



Quantification of uncertainty in 3-D seismic interpretation: implications for deterministic and stochastic geomodelling and machine learning
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Abstract. In recent years uncertainty has been widely recognized in geoscience data collections, leading to an increased need for its quantifi- cation. Predicting the subsurface is an especially uncertain effort, as our information either comes from spatially highly limited direct (1-D boreholes) or indirect 2-D and 3-D sources (e.g. seismic). And while uncertainty in seismic interpretation has been explored in 2-D, we currently lack both qualitative qualitatitive and quantitative understanding of how interpretational uncertainties of	Comment by Billy Andrews: Do you also not quantify the magnitude? 
5 3-D datasets are distributed. In this work weWe present analysis of analyze 78 seismic interpretations done by final year undergraduate (BSc) stu- dents of a 3-D seismic dataset from the Gullfaks field located in the northern North Sea. The students used Petrel to interpret multiple (interlinked) faults and to pick the Base Cretaceous Unconformity and Top Ness horizon (part of the Mid-Jurassic Brent Group). We have developed open-source Python tools to explore and visualize the spatial uncertainty of the students fault stick interpretations, the subsequent variation in fault plane orientation and the uncertainty in fault network topology. The	Comment by Billy Andrews: I would be specific in the # of faults here	Comment by Billy Andrews: I would argue you are looking at a combination of geometry and topology. Topology is just the nodes/branch relationship of the network, however, you differentiate between interpretations with identical topology, yet different geometry. (see Sanderson and Nixon, 2015)
10 Top  Ness horizon picks were used to analyze fault offset variations across the dataset and interpretations, with implications  for fault throw. We investigate how this interpretational uncertainty interlinks with seismic data quality and the possible use of seismic data quality attributes as a proxy for interpretational uncertainty. Our work provides a first quantification of fault and horizon uncertainties in 3-D seismic interpretation, providing valuable insights into the influence of seismic image quality on 3-D interpretation, with implications for deterministic and stochastic geomodelling and machine learning.	Comment by Billy Andrews: Depending on how you take the discussion, you may want to include human factors here. 


15


1 Introduction

Geosciences, and geology in particular, are concerned with integrating various sources of data, often of limited, sparse and indirect nature, into scientific models. The use of limited data combined with our limited knowledge of the highly complex earth system, invariable infuses any model with uncertainty. Especially as geology inherently relies heavily on interpreted data	Comment by Billy Andrews: Expand paragraph to better introduce uncertainty and potentially the concept of mental models. The importance of conceptual uncertainty and bias in 2D seismic in the following paragraph (P2, L3-4) and should be explicitly described for the non-specialist audience.  
20 that often requires reasoning about processes that occur over geological time scales (Frodeman, 1995), which further increase the space of uncertainty.
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The interpretation of 3-D seismic data is an integral part of constructing structural geomodels of the subsurface and plays  a major role in the energy industry. Due to the indirect, noisy and non-unique nature of seismic data processing into images, interpretation is inherently uncertain. Previous work has shown that significant conceptual uncertainties and biases are encoun- tered during the interpretation process of 2-D seismic lines (Bond et al., 2007, 2011; Macrae, 2013; Bond, 2015; Alcalde et al.,
5 2017a, c), as well as the impact of seismic image quality on the interpretation (Alcalde et al., 2017b). But subsurface structures are naturally three-dimensional and the use of 3-D seismic data is ubiquitous in industry (Biondi, 2006). This—which raises the need to further our understanding of the distribution of interpretational uncertainties in 3-D space. Additionally, the process of interpretation between seismic lines and cubes is fundamentally different, and thus might lead to conceptually different uncertainties to be dominant (e.g. the need to connect fault evidence between seismic lines introduces significant uncertainty
10 in widely spaced 2-D interpretation compared to fault interpretation in seismic cubes; see Freeman et al., 1990).
In this work we investigate the scope of uncertainties in 3-D seismic interpretation. We qualitatively and quantitatively analyze interpretations of 78 final year undergraduate students (BSc) conducted on a 3-D seismic cube of the Gullfaks field. The dataset depicts a domino system of fault blocks with a comparatively simple structural style, but the seismic dataset comes with high amounts of noise throughout, which inhibits straight-forward interpretation of the major faults and horizons, and
15 limits use of structural seismic attributes. We analyze the spatial variation in fault stick interpretations and the subsequent uncertainty in fault orientation. Horizon interpretations are analyzed and combined with fault interpretations for a description of fault throw uncertainty. Additionally, we investigate the differences in fault network topology in the interpretation ensemble to better estimate the uncertainty of interpreting fault networks in 3-D seismic data. We use the interpretation of Fossen and Hesthammer (1998) as a reference expert example (in the sense of Macrae et al., 2016) for comparison with the student	Comment by Billy Andrews: This has not been defined, and should be linked to a ref 
20 interpretations. We integrate our findings of interpretation uncertainties with its relation to seismic data quality and discuss the implications for both deterministic and stochastic geomodelling, as well as machine learning applied to seismic interpretation.

