reflect on the significance of the sulfate alteration zone and related 

volcanological implications. 15 

2 Background 

2.1 Geological setting 

The Solfatara volcano (Fig. 1a,b,c) exhibits impressive and powerful hydrothermal activities with hot fumaroles, thermal 

springs, mud pools and diffuse outgassing (Allard et al., 1991; Valentino et al., 1999; Chiodini et al., 2001; Valentino and 

Stanzione, 2003; 2004; Chiodini et al., 2010; Piochi et al., 2015; Cardellini et al., 2017; and references therein). The 20 

hydrothermalism intensely altered the faulted volcano slopes (Rosi and Sbrana, 1987) and the solfataric landscapes (Fig. 1a-

e) have locally replaced the original pyroclastic sequences (e.g., Agnano Monte Spina, Astroni and Solfatara tephra) and lavas 

(Monte Olibano, Solfatara cryptodome) younger than 5 ka (e.g., Di Vito et al., 1999; Piochi et al., 2005).   

The study area is located at Puteolis, the area of maximum ground uplift (in excess of 3 m) and seismicity (more than 16,000 

low-magnitude earthquakes), activated during the unrest episodes in 1970 ÷ 1972 (Corrado et al., 1976) and in 1982 ÷ 1984, 25 

namely “bradyseisms” (Barberi et al., 1984), that are slowly on-going (e.g., Bodnar et al., 2007; Chiodini et al., 2016; Moretti 

et al., 2017). 

The solfataric area has been exploited for centuries for its alum occurrences (Photos-Jones et al., 2016 and references therein). 

Intense mining during Roman and Medieval times modified their original context (Photos-Jones et al., 2016): the Pisciarelli 

gorge-valley was a quarry, while caving activity exposed the eastern (the Monte Olibano inner wall) and northern flanks of 30 

the Solfatara volcano, and rework deposits in the crater floor. 

Old pictures and descriptions (Sicardi, 1959) suggest that the most evident manifestations along the SE and NE rim remain 

roughly the same: 1) the main Bocca Grande fumarole (Fig. 1d) with various exhalative branches northward along the 

morphological heights; 2) the minor fumarolic vents around the old thermal baths (Sst site; Fig. 1d) and 3) the mud pools (Fig. 

1b,c,d,e). Also, the thermal spring in Pisciarelli (Fig. 1a,b,e), known as the “Bulla”, i.e., the bubbling one, was known at least 35 

since Medieval time (Photos-Jones et al., 2016). Moreover, the same descriptions indicate the presence of a lake in the Agnano 

Plain (Fig. 1a). According to Ventriglia (1942), the lake extended up to the slope base of the Solfatara volcano and had a 

maximum depth of 15 m; drillings recovered related sediments (de Vita et al., 1999). Ventriglia (1942) also indicated high 

temperatures in the lake preventing fish from living. Today, the area shows several mud pools and thermal springs, while some 

(“de Pisis” and “Sprudel” springs in the Terme of Agnano; Fig. 1a) disappeared. Yet, high temperatures can be still detected.  40 
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At present, ground waters nearby Solfatara are rich in Cl- and SO4
- (Aiuppa et al., 2006). Temperatures at the fumaroles exceed 

160 °C (e.g., Cardellini et al., 2017; Gresse et al., 2017), in agreement (or locally lower respect) with measurements reported 

by Sicardi (1959) in the range of 141-215 °C at Bocca Grande and of 99-110 °C at other sites, between 1921 and 1951. 

Pisciarelli waters exhibited temperatures mostly around 95 °C with minimum values of 84 °C between 1978 and 1999 (Celico, 

1992; Valentino and Stanzione, 2004). A geyser-like vent at Pisciarelli has a temperature of up to 116 °C (Chiodini et al., 5 

2016). Only, the mud pool (“La Fangaia”; Fig. 1d) was hotter in the past with values up to 100 °C (Sicardi, 1959). This author 

describes a mud vent in the southeastern area of the crater that is no longer present.  

Emitted gases include H2S, CH4, N2, H2, CO, in addition to the dominant water vapour and the secondary abundance of CO2 

with reaching a flux of at least 1500 tonnes/day and a maximum value of 3000 tonnes/day (Allard et al., 1991; Aiuppa et al., 

2013; Chiodini et al., 2016). Previous studies further report a Hg flux between 0.9 and 4.5 g/day (Ferrara et al. 1994; Bagnato 10 

et al., 2014), a detectable (yet very low) abundance of SO2 (Ferrara et al. 1994; Aiuppa et al., 2013), the occurrence of light 

hydrocarbons (Capaccioni and Mangani, 2001), and the presence of As and Hg (17 - 5200 µl and 1 - 30 µl, respectively; 

Valentino and Stanzione, 2003) in the pools and waters. High NH4 concentrations are described for waters at Pisciarelli 

(Martini et al., 1991; Celico et al., 1992; Valentino and Stanzione, 2003), but understanding of the nitrogen source and cycling 

at the Phlegraean area, showing a unique isotopic composition with δ15N at 6.3 ± 0.3 % (Chiodini et al., 2010), remains elusive. 15 

δ18O and δ2H of emitted fluids are in the range -5 to -0.5 ‰ and between -30 and -20 ‰, respectively (Caliro et al., 2007). The 

average δ34S value of H2S gases is -0.3 ± 0.3‰ (Allard et al., 1991). δ34S values determined for shallow subsurface sulfur-

bearing minerals range between −5.5 and 0.0‰, while the deep-seated pyrite shows values from 3.3 to 7.4‰ (Piochi et al., 

2015). δ18O values for alunite vary from 4.2 to 7.0‰ (Piochi et al., 2015). The pH of water pools and soils is neutral to acid, 

with pH values <2 around the pools (Valentino and Stanzione, 2003; 2004; Gresse et al., 2017). 20 

 

2.2 Sampling, sample preparation and analytical techniques 

Sampling was conducted within the Solfatara crater and in the Pisciarelli and Cinofilo areas (Fig. 1a,d,e) with additional sites 

compared to Piochi et al. (2015); the crater floor, except the pool, was intentionally avoided because the reworking in historical 

time (Photos-Jones et al., 2016) and thus a possible anthropogenic contamination. This study enlarges the dataset on the acid 25 

sulfate alteration zone of the Phlegraean area, in order to understand the quiescent dynamics of the volcano. Similar 

observations and data are also available for Ischia island (Piochi et al., 2019) that belongs to the Phlegraean Volcanic District 

(Piochi et al., 2005). 

Our new collection is, therefore, widening the observation period for the Puteolis sulfate area that now spans between January 

2013 and April 2019 (Table S1).  Selection of sampling sites (herein after referred using the acronyms in Fig. 1d,e) is based 30 

on variable macroscopic features including outgassing “magnitude”, tectonics and fracturing evidences, mineral occurrences 

and exhalative vents locations, as visible in the field and described in the literature (Allard et al., 1991; Ferrara et al. 1994; 

Valentino and Stanzione, 2003; Aiuppa et al., 2013; Bagnato et al., 2014; Chiodini et al., 2016). A thermo-couple digital probe 

51/52 II by Fluke with precision of ± 0.3 °C was used to measure temperature in the field, contextually to sample collection. 

Samples were air-dried for several days to one week. Subsequently, these were studied under the Optical Microscope (OM) in 35 

order to assess their general mineral assemblages. Where possible, the various S-bearing phases (or enriched portions) were 

handpicked for subsequent isotopic analyses. Figures 2 and 3 show the appearance of most representative samples.  

Both bulk-rocks and separated phases were pulverized in an agate mortar for X-Ray Powder Diffraction (XRDP), Diffuse 

Fourier Infrared Spectroscopy (DRIFT-FT-IR) and Whole-Rock Geochemistry (WRG). Scansion Electron Microscope 

(BSEM), Electron Diffuse System (EDS) and Stable Isotope Geochemistry (SIG) used aliquots of bulk materials and isolated 40 

mineral phases. Appendix A provides detailed information about analytical techniques. Details on XRDP and DRIT-FT-IR are 

in the Supplement (S1) together with representative patterns (Fig. S1, S2). 
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3 Results 

3.1 Mineral data by OM, XRDP, BSEM, DRIFT-FT-IR results 

New and previously published (Piochi et al., 2015) mineralogical data for the Solfatara-Pisciarelli area (Table S1, Table 1) 

provide information on a yearly to monthly basis since 2013 along with measurements of temperature. The mineral assemblage 

dataset derives from XRDP analyses (Supplement) corroborated by textural and chemical information obtained at the EDS-5 

BSEM. DRIFT-FT-IR spectra determined on representative samples, display characteristic bands of minerals they include (see 

below and Supplement), and help in material characterization. 

Through time, K, Al sulphates (alunite) and native S (Fig. 3a,b,c,d,e,f) are the main and widely distributed secondary mineral 

phases associated to surface degassing. Alunogen and pyrite (Fig. 3a,b) are second in abundance. All these mineral phases can 

form single phase concretion or coexist in up to mm-sized grains. Alunogen often – if not generally – associates with alunite 10 

and occurs in two distinct morphologies (Fig. 3a,d,e). Most commonly, it consists of fibrous tangled masses of white crystals. 

Where coexisting, alunogen fibres grow from the edges of alunite crystals (e.g., sample L100 zucc in Table 1; Fig. 3d). This 

appearance seems usual along the fault scarp, north of the pool (L1 site, Fig. 1e). Secondly, alunogen has thin, platy crystal 

habits (Fig. 3b,d,e). Many of these crystal groups show rounded to corroded edges suggesting alteration after crystallization 

(Fig. 3e). Dendritic and/or sometimes bi-pyramidal crystallites (Figs 2a,3a,3c) are ubiquitous habits for native sulfur (typically 15 

sampled at L1, SMO, some places along ASA, Sst in Fig. 1d and Table 1) that mostly cluster within the alunitic surface and 

the rock voids (Fig. 2c). Along the fracture, S may form a yellow ductile patina (L1 vent, BG, BN in Fig. 1d,e and Table 1). 

Locally (PINT, PEXT, L19, L20, L60 in Fig. 1e and Table 1), S produces encrustations with pale yellowish fibrous-like texture 

(Fig. 2b). 

Pyrite (Fig. 2d) occurs as smaller (≤mm-sized) rhombododecahedric grains (Fig. 3a) or as fine-grained mineral uniformly 20 

coating other components (i.e., feldspars, lava, etc.; Figs 2d,3i). It has a particular high abundance within the Pisciarelli muds 

(Figs 1e,2d), i.e., both within the main pool where it could reach cm-sizes and in the geyser (G site in Fig. 1e) emission. The 

blackish colour of the muds should also derive from the pyrite abundance. Pyrite also occurs around the degassing areas. Barite 

can be further detected at Pisciarelli. 

Clays have a low relative abundance in the studied samples (Supplement). They are mostly kaolinite and illite (Table S1, Table 25 

1), as derived by the XRDP traces (see Fig. S1c,d,e) and supported by EDS-BSEM and DRIFT-FT-IR study (see below; Fig. 

S2 and Supplement). In particular, the infrared technique is suitable to detect the kaolinite and the related bands in the OH-

region, in agreement with Madejová et al. (2002). Illite usually occurs in the muds at Pisciarelli (from geyser and around other 

emissive vents) and occasionally at Solfatara (Table 1, S1). Kaolinite characterizes the newly formed pool within the Solfatara 

crater and occurs locally at Pisciarelli (Fig. 1c,d,e and Table 1). Figure 4 illustrates the platy particles of kaolinite with typical 30 

widths of < 10 μm that assembly in packages and associated with alunite crystals.   

Other efflorescent phases (Fig. 3c,i) occur randomly. Rarely, Al, Fe sulphates (halotrichite) have been identified nearby the 

Pisciarelli geyser as crust-like aggregates. Na and NH4 sulphates induce the pale orange painting on efflorescences and 

encrustations, and generally of soils. Sulphates, bearing Na, Ca, Mg are least common, and represent a typical occurrence in 

the new Solfatara mud.  Alum has been detected at Pisciarelli. 35 

Air-dried evaporation of water sampled at the Pisciarelli pool resulted in the precipitation of mascagnite, tschermigite, and 

letovicite (Fig. 2e,f, S1a and Table S1, Table 1). Figure 3i shows the euhedral tschermingite that coexists with native S in the 

sample L30 eff-blocchetto (Table S1, Table 1). Instead, evaporation of Solfatara mud pool water produced alum, as 

documented already in the Medieval and Roman times (Photo-Jones et al., 2016). Water from the Stufe di Nerone (west side 

not shown in figure) crystallized halite. 40 

Realgar (detected at the EDS-BSEM and not listed in Table S1) and ammonium chloride (Fig. 3g,h) appears as peculiar 

precipitates at the Bocca Grande and Bocca Nuova sites (Fig. 1d). 
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Accessory minerals include hematite, quartz, and, possibly, Fe-hydroxides and phlogopite. 

Furthermore, amorphous phases are largely present at various sites (Table S1, Table 1), particularly, in muds and in the samples 

from Bocca Grande and L1 vent (Fig. 1d,e). The widespread amorphous phases could correspond to material from the both 

original volcanic rock and alteration. General assumptions (Piochi et al., 2015; Montanaro et al., 2017) indicate amorphous 

silica, although it merits a more rigorous examination. 5 

Finally, Fe-oxide, and fresh to variably altered feldspar and biotite are the most common primary volcanic mineral phases. 

DRIFT-FTIR spectra collected on selected samples (Fig. S2) produce data consistent with XRDP results (Fig. S1) and 

furthermore allow useful details on structure and eventual minor phases or impurities (Supplement). Table S2 lists the relevant 

vibration modes of spectra and the proposed mineral assignments. The crystals formed by evaporation of water in the Pisciarelli 

pool (Fig. S2a; Supplement) show a sharp band at 1422-1411 cm-1 that is in the region of the ν4(NH4
+), as described in the 10 

literature (e.g., Weis and Ewing, 1996; Parafiniuk and Kruszewky, 2010) and in agreement with XRDP mineral data (Table 

S1; Fig S1).  

Native S from two different samples (PINT S tozzo 18/10/17 and PINT S 18/1/18 in Table 1; Fig. S2b) is evident in the DRIFT-

FTIR spectra at < 2950 cm-1, with the strongest bands at 843 and 468 cm-1 that coincide with those of sulfur in the both the 

USGS (see Sulfur GDS94; Clark et al., 2007) and RRUFF (http://rruff.info/) databases. The spectra differ in the OH stretching 15 

region, likely indicating the occurrence of impurities, although water absorption by the KBr solution can be a further 

possibility. 

As expected (Clark et al., 1990), alunite can be determined through its major band at 3483 cm-1 coupled with a smaller one at 

3513 cm-1 in the OH-stretching region (Fig. S2c,d,e). Accordingly, the spectra show a small band at ca. 4605 cm-1 from the 

Al-OH combination mode that should be ascribed to alunite. Furthermore, it is possible recognizing the doublet mode at 1088 20 

÷ 1099 cm-1 and at 1028 ÷ 1025 cm-1 (Toumi and Tlili, 2008) and the mode at 3971÷3978 cm-1 (see USGS database; Clark et 

al., 2007) from alunite.  However, in the OH-stretching region there are some other vibrations. Based on Madejovà and 

Komadel (2001), illite is likely producing the vibration at 3622 ÷ 3629 cm-1. 

Notably, the DRIF-FTIR spectra of muds from Pisciarelli (Fig. S2d) show a vibration in the region of 1430 cm-1. Because the 

muds were separated from water, as before, the band can be related to the NH4 (Weis and Ewing, 1996; Parafiniuk and 25 

Kruszewski, 2010) in tschermigite, mascagnite and letovicite (Table S1, Fig. S2, Fig. S1, Supplement).  

The new pool at Solfatara characterizes for peculiar DRIFT-FTIR spectra in the OH-stretching region (Fig. S2e; note the inset) 

due the presence of kaolinite, in addition to alunite, and minor (or occasional) S, feldspar, pyrite and amorphous phases. 

Specifically, these are i) alunite (Clark et al., 1990) with a major band at 3483 cm-1 coupled with a smaller one at 3510 cm-1, 

and ii) kaolinite (Madejova, 2003) with two minor bands at 3667 and 3651 cm-1 between two major vibrational modes at 3695 30 

and 3620 cm-1. Accordingly, it is possible recognizing the OH-deformation at ca. 915 and 938 cm-1, the Si-O stretch at 1008 

and 1026 cm-1, and the Al-OH modes at ca. 4605 cm-1 and 4523 cm-1 from kaolinite.  

The four vibration modes of kaolinite in Fig. S2e point for a well-ordered mineral structure (Madejová, 2003; Fitos et al., 

2015), giving a strong support to the XRDP results (Fig. S1e, Supplement), also in multiphase samples (Madejová, et al., 

2002). 35 

3.2 Stable isotopes of sulfur and oxygen (SGI) 

A new set of δ34S and δ18O values for sulfur-bearing minerals is listed in Table 2. δ34S values of sulfides and native S range 

between -3.00 and 0.49 ‰ and between -4.42 and 0.80 ‰, respectively. Sulfates are characterized by δ34S and δ18O values 

ranging from -3.35 to 3.80 and from 0.3 to 31.33‰, respectively. Temporal variations in δ34S for different sulfur-bearing 

phases at the different locations reveal a dominantly negative signature, regardless of their mineralogy, with native S showing 40 

the most negative values (Fig. 5). 
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The new sulfur isotope results are generally comparable with literature values for Campi Flegrei (Piochi et al., 2015), although 

studies earlier than 2000 (Cortecci et al., 1978; Valentino et al., 1999) also show positive δ34S values (Fig. 5a,b). In comparison 

to previous studies: 

1) our new S-isotope data for Pisciarelli include few positive values (Fig. 5b,c). 

2) the new O isotope values for sulfate are the highest obtained until now (Fig. 5d). To note, the muds generally have the least 5 

heavy oxygen isotopes, except samples from 2013 - 2014 for which O-isotope determinations are lacking. The diagram also 

indicates a lowering in δ34S for neoformed minerals reported later than 2000. 

3) the sulfides at Pisciarelli show δ34S values mostly at 0 ‰ (Fig. 6).  

4) the different sites display a homogeneous range in δ34S (Fig. 5a,b,c); however, the variability for the ASA and L1 sites 

reflects different sample heights along slope (Fig. 1d) and wall (Fig. 1e), respectively. 10 

5) a likely appearance of a positive correlation between S isotope results for pyrite and for sulfate phases coexisting at Solfatara, 

with two from the 1994 data outside the trend (Fig. 6a). 

6) new isotope data for sulfate reveal a difference compared to studies older than 1990 and the most recent one (Fig. 7). 

In addition, the δ18O values for sulfates at Pisciarelli show a slight tendency to increase with topographic elevation at the 

sampling site. Specifically, the highest values generally occur at Solfatara that is at > 96 m asl while Pisciarelli lies at 66 - 74 15 

m asl. 

3.3 Content of major and trace elements (WRG) 

Table S3 reports the whole-rock geochemical compositions of selected samples.  As expected, samples are highly hydrated 

and sulfur-rich, due the OH-group and/or S in the crystalline network (see ideal formula in Table 1), and/or the presence of 

native S in the analysed sample. LOI can be up to 80 wt% (sample L20 camino 18.9.17), although most commonly at 20-30 20 

wt%, and the S content is up to more than 50 wt%. Carbon is generally low (< 1.25 wt%), and always < wt 22 %. Notably, the 

SiO2 content is highly variable. Depending on the sample mineralogy, it can be as high as 70-80 wt%. MnO is always < 0.1 

wt.%. 

With respect to the local volcanic rock substrate (Table S3; Fig. 8a), some lithophile elements (Si, Al, P, Sc, Ti, V, Zr, Ba, Yb, 

Th, Hf) are comparable or depleted (for examples, Be at < 1-5 ppm vs > 4 ppm, Ga < 23.8 ppm, Rb < 95.6 ppm, Y < 8.1 ppm).  25 

Depletion concerns with Na, Mg, K, Ca, Rb, Eu, U content. Only Ba displays a significant level of enrichment reaching very 

high values up to thousands of ppm. Cs shows concentrations of up to tens of ppm. Siderophiles and chalcophiles ratios (Fig. 

8b) mostly lie at 1 or slightly above, with depletions for Fe, Zn, Ga, and enrichments for S, Au, As, Tl, Hg (Table S3). Sb can 

be higher than the primary rock composition.  

 30 

4 Discussion  

4.1 Environmental sub-zones: stationary phenomena and runoff processes 

Throughout the years, the various Solfatara and Pisciarelli sampling sites display a nearly constant mineral alteration 

assemblage (Table 1). Commonly, the mineral neogenesis variably develops on sub-mm- to dm- to m- scales, in relation to the 

outgassing dynamics, runoff, weather conditions, outcropping substrate, and anthropogenic activity. 35 

However, the various sites further display reproducible rock geochemistry and stable isotope compositions at the timescale of 

survey, and with respect to oldest data (e.g., Valentino et al., 1999) as well; they can be considered reference points for future 

investigations. 

