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Abstract. In recent years uncertainty has been widely recognized in geosciences, leading to an increased need for its quantifi-

cation. Predicting the subsurface is an especially uncertain effort, as our information either comes from spatially highly limited

direct (1-D boreholes) or indirect 2-D and 3-D sources (e.g. seismic). And while uncertainty in seismic interpretation has been

explored in 2-D, we currently lack both qualitatitive and quantitative understanding of how interpretational uncertainties of

3-D datasets are distributed. In this work we analyze 78 seismic interpretations done by final year undergraduate (BSc) stu-5

dents of a 3-D seismic dataset from the Gullfaks field located in the northern North Sea. The students used Petrel to interpret

multiple (interlinked) faults and to pick the Base Cretaceous Unconformity and Top Ness horizon (part of the Mid-Jurassic

Brent Group). We have developed open-source Python tools to explore and visualize the spatial uncertainty of the students

fault stick interpretations, the subsequent variation in fault plane orientation and the uncertainty in fault network topology. The

Top Ness horizon picks were used to analyze fault offset variations across the dataset and interpretations, with implications10

for fault throw. We investigate how this interpretational uncertainty interlinks with seismic data quality and the possible use of

seismic data quality attributes as a proxy for interpretational uncertainty. Our work provides a first quantification of fault and

horizon uncertainties in 3-D seismic interpretation, providing valuable insights into the influence of seismic image quality on

3-D interpretation, with implications for deterministic and stochastic geomodelling and machine learning.

Copyright statement. TEXT15

1 Introduction

Geosciences, and geology in particular, are concerned with integrating various sources of data, often of limited, sparse and

indirect nature, into scientific models. The use of limited data combined with our limited knowledge of the highly complex

earth system, invariable infuses any model with uncertainty. Especially as geology inherently relies heavily on interpreted data

that often requires reasoning about processes that occur over geological time scales (Frodeman, 1995), which further increase20

the space of uncertainty.
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The interpretation of 3-D seismic data is an integral part of constructing structural geomodels of the subsurface and plays

a major role in the energy industry. Due to the indirect, noisy and non-unique nature of seismic data processing into im-

ages, interpretation is inherently uncertain.
:::
Our

:::::
work

::
is

:::
thus

:::::::::
concerned

::::
with

::::::::::
quantifying

:::
the

:::::
scope

::
of

:::::::::::
uncertainties

::
in

:::::::
seismic

:::::::::::
interpretation,

::::::
which

:::::::::
represents

::::::::
inevitably

:::::::
biased,

::::::
human

::::::::
judgment

:::::
under

::::::::::
uncertainty

::::::::::::::::::::::::::
(Tversky and Kahneman, 1974).

:::::
This

::::::::::
"subjective"

:::::::::
uncertainty

::
is
::
in

:::::::
contrast

::
to
:::::
more

::::::::::
"objective"

:::::::::
uncertainty

::::::
related

::
to
:::
the

:::::::::::
geophysical

:::::::::
acquisition

::
of

:::
the

::::
data

:::::
itself5

:::::::::::::::::::::::::::
(Tannert et al., 2007; Bond, 2015)

:
. Previous work has shown that significant conceptual uncertainties and biases are encoun-

tered during the interpretation process of 2-D seismic lines (Bond et al., 2007, 2011; Macrae, 2013; Bond, 2015; Alcalde et al.,

2017a, c), as well as the impact of seismic image quality on the interpretation (Alcalde et al., 2017b). But subsurface structures

are naturally three-dimensional and the use of 3-D seismic data is ubiquitous in industry (Biondi, 2006)—which
:
.
::::
This raises the

need to further our understanding of the distribution of interpretational uncertainties in 3-D space
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Abrahamsen et al., 1992; Thore et al., 2002; Thiele et al., 2016; Godefroy et al., 2018)10

. Additionally, the process of interpretation between seismic lines and cubes is fundamentally different, and thus might lead to

conceptually different uncertainties to be dominant (e.g. the need to connect fault evidence between seismic lines introduces

significant uncertainty in widely spaced 2-D interpretation compared to fault interpretation in seismic cubes; see Freeman et al.,

1990).

In this work we investigate the scope of uncertainties in 3-D seismic interpretation. We qualitatively and quantitatively15

analyze interpretations of 78 final year undergraduate students (BSc) conducted on a 3-D seismic cube of the Gullfaks field.

The dataset depicts a domino system of fault blocks with a comparatively simple structural style
:::::::::::
comparatively

::::::
simple

::::::::
geometry

::
of

:::::
planar

:::::::::::
domino-style

:::::::
normal

:::::
faults, but the seismic dataset comes with

::::::
exhibits

:
high amounts of noisethroughout, which

:
,

::::::::
especially

::
in

::
its

:::::::
eastern

::::
half,

:::
and

::::::::
generally

:::::::::
increasing

::::
with

:::::
depth

:::
and

::
in

::::
fault

::::::::
proximity

::::
(see

::::
Fig.

:::
8A,

:::
B).

::::
This

:
inhibits straight-

forward interpretation of the major faults and horizons and limits use of structural seismic attributes. We analyze the spatial20

variation in fault stick interpretations and the subsequent uncertainty in fault orientation. Horizon interpretations are analyzed

and combined with fault interpretations for a description of fault throw uncertainty. Additionally, we investigate the differences

in fault network topology
:::::::::::::::::::::::::::::::::::::::::::::::
(see Morley and Nixon, 2016; Peacock et al., 2016, 2017) in the interpretation ensemble to better

estimate the uncertainty of interpreting fault networks in 3-D seismic data. We use the interpretation of Fossen and Hesthammer

(1998) as a reference expert example (in the sense of Macrae et al., 2016) for comparison
:
to

::::::::
compare

::::
fault

:::::::
network

::::::::
topology25

:::
and

::::
fault

:::::::::
orientation

::::::::::
uncertainty with the student interpretations. We integrate our findings of interpretation uncertainties with

its relation to seismic data quality and discuss the implications for both deterministic and stochastic geomodelling, as well as

machine learning applied to seismic interpretation.

2 Materials and Methods

2.1 Gullfaks geology and seismic data30

We give here a brief overview over the regional and structural geology of the study area; a more in-depth description of the

structural geology of the Gullfaks Field can be found in Fossen and Hesthammer (1998).
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Figure 1. (a) Regional overview of the Gullfaks
:::::::::::::
Gullfaks-Statfjord area located in the

::::::
northern

:
North Sea, showing the location of the

Gullfaks oil field; (b) Fault map of the Statfjord formation
:::::::
Formation, showing the main faults of the Gullfaks field and their labeling; (c)

Cross-section across the Gullfaks field, depicting the three distinct structural subsets
::::::
domains, major faults and stratigraphy (modified from

Fossen and Hesthammer, 1998).