2 Materials and Methods

2.1 Gullfaks geology and seismic data

We give here a brief overview over the regional and structural geology of the study area; a more in-depth description of the
25 structural geology of the Gullfaks Field can be found in Fossen and Hesthammer (1998).
The Gullfaks Field is a subset of the NNE-SSW-trending, 10 − 25 km wide Gullfaks fault block, located in the western part of the Viking Graben within the North Sea (see Figure 1a). The Gullfaks field’s reservoir units reach from the late Triassic Hegre Group, over the Early Jurassic Statfjord Formation, Dunlin Group up to the Brent Group (Hesthammer and Fossen, 1997). The reservoir units are separated from the Upper Cretaceous sediments above by the Base Cretaceous unconformity
30 (Fossen and Hesthammer, 1998). The field consists of three structurally distinct subsets: a domino system in the western part, an accommodation zone and a Horst complex towards the east (see Figure 1c). Our study focuses on a student exercise which interprated  the major faults (F1 - F3) and the fault blocks (A -– E) depicted in Figure 1b, which are part of the western domino system. Note that Fault 1 and 2 merge in the northern half and at the bottom of the domain and that Fault 2 splits into two smaller faults F2a and F2b.	Comment by Billy Andrews: Make it clear that this is the interpretation area, text suggested to improve clarity. 
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Figure 1. (a) Regional Structural overview of the Gullfaks area located in the North Sea, showing the location of the Gullfaks oil field; (b) Fault map of the Statfjord Fformation, showing the main faults of the Gullfaks field and their labeling; (c) Cross-section across the Gullfaks field, depicting the three distinct structural subsets, major faults and stratigraphy (modified from Fossen and Hesthammer, 1998).	Comment by Billy Andrews: May need to include offshore Norway here for international readers. 

2.2 Interpretation dataset

The analyzed interpretations were produced as part of the Surface and Subsurface Digital Imaging course within the undergrad- uate program Geology and Petroleum Geology at the University of Aberdeen. The fourth year undergraduate (BSc) students loaded the seismic data into Petrel, together with 14 wells, while ensuring proper georeferencing. The following interpretation	Comment by Billy Andrews: Did everyone have the same level of training? What was the ‘specialisms’ in the sample set (i.e. how much seismic interpretation, structural geology, stratigraphy etc. was covered and was this equal in the students). 

Also how long was spent by each student? 	Comment by Billy Andrews: How much assistance was given in this? What was the variability in the interpreted horizon when assistance was given and how does this compare to the Top Ness. 

Also if there is very little variability in the Top Cretaceous will this not effectively ‘pin’ one end of the fault sticks to a lower range of displacements, effectly adding to the increase in U/C with depth attributed to a degregation of seimic image quality (I agree image quality decreasing with depth will also be a factor).   