Based on the presented dataset, we propose the existence of major alteration sub-zones, in which some (minor/peculiar) mineral 

phases appear or disappear, in response to changing physical-chemical boundary conditions mainly associated to weather 40 
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circumstances, i.e., mostly humidity and water abundance. These sub-zones are discriminated by their dominant and repetitive 

mineralogy, rock chemistry, and isotopic compositions, and characterized by temperature variations in a narrow range. Such 

a constancy is revealed when comparing results reported by Sicardi (1959) (see Geological setting at 2.1 section) with the 

present results, corroborating the existence of “stationary” sub-zones that are presented in the following. The only exception 

is the mud pool in the crater.   5 

The Pisciarelli and Solfatara pools (Fig. 1d,e) are the two major and distinct sub-zones. They display persistent differences in 

dynamics, temperature and mud (solute plus water) mineralogy. The main pool at Pisciarelli shows vigorous boiling (Fig. 

1b,e), with temperatures ranging from 63.9 to 94.3 °C (Tables S1 and 2) and a relative dominance of water vapour. The mud 

is typically grey in colour, mostly ash to sand up to mm-sized grains, with generally rounded/smoothed shapes as a function 

of the boiling vigour and material supply from the nearby slopes. On the other hand, the main Solfatara pool is characterized 10 

by degassing with a temperature at around 49 °C (Tables S1 and 2). The mud is beige and fine grained, always with a fetid 

odour. We recurrently detected an enrichment in pyrite, illite and feldspar at Pisciarelli and in native sulfur at Solfatara. The 

latter is enriched in As, Hg, Nb, W, Zr, Sb and depleted in Sr, Ba, Co compared to the original deposits (Fig. 8). Sulfides and 

sulfates display nearly similar δ34S values at Solfatara, whereas they are different at the Pisciarelli mud pool (Fig. 6a, inset). 

The DRIFT-FTIR spectra of muds from Pisciarelli, in contrast to those from Solfatara, always gave the vibration at 1430 cm-15 

1 related to the NH4 (see section 3.1). Notably, the La Fangaia mud pool (Fig. 1d) is likely cooling as Sicardi (1959) reported 

up 100 °C, several tens of degrees higher than at the present (Tables S1 and 2). A slight cooling is discernible when comparing 

our data (Table S1) with those in the literature (Martini et al., 1991; Celico et al., 1992; Valentino and Stanzione, 2003). In 

contrast, the Pisciarelli area should be hotter, although only by a few degrees Celsius (Tables S1 and 2) if compared with 

increasing temperature values at the geyser-vent (Chiodini et al., 2016). 20 

The PINT-PEXT sub-zone (Fig. 1e) - an isolated morphological height – is composed of an alunitic-rich low-cohesive reddish 

terrain with a temperature around 95 °C, typically comprising kaolinite (Tables S1 and 2). The kaolinite is easily discriminated 

also by DRIFT-FTIR spectra (not shown) that, in agreement with XRDP traces, point for a well-ordered structure. This terrain 

bears variably sized (up to few dm) clasts and is subject to slumping and sinking. 

A hole up to 2-3 m deep represents a distinct sub-zone that we emphasize because it opened 180 m North from the main pool 25 

within the crater in May 2017, by surface collapse. A grey viscously boiling mud fills the hole (Fig. 1c,d), with a minimum 

temperature of 70 °C; a temperature of 91 °C was measured in April 2019. The mud is dominated by alunite with subordinate 

native sulfur, showing vague similarity to Solfatara mud (Table S1), although its grey colour and the occasional pyrite are 

reminiscent of the Pisciarelli mud. However, kaolinite is the main clay mineral in the new pool (Fig. S1e; Fig. S2e, note the 

inset). Mud geochemistry reveals peculiarly high concentrations of Sr, Ga, Co, Th, V, REE, Sb (Fig. 9).  30 

Finally, a rather broad sub-zone includes the other various sampling sites that are characterized by encrustations of alunite 

with a well-defined, although relatively large, range of δ34S values between ca. -4 and 1 ‰ (Tables S1,2; Fig. 5c). These 

occurrences reflect the nearby presence of vapour degassing. We suspect that those at the ASA, M. Olibano and SSt sampling 

sites along the slopes of the Solfatara crater (Fig. 1a,d) are ascribable to long-lived encrustations; further investigations are 

useful to ascertain this suspect. The minor fumarolic vents around the old baths (Sst site) seem unchanged in respect to the 35 

description by Sicardi (1959), particularly showing the occurrence of native S and a comparable temperature at around 95 °C. 

These show variable bulk-rock geochemical compositions.  

Widespread alunite formation reflects the potassium and feldspar-rich rock substrate on which they develop (see Piochi et al., 

2014 and references therein). 

Vapour effluents around the various geysers/vents at Pisciarelli are the most important factors affecting the mineral neogenesis 40 

at the alunite-dominated sub-zones. Pisciarelli is a decametres-deep incision on the NE Solfatara slope and the degassing vents 

are constrained in a gorge-like morphology. This setting favours the stagnation of the hydrothermal steam that impregnates 

the rock substratum and supplies elements to the formation of a variety of Na and NH4 sulphates. We detected high abundance 
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of those phases around the pool as desiccation during the summer season. The NH4
+ ions were present in solution and, possibly, 

as droplets in the humid air, as revealed by experimental desiccation tests of the water. Aerosol particles from inside and 

nearby the Solfatara crater that bear NH4
+ (and Cl-, possibly in the form of NH4Cl) as major ion (Mather et al., 2004), as well 

as the NH4Cl inside the BG and BN orange-yellow encrustations (Fig. 3h,i), furthermore support the widespread presence of 

ammonium species. Notably, N2 is emitted at the main intra-crater fumarole of Bocca Grande (see Chiodini et al., 2010). 5 

DRIFT-FTIR and XRDP patterns (Fig. S2d, S1a,d), however, point to the presence of NH4 in both the mud and water pools at 

Pisciarelli, but not at Solfatara (except for BG and BN). Alum – (K) has also been found in relation to the wet conditions at 

Pisciarelli. 

Vapour emissions outflow and the conditions of hydrothermal steam stagnation are dependent on atmospheric pressure and 

wind conditions.  10 

So that, it is likely the meteoric weather the main cause for appearance to disappearance (and vice versa) of some phases.  

This is also particularly evident for the PINT, PEXT, L19, L20 (Fig. 1e) and the SMO, ASA, SSt (Fig. 1d) sub-zones that may 

typically present bipyramid and/or fine dendritic sulfur crystallites (Fig. 2a). Their crystallization seems to be favoured by 

relatively strong exhalations and porous terrain (PINT, PEXT, L19, L20; Fig. 1e) or conditions where gases remain briefly 

trapped (SMO, some places along ASA, Sst; Fig. 1d). Respective conditions also prevail in close proximity (< dm scales) to 15 

the main fumaroles (L1 vent, BG, BN; Fig. 1d), where sulfur forms a cream-like patina reflecting the condensing gas flow 

along the host fractures and fissures.  

However, native S disappears during run off and we have macroscopically tested at several places that re-crystallization needs 

one-to-two months, if not longer (i.e., sample L20 camino; Fig. 1e). 

Furthermore, periods of intense rainfall determine the timing areal extent and depth of the mud pools, as well as the generation 20 

of secondary mud vents and the erosion in Pisciarelli and its periodic water puddle. Sicardi (1959) already noted the occurrence 

of mud vents and black mud pools following rainy periods. Notably, pools at Pisciarelli are supported by anthropogenic 

embankment. 

Meteoric and surface waters can dilute the aggressive endogenous fluids determining alteration degree conditions low enough 

for the generation of iIllite, or other clays (Pirajno, 2008) at Pisciarelli. Further studies need to be performed in order to better 25 

characterize clays as they can bear information useful to further constrain the hydrothermal setting.    

Al, Fe sulphates (halotrichite) have been rarely found nearby the Pisciarelli geyser (see G in Fig. 1e; Tables 1,S1). 

The distribution of sulfates appears irregular, and this should be an object of future investigations. 

4.2 Classification of alteration and genetic environments: the contradictory data 

The style of mineralization (Arribas, 1995; Sillitoe, 1993; Pirajno, 2008; Ercan et al.; 2016) and the stable isotope results (Rye 30 

et al., 1992) allow classification of alteration and differentiation of genetic environments. Table 3 summarizes characteristic 

mineralogical, lithological and isotopic features of these environments, in comparison to observations made at the study sites. 

Several contrasting interpretations can result from the data. 

Alunite plus kaolinite form in steam-heated environments at 100 to 160 °C where fumarolic vapour condenses above the 

boiling zone of nearly neutral-pH, H2S-rich fluids representing a low sulfidation environment.  35 

Nevertheless, alunite shows grain sizes in the range of 50 to 100 µm (Fig. 3a,e,f), unlike the finest (<20 µm) ones detected in 

high-temperature (>40-50 °C) steam-heated (Simón et al., 2005) or supergene (Arribas, 1995) environments. Those coarser 

sizes usually occur in low-temperature steam-heated (and hypogene, as well) environments (Hedenquist et al., 2000), or could 

directly crystallize from a SO2-rich magmatic vapour that rapidly ascent through fractures (namely high sulfidation setting; 

Rye et al., 1992; Stoffregen and Alpers, 1992). The occurrence of kaolinite and alunite at several Solfatara and Pisciarelli sub-40 

zones (particularly, new pool and PINT, Table 1) fits with the high sulfidation environment; in fact, the two phases usually 

coexist in the advanced argillic alteration zones proxy to ascent plumes (e.g., Pirajno, 2008). The evidence of K-feldspar 
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replacement by alunite (Piochi et al., 2015), the disseminated pyrite and the presence of native S at Pisciarelli apparently 

support the classification as high sulfidation - magmatic hydrothermal environment (Rye et al., 1992). Nevertheless, 

illites/montmorillonites are most common in intermediate argillic alteration zones (Pirajno, 2008) and their widespread 

occurrence in the various studied sites, as well as in the local subsurface (Valentino and Stanzione, 2003; 2004), is among the 

results that contrasts this high sulfidation environment. Indeed, sampling temperatures are higher than 40 °C (Tables 2 and S1) 5 

and SO2 is rare or absent (Aiuppa et al., 2013) at Campi Flegrei. Also, the lack (or rare detection) of lower temperatures (< 40 

°C), disordered polymorphs (i.e., halloysite) point to limited supergene alteration. 

Only, the alunite coexisting with kaolinite in the new hole pool exhibits the finest grain size. Accordingly, the XRDP and 

DRIFT-FTIR analyses of CF samples point to slightly ordered kaolinite forms that usually occur at temperatures < 150 °C in 

epithermal systems (Sillitoe, 1993), but could also represent a metastable form in hotter settings (Zotov et al., 1998). In this 10 

later case, the new pool sub-zone with kaolinite and alunite can represent local, well-circumscribed advanced argillic alteration 

condition indicative of a proxy plume.  

However, when considering litho-geochemical parameters, schematic diagrams further produce contrasting visions. For 

example, following Ercan et al. (2016), the clay-bearing muds can be ascribed to variable supergene to hypogene alteration 

field in the binary diagram of immobile Zr vs. TiO2 (Fig. 9a). They also have high (above 1,000 ppm) Ba+Sr and low (<200 15 

ppm) Ce+Y+La concentrations (Fig. 9b).  

The stable isotope geochemistry of minerals supports an interpretation of steam-heated to supergene environments (Fig. 7). S-

isotope equilibrium occurs between sulfides and sulfates, with reliable re-calculated temperatures in high-sulfidation 

environments (Arribas, 1986). In contrast, this equilibrium cannot be accounted for at Campi Flegrei and any reliable 

temperatures result from the S-isotope fractionation between sulfates and H2S. In fact, δ34S values of alunite and pyrite roughly 20 

overlap. Instead, sulfur-H2S and sulfides-H2S at the sampling temperature reflect equilibrium S-isotope fractionation: the 

theoretical δ34S value of dissolved H2S fluid is between -3.84 and -0.84 ‰ (Allard et al., 1991). This also implies that the 

sulfate altered rocks are not magmatic hydrothermal in origin, in agreement with the lack of typical mineral phases that show 

a high oxidation state of S (SO2-rich, high-sulfidation according to Henley and Ellis, 1983). Based on Rye et al. (1992), SO2 

disproportionation results in the formation of 34S-enriched H2SO4 and 34S-depleted H2S. In addition, the intense Al-leaching 25 

in a high sulfidation system is not typical for the Campi Flegrei setting (Fig. 8; Table 3). 

Actually, Campi Flegrei lacks the occurrence of enargite and luzonite, both diagnostic for high-sulfidation environments. 

Instead, it shows minor occurrences of realgar (AsS) as well as cinnabar (HgS) (Tables 1, S1), and also orpiment has been 

described (Russo et al., 2017). 

Significantly lower δ34S values (< 15 ‰) for alunite can derive from: (i) the light sulfur isotopic composition of H2S during 30 

boiling (steam-heated or low-sulfidation setting), (ii) δ34S of sulfides (supergene) or (iii) the bulk sulfur isotope composition 

of magmatic steam (Rye et al., 1992). The first possibility could partly account for the isotopic composition of alunite-pyrite 

and alunite-H2O pairs (Fig. 10), although contrasting with conclusions based on texture, mineral assemblage and bulk-rock 

geochemistry (Table 3). The presence of kaolinite in the subsurface, under an alunitic cover and the occurrence of argillic 

alteration at depth suggest a vertical zonation at the Solfatara crater and, following Rye et al. (1992), a steam heated setting. 35 

Furthermore, δ34S values for the pyrite-H2S pairs further support a supergene setting (Fig. 10). 

Finally, we are not able to directly identify any microbial sulphur cycling, although FT-IR and rock geochemistry corroborate 

the absence or limited biota contribution. The analysed samples do not exhibit bands attributable to C=H ligands (Supplement) 

and the carbon content is <1.25 wt% (most common < 0.2 wt%; Table S3). Yet, some higher δ 34S and δ 18O values for sulfates 

could be indicative of microbial sulfur cycling, particularly considering the dry-wet alternating conditions. 40 
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4.3 Merging information and unravelling the setting 

Merging all available information, it appears that observations concerning the both an apparent “stationarity” sub-zones’ and 

a seemingly contradictory classification environment reflect the evolving conditions that have followed the last magma 

intrusion and eruption and that probably are overlapping through time. 

The solfataric alteration zone has a strongly limited extent within the central sector of the Campi Flegrei caldera. It coincides 5 

with the area of eruptive vents (e.g., Mt. Olibano, Accademia, Solfatara; Fig. 1a) and uplift of the most recent period of 

volcanism (Di Vito et al., 1999).  The zone appears to be limited under the later Fossa Lupara and Astroni vents, while 

outgassing and thermal aquifers occur within the caldera. However, there is an indication for their discrete, more than their 

continuous distribution, both across the caldera and through depth (Guglielminetti, 1986). 

The studied deposits are young and nearly coeval (<5000 years) with the altered volcanic basement deposits (i.e., Monte 10 

Olibano, Solfatara).  

The alteration zone locally presents high Ti, Ba, Au, As, Hg, Tl, S concentrations relative to the above parent basement 

lithology (Fig. 8).  

The zone also appears anomalous in terms of ammonium content. Therefore, we here adopt ammonium as a possible tracer, 

but we have no information yet about the various contributing sources for the N-species and the cycling of nitrogen at the local 15 

scale. The presence of NH4-bearing sulfates is particularly abundant at Pisciarelli. Those sulfates systematically form by drying 

water collected at the various pools of the area, in relation to the abundance of nitrogen species (0.2-1 g/l) in those waters 

(Martini et al., 1991; Celico, 1992; Valentino et al., 1999; Holloway and Dahlgren, 2002; Valentino and Stanzione, 2003; 

2004; Aiuppa et al., 2006). Actually, the NH4
+ content in the shallowest Phlegraean ground waters is generally low (<0.03 g/l; 

Martini et al., 1991; Celico, 1992; Valentino et al., 1999; Valentino and Stanzione, 2004; Aiuppa et al., 2006). Yet, Mather et 20 

al. (2004) measured a significant abundance of ammonium chloride particles/aerosols at the Solfatara crater. Some realgar 

encrustations sampled at BG and BN also associate with ClNH4 (Table S1; Fig. 3h,i). 

The concentration of some metals and metalloids requires sources different from the parent basement. Anthropogenic 

contributions are obviously possible (Alloway, 2012), e.g. when considering that NH4 is generally attributed to agricultural 

(i.e., fertilizer) and urban soils. However, Hg and As have been detected at the main fumaroles with similar concentrations 25 

today and in the last century (Ferrara et al. 1994; Bagnato et al., 2014). These fumaroles continuously emit H2S and CO2 

(Allard et al., 1991; Aiuppa et al., 2013; Chiodini et al., 2016) and are the preferred location of crystallization of native S and 

alunite. NH4
+ emissions are also present at Solfatara (Chiodini et al., 2010), although ammonium is of limited importance 

inside the crater waters (<0.001 g/l; Aiuppa et al. 2006) and crystallization of alum instead of NH4
+-sulfates has been obtained 

in the water from Solfatara pool. In agreement with these authors, the plausible source is the conventional geothermal reservoir. 30 

High concentrations (20-100 g/l) of ammonium are reported in the deeper (>500 m; Carlino et al., 2012) aquifers at the Mofete 

wells, located on the western side of the Campi Flegrei (Chiodini et al., 1988). Those deeper aquifers are located within a 

sequence of tuffs and marine sediments also drilled by the CF23 well (1000-1200 m depth; Piochi et al., 2014; 2015), i.e. 

nearby the solfataric area. 

In summary, we propose an environmental setting that merges all collected information (Fig. 11). Fluid outflows from discrete 35 

aquifers hosted in sediments – and bearing organic imprints – feed the Pisciarelli site giving its ammonium peculiarity. Our 

purpose does not exclude the possible biological contribution that has been ascertained in the studied sites (e.g., Ciniglia et al., 

2005; Glamoclija et al., 2004). However, marine strata and a volcano-clastic sequence intercepted by deep drillings (San Vito1, 

Mofete and CF23 wells; Rosi and Sbrana, 1987; Piochi et al., 2014) are considered as the key sediments for the NH4 species. 

An additional supply can originate from the swampy sediments encountered in shallowest boreholes (de Vita et al., 1999) 40 

located in the central sector of the caldera (Fig. 11), nearest to the study area. Results from cluster analysis of resistivity, P-

wave velocity and density parameters, from Pisciarelli across the Solfatara crater (Di Giuseppe et al., 2017) lithologically 

constrain the model section. These authors highlight a sudden upraise up to ca. 1500 m depth of buried rocks through a tectonic 
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structure just beneath Pisciarelli. The dislocated rocks are the fossiliferous marine and volcano-clastic sequences drilled across 

the caldera. The deep aquifer is represented by a confined body with a high electrical conductibility (logρ = 0.97 Ωm). At the 

deepest position in the model, we correlate thermo-metamorphic rocks with the brines characterized by logρ at 2.7 Ωm, Vp = 

3800 m/s and ∆σ -38.8kg/m3. These physical features are indicative for the occurrence of voids/fracturing and the migration 

of gases. Therefore, we infer a deep source of gases emitted at the surface, which likely also indicates the location of the heat 5 

source. 

Shallow and deeper aquifers are interconnected via a network of “communicating vessels” through a fault system, allowing 

deeper and shallower water to mix and being expelled at Pisciarelli. This justifies an apparent persistence of thermal springs 

around the Agnano Plain also in presence of the desiccating lake described by Ventriglia (1942). It also supports the depth of 

the water table, being at a higher topographic position in the Solfatara area in respect to the surroundings (Bruno et al., 2007). 10 

In the model, we further speculate that the acid-sulfate alteration zone at the Campi Flegrei is actually evidence of a paleo-

conduit. This is based on field observations showing that alteration deposits locally underlie the most recent eruptive units 

(e.g., Astroni) that are unaltered. Therefore, the texture of the mineral assemblage, the enrichment in some metals and the 

lithogeochemical parameters are relict of a “high-sulfidation system”. The evolutionary dynamics within the conduit and, in 

particular, the water overflows from the aquifers alternating with runoff processes, explains the contradictory mineral 15 

environments with superimposed intermediate and advanced argillic alteration. 

At present, a steam-heated (or low-sulfidation) environment (as derived by most isotope data on alunites; see previous section) 

is developing in relation to the presence of aquifers and their chemical compositions. This is in agreement with previous studies 

(e.g., Aiuppa et al., 2017; Piochi et al., 2015; Gresse et al., 2017). Following Hedenquist and Lowensten (1994), this is also in 

agreement with the shift in δ18O at constant δ2H values of the emitting fluids (Caliro et al., 2007). Based on the δ18O values of 20 

alunite, the recalculated environmental temperature is ≤ 200 °C (Fig. 8, inset a).   

Furthermore, the presence of NH4
+ is considered strictly connected to the surface environment and likely to organic/biological 

processes (Jaffe, 2000), which is consistent with S-isotope values of pyrite-H2S pairs, the heavier δ34S values suggesting 

microbial sulfur cycling and the supergene environment that is locally developing. 