The Gullfaks Field is a subset of the NNE-SSW-trending, 10− 25 km wide Gullfaks fault block, located in the western part

of the Viking Graben within the
::
th

:::::::
northern

:
North Sea (see Figure 1a). The Gullfaks field’s reservoir units reach from the late

Triassic Hegre Group, over the Early Jurassic Statfjord Formation, Dunlin Group up to the Brent Group (Hesthammer and Fos-

sen, 1997). The reservoir units are separated from the Upper Cretaceous sediments above by the Base Cretaceous unconformity

:::::::::::
Unconformity

:
(Fossen and Hesthammer, 1998). The field consists of three structurally distinct subsets: a

:::::::
domains:

:
a
::::::::::
structurally5
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Figure 2. Example interpretation from a single student, showing the three major faults considered in our study as well as part of the Top

Ness horizon interpretation. BCU and additional faults
:::::
towards

:::
the

::::
East are hidden for better visualization of the key elements.

:::::
simple

:
domino system in the western part, an

::
and

::::
the

:::::::::
structurally

:::::
more

:::::::
complex

:
accommodation zone and a Horst complex

towards the east (see Figure 1c). Our study focuses on the major
::::::::::
structurally

::::::
simpler

:::::::
western

:::
part

::
of

:::
the

:::::::
domino

::::::
system,

::::::
where

::
we

:::::::::
investigate

:::
the

::::::::::
uncertainty

::
of

:::
the

::::
three

:
faults F1 - F3 and the fault blocks A - E depicted in Figure 1b, which are part of the

western domino system. Note that Fault 1 and 2 merge in the northern half and at the bottom of the domain and that Fault 2

splits into two smaller faults F2a and F2b.5

:::
The

::::
3-D

::::::
seismic

::::::
survey

::
of

:::
the

::::::::
Gullfaks

::::
field,

:::::::::::
ST85R9211,

::::
was

:::::::
recorded

:::
in

::::
1985

::::
and

::::::::::
reprocessed

::
in

:::::
1992.

::
It

:::
was

::::::::
recorded

::
in

::::
time

:::
and

::::::::
converted

::
to

:::::
depth

:::::
using

:::::
TWT

:::::
depth

:::::::::
conversion

:::
and

::::
was

::::::::
migrated

::::
using

::
a
:::::::
Prestack

::::::::
Kirchhoff

:::::::::
migration.

:

2.2 Interpretation dataset

The analyzed interpretations were produced as part of the Surface and Subsurface Digital Imaging course within the undergrad-

uate program Geology and Petroleum Geology at the University of Aberdeen.
:::::
While

:::
the

:::::::
students

:::
had

::::
prior

:::::::
training

::
in

::::::::
structural10

::::::
geology

::::
and

:::::::::::
interpretation

::
of

::::
2-D

::::::
seismic

:::::
data,

:::
this

::::
was

:::
the

:::::::
student’s

::::
first

::::::::
hands-on

:::::
course

::
in
::::
3-D

:::::::
seismic

:::::::::::
interpretation

:::::
using

::
the

::::::
Petrel

:::::::
software

::
as

::::
part

::
of

:::::
their

::::::::::::
undergraduate

::::::::
program. The fourth year undergraduate (BSc) students loaded the seismic

data into Petrel together with 14 wells, while ensuring proper georeferencing. The following interpretation process focused

on first interpreting the Top Cretaceous horizon with initial support by the lecturing staff. Afterwards the students started to

independently interpret the Base Cretaceous Unconformity (BCU) and Top Ness horizon (which is part of the Brent group)15

around well locations, followed by connecting the horizon interpretation in-between wellsusing mainly .
::::
The

:::::::
students

:::::
were

::::::::
instructed

::
to

::::::
mainly

:::
use

:
guided auto-tracking, as well as occasional seeded tracking and manual interpretation

:::::
where

:::::::
possible

::
or

:::::::::
necessary,

:::::::::
depending

::
on

:::::::
seismic

::::
data

::::::
quality. Afterwards fault interpretations were conducted of major faults. The stu-
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dents then interpolated gridded surfaces from the horizon interpretations using Petrel’s Make Surface function. Polygons were

created based on fault locations to create a Top Ness surface subdivided into the fault blocks.

For our study we collated the interpretation data from the students Petrel projects into a joint project, where interpretations

were sorted and labeled. Of a total of 90 student interpretations, we used 78 in our study, as the other 12 either lacked relevant

interpretations or were corrupted Petrel project files. Interpreted Top Ness horizon surfaces and fault sticks where then exported5

systematically to allow for automated data processing and analysis. An example student interpretation is shown in Fig. 2,

containing the three major faults considered, as well as the Top Ness horizon in two of the fault blocks A and D defined in Fig.

1b.

2.3 Data analysis

To process and analyze the large amount of interpretation data, the exported Petrel surfaces and fault sticks were wrangled using10

custom Python functionality and labeled in an open tabular data format. The result is a set of 4460878 data points, belonging

to 78 student interpretations, with 228 unique faults considered, which consist of a total 10052 individual fault sticks. For data

processing and analysis we made heavy use of the open-source Python packages pandas, SciPy and NumPy (McKinney, 2011;

Jones et al., 2001; Oliphant, 2006).

For the purpose of visualization and statistical analysis of the fault interpretations across the collective interpretations, the15

domain was discretized into regular bins (nx= 60, ny = 60, nz = 24). In the following analysis we present 2-D and slices

of 3-D histograms of fault interpretations, showing interpretation density and frequency across the domain. Fault orientations

for individual faults were computed by fitting a plane (using singular-value decomposition) to all fault stick points of a single

interpretation over all grid cells (collapsed along the x-axis). This makes the analysis less dependant
::::::::
dependent on the fault

stick interpretation density, which varies extensively in-between students. The resulting normal vector can be converted into20

strike and dip values. For visualization the fault orientation data was subdivided into three regular bins oriented E-W across

the structures. The fault throw analysis is based on the Top Ness horizon and is computed individually at each interpreted

fault stick for each fault and each interpretation. The
:::
fault

::::::
throw

:::
for

::::
each

:::::::::::
interpretation

::
is
::::

then
::::::::

averaged
::::
into

:::
20

::::
bins

:::::
along

::
the

::::::
Y-axis

::
to

:::::
make

:::
the

:::::::
analysis

::::::::::
independent

:::
of

:::
the

::::::
number

::
of

:::::
fault

:::::
sticks

:::::::::
interpreted

:::
by

::::
each

:::::::
student.

:::
The

:
nearest data points

on both the hanging and foot wall
:::::::::
hangingwall

::::
and

:::::::
footwall

:
of the Ness horizon fault blocks were selected as seeds. From25

these seeds the surface data approximately orthogonal to strike was used within a strike-parallel window of three grid cells .

:::::::
(approx.