Can this difference show the importance of training in reducing uncertainty? 
5 process focused on first interpreting the Top Cretaceous horizon with initial support by the lecturing staff. Afterwards the stu- dents started to independently interpret the Base Cretaceous Unconformity (BCU) and Top Ness horizon (which is part of the Brent group) around well locations, followed by connecting the horizon interpretation in-between wells using mainly guided auto-tracking, as well as occasional seeded tracking and manual interpretation. Afterwards fault interpretations were conducted of major faults. The students then interpolated gridded surfaces from the horizon interpretations using Petrel’s Make Surface	Comment by Billy Andrews: Was there any difference in interpretation from students who used these different methods? How often was seeded tracking or manual interpretation used?
10 function. Polygons were created based on fault locations to create a Top Ness surface subdivided into the fault blocks.
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This figure makes me wonder how many fault sticks where interpreted by different students, and if the number changes in different sections of the cube. Is the order in which faults are interpreted recorded? 
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Figure 2. Example interpretation from a single student, showing the three major faults considered in our study as well as part of the Top Ness horizon interpretation. BCU and additional faults are hidden for better visualization of the key elements.	Comment by Billy Andrews: How many students interpreted more faults?

For our study we collated the interpretation data from the students Petrel projects into a joint project, where interpretations were sorted and labeled. Of a total of 90 student interpretations, we used 78 in our study, as the other 12 either lacked relevant interpretations or were corrupted Petrel project files. Interpreted Top Ness horizon surfaces and fault sticks where then exported systematically to allow for automated data processing and analysis. An example student interpretation is shown in Fig. 2,
5 containing the three major faults considered, as well as the Top Ness horizon in two of the fault blocks A and D defined in Fig. 1b.
2.3 Data analysis

To process and analyze the large amount of interpretation data, the exported Petrel surfaces and fault sticks were wrangled using custom Python functionality and labeled in an open tabular data format. The result is a set of 4460878 data points, belonging	Comment by Billy Andrews: Impressive dataset, however, how is this broken down. I suggest this is shown in some way, as the interpretation of additional fault sticks will likely be important in the orientation and offset of interpreted faults.
10 to 78 student interpretations, with 228 unique faults considered, which consist of a total 10052 individual fault sticks. For data processing and analysis we made heavy use of the open-source Python packages pandas, SciPy and NumPy (McKinney, 2011; Jones et al., 2001; Oliphant, 2006).
For the purpose of visualization and statistical analysis of the fault interpretations across the collective interpretations, the domain was discretized into regular bins (nx = 60, ny = 60, nz = 24). In the following analysis we present 2-D and slices of
15 3-D histograms of fault interpretations, showing interpretation density and frequency across the domain. Fault orientations for individual faults were computed by fitting a plane (using singular-value decomposition) to all fault stick points of a single inter- pretation over all grid cells (collapsed along the x-axis). This makes the analysis less dependant on the fault stick interpretation density, which varies extensively in-between students. The resulting normal vector can be converted into strike and dip values.	Comment by Billy Andrews: How is interpretation density defined?



For visualization the fault orientation data was subdivided into three regular bins oriented E-W across the structures (Figure 3). The fault throw analysis is based on the Top Ness horizon and is computed individually at each interpreted fault stick for each fault and each interpretation. The nearest data points on both the hanging and foot wall of the Ness horizon fault blocks were selected as seeds. From these seeds the surface data approximately orthogonal to strike was used within a strike-parallel window of	Comment by Billy Andrews: Why was 3 equal bins chosen? It seems to work well for F1, however, strike changes in F3 seem to occur out of these 3 bins. 	Comment by Billy Andrews: Does this not impart a bias that students who include a large number of fault sticks will then be more represented in the fault throw analysis?
5 three grid cells. A relative gradient filter was then used to exclude points with gradients to their nearest neighbors outside of the inner-quartile-range (IQR) of the selected subset. The resulting data is fitted with a linear regression for each fault block and the intersection with the fault stick used to calculate fault throw. For the assessment of seismic reflector strength an RMS Amplitude (RMSA) seismic attribute was calculated using Petrel. RMS Amplitude represents the square root of the arithmetic mean of squared amplitude values across a specified seismic trace window.