5 Conclusions and Outlook  25 

The acid sulfate alteration zone at Pisciarelli and Solfatara is located in the sector of the Campi Flegrei caldera that was the 

most volcanically active area in the last 5 ka. The alteration zone includes discrete sub-zones with very constant mineralogy, 

temperature and chemistry, considering the studied time interval. Outgassing dynamics, weather conditions, and runoff are the 

most important factors affecting the generation of new mineral phases at the sub-mm- to dm- to m- scales. 

The new minerals include alunite, alunogen, native sulfur, pyrite, kaolinite and subordinately mascagnite. 30 

The limited areal extent of the alteration zone underlying the most recent unaltered volcanic units, its mineralization texture 

and style, the δ18O and δ34S values of S-bearing minerals, and the enrichment in Ti, Ba, Au, As, Hg and Tl, are attributed to 

the evolution of a paleo-conduit. Our mineralogical and isotopical results overlap with those in Valentino et al. (1999), 

favouring a stability in the hydrothermal dynamics over the past 20 years. The zone is anomalous in terms of the presence of 

NH4
+. These features result from the mixing between waters that overflow through a fault system intercepting discrete aquifers 35 

supplied by surface water and deep fluids. Most of the alunite forms above the water table at a temperature ≤ 200 °C. At 

present, the dominant steam-heated environment coexists with local supergenic conditions. 

Based on presently available data, several key aspects await further investigations. 

In particular, a detailed survey of the distribution of aquifers in the subsurface will foster our understanding of caldera dynamics 

and contributes to the debate existing between a “hydrothermal” (Moretti et al., 2017) vs. a “magmatic” (Cardellini et al., 40 

2017) unrest. Assessing the composition and spatial extent of aquifers - also including the contribution from rain fall - is crucial 
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in solving the non-magmatic role into processes at the surface. Soluble acid components (SO2, HCl and HF) sourced at depth 

are condensing in the shallower aquifer system (Valentino and Stanzione, 2003; Aiuppa et al., 2007; Caliro et al., 2007; Vaselli 

et al., 2011; Piochi et al., 2014; 2015; Chiodini et al., 2016). However, the ability to buffer these magmatic fluids clearly 

depends on the water availability in relation to the volume of fluid, with implications on the sourced magma volume(s) 

evolving/degassing at depth. On the other hand, the circulation of fluids in the subsurface, sourced from both the downward 5 

surface infiltration and the ascent of deep fluids, would contribute to the pressurization that is evident through shallow 

seismicity as previously suggested (Saccorotti et al., 2007; D’Auria et al., 2011; Di Luccio et al., 2015). Most important, 

knowing the water availability in the subsurface is crucial for evaluating the volcanic hazard in an area dominated by 

phreatomagmatic events, such as the Campi Flegrei caldera (Rosi and Sbrana, 1987; Di Vito et al., 1999).  

What causes the presence of NH4
+ is still rather elusive. Based on Moretti et al. (2017), it appears useful for evaluating the 10 

temperature-dependence of N2 vs. ammonia production and the relative role of hydrothermal vs. magmatic systems. We add 

the possible role of organic materials and bacteria, and atmospheric sources to the terrestrial cycle. Furthermore, ammonia 

NH3 is toxic (Fromm and Gillete, 1968) and this requires ascertaining its concentration level in an inhabited environment. 

Finally, the Pisciarelli site appears suitable for studies related to biota and the origin and evolution of life. Here, the water-

dominance, nitrogen richness, ≤ 200 °C temperatures and supergenic conditions are all considered important ingredients for 15 

the formation of organic substances and the ultimate source of organisms (Jaffe, 2000). Consequently, this site could become 

a natural laboratory for investigating the complex organic-inorganic interface/relations through multidisciplinary 

collaborations among mineralogists, geochemists, petrologists, volcanologists, and biologists. 

6 Appendix 

Appendix A 20 

XRDP and DRIFT-FTIR patterns were acquired at the Osservatorio Vesuviano (Istituto Nazionale di Geofisica e Vulcanologia, 

Naples, Italy). 

The XRDP instrument was a PANalytical X'Pert equipped with a high speed PIXcel detector (Mormone et al., 2014). The 

configuration includes Ni-filter, CuKα radiation, pyrolytic graphite crystal monochromator, 40 kV and 40 mA current, 3–70°, 

2θ range, 0.02° steps and 8 s/step. X'Pert HIGH Score Plus computer program and JCPDS PDF-2 database allowed the 25 

interpretation of diffraction patterns.   

DRIFT was mounted on a Nicolet 670 NexusTM both by ThermoFisher Scientific S.p.a.. The FTIR comprises a heated ceramic 

(Globar) source, a 670 Laser unit, a KBr beamsplitter, and an MCT detector, constantly purged from a high-pressure Nitrox 

dry air and CO2-trapping 280 generator by Domnick Hunter.  The OMNIC Data Collector 5.2© allows data collection and 

interpretation in the investigated range of 5000 - 400 cm-1 (resolution: <0.1 cm-1).  Data collection was conducted on KBr 30 

mixed with 5 – to – 10 % of sample by grounding in an agate mortar, following the background acquisition for the KBr powder. 

Additional acquisition on no diluted samples allowed checking for possible hygroscopic effects, obtaining similar results.  

The appearance, morphology and chemical composition of minerals were determined on selected samples prepared as opaque 

mounts coated by cord and rod graphite, by JEOL and ZEISS electron microscope (EDS-BSEM) facilities. The JEOL-JSM 

5310, equipped with a Link EDS and a Inca 4.08 software (CISAG Laboratory University of Napoli Federico II), has operating 35 

conditions of 15 kV accelerating voltage, 50–100 mA filament current, variable spot size and 50 s net acquisition time.  ZEISS 

instrument is a SIGMA field emission scanning electron microscopy (Osservatorio Vesuviano, department of Istituto 

Nazionale di Geofisica e Vulcanologia, Naples, Italy), equipped with XMAN micro-analysis system by Oxford, controlled by 

a SMARTSEM and AZTEC softwares. Operating conditions for SIGMA were 15 kV accelerating voltage, 50–100 mA 

filament current, 5-10 nm spot size and variable time acquisition time (several to tens of seconds).   40 
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Rock geochemistry (WRG) were carried out at Bureau Laboratories Ltd. (Vancouver, Canada). Major elements were analysed 

by Inductively Coupled Plasma Emission Spectrometer (ICP-ES) using LiBO2/Li2B4O7 fusion, minor and trace elements were 

determined by inductively coupled plasma-mass spectrometry (ICP-MS) using a four acid (HNO3-HClO4-HF-HCl) digestion. 

The uncertainty is generally <1% for major/minor oxides, <5–20% for trace elements. LECO was used for determining the C 

and S abundances. Loss on ignition (LOI) was calculated by weight loss after ignition at 1000°C. 5 

Sulfur and oxygen isotope measurements were performed directly on pure mineral separates without and with further chemical 

preparation in the stable isotope laboratory at the Institut für Geologie und Paläontologie (University of Münster).  Chemical 

preparation was different depending on sample type: i.e., sulfates+elemental S+sulfides, elemental S +sulfides, or muds.  

Oxidized S-bearing and multi-phase samples first required the extraction of sulfate by sample leaching in a 10% NaCl solution, 

filtration through a 0.45 micron cellulose acetate filter, and followed by the addition of 8.5% barium chloride solution to 10 

precipitate dissolved sulfate as barium sulfate for isotope measurements.  Elemental S and pyrite extraction was performed on 

sulfate-free powders. This extraction consisted of a wet chemical treatment (acidic chromous chloride solution at sub-boiling 

conditions) that liberates sulfur as hydrogen sulfide which will ultimately be precipitated as silver sulfide, ready for isotope 

measurements. Elemental sulphur was liberated from each sample via acetone leaching and subsequently converted to silver 

sulfide applying the acidic chromous chloride treatment (Canfield et al., 1986). Again, resulting hydrogen sulfide was 15 

precipitated as silver sulfide (Ag2S). For S-isotope measurements, mineral separates as well as silver sulphide and barium 

sulfate precipitates were homogenously mixed with vanadium pentaoxide in tin capsules and combusted in a Carlo Erba 

elemental analyzer interfaced to a ThermoFinnigan Delta Plus mass spectrometer (EAIRMS: Elemental Analyzer-Isotope 

Ratio Mass Spectrometry). Results are reported in the standard delta notation (δ34S) as per mil difference to the Vienna Canyon 

Diablo Troilite (VCDT) standard. Reproducibility as determined through replicate measurements was generally better than ± 20 

0.3 ‰.  Sulfates were also measured for O-isotopes by using a ThermoFinnigan TC/EA interfaced with a ThermoFinnigan 

Delta Plus XL. Results are reported in the standard delta notation (δ18O) as per mil difference to the Vienna Standard Mean 

Ocean Water (VSMOW) standard. Reproducibility as determined through replicate measurements was generally better than ± 

0.5 ‰. 

7 Supplement 25 

Three supplementary tables: 

 

Table S1 – List of samples, collection date, temperature and mineralogical associations as resulting by XRDP analyses and 

corroborated by FTIR and EDS-BSEM study. The sampling includes water spring sampled at Stufe di Nerone. In the 

temperature column: tc, thermo couple (see chapter 2.2 Sampling, sample preparation and analytical techniques), infr, infrared 30 

gun; infrared derived values are in red. In the mineralogy column: ?, for minerals to be validated; minerals in red are 

approximate attribution based on XRDP patterns. The orange cells evidence water samples. Selected XRDP traces are in Fig. 

S1. Further details in this supplement. 

 

Table S2 – Vibration modes and related tentative assignment of functional groups, and mineral attribution for selected samples 35 

by DRIFT-FTIR investigations. Alu = alunite, Clay = essentially illite, Masc = NH4 - bearing sulfates, am = amorphous, Kao 

= kaolinite, KAl = alum - (K). ?, uncertain attribution. Note: assignments and attributions are based on mineralogy derived by 

XRDP study and corroborated by EDS-BSEM analyses. Further details in this supplement. 
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Table S3 – Selected whole-rock geochemistry of multi-phases materials sampled at different locations (i.e., sample name as 

in Fig. 1) within the Pisciarelli and Solfatara areas and at different times. MDL indicates the detection limit for major, trace, 

C and S contents.  

 

Figure S1 – Selected XRDP traces of NH4- sulfates dominating the assemblage formed from drying the Pisciarelli water (a, b) 5 

and of various multiphase muds from Solfatara (c,e) and Pisciarelli (d,f). Each panel reports the sample name in Table S1. The 

muds show the large hump between 18 ° and 30 ° 2θ degree attributed to the amorphous phase and the signals from the 

dominant alunite, feldspars (except MS new 9/17) and other minor phases (sulfur, pyrite and clays; Table S1). The smaller 

panels evidence the reflection intensity in the most significant range useful to discriminate illite in d) and kaolinites in e). Some 

XRDP trace has a corresponding infrared spectrum in Fig. S2: the sample with mascagnite is the same of Fig. S2a, the Solfatara 10 

muds in c) produced the FT-IR spectra in Fig. S2b, the Pisciarelli mud MP 6_16 is in Fig. S2d, the samples in e) are the same 

of Fig. S2e. Abbreviations (c, f): S = Sulfur; Al = Alunite; Kfd =Alkali feldspar. Note: montmorillonite needs of validation by 

specific studies, as the very small signals (Fig. S2f). 

 

Figure S2 - FT-IR spectra of NH4 - sulfates (a), native sulfur (b) and various muds from Solfatara (c), Pisciarelli (d) and the 15 

new Solfatara hole (e). See Table S2 for vibrational modes and relative assignments. 
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Figure 1 – (a) The investigated acid sulfate areas (gray shaded) of Puteolis within the Campi Flegrei caldera (Italy): the 

Solfatara crater, Pisciarelli, Cinofilo, Antignana, Terme di Agnano. The map shows relevant structures: lava domes (dashed 

line), fault systems (point-dash lines), La Starza marine terrace, the Astroni explosive crater and the Agnano Plain. (b) 30 

Pisciarelli pool on June 2018; (c) new pool (hereafter New P) at Solfatara on September 2017. (d) the Solfatara crater with 

sampling sites, notably the Bocca Grande fumarole (hereafter BG) and La Fangaia mud pool, and the old thermal baths 

(hereafter Sst) as well. (e)  the Pisciarelli sampling sites, notably geiser vent and mud pool (hereafter G and L3, respectively), 

the later delineated by shaded lines defining the observed widening variations. 

 35 

Figure 2 – (a) Dendritic crystals of native sulphur growing on the alunite-dominate matrix; (b) native sulfur fibres that are 

typically detected in L60 and in several exhalative vents on PINT, PEXT and L20; (c) encrustations of alunite and alunogen 

at L1; (d) pyrite in the mud; (e) NH4-sulfates from evaporated L60 water; (f) NH4-sulfates from evaporated L3 water. All 

images were taken using a binocular microscope. Refer to Fig. 1a,d,e for listed sites. 

 40 

Figure 3 – BSEM image showing sample texture and occurrences of S-bearing phases identified by EDS and XRPD analyses 

at the Puteolis sulfate lands: (a) orthorhombic baryte (Ba) front of pentagonal pyrite (Py) from the Pisciarelli mud (L3); (b) 

irregular platy alunogene (Alu) oriented parallel to the fracture axis; (c) rhombic native sulfur (S) with bladed tschermigite 
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crystals (Ts); (d) acicular alunogene (Alu) crystals developed above early tabular alunogen species; (e) euhedral alunite grains 

(Al) showing resorbed surfaces and coexisting with tabular alunogen (Alu) and acicular gypsum (Gy) crystals; (f) massive 

alunite (Al) encrustation; (g) pseudo-cubic ammonium chloride (ClNH4) crystals within encrustation sampled at Bocca Grande 

(BG);  (h)  monoclinic realgar (Rlg) and ammonium chloride (ClNH4) individuals at Bocca Grande (BG); (i) grains coated by 

pyrite and massive letovicite crystals. Alu = alunogene; Al = alunite; Ba = barite; ClNH4 = ammonium chloride (salammoniac); 5 

Gy = gypsum; Ltv = letovicite; py = pyrite; Rlg = realgar; S = native S; Ts = tschermigite. Sample name as in Table S1. Refer 

to Fig. 1e for site location. 

 

Figure 4 – BSEM image of kaolinite platy crystals at the new pool of Solfatara (New P, Fig. 1c,d): The kaolinite plates have 

tendency to assembly (a) and associated with alunite (b). Kao = Kaolinite, Al – Alunite.   10 

 

Figure 5 -  Distribution of δ34S values for sulfides (a), native sulfur (b) and sulfates (c), and of δ18O values for sulfates at the 

different sampling sites arranged by sampling date. Results from cores collected in 1965, and 1971, 1984, 2013 and 2014 are 

compiled from the literature (i.e., Ref: Cortecci et al., 1978; Valentino et al., 1999; Valentino and Stanzione, 2003; 2004; 

Piochi et al., 2015). Sampling sites are shown in Fig. 1a,d,e. Note the values are plotted based on sample sites, from west to 15 

east. 

 

Figure 6 -  Distribution of δ34S values among coexisting sulfates, sulfides and native sulfur, organized on the basis of the 

sampling sites. Note: (i) the nearly similar values of sulfates and sulfides at Solfatara coherent with supergene setting; (ii) the 

higher δ 34S values in sulfides at Pisciarelli indicating a different, likely not biogenic (in that case sulfated must be heavy), 20 

process or stage; iii) a likely positive correlations between Solfatara sulfides and sulfates (panel a). 

 

Figure 7 -  Covariation of δ34S vs. δ18O values in sulfates, symbolized to distinguish the specific materials on the basis of 

sampling sites. Modern marine sulfate, meteoric water (out in the diagram), the δ18O values of local gas emissions and literature 

data (Ref) based on Cortecci et al. (1978), Allard et al. (1991), Valentino et al. (1999), Chiodini et al. (2000), Caliro et al. 25 

(2007), Chiodini et al. (2008) and Piochi et al. (2015). δ18O values of local outgassing is -2 to 0‰. Fields and processes based 

on Rye et al. (1992) and Rye (2005). Panel a) highlights Solfatara and Pisciarelli samples; shaded areas define the δ18O values 

we recalculated based on Rye et al. (1992) at the indicated temperature. 

 

Figure 8 -  Lithophile (a) and sidero-chalcophile (b) element concentrations normalized in respect to the average whole-rock 30 

composition of pristine volcanic rocks with an age < 5 ka (D’Antonio et al., 1999; Piochi et al., 2014), as those outcropping in 

the Puteolis sulfate areas. * in legend other dataset. 

 

Figure 9 – Crossplots of trace elements in solfataric samples.  Fields envelops the various genetic settings, following Ercan et 

al. (2016) and based on the (a) immobile and (b) and mobile elements sourced from K-feldspars (Ba, Sr, Ce, Y, La), in an 35 

initially alteration undersaturated geothermal solution. 

 

Figure 10 -  Measured vs. theoretical fractionation values. Theoretical values based on temperature measurements were 

calculated following Ohmoto and Rye (1979) and Rye et al. (1992). Fields for steam-heated (white) and supergene (gray) 

environments are from Rye et al. (1992): dashed envelop for Alunite-Pyrite (circle) or Alunite-H2S (rhombus) pairs, continuous 40 

envelop for Alunite-H2O. 
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Figure 11– Sketch of the acid-sulfate alteration zone at the Campi Flegrei caldera (Fig. 1a). Subsurface is constrained by 

borehole (deep from Rosi and Sbrana, 1987; Piochi et al., 2014 and shallow from de Vita et al., 1999) and geophysic (Di 

Giuseppe et al., 2017) information. The presence of NH4-rich aquifers correlate with their occurrence in marine sequences 

(Rosi and Sbrana, 1987; Piochi et al., 2014) at the Mofete wells (Chiodini et al., 1988). In the legend P-wave velocity, resistivity 

and density (with respect to 2.4 g/cm3) from Di Giuseppe et al. (2017); the geophysically explored area is in the dashed 5 

rectangle. BG = bocca grande (Fig. 1d); LF = La Fangaia mud pool (Fig. 1a,d). 

 

Table 1 – Main hydrothermal minerals detected by XRPD with related ideal chemical formula and sites of occurrence (name 

as in Fig. 1a,d,e). The complete set of minerals is in Table S1. Refer to the supplement for details. 

 10 

Table 2 – δ34S vs. δ18O values of sulfur-bearing minerals. Sample name as in Table 1 and S1; the muds are in italic. * in Fig. 

1; ‘from google earth. 

 

Table 3 – Summary of the mineralogical and isotopical features at the acid sulfate area following Rye et al. (1992); Hedenquist 

and Lowerstern (1994). *highest 34S and 18O during bacteriogenic reduction of sulfates with maximum fractionation in dry-15 

wet alternating conditions. ^ δ34S reflects the H2S/SO2 and temperature of fluid. 1 always present, 2 may be associated. 3 from 

Valentino and Stanzione (2003; 2004), Gresse et al. (2017). ‘halloysite is indicated in Montanaro et al. (2017) and included 

here for completeness. “Montmorillonite needs of specific validation (Supplement) and is reported considering its detection in 

the local subsurface (Rosi and Sbrana, 1987; Valentino and Stanzione, 2003; 2004). 
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Figures and Tables 

 

Figure 1 – (a) The investigated acid sulfate areas (gray shaded) of Puteolis within the Campi Flegrei caldera (Italy): the Solfatara crater, Pisciarelli, 

Cinofilo, Antignana, Terme di Agnano. The map shows relevant structures: lava domes (dashed line), fault systems (point-dash lines), La Starza 

marine terrace, the Astroni explosive crater and the Agnano Plain. (b) Pisciarelli pool on June 2018; (c) new pool (hereafter New P) at Solfatara on 5 

September 2017. (d) the Solfatara crater with sampling sites, notably the Bocca Grande fumarole (hereafter BG) and La Fangaia mud pool, and the 

old thermal baths (hereafter Sst) as well. (e)  the Pisciarelli sampling sites, notably geiser vent and mud pool (hereafter G and L3, respectively), the 

later delineated by shaded lines defining the observed widening variations. 
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Figure 2 – (a) Dendritic crystals of native sulphur growing on the alunite-dominate matrix; (b) native sulfur fibres that 

are typically detected in L60 and in several exhalative vents on PINT, PEXT and L20; (c) encrustations of alunite and 

alunogen at L1; (d) pyrite in the mud; (e) NH4-sulfates from evaporated L60 water; (f) NH4-sulfates from evaporated L3 

water. All images were taken using a binocular microscope. Refer to Fig. 1a,d,e for listed sites. 
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Figure 3 – BSEM image showing sample texture and occurrences of S-bearing phases identified by EDS and XRPD 

analyses at the Puteolis sulfate lands: (a) orthorhombic baryte (Ba) front of pentagonal pyrite (Py) from the Pisciarelli 

mud (L3); (b) irregular platy alunogene (Alu) oriented parallel to the fracture axis; (c) rhombic native sulfur (S) with 

bladed tschermigite crystals (Ts); (d) acicular alunogene (Alu) crystals developed above early tabular alunogen species; 

(e) euhedral alunite grains (Al) showing resorbed surfaces and coexisting with tabular alunogen (Alu) and acicular 

gypsum (Gy) crystals; (f) massive alunite (Al) encrustation; (g) pseudo-cubic ammonium chloride (ClNH4) crystals within 

encrustation sampled at Bocca Grande (BG);  (h)  monoclinic realgar (Rlg) and ammonium chloride (ClNH4) individuals 

at Bocca Grande (BG); (i) grains coated by pyrite and massive letovicite crystals. Alu = alunogene; Al = alunite; Ba = 

barite; ClNH4 = ammonium chloride (salammoniac); Gy = gypsum; Ltv = letovicite; py = pyrite; Rlg = realgar; S = native 

S; Ts = tschermigite. Sample name as in Table S1. Refer to Fig. 1e for site location. 
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Figure 4 – BSEM image of kaolinite platy crystals at the new pool of Solfatara (New P, Fig. 1c,d): The kaolinite plates 

have tendency to assembly (a) and associated with alunite (b). Kao = Kaolinite, Al – Alunite.   
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Figure 5 -  Distribution of δ34S values for sulfides (a), native sulfur (b) and sulfates (c), and of δ18O values for sulfates at the different sampling sites arranged by sampling date. 