:::::::
570 m). A relative gradient filter was then used to exclude points with gradients to their nearest neighbors outside of

the inner-quartile-range (IQR) of the selected subset. The resulting data is fitted with a linear regression for each fault block

and the intersection with the fault stick used to calculate fault throw.

:::::::::
Throughout

::::
this

:::::
work

:::
we

::::
make

::::
use

::
of

:::
the

::::
term

:::::::
seismic

::::
data

::::::
quality

:::
not

::
in

:::
the

::::::
strictly

::::::::::
geophysical

:::::
sense

:::
of

::::::
quality

::::::
factors30

::::::::::
surrounding

::::::
seismic

::::
data

::::::::::
acquisition

:::
and

::::::::::
processing,

:::
but

:::::
rather

::
in
:::

the
:::::

sense
:::

of
:::
the

::::::::::::
interpretability

:::
of

:::
the

::::::
seismic

:::::
data.

::
If

:::
the

::::::
seismic

::::
data

:::::
lacks

:::::
clear,

:::::::::
continuous

::::::::
reflectors

::
in

::
a

::::::
region,

:::
but

:::::
shows

::
a
:::::
noisy

:::::
image

:::::::
difficult

::
to

::::::::::::
interpret—no

:::::
matter

:::::
what

:::
the

:::::
source

:::
of

:::
this

::::
may

:::::::
be—we

::::::::
describe

:
it
:::

as
::
an

:::::
area

::
of

::::
low

::::::
seismic

::::
data

:::::::
quality.

::::::::
Similarly,

::
if
::::::::

reflector
::::::::
strengths

:::
are

::::
high

::::
and

:::::::::
continuous

:::
(for

:::::::
horizon

::::::::::::
interpretation)

::
or

::::::
clearly

:::::
offset

:::
(for

:::::
fault

::::::::::::
interpretation),

:::
we

:::::
speak

::
of

::::
high

:::::::
seismic

:::
data

:::::::
quality.
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For the assessment of seismic reflector strength an RMS Amplitude (RMSA) seismic attribute
::::::
seismic

:::::::
attribute

:::::::
(RMSA

:::
for

:::::
short) was calculated using Petrel

:
’s
:::::
RMS

:::::::::
Amplitude

:::::::
function

:::::
using

:
a
:::::::

window
::::::
length

::
of

:::
24

:::::
traces. RMS Amplitude represents

the square root of the arithmetic mean of squared amplitude values across a specified seismic trace window.

3 Results

3.1 Uncertainty in fault interpretation5
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Figure 3. 2D Histograms for the three Faults 1 (a
::
A), 2 (b

:
B) and 3 (c

:
C) for depth slice at 2 km ± 0.1.Horizontal lines separate the three bins

used for plotting subsets
:::::::
Stereonet

::::
plots of

:::::
Faults

:::
1-3

::::::::
(columns),

:::
with

:::
all

:::
fault

:::::
strike

:::::::::
orientations

::::
along

:::
the

::::
fault

:::::
length

:::::
plotted

::::::::
combined

::
in

::
the

::::
first

:::
row

::
(a,

::
e,
::
i).

:::
To

:::::::::
discriminate

:::::::
changing

:::::
trends

::
in

:::::
actual

::::
fault orientation

:::
from

::::::::::
interpretation

:::::::::
uncertainty

::::
rows

:::
two

::
to
::::
four

:::
plot

:
data

:::
from

::::
bins

:::::::
separated

::
by

::::::
dashed

:::
blue

:::::
lines,

::::
from

::
the

:::::::
northern

:::
bin

::
(c,

::
g,

::
k),

:::::
middle

:::
(d,

::
g,

:
l)
:::
and

:::::
south

::
(e,

::
h,

:::
m).

:::
Blue

:::::
planes

:::
and

:::::
poles in Fig

:::
top

:::
row

::
(a,

::
e,

:
i)
:::::
show

:::::::
Bingham

::::::
analysis

::::
mean

::::
pole

::::
from

:::::::::::::::::::::::
Fossen and Hesthammer (1998)

:::
for

:::::::
reference.3.

Figure 3 shows 2-D histograms for the three major faults taken into consideration within this study. The histograms cover

the entire extent of the seismic cube, with the frequency of fault stick points counted per bin in a depth slice at 2 km ± 0.1.

Fault 1 shows a sigmoidal shape in the N-S direction of the seismic depth slice (see Fig. 3a
:
A), with high frequency den-

sities in the northern part and lower intensities found in the southern part. Plotting all fault plane orientations within a

single stereonet reveals three distinct clusters of planes (Fig. 3a), which when separated into three equal bins along the N-10

S axis correspond to the components of the sigmoidal fault shape (Fig. 3b-d).
:::
We

::::
have

::::::
added

::::::::
Bingham

:::::
mean

:::::
poles

:::::
from

::::::::::::::::::::::::::
Fossen and Hesthammer (1998)

::
for

:::
all

:::::
three

:::::
faults

::
in

:::
the

::::
plot

:::::
(light

:::::
blue)

:::
for

::::::::::
comparison.

:
Interpretations of Fault 2 show a

split into two sub-faults F2a and F2b in the southern part (see Fig. 3b
:
B), as also interpreted by Fossen and Hesthammer (1998,
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see Fig. 1). The spatial uncertainty of the fault interpretations appears slightly lower in the northern part of the seismic slice, but

also shows evidence of a small separated fault block in the central part of the fault. The interpretations of Fault 3 show a strong

increase in spread
::::::::
dispersion

:
towards the southern part of the seismic slice (Fig. 3c

:
C). The same trend of increasing uncer-

tainty can be observed in the fault plane orientation (Fig. 3j-l). Additionally, the histogram shows the occasional interpretation

of the fault branching towards Fault 2(b), towards the West, and towards Fault 4 to the East (see Fig. 1b).
:::
The

:::::
effect

::
of
:::::

fault5

::::
stick

:::::::::::
interpretation

:::::::::
frequency

:::::::
between

:::
the

:::::::
students

::::
with

::::::::::::
below-median

:::
and

::::::::::::
above-median

:::::
fault

::::
stick

:::::::::::
interpretation

:::::::::
frequency

::
on

::::::
overall

::::
fault

::::::::
standard

::::::::
deviation

:::
was

::::::::
analysed

:::::
using

::::::::
Bayesian

:::::::::
estimation

:::
for

:::
two

::::::
groups

:::::::::::::::
(Kruschke, 2013).