10 3 Results

3.1 Uncertainty in fault interpretation
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Figure 3. 2D Histograms for the  three Faults 1 (a), 2 (b) and 3 (c) for depth slice at 2 km ± 0.1. Horizontal lines separate the three bins used for plotting subsets of orientation data in Fig. 4.

Figure 3 shows 2-D histograms for the three major faults taken into consideration withinconsidered in this study. The histograms cover the entire extent of the seismic cube, with the frequency of fault stick points counted per bin in a depth slice at 2 km ± 0.1. Fault 1 shows a sigmoidal shape in the N-S direction of the seismic depth slice (see Fig. 3a), with high frequency densities in	Comment by Billy Andrews: I worry that this is effected not only on the placement, but also on how many fault-sticks each student included. In areas of relatively certain offsets, which will likely be increased by the image quality, I would imagine more sticks will be chosen, thus excasibating the apparent ‘certianty’ of the result.  	Comment by Billy Andrews: How much did it vary at different levels?
15 the northern part and lower intensities found in the southern part. Plotting all fault plane orientations within a single stereonet reveals three distinct clusters of planes (Fig. 4a), which when separated into three equal bins along the N-S axis correspond to the components of the sigmoidal fault shape (Fig. 4b-d). Interpretations of Fault 2 show a split into two sub-faults F2a and F2b in the southern part (see Fig. 3b), as also interpreted by Fossen and Hesthammer (1998, see Fig. 1). The spatial uncertainty	Comment by Billy Andrews: I can only see 2 on the stereonet plot, 3 in figure 3 though. 



of the fault interpretations appears slightly lower in the northern part of the seismic slice, but also shows evidence of a small separated fault block in the central part of the fault. The interpretations of Fault 3 show a strong increase in spread towards the southern part of the seismic slice (Fig. 3c). The same trend of increasing uncertainty can be observed in the fault plane orientation (Fig. 4j-l). Additionally, the histogram shows the occasional interpretation of the fault branching towards Fault 2(b),
5 towards the West, and towards Fault 4 to the East (see Fig. 1b).
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Figure 4. Stereonet plots of Faults 1-3 (columns), with all fault strike orientations along the fault length plotted combined in the first row (a, e, i). To discriminate changing trends in actual fault orientation from interpretation uncertainty rows two to four plot data from bins shown in Fig. 3, from the northern bin (c, g, k), middle (d, g, l) and south (e, h, m). Blue planes and poles in top row (a, e, i) show Bingham analysis mean pole from Fossen and Hesthammer (1998) for reference.	Comment by Billy Andrews: Suggest this is added to the results section to make it clear where the planes come from and that there is a mismatch.

Figure 4 plots fault plane orientations calculated from students fault stick interpretations. Fault 1 shows three distinct clusters of orientations (Fig. 4a), which can be separated by subdividing the study domain into three equal bins along the N-S axis.	Comment by Billy Andrews: I can only see two in Fig 4a. I agree there are 3 spatially distincy sets, however, in the overall stereonet (b) and (d) merge into a single cluster. I suggest splitting based on Figure 3.



Fault 1 shows a striking decrease in k-values (a measure of tightness of the orientation clusters) from North to South (92, 68, 52). The pattern does not hold true for Fault 2, which shows low k-values both in the North and South. Fault 3 shows similar behaviourbehavior to Fault 1, with a strong increase in dispersion from North to South (83, 63, 35).