Results from cores collected in 1965, and 1971, 1984, 2013 and 2014 are compiled from the literature (i.e., Ref: Cortecci et al., 1978; Valentino et al., 1999; Valentino and Stanzione, 

2003; 2004; Piochi et al., 2015). Sampling sites are shown in Fig. 1a,d,e. Note the values are plotted based on sample sites, from west to east. 
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Figure 6 -  Distribution of δ34S values among coexisting sulfates, sulfides and native sulfur, organized on the basis of the 

sampling sites. Note: (i) the nearly similar values of sulfates and sulfides at Solfatara coherent with supergene setting; (ii) 

the higher δ 34S values in sulfides at Pisciarelli indicating a different, likely not biogenic (in that case sulfated must be 

heavy), process or stage; iii) a likely positive correlations between Solfatara sulfides and sulfates (panel a). 
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Figure 7 -  Covariation of δ34S vs. δ18O values in sulfates, symbolized to distinguish the specific materials on the basis of 

sampling sites. Modern marine sulfate, meteoric water (out in the diagram), the δ18O values of local gas emissions and 

literature data (Ref) based on Cortecci et al. (1978), Allard et al. (1991), Valentino et al. (1999), Chiodini et al. (2000), 

Caliro et al. (2007), Chiodini et al. (2008) and Piochi et al. (2015). δ18O values of local outgassing is -2 to 0‰. Fields and 

processes based on Rye et al. (1992) and Rye (2005). Panel a) highlights Solfatara and Pisciarelli samples; shaded areas 

define the δ18O values we recalculated based on Rye et al. (1992) at the indicated temperature. 

Fields and processes based on Rye et al. (1992) and Rye (2005). Panel a) highlights Solfatara and Pisciarelli samples; 

shaded areas define the δ18O values we recalculated based on Rye et al. (1992) at the indicated temperature. 

 

 

 

 

Figure 8 -  Lithophile (a) and sidero-chalcophile (b) element concentrations normalized in respect to the average whole-

rock composition of pristine volcanic rocks with an age < 5 ka (D’Antonio et al., 1999; Piochi et al., 2014), as those 

outcropping in the Puteolis sulfate areas. * in legend other dataset. 
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Figure 9 – Crossplots of trace elements in solfataric samples.  Fields envelops the various genetic settings, following 

Ercan et al. (2016) and based on the (a) immobile and (b) and mobile elements sourced from K-feldspars (Ba, Sr, Ce, Y, 

La), in an initially alteration undersaturated geothermal solution. 
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Figure 10 -  Measured vs. theoretical fractionation values. Theoretical values based on temperature measurements were 

calculated following Ohmoto and Rye (1979) and Rye et al. (1992). Fields for steam-heated (white) and supergene (gray) 

environments are from Rye et al. (1992): dashed envelop for Alunite-Pyrite (circle) or Alunite-H2S (rhombus) pairs, 

continuous envelop for Alunite-H2O. 
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Figure 11– Sketch of the acid-sulfate alteration zone at the Campi Flegrei caldera (Fig. 1a). Subsurface is constrained by 

borehole (deep from Rosi and Sbrana, 1987; Piochi et al., 2014 and shallow from de Vita et al., 1999) and geophysic (Di 

Giuseppe et al., 2017) information. The presence of NH4-rich aquifers correlate with their occurrence in marine sequences 

(Rosi and Sbrana, 1987; Piochi et al., 2014) at the Mofete wells (Chiodini et al., 1988). In the legend P-wave velocity, 

resistivity and density (with respect to 2.4 g/cm3) from Di Giuseppe et al. (2017); the geophysically explored area is in 

the dashed rectangle. BG = bocca grande (Fig. 1d); LF = La Fangaia mud pool (Fig. 1a,d). 
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Table 1 – Main hydrothermal minerals detected by XRPD with related ideal chemical formula and sites of occurrence 

(name as in Fig. 1a,d,e). The complete set of minerals is in Table S1. Refer to the supplement for details. 

Phase Composition Location 

Alunite KAl3(SO4)2(OH)6 Ubiquitarius 

Alunogen Al2(SO4)3•17(H2O) L1, SSt, L30, CIN, L100, 

L3, L70, L60, G 

Alum-(K) KAl(SO4)2•12(H2O)   L1, L20, PP1 

Alum-(Na) NaAl(SO4)2•12(H2O)   L50, New P, L20 

Amarillite NaFe3+(SO4)2•6(H2O) L1 

Biotite K(Mg,Fe++)3[AlSi3O10(OH,F)2 MS, L3 

Chabazite (Ca0.5,Na,K)4[Al4Si8O24]•12H2O   L50, L30 

Clairite (NH4)2Fe3+
3(SO4)4(OH)3•3(H2O) G 

Coquimbite Fe+++
2(SO4)3•9(H2O) L50,  L3, L1 

Gypsum CaSO4•2(H2O) L50, L20, L3, L60, CIN, 

L100, SSt  

Halotrichite Fe++Al2(SO4)4•22(H2O) G 

Hexahydrite Mg(SO4)•6(H2O) CIN 

Hematite Fe2O3 PINT, L3 

Kaolinite  Al2Si2O5(OH)4 New P,  PINT, L19, L20 

Koktaite (NH4)2Ca(SO4)2•(H2O) L3, G 

Illite (K,H3O)(Al,Mg,Fe)2(Si,Al)4O10[(OH)2,(H2O)]  widespread at Pisciarelli 

(L20, L3, L50, G), CIN, 

rare at Solfatara 

Jarosite KFe+++
3(SO4)2(OH)6 L50, G, CIN, L30 

Letovicite (NH4)3H(SO4)2 L3, L1, L20 

Marialite Na4Al3Si9O24Cl L3 

Mascagnite (NH4)2SO4 L1, G, L20, L3, L60, New 

P, BG 

Melanterite Fe++SO4•7(H2O) L3 

Mereiterite K2Fe2+(SO4)2•4(H2O) L1 

Minamiite Na0.6Ca0.3K0.1Al3(SO4)2(OH)6 New P 

Mohrite (NH4)2Fe2
+(SO4)2•6(H2O) L3 

Montmorillonite (Na,Ca)0,3(Al,Mg)2Si4O10(OH)2•n(H2O)   L50, L3, L20, CIN, SSt, G 

Natroalunite NaAl3(SO4)2(OH)6 L60 

Periclase MgO SSt 

Pickeringite MgAl2(SO4)4•22(H2O) L1 

Picropharmacolite Ca4Mg(AsO3OH)2(AsO4)2•11(H2O) CIN 

Pyrite FeS2 L3, BG, ASA, L1, G, New 

P, MS, L20, viadotto 

Realgar As4S4 BG, BN 

Rostite AlSO4(OH,F)•5(H2O) SSt,  

Salammoniac (NH4)Cl BG, BN 

Sulfur S0, S8, beta Ubiquitarius, 

subordinated in L3 

Silica essentially as opal and 

quartz 

SiO2 SSt, L1, BG, CIN,  L20, 

L50 

Tamarugite NaAl(SO4)2•6(H2O) L20, CIN 

Tschermigite (NH4)Al(SO4)2•12(H2O) L20, L3, L60, L70, G 

Vermiculite (Mg,Fe++,Al)3(Al,Si)4O10(OH)2•4(H2O) L3 

Voltaite K2Fe2+
5Fe3+

3Al(SO4)12•18(H2O) L1vent, L100, G 

Zaherite Al12(SO4)5(OH)26•20(H2O) G, CIN, L100 
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Table 2 – δ34S vs. δ18O values of sulfur-bearing minerals. Sample name as in Table 1 and S1; the muds are in italic. * in 

Fig. 1; ‘from google earth. 

 

Type Sample δ34S 

[‰] 

st. 

dev. 

δ18O 

[‰] 

st. 

dev. 

Date Location* T 

(°C) 

Height 

(m)' 

Pisciarelli          

Sulfate L1d1 al/11-15 -1.78 0.06 11.93 0.23 1.11.15 L1 - 67 

 L1d2 white/11-15 -2.08 0.05 15.05 0.44 1.11.15 L1 - 67 

 MP/11-15 -1.93 0.01 10.33 0.00 1.11.15 L3 - 66 

 P PP1/11-15 -0.30 0.21 17.25 0.08 1.11.15 G 92 68 

 P PPb/11-15 -1.27 0.13 17.85 0.41 1.11.15 G 50.2 69 

 P L50 yellow -0.22 0.15 20.88 0.16 1.11.15 L50 - 84 

 P L50 white -0.40 0.02 21.54 0.27 1.11.15 L50 - 84 

 P L50 red -1.31 0.02 8.59 0.40 1.11.15 L50 - 84 

 L1v PGw/6-16 -2.78 0.07 13.09 0.43 1.6.16 L50 - 66.5 

 L1 Pwh/6-16 -2.13 0.00 5.72 0.30 1.6.16 L1 56.9 67 

 L1 Psalt/6-16 -2.12 0.13 5.95 0.19 1.6.16 L1 67 67 

 L1 Pblack/6-16 -0.41 0.04 9.52 0.21 1.6.16 L1 - 67 

 MP/6-16 -0.87 0.01 4.60 0.05 1.6.16 L3 70 66 

 GnvW bl/6-16 0.44 0.01 6.96 0.51 1.6.16 L19 74.7 68 

 Gnv W be/6-16 -0.31 0.23 12.44 0.22 1.6.16 L19 74.7 69 

 PL20 v1/6-16 -0.59 0.06 14.04 0.15 1.6.16 L20 90 71 

 Ps 7-16 -1.00 0.08 8.37 0.06 1.7.16 L3 - 66 

 PL 20V1 7-16 -0.53 0.02 14.26 0.03 1.7.16 L20 - 71 

 MP 29.6.17 -0.09 0.03 6.82 0.2 29.6.17 L3 - 66 

 L1 beije 18.9.17 -0.89 0.02 22.14 0.51 18.9.17 L1 - 67 

 MP L3 boccetta 1.9.17 -0.54 0.02 9.87 0.5 1.9.17 L3 49.5 66 

 MP 18.1.18 0.26 0.06 13.21 0.2 18.1.18 L3 77.1 66 

Sulfide MP/11-15 -0.08 0.05   1.11.15 L3 - 66 

 P PP1/11-15 -0.69 0.07   1.11.15 G 92 68 

 L1 Pblack/6-16 -3.00 0.07   1.6.16 L1 - 67 

 MP/6-16 -0.43 0.13   1.6.16 L3 70 66 

 GnvW bl/6-16 -0.48 0.10   1.6.16 L19 74.7 68 

 Ps 7-16 -0.34 0.01   1.7.16 L3 - 66 

 MP 29.6.17 0.02 0.02   29.6.17 L3 - 66 

 MP L3 boccetta 1.9.17 -0.49 0.02   1.9.17 L3 49.5 66 

 MP 18.1.18 -0.67 0.04   18.1.18 L3 77.1 66 

Sulfur L1 Pv/6-16 0.80 0.14   1.6.16 L1 56.9 66.5 

 Geiser mud -2.26 0.04   1.6.16 G - 68 

 PINT S 18.9.17 -1.71 0.06   18.9.17 PINT - 74 

 L1 S 18.9.17 -0.06 0.00   18.9.17 L1 - 67 

 L 20 camino 18.9.17 -2.50 0.02   18.9.17 L20 - 76 

 L1 vent S 14.12.17 -2.67 0.01   14.12.17 L1 94.7 67 

 PINT S 18.1.18 -0.91 0.12   18.1.18 PINT 93.4 74 

 L1 vent S 18.1.18 -2.68 0.00   18.1.18 L1 94 67 

 L1 vent parete S 18.1.18 -0.99 0.05   18.1.18 L1 89.9 67.5 

 L19 Geiser S 18.1.18 -2.30 0.01   18.1.18 L19 95.8 70 

Solfatara          

Sulfate SStb/11-15 -0.74 0.02 23.93 0.68 1.11.15 SSt - 100 

 SSt wr/11-15 1.61 0.11 31.33 0.47 1.11.15 SSt - 100 

 SStgc/11-15 0.91 nd   1.11.15 SSt - 100 

 SMO S/6-16 2.09 nd   1.6.16 SMO 87 109 

 SMO ASA/6-16 -2.09 0.10 8.18 0.11 1.6.16 SMO - 109 

 ASA m/16-6 -0.63 0.09 8.75 0.12 1.6.16 ASA - 124 

 ASA h/16-6 -0.67 0.05 6.62 0.25 1.6.16 ASA - 124 

 SSt sub/16-6 -1.52 0.11 9.59 0.30 1.6.16 SSt 92 101 

 PS/6-16 0.31 0.23 7.43 0.24 1.6.16 LaFangaia 52.9 94 
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 MS 29.6.17 0.80 0.00 18.58 0.3 29.6.17 LaFangaia - 94 

 MS new 29.06.17 -0.65 0.13 9.31 0.4 29.6.17 new pool - 94 

 MS new 1.9.17 -0.22 0.07 10.56 0.7 1.9.17 new pool 70 94 

 MS2  1.9.17 0.62 0.09 7.84 0.1 1.9.17 LaFangaia 49.5 94 

Sulfide SSt wr/11-15 -0.38 0.08   1.11.15 SSt - 100 

 SMO ASA/6-16 -2.92 0.08   1.6.16 SMO - 109 

 ASA m/16-6 -2.65 0.08   1.6.16 ASA - 124 

 ASA h/16-6 -1.96 0.09   1.6.16 ASA - 124 

 PS/6-16 -0.11 0.07   1.6.16 LaFangaia - 94 

 MS 29.6.17 0.24 0.11   29.6.17 LaFangaia - 94 

 MS new 29.06.17 -1.63 0.02   29.6.17 new pool - 94 

 MS new 1.9.17 -1.16 0.10   1.9.17 new pool 70 94 

 MS1  1.9.17 0.38 0.00   1.9.17 LaFangaia 49.5 94 

 MS2  1.9.17 0.49 0.00   1.9.17 LaFangaia 49.5 94 

Sulfur BG pg/11-15 -3.95 0.03   1.11.15 BG 93.1 103 

 SStgf/11-15 -2.23 0.21   1.11.15 SSt - 100 

  -2.13 0.28   1.11.15 SSt - 100 

  -2.40 0.20   1.11.15 SSt - 100 

 SStgc/11-15 -3.34 0.38   1.11.15 SSt - 100 

  -1.52 0.00   1.11.15 SSt - 100 

  -2.43 0.09   1.11.15 SSt - 100 

 BG S/6-16 -4.42 0.29   1.6.16 BG 93.2 103 

  -3.89 0.28   1.6.16 BG 93.2 103 

  -4.21 0.21   1.6.16 BG 93.2 103 

 up BG S/6-16 -3.84 0.06   1.6.16 BUCO 93.2 106 

  -2.78 0.11   1.6.16 BUCO 93.2 106 

  -3.46 0.15   1.6.16 BUCO 93.2 106 

 SMO S/6-16 0.29 0.28   1.6.16 SMO 87 109 

  0.44 0.24   1.6.16 SMO 87 109 

  0.22 0.04   1.6.16 SMO 87 109 

 SSt Sf/16-6 -2.08 0.17   1.6.16 SSt - 124 

  -2.31 0.06   1.6.16 SSt - 124 

  -2.42 0.01   1.6.16 SSt - 124 
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Table 3 – Summary of the mineralogical and isotopical features at the acid sulfate area following Rye et al. (1992); 

Hedenquist and Lowerstern (1994). *highest 34S and 18O during bacteriogenic reduction of sulfates with maximum 

fractionation in dry-wet alternating conditions. ^ δ34S reflects the H2S/SO2 and temperature of fluid. 1 always present, 2 

may be associated. 3 from Valentino and Stanzione (2003; 2004), Gresse et al. (2017). ‘halloysite is indicated in 

Montanaro et al. (2017) and included here for completeness. “Montmorillonite needs of specific validation (Supplement) 

and is reported considering its detection in the local subsurface (Rosi and Sbrana, 1987; Valentino and Stanzione, 2003; 

2004). 
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(Fig. 11) 
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Fumarole T - 100-to-160°C >200°C >200°C Locally >160°C Generally ≤110°C 

Metal - Au1 
(Ag, Pb-Zn) 2 

(Au, Ag, Cu)1 
(Hg, W, Bi, Pb, Zn)2 

 Locally As, Hg 
(Fig. 9) 

Hg (Fig. 9) 

H2S/SO4 - - 4±2 <1 <1 1 or higher 

S state - Low, S-2 High, S+4 High, S+4 <1 1 or higher 
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Abstract. Active fumarolic solfataric zones represent important structures of dormant volcanoes, but unlike emitted fluids, 

their mineralizations are omitted in the usual monitoring activity. This is the case of the Campi Flegrei caldera in Italy, among 10 

the most hazardous and best-monitored explosive volcanoes in the world, where the landscape of Puteolis is characterized by 

an acid sulfate alteration that is active at least since Roman time. This paper provides temperature, mineralogical, textural, 

compositional and stable isotope data for those solfataric terrains sampled at the crater and Pisciarelli slope of the Solfatara 

volcano between 2013 and 2019. Temperatures vary between 40 ° and 95 °C. Minerals include alunite with grain sizes 

generally larger than 20 µm, alunogen, native sulfur, well-ordered kaolinite, and, common at Pisciarelli, pyrite, illite and NH4-15 

sulfates. Sulfate terrains have higher contents of Ti, Ba, Au, As, Hg and Tl relative to their parent substrate. The Pisciarelli 

slope is anomalous in terms of the presence of NH4. δ34S values for sulfides and native S range between -3.00 and 0.49 ‰ and 

from -4.42 to 0.80 ‰, respectively. Sulfates show δ 34S and δ 18O values in the range of -3.35 to 3.80 ‰ and between 0.3 and 

31.33 ‰, respectively. The style of mineralization and the stable isotope geochemistry do produce complex and not completely 

consistent classifications and genetic constraints. We merge our data with volcanological information, data from exploration 20 

drillings and geophysical results. With the conceptual model, we suggest a series of shallow and deep aquifers interconnected 

like “communicating vessels” through a main fault system that downthrows Solfatara with respect to Pisciarelli.  Fluid outflow 

from the different discrete aquifers hosted in sediments – and possibly bearing organic imprints – is the main dataset that 

allows determination of the steam-heated environment with a supergene setting superimposed. Supergene conditions and high-

sulfidation relicts, together with the narrow sulfate alteration zone buried under the youngest volcanic deposits, point to the 25 

existence of an evolving paleo-conduit. The data will contribute to monitor and evaluate the volcanic hazards. 

 

1 Introduction 

Active solfataric landscapes are among the most peculiar and fascinating environments on the Earth that may be considered as 

planetary analogues (e.g., White and Hedenquist, 1990; Rye et al., 1992; Lowe et al. 1993; Zillig et al., 1996; Ciniglia et al., 30 

2005; Rye, 2005; Glamoclija et al., 2004; Sgavetti et al., 2008).  Their peculiarity arises from the stringent interaction between 

inorganic (mineral assemblages and geochemistry) and organic (biota) substances under extreme ambient conditions (pH, 

temperature, salinity, oxygen deficiency, etc.) associated with endogenous degassing (i.e., H2O, CO2, CH4, H2S, SO2, HCl, 

HF, etc.) and hot water fluid circulation (hydrothermal/geothermal systems) on dormant volcanoes.  They allow investigating 

a variety of processes in the field of geology (i.e., magma and volcano dynamics), biology (i.e., physiological adaptation to 35 

environmental stresses and the origin of the life), medicine, astrology and archaeology (i.e., thermal bath and antibacterial 

applications), with possible future medical and biotechnological applications.   

The Solfatara volcano (Campi Flegrei, CF, Italy; Fig. 1a) is perhaps the most famous and hazardous geothermal solfataric 

setting in the world (e.g., Rittmann, 1950; Rosi and Sbrana, 1987; De Vivo et al., 1989; Barberi et al., 1991; Piochi et al., 2014) 
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with exploration since Greek times up to Medieval age (e.g., Photos-Jones et al., 2016).  The generation of new minerals 

(herein after referred to as neogenesis) received limited discussion in the recent literature (Cortecci et al., 1978; Valentino et 

al., 1999; Piochi et al., 2015; Russo et al., 2017). In contrast, several studies relate to bradyseism phenomena addressing the 

various aspects of seismicity, ground deformation and outgassing (e.g., Corrado et al., 1976; Barberi et al., 1984; Chiodini et 

al., 2016; Cardellini et al., 2017; Moretti et al., 2017), life in these environments (e.g., Zillig et al., 1996; Glamoclija et al., 5 

2004; Sgavetti et al., 2008), and a continuous interest into the use of hydrothermal products as thermal bath and for medical 

care (e.g., Photos-Jones et al., 2016; Giacomelli and Scandone, 2012).   