:::
We

::::::::
observed

::
a

::::::::
difference

::
in

:::::
mean

:::::::
standard

::::::::
deviation

:::
of

::::::
35.8 m,

:::::::
20.2 m

:::
and

:::::::
81.5 m

::
for

:::::
Fault

::
1,

::
2

:::
and

::
3

::::::::::
respectively,

::::
with

::::::::::
probability

::
of

:::
the

:::::::::
differences

:::::
being

:::::
larger

::::
than

:::::
zero

:::::
being

:::::::
99.3 %,

::::::
87.4 %

::::
and

::::::
99.9 %

:::::::::::
respectively,

::::::
making

:::
the

::::::::::
differences

:::
for

:::::
Fault

:
1
::::

and
::
3

:::::::::
statistically

::::::::
credible.10

Stereonet plots of Faults 1-3 (columns), with all fault strike orientations along the fault length plotted combined in the first

row (a, e, i). To discriminate changing trends in actual fault orientation from interpretation uncertainty rows two to four plot

data from bins shown in Fig. 3, from the northern bin (c, g, k), middle (d, g, l) and south (e, h, m). Blue planes and poles in top

row (a, e, i) show Bingham analysis mean pole from Fossen and Hesthammer (1998) for reference.

Figure 3 plots fault plane orientations calculated from students fault stick interpretations. Fault 1 shows three distinct clusters15

of orientations (Fig. 3a
::
A,

:::
a-d), which can be separated by subdividing the study domain into three equal bins along the N-S

axis. Fault 1 shows a striking decrease in k-values (a measure of tightness of the orientation clusters) from North to South

(92, 68, 52). The pattern does not hold true for Fault 2, which shows low k-values both in the North and South. Fault 3 shows

similar behaviour to Fault 1, with a strong increase in dispersion from North to South (83, 63, 35).

Overall the observed uncertainty (standard deviation) of the fault plane along the W-E axis appears to be increasing linearly20

with depth for all three faults (Fig. 4). Note that the overall mean standard deviations between the faults vary greatly: 791, 384

and 575 m for Faults 1, 2 and 3, respectively. The extremely high variation of standard deviations seen in the upper part of

Fig. 4 (faded data points) is due to a few students extending their fault interpretations above the Base Cretaceous unconformity

:::::::::::
Unconformity

:
(BCU), making the data points at that depth statistically unreliable due to low sample numbers and geologically

questionable. Any fault stick interpretations above the unconformity
::::
BCU

:
were thus excluded from the least-squares linear25

regression (R-values for Fault 1, 2 and 3: 0.75, 0.85 and 0.61).

The ensemble of interpretations show 11 different fault network (FN) topologies (see Fig. 5a). Five modes of FN topology

make up the bulk of fault network topologies, while all others occur with a probability of less than 0.05 each
:::::
others

:::::
were

::::
only

:::::::::
interpreted

::
by

::
3

::
or

:::
less

::::::::
students

::::::::::
respectively. The sketches in Fig. 5b represent these five most likely

:::::::::
interpreted

:
FNs (Fault 3

is omitted for brevity, as it was interpreted by all students in a similar fashion, and only a single student connected Fault 230

with Fault 3). Note that the most probable
:::::::
frequent FN (Fig. 5b, A) is different from the reference expert FN interpretation of

Fossen and Hesthammer (1998), which corresponds to either the second or fourth most common FN interpretations (Fig. 5b, B

and D). The major source of uncertainty in this specific FN appears to be interpreting both F2a and F2b, and which one abuts

the other. The few students who branched off the southern part of Fault 3 towards the West interpreted Fault 2b as part of Fault

3, but did not connect it to the FN of Fault 1 and 2.35
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Figure 4. Scatter plot of mean (collapsed y-axis) standard deviation along x-axis of mean fault surfaces for Fault 1, 2 and 3. Chaotic patterns

of uncertainty at shallow depths (faded data points) are likely due to sporadic numbers of interpretations, as students often stopped interpreting

the faults before reaching the Base Cretaceous unconformity
::::::::::
Unconformity

:
(BCU). Overall, uncertainty of fault interpretations is increasing

linearly with depth (linear regression only takes into account interpretations below the BCU, R-values for Fault 1, 2 and 3 respectively: 0.75,

0.85 and 0.61).

3.2 Fault throw and horizon uncertainties

Results of the fault throw analysis are plotted in Fig. 6, showing .
::::
The

:::::::
boxplots

:::::
show median fault throw with the associated

standard deviation
::::::::::
interquartile

:::::
range

::::::
(IQR),

:::::::
extrema

:::
and

::::::
outlier

:::::
values

:
along fault strike direction. The throw profile of Fault

1 (Fig. 6a) shows a distinct sinuous shape spatially associated with its interaction with Fault 2. Fault throw uncertainty remains

relatively constant along the strike (around ±30m), while rising sharply to about ±75m at the southern edge of the seismic5

cube
:::
This

::::::
shows

:::
one

:::
bin

::::
with

::::
high

:::::::
median

::::
fault

:::::
throw

::
of

:::::::
approx.

::::::
180 m

:::
and

::::
high

::::
fault

:::::
throw

::::::::::
uncertainty

:::::
(IQR

::::::
144 m)

::::::
before

:::::::
strongly

:::::::::
decreasing

::
in

::::
fault

:::::
throw

::::::
values

:::::
down

::
to

:
a
:::::::
median

::
of

:::::
about

:::::
40m

:::
and

::::
one

::
of

:::
the

::::::
lowest

::::
IQR

:::::
along

:::
the

::::
fault

:::::::
(36m).

::::::
Median

::::
fault

:::::
throw

::::
then

:::::
rises

::::::
steadily

:::::::
towards

:::
the

:::::
South

:::::
while

::::
also

:::::::::
increasing

::
in

:::::::::
uncertainty

::::::::::
(culimating

::
in

:::
an

::::
IQR

::
of

::::::
119 m

::
in

:::
the

::::::
South).

::::::
Notice

:::
the

:::::::
increase

:::
of

:::::::::
uncertainty

::
at
::::
both

:::::
ends

::
of

:::
the

:::::::
dataset,

::::
with

:::::::::
increasing

::::::
median

::::::
throw

::
in

:::
the

:::::
South

::::
and

:::::::::
decreasing

::
in

:::
the

:::::
North. The throw profile of Fault 3 (Fig. 6b) shows two distinct levels of throwuncertainty. In the northern10

half fault throw uncertainty remains relatively constant at around ±36m. This changes in the southern part of the fault, where

fault throw uncertainty rises to up to ±74m
:
:
::
In

:::
the

::::::::
Northern

::::
part

::
of

:::
the

:::::
fault

::::::
median

:::::
throw

::
is
:::::
high

::
at

::::::
109m,

:::::::::
compared

::
to

::::
53m

::
in

::::::::
Southern

::::
part.

::::
IQR

::::::::
increases

::::
from

:::::
40m

::
in

:::
the

:::::
North

::
to

:::::
57m

::
in

:::
the

:::::
South,

::::
with

:::::::
highest

::::
IQR

:::::::
observed

::
at

:::
the

::::::::
Southern

:::
end

::
of

:::
the

::::::
survey

::::::
(79m).