Fault Uncertainty with Depth
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)ignored in regression analysis	Comment by Billy Andrews: How skewed are the distributions? Is standard deviation a valid statistical parameter to use? I also wonder which fault show the most variability with depth and why. Comparing using either a coefficient of variance (if distributions are normal) or quartile based coefficient of variance could pull out more trends between the faults. 
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[bookmark: _GoBack]Figure 5. Scatter plot of mean (collapsed y-axis) standard deviation along x-axis of mean fault surfaces for Fault 1, 2 and 3. Chaotic patterns of uncertainty at shallow depths (faded data points) are likely due to sporadic numbers of interpretations, as students often stopped interpreting the faults before reaching the Base Cretaceous unconformity (BCU). Overall, uncertainty of fault interpretations is increasing linearly with depth (linear regression only takes into account interpretations below the BCU, R-values for Fault 1, 2 and 3 respectively: 0.75, 0.85 and 0.61).	Comment by Billy Andrews: I worry about the use of this as it can easily be skewed by outliers 

Overall the observed uncertainty (standard deviation) of the fault plane along the W-E axis appears to be increasing linearly	Comment by Billy Andrews: See major comment 1	Comment by Billy Andrews: Suggest you reword to improve ‘certainty’ in results, you have linear regressions to show this. 
5 with depth for all three faults (Fig. 5). Note that the overall mean standard deviations between the faults vary by more than a factor of twogreatly: 791, 384 and 575 m for Faults 1, 2 and 3, respectively. The extremely high variation of standard deviations seen in the upper part of Fig. 5 (faded data points) is due to a few students extending their fault interpretations above the Base Cretaceous unconformity (BCU), making the data points at that depth statistically unreliable due to low sample numbers and geologically questionable. Any fault stick interpretations above the unconformity were thus excluded from the least-squares linear regression  (R-values	Comment by Billy Andrews: Suggested revision to reduce ‘subjectivity’ in the description of your results	Comment by Billy Andrews: How many students?
10 for Fault 1, 2 and 3: 0.75, 0.85 and 0.61).
The ensemble of interpretations show 11 different fault network (FN) topologies (see Fig. 6a). Five modes of FN topology make up the bulk of fault network topologies, while all others occur with a probability of less than 0.05 each. The sketches in Fig. 6b represent these five most likely FNs (Fault 3 is omitted for brevity, as it was interpreted by all students in a similar fashion, and only a single student connected Fault 2 with Fault 3). Note that the most probable FN (Fig. 6b, A) is different	Comment by Billy Andrews: I question why probability is quoted here, you have 78 interpretations, so feel that the numbers represent the total number of students who interpreted that network. 	Comment by Billy Andrews: This is an important point, I would also question why, if it is interpreted in a similar way, F3 shows the lowest regression fit w.r.t. standard deviation with depth (Fig 5). Is it that is it interpreted in a similar manner, however, students are less confident in their interpretation?	Comment by Billy Andrews:  I feel this needs to be linked back to interpretation and not to ‘probable’. Probable suggests that if 100 random people where to be selected then X% would choose option Y, which I think is misleading as there are more human factors involved here. I also feel it is prudent to describe in the MS the level of exposuse students have with ‘complex’ fault topologies. 
15 from the reference expert FN interpretation of Fossen and Hesthammer (1998), which corresponds to either the second or fourth most common FN interpretations (Fig. 6b, B and D). The major source of uncertainty in this specific FN appears to be



(a) Probabilities of unique fault networks	Comment by Billy Andrews: y-axis should be in # of students and not probability

0.25




0.125




0
A	B	C	D	E	F	G	H	I	J	K

(b) Schematic fault networks
A	B	C	D	E	Comment by Billy Andrews: How statistically different in the data is A and C? 