This paper focuses on the solfataric mineral assemblages updating our previous research (Piochi et al., 2015) and presenting 

the result of our progressing work on the CF solfataric volcano. Results derive from temperature determinations contextually 

to sampling, and investigations by Optical Microscope (OM), X-Ray Powder Diffraction (XRDP), Electron Microscopy (EDS-10 

BSEM), Diffuse Fourier Infrared Spectroscopy (DRIFT-FTIR), whole-rock geochemistry (WRG) and stable isotope 

geochemistry (SIG) of sulphur and oxygen. By merging new and published information (Celico, 1986; Guglielminetti, 1987; 

Rosi and Sbrana, 1987; Chiodini et al., 1988; Celico et al., 1992; Aiuppa et al., 2006; Caliro et al., 2007; Piochi et al., 2014; 

Di Giuseppe et al., 2017; Moretti et al., 2017), we reflect on the significance of the sulfate alteration zone and related 

volcanological implications. 15 

2 Background 

2.1 Geological setting 

The Solfatara volcano (Fig. 1a,b,c) exhibits impressive and powerful hydrothermal activities with hot fumaroles, thermal 

springs, mud pools and diffuse outgassing (Allard et al., 1991; Valentino et al., 1999; Chiodini et al., 2001; Valentino and 

Stanzione, 2003; 2004; Chiodini et al., 2010; Piochi et al., 2015; Cardellini et al., 2017; and references therein). The 20 

hydrothermalism intensely altered the faulted volcano slopes (Rosi and Sbrana, 1987) and the solfataric landscapes (Fig. 1a-

e) have locally replaced the original pyroclastic sequences (e.g., Agnano Monte Spina, Astroni and Solfatara tephra) and lavas 

(Monte Olibano, Solfatara cryptodome) younger than 5 ka (e.g., Di Vito et al., 1999; Piochi et al., 2005).   

The study area is located at Puteolis, the area of maximum ground uplift (in excess of 3 m) and seismicity (more than 16,000 

low-magnitude earthquakes), activated during the unrest episodes in 1970 ÷ 1972 (Corrado et al., 1976) and in 1982 ÷ 1984, 25 

namely “bradyseisms” (Barberi et al., 1984), that are slowly on-going (e.g., Bodnar et al., 2007; Chiodini et al., 2016; Moretti 

et al., 2017). 

The solfataric area has been exploited for centuries for its alum occurrences (Photos-Jones et al., 2016 and references therein). 

Intense mining during Roman and Medieval times modified their original context (Photos-Jones et al., 2016): the Pisciarelli 

gorge-valley was a quarry, while caving activity exposed the eastern (the Monte Olibano inner wall) and northern flanks of 30 

the Solfatara volcano, and rework deposits in the crater floor. 

Old pictures and descriptions (Sicardi, 1959) suggest that the most evident manifestations along the SE and NE rim remain 

roughly the same: 1) the main Bocca Grande fumarole (Fig. 1d) with various exhalative branches northward along the 

morphological heights; 2) the minor fumarolic vents around the old thermal baths (Sst site; Fig. 1d) and 3) the mud pools (Fig. 

1b,c,d,e). Also, the thermal spring in Pisciarelli (Fig. 1a,b,e), known as the “Bulla”, i.e., the bubbling one, was known at least 35 

since Medieval time (Photos-Jones et al., 2016). Moreover, the same descriptions indicate the presence of a lake in the Agnano 

Plain (Fig. 1a). According to Ventriglia (1942), the lake extended up to the slope base of the Solfatara volcano and had a 

maximum depth of 15 m; drillings recovered related sediments (de Vita et al., 1999). Ventriglia (1942) also indicated high 

temperatures in the lake preventing fish from living. Today, the area shows several mud pools and thermal springs, while some 

(“de Pisis” and “Sprudel” springs in the Terme of Agnano; Fig. 1a) disappeared. Yet, high temperatures can be still detected.  40 
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At present, ground waters nearby Solfatara are rich in Cl- and SO4
- (Aiuppa et al., 2006). Temperatures at the fumaroles exceed 

160 °C (e.g., Cardellini et al., 2017; Gresse et al., 2017), in agreement (or locally lower respect) with measurements reported 

by Sicardi (1959) in the range of 141-215 °C at Bocca Grande and of 99-110 °C at other sites, between 1921 and 1951. 

Pisciarelli waters exhibited temperatures mostly around 95 °C with minimum values of 84 °C between 1978 and 1999 (Celico, 

1992; Valentino and Stanzione, 2004). A geyser-like vent at Pisciarelli has a temperature of up to 116 °C (Chiodini et al., 5 

2016). Only, the mud pool (“La Fangaia”; Fig. 1d) was hotter in the past with values up to 100 °C (Sicardi, 1959). This author 

describes a mud vent in the southeastern area of the crater that is no longer present.  

Emitted gases include H2S, CH4, N2, H2, CO, in addition to the dominant water vapour and the secondary abundance of CO2 

with reaching a flux of at least 1500 tonnes/day and a maximum value of 3000 tonnes/day (Allard et al., 1991; Aiuppa et al., 

2013; Chiodini et al., 2016). Previous studies further report a Hg flux between 0.9 and 4.5 g/day (Ferrara et al. 1994; Bagnato 10 

et al., 2014), a detectable (yet very low) abundance of SO2 (Ferrara et al. 1994; Aiuppa et al., 2013), the occurrence of light 

hydrocarbons (Capaccioni and Mangani, 2001), and the presence of As and Hg (17 - 5200 µl and 1 - 30 µl, respectively; 

Valentino and Stanzione, 2003) in the pools and waters. High NH4 concentrations are described for waters at Pisciarelli 

(Martini et al., 1991; Celico et al., 1992; Valentino and Stanzione, 2003), but understanding of the nitrogen source and cycling 

at the Phlegraean area, showing a unique isotopic composition with δ15N at 6.3 ± 0.3 % (Chiodini et al., 2010), remains elusive. 15 

δ18O and δ2H of emitted fluids are in the range -5 to -0.5 ‰ and between -30 and -20 ‰, respectively (Caliro et al., 2007). The 

average δ34S value of H2S gases is -0.3 ± 0.3‰ (Allard et al., 1991). δ34S values determined for shallow subsurface sulfur-

bearing minerals range between −5.5 and 0.0‰, while the deep-seated pyrite shows values from 3.3 to 7.4‰ (Piochi et al., 

2015). δ18O values for alunite vary from 4.2 to 7.0‰ (Piochi et al., 2015). The pH of water pools and soils is neutral to acid, 

with pH values <2 around the pools (Valentino and Stanzione, 2003; 2004; Gresse et al., 2017). 20 

 

2.2 Sampling, sample preparation and analytical techniques 

Sampling was conducted within the Solfatara crater and in the Pisciarelli and Cinofilo areas (Fig. 1a,d,e) with additional sites 

compared to Piochi et al. (2015); the crater floor, except the pool, was intentionally avoided because the reworking in historical 

time (Photos-Jones et al., 2016) and thus a possible anthropogenic contamination. This study enlarges the dataset on the acid 25 

sulfate alteration zone of the Phlegraean area, in order to understand the quiescent dynamics of the volcano. Similar 

observations and data are also available for Ischia island (Piochi et al., 2019) that belongs to the Phlegraean Volcanic District 

(Piochi et al., 2005). 

Our new collection is, therefore, widening the observation period for the Puteolis sulfate area that now spans between January 

2013 and April 2019 (Table S1).  Selection of sampling sites (herein after referred using the acronyms in Fig. 1d,e) is based 30 

on variable macroscopic features including outgassing “magnitude”, tectonics and fracturing evidences, mineral occurrences 

and exhalative vents locations, as visible in the field and described in the literature (Allard et al., 1991; Ferrara et al. 1994; 

Valentino and Stanzione, 2003; Aiuppa et al., 2013; Bagnato et al., 2014; Chiodini et al., 2016). A thermo-couple digital probe 

51/52 II by Fluke with precision of ± 0.3 °C was used to measure temperature in the field, contextually to sample collection. 

Samples were air-dried for several days to one week. Subsequently, these were studied under the Optical Microscope (OM) in 35 

order to assess their general mineral assemblages. Where possible, the various S-bearing phases (or enriched portions) were 

handpicked for subsequent isotopic analyses. Figures 2 and 3 show the appearance of most representative samples.  

Both bulk-rocks and separated phases were pulverized in an agate mortar for X-Ray Powder Diffraction (XRDP), Diffuse 

Fourier Infrared Spectroscopy (DRIFT-FT-IR) and Whole-Rock Geochemistry (WRG). Scansion Electron Microscope 

(BSEM), Electron Diffuse System (EDS) and Stable Isotope Geochemistry (SIG) used aliquots of bulk materials and isolated 40 

mineral phases. Appendix A provides detailed information about analytical techniques. Details on XRDP and DRIT-FT-IR are 

in the Supplement (S1) together with representative patterns (Fig. S1, S2). 
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3 Results 

3.1 Mineral data by OM, XRDP, BSEM, DRIFT-FT-IR results 

New and previously published (Piochi et al., 2015) mineralogical data for the Solfatara-Pisciarelli area (Table S1, Table 1) 

provide information on a yearly to monthly basis since 2013 along with measurements of temperature. The mineral assemblage 

dataset derives from XRDP analyses (Supplement) corroborated by textural and chemical information obtained at the EDS-5 

BSEM. DRIFT-FT-IR spectra determined on representative samples, display characteristic bands of minerals they include (see 

below and Supplement), and help in material characterization. 

Through time, K, Al sulphates (alunite) and native S (Fig. 3a,b,c,d,e,f) are the main and widely distributed secondary mineral 

phases associated to surface degassing. Alunogen and pyrite (Fig. 3a,b) are second in abundance. All these mineral phases can 

form single phase concretion or coexist in up to mm-sized grains. Alunogen often – if not generally – associates with alunite 10 

and occurs in two distinct morphologies (Fig. 3a,d,e). Most commonly, it consists of fibrous tangled masses of white crystals. 

Where coexisting, alunogen fibres grow from the edges of alunite crystals (e.g., sample L100 zucc in Table 1; Fig. 3d). This 

appearance seems usual along the fault scarp, north of the pool (L1 site, Fig. 1e). Secondly, alunogen has thin, platy crystal 

habits (Fig. 3b,d,e). Many of these crystal groups show rounded to corroded edges suggesting alteration after crystallization 

(Fig. 3e). Dendritic and/or sometimes bi-pyramidal crystallites (Figs 2a,3a,3c) are ubiquitous habits for native sulfur (typically 15 

sampled at L1, SMO, some places along ASA, Sst in Fig. 1d and Table 1) that mostly cluster within the alunitic surface and 

the rock voids (Fig. 2c). Along the fracture, S may form a yellow ductile patina (L1 vent, BG, BN in Fig. 1d,e and Table 1). 

Locally (PINT, PEXT, L19, L20, L60 in Fig. 1e and Table 1), S produces encrustations with pale yellowish fibrous-like texture 

(Fig. 2b). 

Pyrite (Fig. 2d) occurs as smaller (≤mm-sized) rhombododecahedric grains (Fig. 3a) or as fine-grained mineral uniformly 20 

coating other components (i.e., feldspars, lava, etc.; Figs 2d,3i). It has a particular high abundance within the Pisciarelli muds 

(Figs 1e,2d), i.e., both within the main pool where it could reach cm-sizes and in the geyser (G site in Fig. 1e) emission. The 

blackish colour of the muds should also derive from the pyrite abundance. Pyrite also occurs around the degassing areas. Barite 

can be further detected at Pisciarelli. 

Clays have a low relative abundance in the studied samples (Supplement). They are mostly kaolinite and illite (Table S1, Table 25 

1), as derived by the XRDP traces (see Fig. S1c,d,e) and supported by EDS-BSEM and DRIFT-FT-IR study (see below; Fig. 

S2 and Supplement). In particular, the infrared technique is suitable to detect the kaolinite and the related bands in the OH-

region, in agreement with Madejová et al. (2002). Illite usually occurs in the muds at Pisciarelli (from geyser and around other 

emissive vents) and occasionally at Solfatara (Table 1, S1). Kaolinite characterizes the newly formed pool within the Solfatara 

crater and occurs locally at Pisciarelli (Fig. 1c,d,e and Table 1). Figure 4 illustrates the platy particles of kaolinite with typical 30 

widths of < 10 μm that assembly in packages and associated with alunite crystals.   

Other efflorescent phases (Fig. 3c,i) occur randomly. Rarely, Al, Fe sulphates (halotrichite) have been identified nearby the 

Pisciarelli geyser as crust-like aggregates. Na and NH4 sulphates induce the pale orange painting on efflorescences and 

encrustations, and generally of soils. Sulphates, bearing Na, Ca, Mg are least common, and represent a typical occurrence in 

the new Solfatara mud.  Alum has been detected at Pisciarelli. 35 

Air-dried evaporation of water sampled at the Pisciarelli pool resulted in the precipitation of mascagnite, tschermigite, and 

letovicite (Fig. 2e,f, S1a and Table S1, Table 1). Figure 3i shows the euhedral tschermingite that coexists with native S in the 

sample L30 eff-blocchetto (Table S1, Table 1). Instead, evaporation of Solfatara mud pool water produced alum, as 

documented already in the Medieval and Roman times (Photo-Jones et al., 2016). Water from the Stufe di Nerone (west side 

not shown in figure) crystallized halite. 40 

Realgar (detected at the EDS-BSEM and not listed in Table S1) and ammonium chloride (Fig. 3g,h) appears as peculiar 

precipitates at the Bocca Grande and Bocca Nuova sites (Fig. 1d). 
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Accessory minerals include hematite, quartz, and, possibly, Fe-hydroxides and phlogopite. 

Furthermore, amorphous phases are largely present at various sites (Table S1, Table 1), particularly, in muds and in the samples 

from Bocca Grande and L1 vent (Fig. 1d,e). The widespread amorphous phases could correspond to material from the both 

original volcanic rock and alteration. General assumptions (Piochi et al., 2015; Montanaro et al., 2017) indicate amorphous 

silica, although it merits a more rigorous examination. 5 

Finally, Fe-oxide, and fresh to variably altered feldspar and biotite are the most common primary volcanic mineral phases. 

DRIFT-FTIR spectra collected on selected samples (Fig. S2) produce data consistent with XRDP results (Fig. S1) and 

furthermore allow useful details on structure and eventual minor phases or impurities (Supplement). Table S2 lists the relevant 

vibration modes of spectra and the proposed mineral assignments. The crystals formed by evaporation of water in the Pisciarelli 

pool (Fig. S2a; Supplement) show a sharp band at 1422-1411 cm-1 that is in the region of the ν4(NH4
+), as described in the 10 

literature (e.g., Weis and Ewing, 1996; Parafiniuk and Kruszewky, 2010) and in agreement with XRDP mineral data (Table 

S1; Fig S1).  

Native S from two different samples (PINT S tozzo 18/10/17 and PINT S 18/1/18 in Table 1; Fig. S2b) is evident in the DRIFT-

FTIR spectra at < 2950 cm-1, with the strongest bands at 843 and 468 cm-1 that coincide with those of sulfur in the both the 

USGS (see Sulfur GDS94; Clark et al., 2007) and RRUFF (http://rruff.info/) databases. The spectra differ in the OH stretching 15 

region, likely indicating the occurrence of impurities, although water absorption by the KBr solution can be a further 

possibility. 

As expected (Clark et al., 1990), alunite can be determined through its major band at 3483 cm-1 coupled with a smaller one at 

3513 cm-1 in the OH-stretching region (Fig. S2c,d,e). Accordingly, the spectra show a small band at ca. 4605 cm-1 from the 

Al-OH combination mode that should be ascribed to alunite. Furthermore, it is possible recognizing the doublet mode at 1088 20 

÷ 1099 cm-1 and at 1028 ÷ 1025 cm-1 (Toumi and Tlili, 2008) and the mode at 3971÷3978 cm-1 (see USGS database; Clark et 

al., 2007) from alunite.  However, in the OH-stretching region there are some other vibrations. Based on Madejovà and 

Komadel (2001), illite is likely producing the vibration at 3622 ÷ 3629 cm-1. 

Notably, the DRIF-FTIR spectra of muds from Pisciarelli (Fig. S2d) show a vibration in the region of 1430 cm-1. Because the 

muds were separated from water, as before, the band can be related to the NH4 (Weis and Ewing, 1996; Parafiniuk and 25 

Kruszewski, 2010) in tschermigite, mascagnite and letovicite (Table S1, Fig. S2, Fig. S1, Supplement).  

The new pool at Solfatara characterizes for peculiar DRIFT-FTIR spectra in the OH-stretching region (Fig. S2e; note the inset) 

due the presence of kaolinite, in addition to alunite, and minor (or occasional) S, feldspar, pyrite and amorphous phases. 

Specifically, these are i) alunite (Clark et al., 1990) with a major band at 3483 cm-1 coupled with a smaller one at 3510 cm-1, 

and ii) kaolinite (Madejova, 2003) with two minor bands at 3667 and 3651 cm-1 between two major vibrational modes at 3695 30 

and 3620 cm-1. Accordingly, it is possible recognizing the OH-deformation at ca. 915 and 938 cm-1, the Si-O stretch at 1008 

and 1026 cm-1, and the Al-OH modes at ca. 4605 cm-1 and 4523 cm-1 from kaolinite.  

The four vibration modes of kaolinite in Fig. S2e point for a well-ordered mineral structure (Madejová, 2003; Fitos et al., 

2015), giving a strong support to the XRDP results (Fig. S1e, Supplement), also in multiphase samples (Madejová, et al., 

2002). 35 

3.2 Stable isotopes of sulfur and oxygen (SGI) 

A new set of δ34S and δ18O values for sulfur-bearing minerals is listed in Table 2. δ34S values of sulfides and native S range 

between -3.00 and 0.49 ‰ and between -4.42 and 0.80 ‰, respectively. Sulfates are characterized by δ34S and δ18O values 

ranging from -3.35 to 3.80 and from 0.3 to 31.33‰, respectively. Temporal variations in δ34S for different sulfur-bearing 

phases at the different locations reveal a dominantly negative signature, regardless of their mineralogy, with native S showing 40 

the most negative values (Fig. 5). 
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The new sulfur isotope results are generally comparable with literature values for Campi Flegrei (Piochi et al., 2015), although 

studies earlier than 2000 (Cortecci et al., 1978; Valentino et al., 1999) also show positive δ34S values (Fig. 5a,b). In comparison 

to previous studies: 

1) our new S-isotope data for Pisciarelli include few positive values (Fig. 5b,c). 

2) the new O isotope values for sulfate are the highest obtained until now (Fig. 5d). To note, the muds generally have the least 5 

heavy oxygen isotopes, except samples from 2013 - 2014 for which O-isotope determinations are lacking. The diagram also 

indicates a lowering in δ34S for neoformed minerals reported later than 2000. 

3) the sulfides at Pisciarelli show δ34S values mostly at 0 ‰ (Fig. 6).  

4) the different sites display a homogeneous range in δ34S (Fig. 5a,b,c); however, the variability for the ASA and L1 sites 

reflects different sample heights along slope (Fig. 1d) and wall (Fig. 1e), respectively. 10 

5) a likely appearance of a positive correlation between S isotope results for pyrite and for sulfate phases coexisting at Solfatara, 

with two from the 1994 data outside the trend (Fig. 6a). 

6) new isotope data for sulfate reveal a difference compared to studies older than 1990 and the most recent one (Fig. 7). 

In addition, the δ18O values for sulfates at Pisciarelli show a slight tendency to increase with topographic elevation at the 

sampling site. Specifically, the highest values generally occur at Solfatara that is at > 96 m asl while Pisciarelli lies at 66 - 74 15 

m asl. 

3.3 Content of major and trace elements (WRG) 

Table S3 reports the whole-rock geochemical compositions of selected samples.  As expected, samples are highly hydrated 

and sulfur-rich, due the OH-group and/or S in the crystalline network (see ideal formula in Table 1), and/or the presence of 

native S in the analysed sample. LOI can be up to 80 wt% (sample L20 camino 18.9.17), although most commonly at 20-30 20 

wt%, and the S content is up to more than 50 wt%. Carbon is generally low (< 1.25 wt%), and always < wt 22 %. Notably, the 

SiO2 content is highly variable. Depending on the sample mineralogy, it can be as high as 70-80 wt%. MnO is always < 0.1 

wt.%. 