Figure 7a shows the average Top Ness horizon basemap for all interpretations combined. Overall the horizon interpretations15

are increasing in depth from SE towards the NW of the domain. Figure 7b shows the associated standard deviation of the

average Ness horizon interpretation, with
::
an overlay of mean fault intersections and well locations. We observe large horizon

8
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uncertainties in vicinity to both Faults 1 and 2.
:
2
::::::::::
throughout

:::
the

::::::
dataset.

:::
An

::::::::
increase

::
of

:::::::
horizon

:::::::::
uncertainty

::
is
:::::::::
occurring

::
at

::
the

::::::::
southern

::::
end

::
of

:::
the

:::::::
domain

::::::
where

:::::
Faults

::
1
::::
and

:
2
::::

are
::::::::
beginning

:::
to

:::::
merge

::::::
again.

::
In

::::
the

:::::
North

:::
the

:::::::
horizon

::::::::::
uncertainty

::::::::::
surrounding

::::
Fault

::
3
::::::::
decreases

::::::
rapidly

::::
with

::::::::
distance

::::
from

:::
the

:::::
fault,

::::
with

:::
two

::::::::
welltops

:::
and

::::::::
packages

::
of

::::
high

::::::::
reflector

:::::::
strength

:::
(see

::::
Fig.

:::
8A)

:::::::::::
constraining

:::
the

:::::::::
uncertainty.

:::
As

:::
the

::::::
seismic

::::
data

::::::
quality

::::::::
decreases

:::::::
towards

:::
the

::::
south

::::
(see

::::
Fig.

:::
8B),

:::
the

::::::::::
uncertainty

::
in

:::
the

::::::
horizon

::::::::::::
interpretation

::::::::
increases

::
in

:::
the

::::::
Eastern

::::
part

::
of

:::
the

:::::::
dataset.

:
Interpretation uncertainties are significantly reduced5

surrounding well locations in the western part of the study domain, while the effect is diminished towards the east, the reasoning

of which is discussed later.
:::::
where

::::::
seismic

::::::::
reflectors

::
of

:::
the

::::
Top

::::
Ness

::::::
horizon

:::
are

::::::
overall

:::::::
stronger

::::
and

::::
more

:::::::::
continuous

::::
(see

::::
Fig.

::::
8A).

::::
This

::::::
pattern

::::
does

:::
not

::::
hold

:::
true

::
in
:::
the

::::
East

::
of
:::
the

:::::::
dataset,

:::::
where

:::::::
reflector

:::::::::
continuity

::
is

::::::
overall

:::
low

::::
and

::::
noise

::
in

:::
the

:::::::
seismic

::::::
dataset

:
is
:::::
high.

9
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Figure 6. Results of fault throw analysis for Faults 1 (a) and 3 (b)
::::::::
visualized

::
as

::::::
boxplots, showing the median fault throw in (black ,

::::
lines)

with respective standard deviation in
:::::::::
interquartile

::::
range

:
(grey

:::::
boxes),

::::::
minima

:::
and

::::::
maxima

:::::::
whiskers

::::
(grey

:::::
lines)

:::
and

::::::
outliers

::::
(grey

::::
dots).

3.3 Seismic data quality

To assess influences of seismic data quality on fault interpretation uncertainty we made use of the RMS Amplitude (RMSA)

attribute as a proxy for reflector strength (strong horizon reflectors aiding the interpretation of faults result in high RMSA

values). Specifically, we investigated the example of Fault 3, as it shows significant gradual changes in interpretation uncertainty

across the seismic dataset (Fig. 3c
::
C and 6b). Figure 8 shows four averaged RMSA responses with corresponding fault stick5

interpretation histograms (Fig. 8a-d) from the locations shown as white boxes in Fig. 8.1. In the northern extent of the seismic

slice, Fault 3 is closely bounded by strong horizon reflectors, as shown in in the RMSA slice (Fig. 8.1), seismic slice (Fig. 8.2)

and inline section A, focusing the students interpretations, as seen in the corresponding histogram of fault interpretations

(Fig. 8a). The histogram shows a bimodal distribution, as some students interpreted the fault further towards the East, where

another fault is present (Fault 4, see Fig. 1b). The overall uncertainty related to the interpretation of the actual Fault 3 appears to10

be Gaussian
:
is

::::::::::::
approximately

::::::
normal

:::::::::
distributed

::::::::
(skewness

::
of
:::::
0.33), with the standard deviation roughly corresponding to

:::::
width

::
of the trough seen in the RMSA response

:::::::::
containing

::::
more

::::
than

:::::
± 1.8

:::::::
standard

:::::::::
deviations

::::::::
(92.8 %)

::
of

:::
the

::::
fault

::::
stick

:::::::::
placement

:::::::::
uncertainty. Further towards the south of the dataset, the RMSA response diminishes east of Fault 3, while remaining strong

on the western side (Fig. 8b). The fault interpretations show a stronger spread
::::
64 %

:::::::
increase

::
in

:::::::
standard

:::::::::
deviation, with thicker

tails in the histogram
:::::
(79 %

:::::::
increase

::
of

:::::::
Pearson

::::::::
kurtosis), especially towards the West, where interpretations are then bounded15

by strong seismic reflectors. Further south the seismic response degrades and is noisy (Fig. 8.1 and B), which is reflected

by the homogeneous
:::::
leading

::::
also

:::
to

:
a
::::
lack

::
of

::::::
signal

::
in

:::
the

:
RMSA values (Fig. 8c). The corresponding fault interpretations

show an
::::
stick

:::::::::
placements

:
increase in uncertainty ,

:::::::
(increase

::
in

:::::::
standard

::::::::
deviation

:::
by

::::::
289 %),

::::
now

:
appearing nearly uniformly

distributed but showing some consistency in the interpretation of Fault 3 (slight crest
::::
with

::
a

:::::
slight

::::
crest

:::::
(Fig.

:::
8c). At the

southern end of the slice, RMSA responses increase again (Fig. 8d). The distribution of fault interpretations shows a bimodal20

10



67
88

00
0

67
82

00
0

Y

451000 459000 451000 459000

Depth [m] Standard deviation [m]

X X

1700 1800 1900 2000 2100 20 40 60 80 100

Average Top Ness horizon Top Ness horizon uncertainty

2 km

N

Fault 3
Fault 2b

Fault 2a

Fault 1

Top Ness 
welltops

a b

Mean fault surface 
intersections
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distribution, as seen before in the map view 2-D histograms shown in Fig. 3. The histogram roughly resemble two very broad,

overlapping Normal distributions.