Figure 6. Probabilities of unique fault network topologies (a) with corresponding schematic fault networks (b) of the five most likely networks.	Comment by Billy Andrews: I think this is misleading! It is not like a momte-carlo simulation as human factors are involved. I would change to be about the Student and not probability.

interpreting both F2a and F2b, and which one abuts the other. The few students who branched off the southern part of Fault 3 towards the West interpreted Fault 2b as part of Fault 3, but did not connect it to the FN of Fault 1 and 2.	Comment by Billy Andrews: How many?
3.2 Fault throw and horizon uncertainties

Results of the fault throw analysis are plotted in Fig. 7, showing median fault throw with the associated standard deviation	Comment by Billy Andrews: See Major comment # 1
5 along fault strike direction. The throw profile of Fault 1 (Fig. 7a) shows a distinct sinuous shape spatially associated with its interaction with Fault 2. Fault throw uncertainty remains relatively constant along the strike (around ±30 m), while rising	Comment by Billy Andrews: I feel your framework to describe uncertainty needs to be explicitly explained in the methods section.	Comment by Billy Andrews: How constant? How do you measure consistency? 
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Figure 7. Results of fault throw analysis for Faults 1 (a) and 3 (b), showing the median fault throw in black, with respective standard deviation in grey.

sharply to about ±75 m at the southern edge of the seismic cube. The throw profile of Fault 3 (Fig. 7b) shows two distinct levels of throw uncertainty. In the northern half fault throw uncertainty remains relatively constant at around ±36 m. This changes in the southern part of the fault, where fault throw uncertainty rises to up to ±74 m.	Comment by Billy Andrews: You occasionally see s.d. values which would take fault throw to negative, is this section skewed towards low throw values?
Figure 8a shows the average Top Ness horizon basemap for all interpretations combined. Overall the horizon interpretations
5 are increasing in depth from SE towards the NW of the domain. Figure 8b shows the associated standard deviation of the average Ness horizon interpretation, with overlay of mean fault intersections and well locations. We observe large horizon uncertainties in vicinity to both Faults 1 and 2. Interpretation uncertainties are significantly reduced surrounding well locations in the western part of the study domain, while the effect is diminished towards the east, the reasoning of which is discussed later.	Comment by Billy Andrews: What is large?	Comment by Billy Andrews: What is large?	Comment by Billy Andrews: What is significant?
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Figure 8. (a) Basemap of average Top Ness horizon from all interpretations; (b) Standard deviation of the average Top Ness horizon from all interpretations with overlaid mean fault surfaces (white lines) and welltop locations (white crosses).

3.3 Seismic data quality

To assess influences of seismic data quality on fault interpretation uncertainty we made use of the RMS Amplitude (RMSA) attribute as a proxy for reflector strength (strong horizon reflectors aiding the interpretation of faults result in high RMSA val- ues). Specifically, we investigated the example of Fault 3, as it shows significant gradual changes in interpretation uncertainty	Comment by Billy Andrews: What is significant?
5 across the seismic dataset (Fig. 3c and 7b). Figure 9 shows four averaged RMSA responses with corresponding fault stick inter- pretation histograms (Fig. 9a-d) from the locations shown as white boxes in Fig. 9.1. In the northern extent of the seismic slice, Fault 3 is closely bounded by strong horizon reflectors, as shown in in the RMSA slice (Fig. 9.1), seismic slice (Fig. 9.2) and inline section A, focusing the students interpretations, as seen in the corresponding histogram of fault interpretations (Fig. 9a). The histogram shows a bimodal distribution, as some students interpreted the fault further towards the East, where another	Comment by Billy Andrews: How many?
10 fault is present (Fault 4, see Fig. 1b). The overall uncertainty related to the interpretation of the actual Fault 3 appears to be Gaussian, with the standard deviation roughly corresponding to the trough seen in the RMSA response. Further towards the south of the dataset, the RMSA response diminishes east of Fault 3, while remaining strong on the western side (Fig. 9b). The	Comment by Billy Andrews: It appears to be negatively skewed to me, I agree that it corresponds nicely with the trough in RMSA results.	Comment by Billy Andrews: Suggest changing the language to provide more confidence in the results. It is also important to raise that RMSA amplitude will always likely be lower surrounding faults, due to the presence of subsidiary faults/damage zone/ folding etc. that will break up the seismic energy. This will always be a limitation so should be made more of!	Comment by Billy Andrews: By how much?