With respect to the local volcanic rock substrate (Table S3; Fig. 8a), some lithophile elements (Si, Al, P, Sc, Ti, V, Zr, Ba, Yb, 

Th, Hf) are comparable or depleted (for examples, Be at < 1-5 ppm vs > 4 ppm, Ga < 23.8 ppm, Rb < 95.6 ppm, Y < 8.1 ppm).  25 

Depletion concerns with Na, Mg, K, Ca, Rb, Eu, U content. Only Ba displays a significant level of enrichment reaching very 

high values up to thousands of ppm. Cs shows concentrations of up to tens of ppm. Siderophiles and chalcophiles ratios (Fig. 

8b) mostly lie at 1 or slightly above, with depletions for Fe, Zn, Ga, and enrichments for S, Au, As, Tl, Hg (Table S3). Sb can 

be higher than the primary rock composition.  

 30 

4 Discussion  

4.1 Environmental sub-zones: stationary phenomena and runoff processes 

Throughout the years, the various Solfatara and Pisciarelli sampling sites display a nearly constant mineral alteration 

assemblage (Table 1). Commonly, the mineral neogenesis variably develops on sub-mm- to dm- to m- scales, in relation to the 

outgassing dynamics, runoff, weather conditions, outcropping substrate, and anthropogenic activity. 35 

However, the various sites further display reproducible rock geochemistry and stable isotope compositions at the timescale of 

survey, and with respect to oldest data (e.g., Valentino et al., 1999) as well; they can be considered reference points for future 

investigations. 

Based on the presented dataset, we propose the existence of major alteration sub-zones, in which some (minor/peculiar) mineral 

phases appear or disappear, in response to changing physical-chemical boundary conditions mainly associated to weather 40 
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circumstances, i.e., mostly humidity and water abundance. These sub-zones are discriminated by their dominant and repetitive 

mineralogy, rock chemistry, and isotopic compositions, and characterized by temperature variations in a narrow range. Such 

a constancy is revealed when comparing results reported by Sicardi (1959) (see Geological setting at 2.1 section) with the 

present results, corroborating the existence of “stationary” sub-zones that are presented in the following. The only exception 

is the mud pool in the crater.   5 

The Pisciarelli and Solfatara pools (Fig. 1d,e) are the two major and distinct sub-zones. They display persistent differences in 

dynamics, temperature and mud (solute plus water) mineralogy. The main pool at Pisciarelli shows vigorous boiling (Fig. 

1b,e), with temperatures ranging from 63.9 to 94.3 °C (Tables S1 and 2) and a relative dominance of water vapour. The mud 

is typically grey in colour, mostly ash to sand up to mm-sized grains, with generally rounded/smoothed shapes as a function 

of the boiling vigour and material supply from the nearby slopes. On the other hand, the main Solfatara pool is characterized 10 

by degassing with a temperature at around 49 °C (Tables S1 and 2). The mud is beige and fine grained, always with a fetid 

odour. We recurrently detected an enrichment in pyrite, illite and feldspar at Pisciarelli and in native sulfur at Solfatara. The 

latter is enriched in As, Hg, Nb, W, Zr, Sb and depleted in Sr, Ba, Co compared to the original deposits (Fig. 8). Sulfides and 

sulfates display nearly similar δ34S values at Solfatara, whereas they are different at the Pisciarelli mud pool (Fig. 6a, inset). 

The DRIFT-FTIR spectra of muds from Pisciarelli, in contrast to those from Solfatara, always gave the vibration at 1430 cm-15 

1 related to the NH4 (see section 3.1). Notably, the La Fangaia mud pool (Fig. 1d) is likely cooling as Sicardi (1959) reported 

up 100 °C, several tens of degrees higher than at the present (Tables S1 and 2). A slight cooling is discernible when comparing 

our data (Table S1) with those in the literature (Martini et al., 1991; Celico et al., 1992; Valentino and Stanzione, 2003). In 

contrast, the Pisciarelli area should be hotter, although only by a few degrees Celsius (Tables S1 and 2) if compared with 

increasing temperature values at the geyser-vent (Chiodini et al., 2016). 20 

The PINT-PEXT sub-zone (Fig. 1e) - an isolated morphological height – is composed of an alunitic-rich low-cohesive reddish 

terrain with a temperature around 95 °C, typically comprising kaolinite (Tables S1 and 2). The kaolinite is easily discriminated 

also by DRIFT-FTIR spectra (not shown) that, in agreement with XRDP traces, point for a well-ordered structure. This terrain 

bears variably sized (up to few dm) clasts and is subject to slumping and sinking. 

A hole up to 2-3 m deep represents a distinct sub-zone that we emphasize because it opened 180 m North from the main pool 25 

within the crater in May 2017, by surface collapse. A grey viscously boiling mud fills the hole (Fig. 1c,d), with a minimum 

temperature of 70 °C; a temperature of 91 °C was measured in April 2019. The mud is dominated by alunite with subordinate 

native sulfur, showing vague similarity to Solfatara mud (Table S1), although its grey colour and the occasional pyrite are 

reminiscent of the Pisciarelli mud. However, kaolinite is the main clay mineral in the new pool (Fig. S1e; Fig. S2e, note the 

inset). Mud geochemistry reveals peculiarly high concentrations of Sr, Ga, Co, Th, V, REE, Sb (Fig. 9).  30 

Finally, a rather broad sub-zone includes the other various sampling sites that are characterized by encrustations of alunite 

with a well-defined, although relatively large, range of δ34S values between ca. -4 and 1 ‰ (Tables S1,2; Fig. 5c). These 

occurrences reflect the nearby presence of vapour degassing. We suspect that those at the ASA, M. Olibano and SSt sampling 

sites along the slopes of the Solfatara crater (Fig. 1a,d) are ascribable to long-lived encrustations; further investigations are 

useful to ascertain this suspect. The minor fumarolic vents around the old baths (Sst site) seem unchanged in respect to the 35 

description by Sicardi (1959), particularly showing the occurrence of native S and a comparable temperature at around 95 °C. 

These show variable bulk-rock geochemical compositions.  

Widespread alunite formation reflects the potassium and feldspar-rich rock substrate on which they develop (see Piochi et al., 

2014 and references therein). 

Vapour effluents around the various geysers/vents at Pisciarelli are the most important factors affecting the mineral neogenesis 40 

at the alunite-dominated sub-zones. Pisciarelli is a decametres-deep incision on the NE Solfatara slope and the degassing vents 

are constrained in a gorge-like morphology. This setting favours the stagnation of the hydrothermal steam that impregnates 

the rock substratum and supplies elements to the formation of a variety of Na and NH4 sulphates. We detected high abundance 
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of those phases around the pool as desiccation during the summer season. The NH4
+ ions were present in solution and, possibly, 

as droplets in the humid air, as revealed by experimental desiccation tests of the water. Aerosol particles from inside and 

nearby the Solfatara crater that bear NH4
+ (and Cl-, possibly in the form of NH4Cl) as major ion (Mather et al., 2004), as well 

as the NH4Cl inside the BG and BN orange-yellow encrustations (Fig. 3h,i), furthermore support the widespread presence of 

ammonium species. Notably, N2 is emitted at the main intra-crater fumarole of Bocca Grande (see Chiodini et al., 2010). 5 

DRIFT-FTIR and XRDP patterns (Fig. S2d, S1a,d), however, point to the presence of NH4 in both the mud and water pools at 

Pisciarelli, but not at Solfatara (except for BG and BN). Alum – (K) has also been found in relation to the wet conditions at 

Pisciarelli. 

Vapour emissions outflow and the conditions of hydrothermal steam stagnation are dependent on atmospheric pressure and 

wind conditions.  10 

So that, it is likely the meteoric weather the main cause for appearance to disappearance (and vice versa) of some phases.  

This is also particularly evident for the PINT, PEXT, L19, L20 (Fig. 1e) and the SMO, ASA, SSt (Fig. 1d) sub-zones that may 

typically present bipyramid and/or fine dendritic sulfur crystallites (Fig. 2a). Their crystallization seems to be favoured by 

relatively strong exhalations and porous terrain (PINT, PEXT, L19, L20; Fig. 1e) or conditions where gases remain briefly 

trapped (SMO, some places along ASA, Sst; Fig. 1d). Respective conditions also prevail in close proximity (< dm scales) to 15 

the main fumaroles (L1 vent, BG, BN; Fig. 1d), where sulfur forms a cream-like patina reflecting the condensing gas flow 

along the host fractures and fissures.  

However, native S disappears during run off and we have macroscopically tested at several places that re-crystallization needs 

one-to-two months, if not longer (i.e., sample L20 camino; Fig. 1e). 

Furthermore, periods of intense rainfall determine the timing areal extent and depth of the mud pools, as well as the generation 20 

of secondary mud vents and the erosion in Pisciarelli and its periodic water puddle. Sicardi (1959) already noted the occurrence 

of mud vents and black mud pools following rainy periods. Notably, pools at Pisciarelli are supported by anthropogenic 

embankment. 

Meteoric and surface waters can dilute the aggressive endogenous fluids determining alteration degree conditions low enough 

for the generation of iIllite, or other clays (Pirajno, 2008) at Pisciarelli. Further studies need to be performed in order to better 25 

characterize clays as they can bear information useful to further constrain the hydrothermal setting.    

Al, Fe sulphates (halotrichite) have been rarely found nearby the Pisciarelli geyser (see G in Fig. 1e; Tables 1,S1). 

The distribution of sulfates appears irregular, and this should be an object of future investigations. 

4.2 Classification of alteration and genetic environments: the contradictory data 

The style of mineralization (Arribas, 1995; Sillitoe, 1993; Pirajno, 2008; Ercan et al.; 2016) and the stable isotope results (Rye 30 

et al., 1992) allow classification of alteration and differentiation of genetic environments. Table 3 summarizes characteristic 

mineralogical, lithological and isotopic features of these environments, in comparison to observations made at the study sites. 

Several contrasting interpretations can result from the data. 

Alunite plus kaolinite form in steam-heated environments at 100 to 160 °C where fumarolic vapour condenses above the 

boiling zone of nearly neutral-pH, H2S-rich fluids representing a low sulfidation environment.  35 

Nevertheless, alunite shows grain sizes in the range of 50 to 100 µm (Fig. 3a,e,f), unlike the finest (<20 µm) ones detected in 

high-temperature (>40-50 °C) steam-heated (Simón et al., 2005) or supergene (Arribas, 1995) environments. Those coarser 

sizes usually occur in low-temperature steam-heated (and hypogene, as well) environments (Hedenquist et al., 2000), or could 

directly crystallize from a SO2-rich magmatic vapour that rapidly ascent through fractures (namely high sulfidation setting; 

Rye et al., 1992; Stoffregen and Alpers, 1992). The occurrence of kaolinite and alunite at several Solfatara and Pisciarelli sub-40 

zones (particularly, new pool and PINT, Table 1) fits with the high sulfidation environment; in fact, the two phases usually 

coexist in the advanced argillic alteration zones proxy to ascent plumes (e.g., Pirajno, 2008). The evidence of K-feldspar 
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replacement by alunite (Piochi et al., 2015), the disseminated pyrite and the presence of native S at Pisciarelli apparently 

support the classification as high sulfidation - magmatic hydrothermal environment (Rye et al., 1992). Nevertheless, 

illites/montmorillonites are most common in intermediate argillic alteration zones (Pirajno, 2008) and their widespread 

occurrence in the various studied sites, as well as in the local subsurface (Valentino and Stanzione, 2003; 2004), is among the 

results that contrasts this high sulfidation environment. Indeed, sampling temperatures are higher than 40 °C (Tables 2 and S1) 5 

and SO2 is rare or absent (Aiuppa et al., 2013) at Campi Flegrei. Also, the lack (or rare detection) of lower temperatures (< 40 

°C), disordered polymorphs (i.e., halloysite) point to limited supergene alteration. 

Only, the alunite coexisting with kaolinite in the new hole pool exhibits the finest grain size. Accordingly, the XRDP and 

DRIFT-FTIR analyses of CF samples point to slightly ordered kaolinite forms that usually occur at temperatures < 150 °C in 

epithermal systems (Sillitoe, 1993), but could also represent a metastable form in hotter settings (Zotov et al., 1998). In this 10 

later case, the new pool sub-zone with kaolinite and alunite can represent local, well-circumscribed advanced argillic alteration 

condition indicative of a proxy plume.  

However, when considering litho-geochemical parameters, schematic diagrams further produce contrasting visions. For 

example, following Ercan et al. (2016), the clay-bearing muds can be ascribed to variable supergene to hypogene alteration 

field in the binary diagram of immobile Zr vs. TiO2 (Fig. 9a). They also have high (above 1,000 ppm) Ba+Sr and low (<200 15 

ppm) Ce+Y+La concentrations (Fig. 9b).  

The stable isotope geochemistry of minerals supports an interpretation of steam-heated to supergene environments (Fig. 7). S-

isotope equilibrium occurs between sulfides and sulfates, with reliable re-calculated temperatures in high-sulfidation 

environments (Arribas, 1986). In contrast, this equilibrium cannot be accounted for at Campi Flegrei and any reliable 

temperatures result from the S-isotope fractionation between sulfates and H2S. In fact, δ34S values of alunite and pyrite roughly 20 

overlap. Instead, sulfur-H2S and sulfides-H2S at the sampling temperature reflect equilibrium S-isotope fractionation: the 

theoretical δ34S value of dissolved H2S fluid is between -3.84 and -0.84 ‰ (Allard et al., 1991). This also implies that the 

sulfate altered rocks are not magmatic hydrothermal in origin, in agreement with the lack of typical mineral phases that show 

a high oxidation state of S (SO2-rich, high-sulfidation according to Henley and Ellis, 1983). Based on Rye et al. (1992), SO2 

disproportionation results in the formation of 34S-enriched H2SO4 and 34S-depleted H2S. In addition, the intense Al-leaching 25 

in a high sulfidation system is not typical for the Campi Flegrei setting (Fig. 8; Table 3). 

Actually, Campi Flegrei lacks the occurrence of enargite and luzonite, both diagnostic for high-sulfidation environments. 

Instead, it shows minor occurrences of realgar (AsS) as well as cinnabar (HgS) (Tables 1, S1), and also orpiment has been 

described (Russo et al., 2017). 

Significantly lower δ34S values (< 15 ‰) for alunite can derive from: (i) the light sulfur isotopic composition of H2S during 30 

boiling (steam-heated or low-sulfidation setting), (ii) δ34S of sulfides (supergene) or (iii) the bulk sulfur isotope composition 

of magmatic steam (Rye et al., 1992). The first possibility could partly account for the isotopic composition of alunite-pyrite 

and alunite-H2O pairs (Fig. 10), although contrasting with conclusions based on texture, mineral assemblage and bulk-rock 

geochemistry (Table 3). The presence of kaolinite in the subsurface, under an alunitic cover and the occurrence of argillic 

alteration at depth suggest a vertical zonation at the Solfatara crater and, following Rye et al. (1992), a steam heated setting. 35 

Furthermore, δ34S values for the pyrite-H2S pairs further support a supergene setting (Fig. 10). 

Finally, we are not able to directly identify any microbial sulphur cycling, although FT-IR and rock geochemistry corroborate 

the absence or limited biota contribution. The analysed samples do not exhibit bands attributable to C=H ligands (Supplement) 

and the carbon content is <1.25 wt% (most common < 0.2 wt%; Table S3). Yet, some higher δ 34S and δ 18O values for sulfates 

could be indicative of microbial sulfur cycling, particularly considering the dry-wet alternating conditions. 40 
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4.3 Merging information and unravelling the setting 

Merging all available information, it appears that observations concerning the both an apparent “stationarity” sub-zones’ and 

a seemingly contradictory classification environment reflect the evolving conditions that have followed the last magma 

intrusion and eruption and that probably are overlapping through time. 

The solfataric alteration zone has a strongly limited extent within the central sector of the Campi Flegrei caldera. It coincides 5 

with the area of eruptive vents (e.g., Mt. Olibano, Accademia, Solfatara; Fig. 1a) and uplift of the most recent period of 

volcanism (Di Vito et al., 1999).  The zone appears to be limited under the later Fossa Lupara and Astroni vents, while 

outgassing and thermal aquifers occur within the caldera. However, there is an indication for their discrete, more than their 

continuous distribution, both across the caldera and through depth (Guglielminetti, 1986). 

The studied deposits are young and nearly coeval (<5000 years) with the altered volcanic basement deposits (i.e., Monte 10 

Olibano, Solfatara).  

The alteration zone locally presents high Ti, Ba, Au, As, Hg, Tl, S concentrations relative to the above parent basement 

lithology (Fig. 8).  

The zone also appears anomalous in terms of ammonium content. Therefore, we here adopt ammonium as a possible tracer, 

but we have no information yet about the various contributing sources for the N-species and the cycling of nitrogen at the local 15 

scale. The presence of NH4-bearing sulfates is particularly abundant at Pisciarelli. Those sulfates systematically form by drying 

water collected at the various pools of the area, in relation to the abundance of nitrogen species (0.2-1 g/l) in those waters 

(Martini et al., 1991; Celico, 1992; Valentino et al., 1999; Holloway and Dahlgren, 2002; Valentino and Stanzione, 2003; 

2004; Aiuppa et al., 2006). Actually, the NH4
+ content in the shallowest Phlegraean ground waters is generally low (<0.03 g/l; 

Martini et al., 1991; Celico, 1992; Valentino et al., 1999; Valentino and Stanzione, 2004; Aiuppa et al., 2006). Yet, Mather et 20 

al. (2004) measured a significant abundance of ammonium chloride particles/aerosols at the Solfatara crater. Some realgar 

encrustations sampled at BG and BN also associate with ClNH4 (Table S1; Fig. 3h,i). 

The concentration of some metals and metalloids requires sources different from the parent basement. Anthropogenic 

contributions are obviously possible (Alloway, 2012), e.g. when considering that NH4 is generally attributed to agricultural 

(i.e., fertilizer) and urban soils. However, Hg and As have been detected at the main fumaroles with similar concentrations 25 

today and in the last century (Ferrara et al. 1994; Bagnato et al., 2014). These fumaroles continuously emit H2S and CO2 

(Allard et al., 1991; Aiuppa et al., 2013; Chiodini et al., 2016) and are the preferred location of crystallization of native S and 

alunite. NH4
+ emissions are also present at Solfatara (Chiodini et al., 2010), although ammonium is of limited importance 

inside the crater waters (<0.001 g/l; Aiuppa et al. 2006) and crystallization of alum instead of NH4
+-sulfates has been obtained 

in the water from Solfatara pool. In agreement with these authors, the plausible source is the conventional geothermal reservoir. 30 

High concentrations (20-100 g/l) of ammonium are reported in the deeper (>500 m; Carlino et al., 2012) aquifers at the Mofete 

wells, located on the western side of the Campi Flegrei (Chiodini et al., 1988). Those deeper aquifers are located within a 

sequence of tuffs and marine sediments also drilled by the CF23 well (1000-1200 m depth; Piochi et al., 2014; 2015), i.e. 

nearby the solfataric area. 

In summary, we propose an environmental setting that merges all collected information (Fig. 11). Fluid outflows from discrete 35 

aquifers hosted in sediments – and bearing organic imprints – feed the Pisciarelli site giving its ammonium peculiarity. Our 

purpose does not exclude the possible biological contribution that has been ascertained in the studied sites (e.g., Ciniglia et al., 

2005; Glamoclija et al., 2004). However, marine strata and a volcano-clastic sequence intercepted by deep drillings (San Vito1, 

Mofete and CF23 wells; Rosi and Sbrana, 1987; Piochi et al., 2014) are considered as the key sediments for the NH4 species. 

An additional supply can originate from the swampy sediments encountered in shallowest boreholes (de Vita et al., 1999) 40 

located in the central sector of the caldera (Fig. 11), nearest to the study area. Results from cluster analysis of resistivity, P-

wave velocity and density parameters, from Pisciarelli across the Solfatara crater (Di Giuseppe et al., 2017) lithologically 

constrain the model section. These authors highlight a sudden upraise up to ca. 1500 m depth of buried rocks through a tectonic 
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structure just beneath Pisciarelli. The dislocated rocks are the fossiliferous marine and volcano-clastic sequences drilled across 

the caldera. The deep aquifer is represented by a confined body with a high electrical conductibility (logρ = 0.97 Ωm). At the 

deepest position in the model, we correlate thermo-metamorphic rocks with the brines characterized by logρ at 2.7 Ωm, Vp = 

3800 m/s and ∆σ -38.8kg/m3. These physical features are indicative for the occurrence of voids/fracturing and the migration 

of gases. Therefore, we infer a deep source of gases emitted at the surface, which likely also indicates the location of the heat 5 

source. 

Shallow and deeper aquifers are interconnected via a network of “communicating vessels” through a fault system, allowing 

deeper and shallower water to mix and being expelled at Pisciarelli. This justifies an apparent persistence of thermal springs 

around the Agnano Plain also in presence of the desiccating lake described by Ventriglia (1942). It also supports the depth of 

the water table, being at a higher topographic position in the Solfatara area in respect to the surroundings (Bruno et al., 2007). 10 

In the model, we further speculate that the acid-sulfate alteration zone at the Campi Flegrei is actually evidence of a paleo-

conduit. This is based on field observations showing that alteration deposits locally underlie the most recent eruptive units 

(e.g., Astroni) that are unaltered. Therefore, the texture of the mineral assemblage, the enrichment in some metals and the 

lithogeochemical parameters are relict of a “high-sulfidation system”. The evolutionary dynamics within the conduit and, in 

particular, the water overflows from the aquifers alternating with runoff processes, explains the contradictory mineral 15 

environments with superimposed intermediate and advanced argillic alteration. 