4 Discussion

4.1 Key findings

Our work has shown that uncertainties in fault stick placement correlate with seismic reflector strengths. In areas of high data5

constraint this uncertainty is strongly constrained between areas of high RMSA response (Fig. 8a). Our analysis shows how

interpretation uncertainty increases with a decrease in data constraints (Fig. 8b). This trend culminates in near-maximal uncer-

tainty in areas of high seismic noise
:::
low

::::::
seismic

:::::
image

::::
data

::::::
quality

:
(Fig. 8c). The spread in fault stick placement appears to not

11
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be entirely driven by seismic noise, but rather appears to be, at least partly, guided by the surrounding interpretations in areas

of higher data quality (Fig. 8b, d), allowing interpreted faults to conform to common fault shape models (e.g. to avoid sudden

shifts in fault plane orientation). In areas of low data quality the corresponding uncertainty in fault placement seems related

more to
::
is

:::
also

:::::::::
influenced

:::
by

::::
more

:
conceptual uncertainties of fault network topology—e.g. interpretations of Fault 3 branching

off towards the East or West (as seen in Fig. 3a, d).
::
C).

::::::
Recent

::::::::
research

::
by

:::::::::::::::::::
Alcalde et al. (2017a)

::
has

::::::
shown

:::
the

::::::::::
importance5

::::
fault

:::::
model

::::::::::
availability

::::
plays

::::::
during

:::::::
seismic

:::::::::::
interpretation

::::::::::::::::::::::::::::::::::::::::::::::::
(availability bias; see Tversky and Kahneman, 1973, 1974),

::::::
which

:::::
should

::::
only

:::::::
increase

::
in
:::::::::
relevance

::
in

::::
areas

::
of

::::
low

::::::
seismic

::::::
image

::::
data

::::::
quality.

While the domino structure of the study area makes overall tectonic conceptual uncertainty less significant
:::::::::::::::
(Bond et al., 2007)

, the low seismic data quality makes it a challenging interpretation project
:
,
::
as

:::::::
reflector

:::::::::
continuity

::
is

:::
low

::::
and

:::
the

::::::
dataset

:::::
noisy

::
in

::::
large

:::::
parts

::
of

:::
the

::::::
survey. So despite the increased information density provided by 3-D seismic surveys, significant fault10

network topology uncertainties remain (Fig. 5).

Our study also shows that uncertainties in the placement of faults sticks appears to increase linearly with depth (Fig. 4). This

is an important finding for approximating uncertainty trends with depth, and is especially important as seismic image quality

tends to decrease with depth. Additional studies on different seismic datasets could yield useful information about how these

fault uncertainties might depend on seismic image data quality, as seen here, and how uncertainties may be different in other15

tectonic and stratigraphic settings.

Our analysis of Top Ness horizon interpretation uncertainties shows the correlation of uncertainty with fault proximity (Fig.

7b). Horizon interpretations surrounding Fault 3 in the Northern part show only slight increases in uncertainty towards the

fault, as they are strongly constrained by wells and high data quality
::::::
reflector

:::::::::
continuity (see Fig. 7b and 8A). With decreasing

seismic data quality towards the South we also see an increase in uncertainty surrounding Fault 3, which also shows in the20

increasing fault throw uncertainty seen if Fig. 6b. This trend is not
:
as

:
evident for the throw across Fault 1, with the Top

Ness horizon being better constrained on both sides, with overall higher seismic image data quality.
:::::::::
Qualitative

::::::::::
comparison

::
of

::::::
median

::::
fault

:::::
throw

:::
for

::::
both

:::::
Fault

:
1
::::
and

:
2
::::
with

:::::
depth

:::::
maps

::
in

::::::::::::::::::::::::::
Fossen and Hesthammer (1998)

:::::::::
displaying

::::
fault

:::::
heave

:::
can

:::
be

::::
made

::::::
under

:::
the

:::::::::
simplifying

::::::::::
assumption

:::
of

:::::::
constant

::::
fault

::::
dip.

:::::
Fault

:::::
heave

::::::::::
qualitatively

:::::::
mimics

:::
the

:::::::
patterns

:::
we

:::::
found

::
in
::::

our

:::::::::
uncertainty

:::::
study:

:::::::
gradual

::::::::
decrease

::::
from

:::::
North

::
to
::::::
South

:::
for

::::
Fault

::
3,

::::
and

:::
the

::::
stark

::::::::::
differences

:::::
where

:::::
Fault

:
1
::::
and

:
2
::::::

merge,
:::

as25

:::
well

:::
as

:::
the

:::::::
increase

::::::
towards

:::
the

::::::
South.

::::
This

::::::::::
comparison

::::::::::
consolidates

:::
the

:::::::::
confidence

::
in

:::
our

:::::::::
automated

::::
fault

:::::
throw

:::::::
analysis

::::
and

::::
hints

::
at

:::
the

::::::
validity

:::
of

:::::::::
aggregating

:::::
large

::::::
number

:::
of

::::::::::::
interpretations

::
of

::::
even

::::::::::
non-experts

::
to

:::::
assess

:::::::::
geological

::::::::
features.

We have also shown uncertainty in fault orientations (Fig. 3), and the inadequacy of summarizing fault orientation using

a deterministic mean pole, as in Fossen and Hesthammer (1998),
:::::

who
::::::::
calculated

::
it
:::::
using

::::::::
Bingham

:::::::
analysis

:::
of

::::
data

::::
from

::
a

:::::::
different

:::
3-D

:::::::
seismic

::::::
dataset. This inadequacy results from sinusoidal fault map pattern (Fig. 3a

::
A) and curved 3-D geometries30

on-top of uncertain fault stick placements.

We also see
:::::::
observed

:
strong decreases in uncertainty surrounding wells in the West of the study area (Fig. 7b). The trend

of increasing uncertainty in horizon location from west to east
::::
West

:::
to

::::
East could be attributed to the decrease in seismic

image data quality
:::
and

:::
the

::::
thus

:::::
much

:::::
lower

:::::::
reflector

:::::::::
continuity. But we would also expect for the horizon uncertainties to be

reduced within the immediate surroundings of the wells. One possible explanation for this could be that students focused their35
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interpretation efforts on the higher quality western part of the seismic cube due to the time constraints on the interpretation

project.

4.2 Implications for deterministic modelling

Our results and analysis suggest that the uncertainties recorded in 2-D seismic interpretation experiments (e.g. Bond et al.,

2007; Bond, 2015) are similarly seen in the interpretation of 3-D seismic image data. Akin to the 2-D experiment and anal-5

ysis of Alcalde et al. (2017b), we show a correlation between seismic image quality and interpretation uncertainty. We have

quantified the impact of fault uncertainty on fault network topology and fault and horizon uncertainty on fault throw. The

fault network topology in a ‘traditional’ deterministic geomodel is important as it determines the number of fault blocks and

hence the degree to which stratigraphic units are separated (by faults). This information is imperative to the understanding

of reservoir compartmentalization in hydrocarbon reservoirs, connectivity and flow characteristics of ground water aquifers10

and for geothermal projects. Simply, reservoir performance can be significantly affected by fault network topology and under-

standing the uncertaintiesin fault network topology
::::
these

:::::::::::
uncertainties, and hence reservoir connectivity, can be critical to the

planning of production strategies
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Manzocchi et al., 2008a, b; Lescoffit and Townsend, 2005; Tveranger et al., 2008). The

type of fault network topology information available in Fig. 5 could be used to inform reservoir modelling to guide multiple

production strategies (e.g. multiple deterministic models are made) and for informed history matching during field operation15

when reservoir models have been developed from single deterministic models and need to be updated.