fault interpretations show a stronger spread with thicker tails in the histogram, especially towards the West, where interpreta- tions are then bounded by strong seismic reflectors. Further south the seismic response degrades and is noisy (Fig. 9.1 and B), which is reflected by the homogeneous RMSA values (Fig. 9c). The corresponding fault interpretations show an increase in uncertainty, appearing nearly uniformly distributed but showing some consistency in the interpretation of Fault 3 (slight crest).	Comment by Billy Andrews: What is stronger spread? Quantification of this is required. 	Comment by Billy Andrews: Of what? What is the level of increase? 
5 At the southern end of the slice, RMSA responses increase again (Fig. 9d). The distribution of fault interpretations shows a bimodal distribution, as seen before in the map view 2-D histograms shown in Fig. 3. The histogram roughly resemble two very broad, overlapping Normal distributions.	Comment by Billy Andrews: ‘roughly’ ‘very broard’ : I feel the results need to be described better here! 

4 Discussion

4.1 Key findings	Comment by Billy Andrews: I find the discussion lacks the depth of analysis which the results allow. This is the first time that differences in inter-personal interpretations of such an extensive 3D dataset has been investigated! This should be made clear and the reasons further explored.. human factors/technical factors etc… Can we use other aspects of geology to inform likely areas of uncertainty? What aspects of the process need ‘risk’ or ‘error’ estimations attached when we take the data forward? I was left asking ‘why?’ too many times and if this is tackled in the revised M/S then it will certainly be an important contribution to the field.  

10   Our work has shown that uncertainties in fault stick placement correlate with seismic reflector strengths. In areas of high   data constraint this uncertainty is strongly constrained between areas of high RMSA response (Fig. 9a). Our analysis shows how interpretation uncertainty increases with a decrease in data constraints (Fig. 9b). This trend culminates in near-maximal uncertainty in areas of high seismic noise (Fig. 9c). The spread in fault stick placement appears to not be entirely driven by seismic noise, but rather appears to be, at least partly, guided by the surrounding interpretations in areas of higher data quality	Comment by Billy Andrews: This paragraph also discusses human factors, should either expand on both sections (preferable) or add human factors to the topic sentence. 	Comment by Billy Andrews: This is clearly related to the students mental model, and this should be raised here. Are these interpretations closer to the ‘expert’? this needs further exploration. 
15 (Fig. 9b, d), allowing interpreted faults to conform to common fault shape models (e.g. to avoid sudden shifts in fault plane orientation). In areas of low data quality the corresponding uncertainty in fault placement seems related more to conceptual uncertainties of fault network topology—e.g. interpretations of Fault 3 branching off towards the East or West (as seen in Fig. 3a, d).	Comment by Billy Andrews: Does this explain why A is the most commonly selected interpretation in Fig 6?	Comment by Billy Andrews: Existing literature should be used to compare your findings with what is known in other aspects of geology.
While the domino structure of the study area makes overall tectonic conceptual uncertainty less significant, the low seismic
20 data quality makes it a challenging interpretation project. So despite the increased information density provided by 3-D seismic surveys, significant fault network topology uncertainties remain (Fig. 6). Our study also shows that uncertainties in the place- ment of faults sticks appears to increase linearly with depth (Fig. 5). This is an important finding for approximating uncertainty trends with depth, and is especially important as seismic image quality tends to decrease with depth. Additional studies on different seismic datasets could yield useful information about how these fault uncertainties might depend on seismic image	Comment by Billy Andrews: This is linked to ‘conceptual biases’ again, and potentially linked to the students experience (how many would expect a splay on fault 2? 	Comment by Billy Andrews: This is linked to technical differences 	Comment by Billy Andrews: I suggest moving this to a concluding remark and use this section to further explore the results
25 data quality, as seen here, and how uncertainties may be different in other tectonic and stratigraphic settings.
Our analysis of Top Ness horizon interpretation uncertainties shows the correlation of uncertainty with fault proximity (Fig. 8b). Horizon interpretations surrounding Fault 3 in the Northern part show only slight increases in uncertainty towards the fault, as they are strongly constrained by wells and high data quality (see Fig. 8b and 9A). With decreasing seismic data quality towards the South we also see an increase in uncertainty surrounding Fault 3, which also shows in the increasing fault throw
30 uncertainty seen if Fig. 7b. This trend is not evident for the throw across Fault 1, with the Top Ness horizon being better constrained on both sides, with overall higher seismic image data quality. We have also shown uncertainty in fault orientations (Fig. 4), and the inadequacy of summarizing fault orientation using a deterministic mean pole, as in Fossen and Hesthammer	Comment by Billy Andrews: How did Fossen and Hesthammer get there pole? What was there scale of observation? The work on this should be included in this part of the discussion. 
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Figure 9. Depth slice of RMSA attribute (1) and seismic cube (2) with locations (black horizontal lines) of two inline sections (A, B). Four averaged RMSA responses with corresponding student Fault 3 stick interpretations are plotted in a-d, with their locations noted in the RMSA depth slice (1). The inline sections A and B correspond to the RMSA responses a and b, respectively.