At present, a steam-heated (or low-sulfidation) environment (as derived by most isotope data on alunites; see previous section) 

is developing in relation to the presence of aquifers and their chemical compositions. This is in agreement with previous studies 

(e.g., Aiuppa et al., 2017; Piochi et al., 2015; Gresse et al., 2017). Following Hedenquist and Lowensten (1994), this is also in 

agreement with the shift in δ18O at constant δ2H values of the emitting fluids (Caliro et al., 2007). Based on the δ18O values of 20 

alunite, the recalculated environmental temperature is ≤ 200 °C (Fig. 8, inset a).   

Furthermore, the presence of NH4
+ is considered strictly connected to the surface environment and likely to organic/biological 

processes (Jaffe, 2000), which is consistent with S-isotope values of pyrite-H2S pairs, the heavier δ34S values suggesting 

microbial sulfur cycling and the supergene environment that is locally developing. 

5 Conclusions and Outlook  25 

The acid sulfate alteration zone at Pisciarelli and Solfatara is located in the sector of the Campi Flegrei caldera that was the 

most volcanically active area in the last 5 ka. The alteration zone includes discrete sub-zones with very constant mineralogy, 

temperature and chemistry, considering the studied time interval. Outgassing dynamics, weather conditions, and runoff are the 

most important factors affecting the generation of new mineral phases at the sub-mm- to dm- to m- scales. 

The new minerals include alunite, alunogen, native sulfur, pyrite, kaolinite and subordinately mascagnite. 30 

The limited areal extent of the alteration zone underlying the most recent unaltered volcanic units, its mineralization texture 

and style, the δ18O and δ34S values of S-bearing minerals, and the enrichment in Ti, Ba, Au, As, Hg and Tl, are attributed to 

the evolution of a paleo-conduit. Our mineralogical and isotopical results overlap with those in Valentino et al. (1999), 

favouring a stability in the hydrothermal dynamics over the past 20 years. The zone is anomalous in terms of the presence of 

NH4
+. These features result from the mixing between waters that overflow through a fault system intercepting discrete aquifers 35 

supplied by surface water and deep fluids. Most of the alunite forms above the water table at a temperature ≤ 200 °C. At 

present, the dominant steam-heated environment coexists with local supergenic conditions. 

Based on presently available data, several key aspects await further investigations. 

In particular, a detailed survey of the distribution of aquifers in the subsurface will foster our understanding of caldera dynamics 

and contributes to the debate existing between a “hydrothermal” (Moretti et al., 2017) vs. a “magmatic” (Cardellini et al., 40 

2017) unrest. Assessing the composition and spatial extent of aquifers - also including the contribution from rain fall - is crucial 
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in solving the non-magmatic role into processes at the surface. Soluble acid components (SO2, HCl and HF) sourced at depth 

are condensing in the shallower aquifer system (Valentino and Stanzione, 2003; Aiuppa et al., 2007; Caliro et al., 2007; Vaselli 

et al., 2011; Piochi et al., 2014; 2015; Chiodini et al., 2016). However, the ability to buffer these magmatic fluids clearly 

depends on the water availability in relation to the volume of fluid, with implications on the sourced magma volume(s) 

evolving/degassing at depth. On the other hand, the circulation of fluids in the subsurface, sourced from both the downward 5 

surface infiltration and the ascent of deep fluids, would contribute to the pressurization that is evident through shallow 

seismicity as previously suggested (Saccorotti et al., 2007; D’Auria et al., 2011; Di Luccio et al., 2015). Most important, 

knowing the water availability in the subsurface is crucial for evaluating the volcanic hazard in an area dominated by 

phreatomagmatic events, such as the Campi Flegrei caldera (Rosi and Sbrana, 1987; Di Vito et al., 1999).  

What causes the presence of NH4
+ is still rather elusive. Based on Moretti et al. (2017), it appears useful for evaluating the 10 

temperature-dependence of N2 vs. ammonia production and the relative role of hydrothermal vs. magmatic systems. We add 

the possible role of organic materials and bacteria, and atmospheric sources to the terrestrial cycle. Furthermore, ammonia 

NH3 is toxic (Fromm and Gillete, 1968) and this requires ascertaining its concentration level in an inhabited environment. 

Finally, the Pisciarelli site appears suitable for studies related to biota and the origin and evolution of life. Here, the water-

dominance, nitrogen richness, ≤ 200 °C temperatures and supergenic conditions are all considered important ingredients for 15 

the formation of organic substances and the ultimate source of organisms (Jaffe, 2000). Consequently, this site could become 

a natural laboratory for investigating the complex organic-inorganic interface/relations through multidisciplinary 

collaborations among mineralogists, geochemists, petrologists, volcanologists, and biologists. 

6 Appendix 

Appendix A 20 

XRDP and DRIFT-FTIR patterns were acquired at the Osservatorio Vesuviano (Istituto Nazionale di Geofisica e Vulcanologia, 

Naples, Italy). 

The XRDP instrument was a PANalytical X'Pert equipped with a high speed PIXcel detector (Mormone et al., 2014). The 

configuration includes Ni-filter, CuKα radiation, pyrolytic graphite crystal monochromator, 40 kV and 40 mA current, 3–70°, 

2θ range, 0.02° steps and 8 s/step. X'Pert HIGH Score Plus computer program and JCPDS PDF-2 database allowed the 25 

interpretation of diffraction patterns.   

DRIFT was mounted on a Nicolet 670 NexusTM both by ThermoFisher Scientific S.p.a.. The FTIR comprises a heated ceramic 

(Globar) source, a 670 Laser unit, a KBr beamsplitter, and an MCT detector, constantly purged from a high-pressure Nitrox 

dry air and CO2-trapping 280 generator by Domnick Hunter.  The OMNIC Data Collector 5.2© allows data collection and 

interpretation in the investigated range of 5000 - 400 cm-1 (resolution: <0.1 cm-1).  Data collection was conducted on KBr 30 

mixed with 5 – to – 10 % of sample by grounding in an agate mortar, following the background acquisition for the KBr powder. 

Additional acquisition on no diluted samples allowed checking for possible hygroscopic effects, obtaining similar results.  

The appearance, morphology and chemical composition of minerals were determined on selected samples prepared as opaque 

mounts coated by cord and rod graphite, by JEOL and ZEISS electron microscope (EDS-BSEM) facilities. The JEOL-JSM 

5310, equipped with a Link EDS and a Inca 4.08 software (CISAG Laboratory University of Napoli Federico II), has operating 35 

conditions of 15 kV accelerating voltage, 50–100 mA filament current, variable spot size and 50 s net acquisition time.  ZEISS 

instrument is a SIGMA field emission scanning electron microscopy (Osservatorio Vesuviano, department of Istituto 

Nazionale di Geofisica e Vulcanologia, Naples, Italy), equipped with XMAN micro-analysis system by Oxford, controlled by 

a SMARTSEM and AZTEC softwares. Operating conditions for SIGMA were 15 kV accelerating voltage, 50–100 mA 

filament current, 5-10 nm spot size and variable time acquisition time (several to tens of seconds).   40 
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Rock geochemistry (WRG) were carried out at Bureau Laboratories Ltd. (Vancouver, Canada). Major elements were analysed 

by Inductively Coupled Plasma Emission Spectrometer (ICP-ES) using LiBO2/Li2B4O7 fusion, minor and trace elements were 

determined by inductively coupled plasma-mass spectrometry (ICP-MS) using a four acid (HNO3-HClO4-HF-HCl) digestion. 

The uncertainty is generally <1% for major/minor oxides, <5–20% for trace elements. LECO was used for determining the C 

and S abundances. Loss on ignition (LOI) was calculated by weight loss after ignition at 1000°C. 5 

Sulfur and oxygen isotope measurements were performed directly on pure mineral separates without and with further chemical 

preparation in the stable isotope laboratory at the Institut für Geologie und Paläontologie (University of Münster).  Chemical 

preparation was different depending on sample type: i.e., sulfates+elemental S+sulfides, elemental S +sulfides, or muds.  

Oxidized S-bearing and multi-phase samples first required the extraction of sulfate by sample leaching in a 10% NaCl solution, 

filtration through a 0.45 micron cellulose acetate filter, and followed by the addition of 8.5% barium chloride solution to 10 

precipitate dissolved sulfate as barium sulfate for isotope measurements.  Elemental S and pyrite extraction was performed on 

sulfate-free powders. This extraction consisted of a wet chemical treatment (acidic chromous chloride solution at sub-boiling 

conditions) that liberates sulfur as hydrogen sulfide which will ultimately be precipitated as silver sulfide, ready for isotope 

measurements. Elemental sulphur was liberated from each sample via acetone leaching and subsequently converted to silver 

sulfide applying the acidic chromous chloride treatment (Canfield et al., 1986). Again, resulting hydrogen sulfide was 15 

precipitated as silver sulfide (Ag2S). For S-isotope measurements, mineral separates as well as silver sulphide and barium 

sulfate precipitates were homogenously mixed with vanadium pentaoxide in tin capsules and combusted in a Carlo Erba 

elemental analyzer interfaced to a ThermoFinnigan Delta Plus mass spectrometer (EAIRMS: Elemental Analyzer-Isotope 

Ratio Mass Spectrometry). Results are reported in the standard delta notation (δ34S) as per mil difference to the Vienna Canyon 

Diablo Troilite (VCDT) standard. Reproducibility as determined through replicate measurements was generally better than ± 20 

0.3 ‰.  Sulfates were also measured for O-isotopes by using a ThermoFinnigan TC/EA interfaced with a ThermoFinnigan 

Delta Plus XL. Results are reported in the standard delta notation (δ18O) as per mil difference to the Vienna Standard Mean 

Ocean Water (VSMOW) standard. Reproducibility as determined through replicate measurements was generally better than ± 

0.5 ‰. 

7 Supplement 25 

Three supplementary tables: 

 

Table S1 – List of samples, collection date, temperature and mineralogical associations as resulting by XRDP analyses and 

corroborated by FTIR and EDS-BSEM study. The sampling includes water spring sampled at Stufe di Nerone. In the 

temperature column: tc, thermo couple (see chapter 2.2 Sampling, sample preparation and analytical techniques), infr, infrared 30 

gun; infrared derived values are in red. In the mineralogy column: ?, for minerals to be validated; minerals in red are 

approximate attribution based on XRDP patterns. The orange cells evidence water samples. Selected XRDP traces are in Fig. 

S1. Further details in this supplement. 

 

Table S2 – Vibration modes and related tentative assignment of functional groups, and mineral attribution for selected samples 35 

by DRIFT-FTIR investigations. Alu = alunite, Clay = essentially illite, Masc = NH4 - bearing sulfates, am = amorphous, Kao 

= kaolinite, KAl = alum - (K). ?, uncertain attribution. Note: assignments and attributions are based on mineralogy derived by 

XRDP study and corroborated by EDS-BSEM analyses. Further details in this supplement. 
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Table S3 – Selected whole-rock geochemistry of multi-phases materials sampled at different locations (i.e., sample name as 

in Fig. 1) within the Pisciarelli and Solfatara areas and at different times. MDL indicates the detection limit for major, trace, 

C and S contents.  

 

Figure S1 – Selected XRDP traces of NH4- sulfates dominating the assemblage formed from drying the Pisciarelli water (a, b) 5 

and of various multiphase muds from Solfatara (c,e) and Pisciarelli (d,f). Each panel reports the sample name in Table S1. The 

muds show the large hump between 18 ° and 30 ° 2θ degree attributed to the amorphous phase and the signals from the 

dominant alunite, feldspars (except MS new 9/17) and other minor phases (sulfur, pyrite and clays; Table S1). The smaller 

panels evidence the reflection intensity in the most significant range useful to discriminate illite in d) and kaolinites in e). Some 

XRDP trace has a corresponding infrared spectrum in Fig. S2: the sample with mascagnite is the same of Fig. S2a, the Solfatara 10 

muds in c) produced the FT-IR spectra in Fig. S2b, the Pisciarelli mud MP 6_16 is in Fig. S2d, the samples in e) are the same 

of Fig. S2e. Abbreviations (c, f): S = Sulfur; Al = Alunite; Kfd =Alkali feldspar. Note: montmorillonite needs of validation by 

specific studies, as the very small signals (Fig. S2f). 

 

Figure S2 - FT-IR spectra of NH4 - sulfates (a), native sulfur (b) and various muds from Solfatara (c), Pisciarelli (d) and the 15 

new Solfatara hole (e). See Table S2 for vibrational modes and relative assignments. 
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Caption of Figures and Tables 

 

Figure 1 – (a) The investigated acid sulfate areas (gray shaded) of Puteolis within the Campi Flegrei caldera (Italy): the 

Solfatara crater, Pisciarelli, Cinofilo, Antignana, Terme di Agnano. The map shows relevant structures: lava domes (dashed 

line), fault systems (point-dash lines), La Starza marine terrace, the Astroni explosive crater and the Agnano Plain. (b) 30 

Pisciarelli pool on June 2018; (c) new pool (hereafter New P) at Solfatara on September 2017. (d) the Solfatara crater with 

sampling sites, notably the Bocca Grande fumarole (hereafter BG) and La Fangaia mud pool, and the old thermal baths 

(hereafter Sst) as well. (e)  the Pisciarelli sampling sites, notably geiser vent and mud pool (hereafter G and L3, respectively), 

the later delineated by shaded lines defining the observed widening variations. 

 35 

Figure 2 – (a) Dendritic crystals of native sulphur growing on the alunite-dominate matrix; (b) native sulfur fibres that are 

typically detected in L60 and in several exhalative vents on PINT, PEXT and L20; (c) encrustations of alunite and alunogen 

at L1; (d) pyrite in the mud; (e) NH4-sulfates from evaporated L60 water; (f) NH4-sulfates from evaporated L3 water. All 

images were taken using a binocular microscope. Refer to Fig. 1a,d,e for listed sites. 

 40 

Figure 3 – BSEM image showing sample texture and occurrences of S-bearing phases identified by EDS and XRPD analyses 

at the Puteolis sulfate lands: (a) orthorhombic baryte (Ba) front of pentagonal pyrite (Py) from the Pisciarelli mud (L3); (b) 

irregular platy alunogene (Alu) oriented parallel to the fracture axis; (c) rhombic native sulfur (S) with bladed tschermigite 
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crystals (Ts); (d) acicular alunogene (Alu) crystals developed above early tabular alunogen species; (e) euhedral alunite grains 

(Al) showing resorbed surfaces and coexisting with tabular alunogen (Alu) and acicular gypsum (Gy) crystals; (f) massive 

alunite (Al) encrustation; (g) pseudo-cubic ammonium chloride (ClNH4) crystals within encrustation sampled at Bocca Grande 

(BG);  (h)  monoclinic realgar (Rlg) and ammonium chloride (ClNH4) individuals at Bocca Grande (BG); (i) grains coated by 

pyrite and massive letovicite crystals. Alu = alunogene; Al = alunite; Ba = barite; ClNH4 = ammonium chloride (salammoniac); 5 

Gy = gypsum; Ltv = letovicite; py = pyrite; Rlg = realgar; S = native S; Ts = tschermigite. Sample name as in Table S1. Refer 

to Fig. 1e for site location. 

 

Figure 4 – BSEM image of kaolinite platy crystals at the new pool of Solfatara (New P, Fig. 1c,d): The kaolinite plates have 

tendency to assembly (a) and associated with alunite (b). Kao = Kaolinite, Al – Alunite.   10 

 

Figure 5 -  Distribution of δ34S values for sulfides (a), native sulfur (b) and sulfates (c), and of δ18O values for sulfates at the 

different sampling sites arranged by sampling date. Results from cores collected in 1965, and 1971, 1984, 2013 and 2014 are 

compiled from the literature (i.e., Ref: Cortecci et al., 1978; Valentino et al., 1999; Valentino and Stanzione, 2003; 2004; 

Piochi et al., 2015). Sampling sites are shown in Fig. 1a,d,e. Note the values are plotted based on sample sites, from west to 15 

east. 

 

Figure 6 -  Distribution of δ34S values among coexisting sulfates, sulfides and native sulfur, organized on the basis of the 

sampling sites. Note: (i) the nearly similar values of sulfates and sulfides at Solfatara coherent with supergene setting; (ii) the 

higher δ 34S values in sulfides at Pisciarelli indicating a different, likely not biogenic (in that case sulfated must be heavy), 20 

process or stage; iii) a likely positive correlations between Solfatara sulfides and sulfates (panel a). 

 

Figure 7 -  Covariation of δ34S vs. δ18O values in sulfates, symbolized to distinguish the specific materials on the basis of 

sampling sites. Modern marine sulfate, meteoric water (out in the diagram), the δ18O values of local gas emissions and literature 

data (Ref) based on Cortecci et al. (1978), Allard et al. (1991), Valentino et al. (1999), Chiodini et al. (2000), Caliro et al. 25 

(2007), Chiodini et al. (2008) and Piochi et al. (2015). δ18O values of local outgassing is -2 to 0‰. Fields and processes based 

on Rye et al. (1992) and Rye (2005). Panel a) highlights Solfatara and Pisciarelli samples; shaded areas define the δ18O values 

we recalculated based on Rye et al. (1992) at the indicated temperature. 

 

Figure 8 -  Lithophile (a) and sidero-chalcophile (b) element concentrations normalized in respect to the average whole-rock 30 

composition of pristine volcanic rocks with an age < 5 ka (D’Antonio et al., 1999; Piochi et al., 2014), as those outcropping in 

the Puteolis sulfate areas. * in legend other dataset. 

 

Figure 9 – Crossplots of trace elements in solfataric samples.  Fields envelops the various genetic settings, following Ercan et 

al. (2016) and based on the (a) immobile and (b) and mobile elements sourced from K-feldspars (Ba, Sr, Ce, Y, La), in an 35 

initially alteration undersaturated geothermal solution. 

 

Figure 10 -  Measured vs. theoretical fractionation values. Theoretical values based on temperature measurements were 

calculated following Ohmoto and Rye (1979) and Rye et al. (1992). Fields for steam-heated (white) and supergene (gray) 

environments are from Rye et al. (1992): dashed envelop for Alunite-Pyrite (circle) or Alunite-H2S (rhombus) pairs, continuous 40 

envelop for Alunite-H2O. 
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Figure 11– Sketch of the acid-sulfate alteration zone at the Campi Flegrei caldera (Fig. 1a). Subsurface is constrained by 

borehole (deep from Rosi and Sbrana, 1987; Piochi et al., 2014 and shallow from de Vita et al., 1999) and geophysic (Di 

Giuseppe et al., 2017) information. The presence of NH4-rich aquifers correlate with their occurrence in marine sequences 

(Rosi and Sbrana, 1987; Piochi et al., 2014) at the Mofete wells (Chiodini et al., 1988). In the legend P-wave velocity, resistivity 

and density (with respect to 2.4 g/cm3) from Di Giuseppe et al. (2017); the geophysically explored area is in the dashed 5 

rectangle. BG = bocca grande (Fig. 1d); LF = La Fangaia mud pool (Fig. 1a,d). 

 

Table 1 – Main hydrothermal minerals detected by XRPD with related ideal chemical formula and sites of occurrence (name 

as in Fig. 1a,d,e). The complete set of minerals is in Table S1. Refer to the supplement for details. 

 10 

Table 2 – δ34S vs. δ18O values of sulfur-bearing minerals. Sample name as in Table 1 and S1; the muds are in italic. * in Fig. 

1; ‘from google earth. 