Although not developed in detail in this paper, our analysis of fault throw uncertainties highlight that the use of fault throw

information, e.g. to predict fault sealing properties such as shale gouge ratio (Yielding, 2002; Vrolijk et al., 2016), could

be significantly affected by uncertainty in the interpretation of 3-D seismic image cubes. Our work highlights areas where

uncertainties in fault throw are likely to increase: with increasing distance from wells
::
in

::::
ares

::
of

::::
low

:::::::
reflector

:::::::::
continuity,20

where seismic image quality is poor (and correspondingly with increasing depth), and where faults join or abut. Modelling

of uncertainties in fault throw and using information such as that derived here to inform where uncertainties are likely to be

greater could provide the basis for more informed modelling of fault seal parameters, such as through stochastic modelling

discussed below, or integrated as uncertainty parameters into deterministic geo- and reservoir models. In summary, fault throw

uncertainty together with fault network topology uncertainty has the potential to significantly alter predicted fluid-flow patterns25

in the crust with implications for water-resources, reactive element transfer (e.g. to inform nuclear waste disposal engineering),

or hydrocarbon and energy production.

4.3 Implications for stochastic modelling

Although we can outline how uncertainty information could be used to better inform use of deterministic models and their

inherent uncertainties, advances in both computational capabilities and implicit structural geomodelling have allowed for ma-30

jor improvements in the incorporation of uncertainties into structural geomodels by means of stochastic simulations. At its

core stochastic structural geomodelling requires adequate disturbance distributions to obtain reasonable estimates of geomodel

uncertainty (see Wellmann and Caumon, 2018). This uncertainty parametrization can be used to better establish and account

14



for interpretation uncertainties on-top of deterministic modelling workflows using a hybrid approach based on a single de-

terministic or multiple deterministic models. For example, a deterministic fault network topology model with fault throw

uncertainties parameterized, or multiple deterministic models to characterize the most probable fault network topologies (e.g.

Fig. 5) with fault throw uncertainties parameterized. Such hybrid approaches may provide the best solutions when the time

and computational costs of full stochastic modelling are too high and/or when elements of the uncertainty in the geomodel5

are not best represented as simple stochastic functions, such as different conceptual models (e.g. for fault network topolo-

gies).
::::::::::::::::
Stamm et al. (2019)

::::
have

:::::::
recently

::::::::
explored

::::
how

::::
both

::::
fault

:::::
throw

::::
and

::::
fault

::::::
sealing

::::::::::
uncertainty

:::
can

::
be

:::::::::::
incorporated

::::
into

::::::::
stochastic

:::::::::
geological

::::::::
modeling

::::::::::
workflows,

:::
and

:::::::
studies

:::
like

::::
ours

::::
can

::::
help

::::::
inform

:::::::::
stochastic

:::::::::::::
parametrization

::::
with

::::
how

:::::
fault

:::::
throw

::::::::::
uncertainties

::::
can

::::::
change

:::::
along

:::::
strike

::::::::
depending

:::
on

:::::::
changes

::
in

:::
the

::::::
seismic

::::
data

:::::::
quality.

The work of Pakyuz-Charrier et al. (2018) discusses the importance of proper parametrization of input data measure-10

ment uncertainty when constructing stochastic geomodels, but little is known about the uncertainties in interpreting the

dense 3-D seismic datasets to obtain such input data for structural geomodels. Our work not only provides a first look at

how significant these uncertainties can be, but additionally provides a first order approximation for parametrization of fault

and horizon interpretation uncertainties within stochastic geomodels . Student
::::
based

:::
on

:::::::
seismic

:::::
image

::::::
quality

:::::::::::
surrounding

::::
fault

::::::::::::
interpretations.

::::::
Future

::::::::
research

::::
into

::::
how

:::
our

:::::::
findings

::::::
could

::
be

:::::::::
integrated

::::
with

::::
the

::::::
seismic

::::::::::
expression

::
of

::::
fault

::::::
zones15

:::::::::::::::::::::::::::::::::::::
(e.g. Botter et al., 2014; Iacopini et al., 2016)

::::
could

::::::
further

:::
our

:::::
ability

::
to

::::::::::
parametrize

::::::::
stochastic

:::::::::
geomodels

:::::::
directly

::::
from

:::::::
seismic

::::
data.

:::::
While

::::::
student

:
interpretations will most certainly reside within the upper range of interpretation uncertainty, but we argue

that it
::::::::::
nevertheless

:
provides significant value to the parametrizationof

::::::::
stochastic

::::::::::::::
parametrization,

::::::::
especially

:::
to the emergent

Bayesian approaches to stochastic structural geomodelling (Caers, 2011; de la Varga and Wellmann, 2016; Wellmann et al.,20

2017), as it could provide informed—but not overly constrained—prior parametrization that can be reduced by case-specific

geological likelihood functions and auxiliary data integration. We also agree with Caers (2018) on the need for a rigorous

methodology of falsification in geomodelling. The integration of adequately parameterized seismic interpretation uncertainties

into a Bayesian geomodelling framework could enable a quality control of the interpretation by probabilistic assessment of

the stochastic geomodel against geological likelihood functions (e.g. fault length and throw relationships, fault population25

distributions, analog studies).

Our findings underline the complexity involved in the adequate parametrization of interpretation uncertainty in stochastic

geomodelling: while Normal distributions may capture uncertainty adequately in areas of good seismic imaging (Fig. 8a),

skewed fat-tailed distributions (e.g. Cauchy; Fig. 8b) or even Uniform distributions (Fig. 8c) are reasonable choices with

degrading seismic quality. When implicitly modelling 3-D geological surfaces, many approaches are based on both surface30

points and strike and dip information. The latter carry significantly higher amounts of information (Calcagno et al., 2008;

Laurent et al., 2016; Grose et al., 2017) than the surface points, thus emphasizing the need to quantify their uncertainty if it

is used to generate and constrain 3-D stochastic geomodels. The use of van Mises-Fisher distributions to model uncertainty

of orientation vectors was shown as a robust way to describe surface orientation uncertainty (Pakyuz-Charrier et al., 2018),

15



and our analysis could provide valuable information for their parametrization in areas of high interpretation uncertainty within

sedimentary basins.

4.4 Implications for machine learning

Recent efforts in automating seismic interpretation through the use of, mainly, Neural Networks (NN) has been increasingly

successful in interpreting high quality (synthetic) seismic data (e.g. Huang et al., 2017; Dramsch and Lüthje, 2018; Wu et al.,5

2018). But NNs inherently do not take into account any geological reasoning skills that could make sense of areas of low

seismic image data quality, but rather infer abstract features from their training data. And while NNs can be constructed

and trained probabilistically, and thus enable uncertainty quantification of their outputs, they are likely to require additional

information about the structures to be interpreted in areas where interpretation suffers from low data quality. In our analysis of

the uncertainties in interpretations of the Gullfaks field 3-D seismic cube the interpretations of faults in areas of low seismic10

image quality conform to known fault geometries and topologies and are likely informed by interpretations of adjacent higher

quality seismic image data, rather than their uncertainty distributions being simply correlated to seismic image quality (Fig.

8). Such evidence highlights the nuances in geological interpretation, and the difficulties in creating algorithms that represent

the complexities of human thought processes. Irrespective of how easy it is, or otherwise, to apply our findings to inform

automated interpretation efforts, there is value in studies such as the one presented here in generating understanding as to15

when and where such machine learning processes maybe applied effectively and how they could be improved by integrating

geological knowledge, maybe in the form of logic rules that influence NN weights and biases (Hu et al., 2016). Lu et al. (2018)

show the use of Generative Adversarial Networks (GANs) in improving fault interpretation of low-resolution seismic image

data by generating supersampled high-quality seismic images from lower quality data. One possibility could be to train similar

NNs on the structural geology represented by ideal synthetic seismic image data and artificially noisy perturbations of the same20

to let NNs learn how ideal structures that underlie noisy seismic image data might look like. They could then possibly generate

possible higher-quality realizations of noisy, uncertain areas of seismic images to support interpretation efforts. Overall, the

complex interplay of the underlying geology, computational and conceptual challenges of the machine learning approaches

and the human-induced uncertainties will require strongly interdisciplinary approaches to combine state-of-the-art algorithms

and geological domain knowledge to further automate the laborious and uncertain task of 3-D seismic interpretation.25

5 Summary

:::
Our

:::::
study

::::::::
provides

::
a

:::
first

:::::
look

:::
and

::::::::::::
quantification

:::
of

:::
the

:::::
scale

::
of

:::::::::::
uncertainties

::::::::
involved

::
in

:::
the

:::::::::
structural

:::::::::::
interpretation

:::
of

:::::::::
data-dense

:::
3-D

:::::::
seismic

::::
data.

:::
We

::::
have

:::::
found

:::::
that:

–
::::
Fault

:::::::::
placement

::::::::::
uncertainty

:::::
shows

::::::
strong

::::::::::
dependency

:::
on

:::::::
seismic

::::
data

:::::::
quality.

::::
The

:::
use

::
of

::
a
:::::::
seismic

:::::::
attribute

::::::
(RMS

:::::::::
Amplitude)

:::::::
showed

::::::::
promising

::::
first

:::::
results

::
to
:::
be

::::
used

::
as

:
a
:::::
proxy

:::
for

:::::::::
estimating

::::
fault

:::::::::::
interpretation

::::::::::::
uncertainties.

::::
This

:::
can30

::
be

::::::::
especially

::::::::
valuable

::
for

:::
the

:::::::::::::
parametrization

::
of
:::::::::
stochastic

:::::::::
geomodels

:::::
based

:::
on

:::::
single

::::::
seismic

::::::::
reference

:::::::::::::
interpretations.

16



–
:::
The

::::::::
common

:::
use

::
of

:::::::
Normal

:::::::::::
distributions

::
as

::::::::::
perturbance

::::::::::
distributions

:::
in

::::::::
stochastic

::::::::::::
geomodelling

:::::
seems

::::::::::
inadequate

::
in

::::
areas

::::::
where

:::::::::::
interpretation

::::::::::
uncertainty

::
is

::::
high

:::::
(low

::::::
seismic

::::
data

::::::::
quality).

:::::::
Instead,

:::::::::
uncertainty

::::::::::::::
parametrization

::::::
should

::::::
always

::
be

:::::::
directly

::::::
linked

::
to

::::
the

::::::::::
surrounding

:::::::
seismic

::::
data

::::::
quality

::::
and

:::
the

::::
use

::
of

::::::::::::
near-uniform

::::::::::
distributions

::::
can

:::
be

:::::::::::
recommended

::
in
:::::
areas

::
of

:::::::::
extremely

::::
poor

:::::::::::::
interpretability.

–
:::
We

:::::
found

::::
that

:::::::
relative

:::::
trends

:::
of

::::
fault

:::::::::
placement

::::::::::
uncertainty

:::
can

:::
be

::::::::::::
approximated

:::::::
linearly

::::
with

::::::
depth,

::::::::
although

:::
we5

:::::::::
recommend

:::::
more

::::::::
research

::
to

::::::
further

:::::::::
investigate

:::
the

::::::::
influence

::
of

:::::::
seismic

::::
data

::::::
quality

:::
in

::::::::::
combination

::::
with

::::::::
changes

::
in

:::::::
reflector

::::::::
continuity

::::
with

::::::
depth.

–
:::
The

::::::
student

::::::::::::
interpretations

::::::::
displayed

:::::::::
significant

:::::::::::
uncertainties

::
in

::::
fault

::::::
network

:::::::::::::::::
topologies—despite

:::
the

:::::::::::::::
information-dense

:::
3-D

:::::::
seismic

:::::::::::
data—which

:::
can

::::
have

::::::
critical

:::::::
impacts

:::
on

:::::::
decision

:::::::
making

:::::
based

:::
on

:::::::::
geomodels

::::::::::
constructed

::::
from

:::::::
seismic

::::::::::::
interpretations.

:
10

:::::::::
Additional

:::::::::::
interpretation

:::::::::
uncertainty

::::::
studies

:::
on

:::::::
different

::::::
seismic

::::
data

:::
are

::::::::::::
recommended

::
to

::::::
further

:::
our

:::::::::
knowledge

:::::
about

::::
how

:::::::::::
interpretation

::::::::::
uncertainties

:::::::
depend

::
on

:::::::
seismic

:::::
image

::::
data

::::::
quality,

::::::::
especially

::
in
::::::::
different

:::::::
tectonic

:::
and

::::::::::
stratigraphic

:::::::
settings,

::::
and

::
to

:::::
further

:::
the

::::::::::
integration

::
of

::::::::::
uncertainties

::::
into

:::::
future

::::::::::::
geomodelling

::::::
efforts

:::
and

:::::::
decision

:::::::
making.

:
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