 

Table 3 – Summary of the mineralogical and isotopical features at the acid sulfate area following Rye et al. (1992); Hedenquist 

and Lowerstern (1994). *highest 34S and 18O during bacteriogenic reduction of sulfates with maximum fractionation in dry-15 

wet alternating conditions. ^ δ34S reflects the H2S/SO2 and temperature of fluid. 1 always present, 2 may be associated. 3 from 

Valentino and Stanzione (2003; 2004), Gresse et al. (2017). ‘halloysite is indicated in Montanaro et al. (2017) and included 

here for completeness. “Montmorillonite needs of specific validation (Supplement) and is reported considering its detection in 

the local subsurface (Rosi and Sbrana, 1987; Valentino and Stanzione, 2003; 2004). 
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Figures and Tables 

 

Figure 1 – (a) The investigated acid sulfate areas (gray shaded) of Puteolis within the Campi Flegrei caldera (Italy): the Solfatara crater, Pisciarelli, 

Cinofilo, Antignana, Terme di Agnano. The map shows relevant structures: lava domes (dashed line), fault systems (point-dash lines), La Starza 

marine terrace, the Astroni explosive crater and the Agnano Plain. (b) Pisciarelli pool on June 2018; (c) new pool (hereafter New P) at Solfatara on 5 

September 2017. (d) the Solfatara crater with sampling sites, notably the Bocca Grande fumarole (hereafter BG) and La Fangaia mud pool, and the 

old thermal baths (hereafter Sst) as well. (e)  the Pisciarelli sampling sites, notably geiser vent and mud pool (hereafter G and L3, respectively), the 

later delineated by shaded lines defining the observed widening variations. 
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Figure 2 – (a) Dendritic crystals of native sulphur growing on the alunite-dominate matrix; (b) native sulfur fibres that 

are typically detected in L60 and in several exhalative vents on PINT, PEXT and L20; (c) encrustations of alunite and 

alunogen at L1; (d) pyrite in the mud; (e) NH4-sulfates from evaporated L60 water; (f) NH4-sulfates from evaporated L3 

water. All images were taken using a binocular microscope. Refer to Fig. 1a,d,e for listed sites. 
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Figure 3 – BSEM image showing sample texture and occurrences of S-bearing phases identified by EDS and XRPD 

analyses at the Puteolis sulfate lands: (a) orthorhombic baryte (Ba) front of pentagonal pyrite (Py) from the Pisciarelli 

mud (L3); (b) irregular platy alunogene (Alu) oriented parallel to the fracture axis; (c) rhombic native sulfur (S) with 

bladed tschermigite crystals (Ts); (d) acicular alunogene (Alu) crystals developed above early tabular alunogen species; 

(e) euhedral alunite grains (Al) showing resorbed surfaces and coexisting with tabular alunogen (Alu) and acicular 

gypsum (Gy) crystals; (f) massive alunite (Al) encrustation; (g) pseudo-cubic ammonium chloride (ClNH4) crystals within 

encrustation sampled at Bocca Grande (BG);  (h)  monoclinic realgar (Rlg) and ammonium chloride (ClNH4) individuals 

at Bocca Grande (BG); (i) grains coated by pyrite and massive letovicite crystals. Alu = alunogene; Al = alunite; Ba = 

barite; ClNH4 = ammonium chloride (salammoniac); Gy = gypsum; Ltv = letovicite; py = pyrite; Rlg = realgar; S = native 

S; Ts = tschermigite. Sample name as in Table S1. Refer to Fig. 1e for site location. 
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Figure 4 – BSEM image of kaolinite platy crystals at the new pool of Solfatara (New P, Fig. 1c,d): The kaolinite plates 

have tendency to assembly (a) and associated with alunite (b). Kao = Kaolinite, Al – Alunite.   
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Figure 5 -  Distribution of δ34S values for sulfides (a), native sulfur (b) and sulfates (c), and of δ18O values for sulfates at the different sampling sites arranged by sampling date. 

Results from cores collected in 1965, and 1971, 1984, 2013 and 2014 are compiled from the literature (i.e., Ref: Cortecci et al., 1978; Valentino et al., 1999; Valentino and Stanzione, 

2003; 2004; Piochi et al., 2015). Sampling sites are shown in Fig. 1a,d,e. Note the values are plotted based on sample sites, from west to east. 
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Figure 6 -  Distribution of δ34S values among coexisting sulfates, sulfides and native sulfur, organized on the basis of the 

sampling sites. Note: (i) the nearly similar values of sulfates and sulfides at Solfatara coherent with supergene setting; (ii) 

the higher δ 34S values in sulfides at Pisciarelli indicating a different, likely not biogenic (in that case sulfated must be 

heavy), process or stage; iii) a likely positive correlations between Solfatara sulfides and sulfates (panel a). 
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Figure 7 -  Covariation of δ34S vs. δ18O values in sulfates, symbolized to distinguish the specific materials on the basis of 

sampling sites. Modern marine sulfate, meteoric water (out in the diagram), the δ18O values of local gas emissions and 

literature data (Ref) based on Cortecci et al. (1978), Allard et al. (1991), Valentino et al. (1999), Chiodini et al. (2000), 

Caliro et al. (2007), Chiodini et al. (2008) and Piochi et al. (2015). δ18O values of local outgassing is -2 to 0‰. Fields and 

processes based on Rye et al. (1992) and Rye (2005). Panel a) highlights Solfatara and Pisciarelli samples; shaded areas 

define the δ18O values we recalculated based on Rye et al. (1992) at the indicated temperature. 

Fields and processes based on Rye et al. (1992) and Rye (2005). Panel a) highlights Solfatara and Pisciarelli samples; 

shaded areas define the δ18O values we recalculated based on Rye et al. (1992) at the indicated temperature. 

 

 

 

 

Figure 8 -  Lithophile (a) and sidero-chalcophile (b) element concentrations normalized in respect to the average whole-

rock composition of pristine volcanic rocks with an age < 5 ka (D’Antonio et al., 1999; Piochi et al., 2014), as those 

outcropping in the Puteolis sulfate areas. * in legend other dataset. 
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Figure 9 – Crossplots of trace elements in solfataric samples.  Fields envelops the various genetic settings, following 

Ercan et al. (2016) and based on the (a) immobile and (b) and mobile elements sourced from K-feldspars (Ba, Sr, Ce, Y, 

La), in an initially alteration undersaturated geothermal solution. 
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Figure 10 -  Measured vs. theoretical fractionation values. Theoretical values based on temperature measurements were 

calculated following Ohmoto and Rye (1979) and Rye et al. (1992). Fields for steam-heated (white) and supergene (gray) 

environments are from Rye et al. (1992): dashed envelop for Alunite-Pyrite (circle) or Alunite-H2S (rhombus) pairs, 

continuous envelop for Alunite-H2O. 
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Figure 11– Sketch of the acid-sulfate alteration zone at the Campi Flegrei caldera (Fig. 1a). Subsurface is constrained by 

borehole (deep from Rosi and Sbrana, 1987; Piochi et al., 2014 and shallow from de Vita et al., 1999) and geophysic (Di 

Giuseppe et al., 2017) information. The presence of NH4-rich aquifers correlate with their occurrence in marine sequences 

(Rosi and Sbrana, 1987; Piochi et al., 2014) at the Mofete wells (Chiodini et al., 1988). In the legend P-wave velocity, 

resistivity and density (with respect to 2.4 g/cm3) from Di Giuseppe et al. (2017); the geophysically explored area is in 

the dashed rectangle. BG = bocca grande (Fig. 1d); LF = La Fangaia mud pool (Fig. 1a,d). 
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Table 1 – Main hydrothermal minerals detected by XRPD with related ideal chemical formula and sites of occurrence 

(name as in Fig. 1a,d,e). The complete set of minerals is in Table S1. Refer to the supplement for details. 

Phase Composition Location 

Alunite KAl3(SO4)2(OH)6 Ubiquitarius 

Alunogen Al2(SO4)3•17(H2O) L1, SSt, L30, CIN, L100, 

L3, L70, L60, G 

Alum-(K) KAl(SO4)2•12(H2O)   L1, L20, PP1 

Alum-(Na) NaAl(SO4)2•12(H2O)   L50, New P, L20 

Amarillite NaFe3+(SO4)2•6(H2O) L1 

Biotite K(Mg,Fe++)3[AlSi3O10(OH,F)2 MS, L3 

Chabazite (Ca0.5,Na,K)4[Al4Si8O24]•12H2O   L50, L30 

Clairite (NH4)2Fe3+
3(SO4)4(OH)3•3(H2O) G 

Coquimbite Fe+++
2(SO4)3•9(H2O) L50,  L3, L1 

Gypsum CaSO4•2(H2O) L50, L20, L3, L60, CIN, 

L100, SSt  

Halotrichite Fe++Al2(SO4)4•22(H2O) G 

Hexahydrite Mg(SO4)•6(H2O) CIN 

Hematite Fe2O3 PINT, L3 

Kaolinite  Al2Si2O5(OH)4 New P,  PINT, L19, L20 

Koktaite (NH4)2Ca(SO4)2•(H2O) L3, G 

Illite (K,H3O)(Al,Mg,Fe)2(Si,Al)4O10[(OH)2,(H2O)]  widespread at Pisciarelli 

(L20, L3, L50, G), CIN, 

rare at Solfatara 

Jarosite KFe+++
3(SO4)2(OH)6 L50, G, CIN, L30 

Letovicite (NH4)3H(SO4)2 L3, L1, L20 

Marialite Na4Al3Si9O24Cl L3 

Mascagnite (NH4)2SO4 L1, G, L20, L3, L60, New 

P, BG 

Melanterite Fe++SO4•7(H2O) L3 

Mereiterite K2Fe2+(SO4)2•4(H2O) L1 

Minamiite Na0.6Ca0.3K0.1Al3(SO4)2(OH)6 New P 

Mohrite (NH4)2Fe2
+(SO4)2•6(H2O) L3 

Montmorillonite (Na,Ca)0,3(Al,Mg)2Si4O10(OH)2•n(H2O)   L50, L3, L20, CIN, SSt, G 

Natroalunite NaAl3(SO4)2(OH)6 L60 

Periclase MgO SSt 

Pickeringite MgAl2(SO4)4•22(H2O) L1 

Picropharmacolite Ca4Mg(AsO3OH)2(AsO4)2•11(H2O) CIN 

Pyrite FeS2 L3, BG, ASA, L1, G, New 

P, MS, L20, viadotto 

Realgar As4S4 BG, BN 

Rostite AlSO4(OH,F)•5(H2O) SSt,  

Salammoniac (NH4)Cl BG, BN 

Sulfur S0, S8, beta Ubiquitarius, 

subordinated in L3 

Silica essentially as opal and 

quartz 

SiO2 SSt, L1, BG, CIN,  L20, 

L50 

Tamarugite NaAl(SO4)2•6(H2O) L20, CIN 

Tschermigite (NH4)Al(SO4)2•12(H2O) L20, L3, L60, L70, G 

Vermiculite (Mg,Fe++,Al)3(Al,Si)4O10(OH)2•4(H2O) L3 

Voltaite K2Fe2+
5Fe3+

3Al(SO4)12•18(H2O) L1vent, L100, G 

Zaherite Al12(SO4)5(OH)26•20(H2O) G, CIN, L100 
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Table 2 – δ34S vs. δ18O values of sulfur-bearing minerals. Sample name as in Table 1 and S1; the muds are in italic. * in 

Fig. 1; ‘from google earth. 

 

Type Sample δ34S 

[‰] 

st. 

dev. 

δ18O 

[‰] 

st. 

dev. 

Date Location* T 

(°C) 

Height 

(m)' 

Pisciarelli          

Sulfate L1d1 al/11-15 -1.78 0.06 11.93 0.23 1.11.15 L1 - 67 

 L1d2 white/11-15 -2.08 0.05 15.05 0.44 1.11.15 L1 - 67 

 MP/11-15 -1.93 0.01 10.33 0.00 1.11.15 L3 - 66 

 P PP1/11-15 -0.30 0.21 17.25 0.08 1.11.15 G 92 68 

 P PPb/11-15 -1.27 0.13 17.85 0.41 1.11.15 G 50.2 69 

 P L50 yellow -0.22 0.15 20.88 0.16 1.11.15 L50 - 84 

 P L50 white -0.40 0.02 21.54 0.27 1.11.15 L50 - 84 

 P L50 red -1.31 0.02 8.59 0.40 1.11.15 L50 - 84 

 L1v PGw/6-16 -2.78 0.07 13.09 0.43 1.6.16 L50 - 66.5 

 L1 Pwh/6-16 -2.13 0.00 5.72 0.30 1.6.16 L1 56.9 67 

 L1 Psalt/6-16 -2.12 0.13 5.95 0.19 1.6.16 L1 67 67 

 L1 Pblack/6-16 -0.41 0.04 9.52 0.21 1.6.16 L1 - 67 

 MP/6-16 -0.87 0.01 4.60 0.05 1.6.16 L3 70 66 

 GnvW bl/6-16 0.44 0.01 6.96 0.51 1.6.16 L19 74.7 68 

 Gnv W be/6-16 -0.31 0.23 12.44 0.22 1.6.16 L19 74.7 69 

 PL20 v1/6-16 -0.59 0.06 14.04 0.15 1.6.16 L20 90 71 

 Ps 7-16 -1.00 0.08 8.37 0.06 1.7.16 L3 - 66 

 PL 20V1 7-16 -0.53 0.02 14.26 0.03 1.7.16 L20 - 71 

 MP 29.6.17 -0.09 0.03 6.82 0.2 29.6.17 L3 - 66 

 L1 beije 18.9.17 -0.89 0.02 22.14 0.51 18.9.17 L1 - 67 

 MP L3 boccetta 1.9.17 -0.54 0.02 9.87 0.5 1.9.17 L3 49.5 66 

 MP 18.1.18 0.26 0.06 13.21 0.2 18.1.18 L3 77.1 66 

Sulfide MP/11-15 -0.08 0.05   1.11.15 L3 - 66 

 P PP1/11-15 -0.69 0.07   1.11.15 G 92 68 

 L1 Pblack/6-16 -3.00 0.07   1.6.16 L1 - 67 

 MP/6-16 -0.43 0.13   1.6.16 L3 70 66 

 GnvW bl/6-16 -0.48 0.10   1.6.16 L19 74.7 68 

 Ps 7-16 -0.34 0.01   1.7.16 L3 - 66 

 MP 29.6.17 0.02 0.02   29.6.17 L3 - 66 

 MP L3 boccetta 1.9.17 -0.49 0.02   1.9.17 L3 49.5 66 

 MP 18.1.18 -0.67 0.04   18.1.18 L3 77.1 66 

Sulfur L1 Pv/6-16 0.80 0.14   1.6.16 L1 56.9 66.5 

 Geiser mud -2.26 0.04   1.6.16 G - 68 

 PINT S 18.9.17 -1.71 0.06   18.9.17 PINT - 74 

 L1 S 18.9.17 -0.06 0.00   18.9.17 L1 - 67 

 L 20 camino 18.9.17 -2.50 0.02   18.9.17 L20 - 76 

 L1 vent S 14.12.17 -2.67 0.01   14.12.17 L1 94.7 67 

 PINT S 18.1.18 -0.91 0.12   18.1.18 PINT 93.4 74 

 L1 vent S 18.1.18 -2.68 0.00   18.1.18 L1 94 67 

 L1 vent parete S 18.1.18 -0.99 0.05   18.1.18 L1 89.9 67.5 

 L19 Geiser S 18.1.18 -2.30 0.01   18.1.18 L19 95.8 70 

Solfatara          

Sulfate SStb/11-15 -0.74 0.02 23.93 0.68 1.11.15 SSt - 100 

 SSt wr/11-15 1.61 0.11 31.33 0.47 1.11.15 SSt - 100 

 SStgc/11-15 0.91 nd   1.11.15 SSt - 100 

 SMO S/6-16 2.09 nd   1.6.16 SMO 87 109 

 SMO ASA/6-16 -2.09 0.10 8.18 0.11 1.6.16 SMO - 109 

 ASA m/16-6 -0.63 0.09 8.75 0.12 1.6.16 ASA - 124 

 ASA h/16-6 -0.67 0.05 6.62 0.25 1.6.16 ASA - 124 

 SSt sub/16-6 -1.52 0.11 9.59 0.30 1.6.16 SSt 92 101 

 PS/6-16 0.31 0.23 7.43 0.24 1.6.16 LaFangaia 52.9 94 
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 MS 29.6.17 0.80 0.00 18.58 0.3 29.6.17 LaFangaia - 94 

 MS new 29.06.17 -0.65 0.13 9.31 0.4 29.6.17 new pool - 94 

 MS new 1.9.17 -0.22 0.07 10.56 0.7 1.9.17 new pool 70 94 

 MS2  1.9.17 0.62 0.09 7.84 0.1 1.9.17 LaFangaia 49.5 94 

Sulfide SSt wr/11-15 -0.38 0.08   1.11.15 SSt - 100 

 SMO ASA/6-16 -2.92 0.08   1.6.16 SMO - 109 

 ASA m/16-6 -2.65 0.08   1.6.16 ASA - 124 

 ASA h/16-6 -1.96 0.09   1.6.16 ASA - 124 

 PS/6-16 -0.11 0.07   1.6.16 LaFangaia - 94 

 MS 29.6.17 0.24 0.11   29.6.17 LaFangaia - 94 

 MS new 29.06.17 -1.63 0.02   29.6.17 new pool - 94 

 MS new 1.9.17 -1.16 0.10   1.9.17 new pool 70 94 

 MS1  1.9.17 0.38 0.00   1.9.17 LaFangaia 49.5 94 

 MS2  1.9.17 0.49 0.00   1.9.17 LaFangaia 49.5 94 

Sulfur BG pg/11-15 -3.95 0.03   1.11.15 BG 93.1 103 

 SStgf/11-15 -2.23 0.21   1.11.15 SSt - 100 

  -2.13 0.28   1.11.15 SSt - 100 

  -2.40 0.20   1.11.15 SSt - 100 

 SStgc/11-15 -3.34 0.38   1.11.15 SSt - 100 

  -1.52 0.00   1.11.15 SSt - 100 

  -2.43 0.09   1.11.15 SSt - 100 

 BG S/6-16 -4.42 0.29   1.6.16 BG 93.2 103 

  -3.89 0.28   1.6.16 BG 93.2 103 

  -4.21 0.21   1.6.16 BG 93.2 103 

 up BG S/6-16 -3.84 0.06   1.6.16 BUCO 93.2 106 

  -2.78 0.11   1.6.16 BUCO 93.2 106 

  -3.46 0.15   1.6.16 BUCO 93.2 106 

 SMO S/6-16 0.29 0.28   1.6.16 SMO 87 109 

  0.44 0.24   1.6.16 SMO 87 109 

  0.22 0.04   1.6.16 SMO 87 109 

 SSt Sf/16-6 -2.08 0.17   1.6.16 SSt - 124 

  -2.31 0.06   1.6.16 SSt - 124 

  -2.42 0.01   1.6.16 SSt - 124 
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Table 3 – Summary of the mineralogical and isotopical features at the acid sulfate area following Rye et al. (1992); 

Hedenquist and Lowerstern (1994). *highest 34S and 18O during bacteriogenic reduction of sulfates with maximum 

fractionation in dry-wet alternating conditions. ^ δ34S reflects the H2S/SO2 and temperature of fluid. 1 always present, 2 

may be associated. 3 from Valentino and Stanzione (2003; 2004), Gresse et al. (2017). ‘halloysite is indicated in 

Montanaro et al. (2017) and included here for completeness. “Montmorillonite needs of specific validation (Supplement) 

and is reported considering its detection in the local subsurface (Rosi and Sbrana, 1987; Valentino and Stanzione, 2003; 

2004). 

 

 Supergene 
H2SO4 production 

by  sulphides 
oxidation 

Steam-heated 
H2SO4 production by  

H2S oxidation 

Magmatic 
hydrothermal 

H2SO4 production by  
SO2 

Magmatic steam 
 

Solfatara crater Pisciarelli 

  LOW SULFIDATION HIGH SULFIDATION   

Alunite 
texture 
age vs original rocks 

Very thin- 
cryptocrystalline, 
younger  

Powdery 
 
coeval 

up to 250 µm 
 
coeval 

rare up to 250 µm in 
vein 
coeval 

thin to sub mm-
sized 

thin to sub mm-
sized 

Kaolinite disordered  well-formed - - well-crystallized well-crystallized 

Halloysite yes possible - - odd’ - 

Montmorillonite not indicate present in medial zones not present possible (very 
rare)” 

possible (rare)” 

Illite not indicated diffuse in medial and outer 
zones 

not present rare widespread 

Gossan at the top  - - - possibly locally 

Sinter - widely - - widely widely 

Vuggy silica - - at the core - not present not present 

Al solubility - - highly leached - possibly not 
intense to 
absent 

possibly not 
intense to absent 

Sulfides - Pyrites widespread may be disseminated pyrites rare rare abundant pyrites 

Pyrophillite, 
diaspore, covellite, 
enargite, lauzonite 

- - may and must be rare not detected not detected 

PO4 in alunite - - yes unknown not detected not detected 

S isotope 
fractionation 

nearly absent 
equilibria 
fractionation* 
rarely present in 
sulphide rich-rocks 

similar to H2S equilibria 
fractionation, H2S-
Sulfates and Sulfate-
pyrite equilibria^ 

equilibria 
fractionation with 
SO2 

Al-H2S no 
equilibrium 
(Fig. 11) 

Al-H2S no 
equilibrium 
Py-Al no 
equilibrium 
Py-H2S nearly 
equilibrium (Fig. 
11) 
 

O isotope in Alunite nearly absent 
equilibria 
fractionation* 

equilibria fractionation equilibria 
fractionation^ 

equilibria 
fractionation with 
SO2 

nearly equilibria 
fractionation 
(Fig. 11) 

equilibria 
fractionation 
(Fig. 11) 

pH - Nearly neutral <2 - Generally acid, 
locally at very 
low acid, locally 
neutral3 

Locally/timely 
acid3 

Fumarole T - 100-to-160°C >200°C >200°C Locally >160°C Generally ≤110°C 

Metal - Au1 
(Ag, Pb-Zn) 2 

(Au, Ag, Cu)1 
(Hg, W, Bi, Pb, Zn)2 

 Locally As, Hg 
(Fig. 9) 

Hg (Fig. 9) 

H2S/SO4 - - 4±2 <1 <1 1 or higher 

S state - Low, S-2 High, S+4 High, S+4 <1 1 or higher 

 

 

 