(1998). This inadequacy results from sinusoidal fault map pattern (Fig. 3a) and curved 3-D geometries on-top of uncertain fault stick placements.
We also see strong decreases in uncertainty surrounding wells in the West of the study area (Fig. 8b). The trend of increasing uncertainty in horizon location from west to east could be attributed to the decrease in seismic image data quality. But we
5 would also expect for the horizon uncertainties to be reduced within the immediate surroundings of the wells. One possible explanation for this could be that students focused their interpretation efforts on the higher quality western part of the seismic cube due to the time constraints on the interpretation project.	Comment by Billy Andrews: This is a potentially important point and raises a very important question ‘what order did students interpret the cube?’ If students are spending more time on a certain area, where data is of better quality then there are more factors to consider in why your results are different. Also does the style of interpretation change with time? I advise either that the key findings section be reduced to a summary (e.g. set of bullet points) and separate section added to explore the reasons behind the uncertainty, probably split into ‘technical’ (e.g. image quality) and ‘human’ (e.g. different mental models) and that appropriate literature be added to this discussion.  
4.2 Implications for deterministic modelling

Our results and analysis suggest that the uncertainties recorded in 2-D seismic interpretation experiments (e.g. Bond et al.,
10 2007; Bond, 2015) are similarly seen in the interpretation of 3-D seismic image data. Akin to the 2-D experiment and anal- ysis of Alcalde et al. (2017b), we show a correlation between seismic image quality and interpretation uncertainty. We have quantified the impact of fault uncertainty on fault network topology and fault and horizon uncertainty on fault throw. The fault network topology in a ‘traditional’ deterministic geomodel is important as it determines the number of fault blocks and hence the degree to which stratigraphic units are separated (by faults). This information is imperative to the understanding of	Comment by Billy Andrews: Would like to see published work here.
15 reservoir compartmentalization in hydrocarbon reservoirs, connectivity and flow characteristics of ground water aquifers and for geothermal projects. Simply, reservoir performance can be significantly affected by fault network topology and understand- ing the uncertainties in fault network topology, and hence reservoir connectivity, can be critical to the planning of production strategies. The type of fault network topology information available in Fig. 6 could be used to inform reservoir modelling to guide multiple production strategies (e.g. multiple deterministic models are made) and for informed history matching during
20 field operation when reservoir models have been developed from single deterministic models and need to be updated.
Although not developed in detail in this paper, our analysis of fault throw uncertainties highlight that the use of fault throw information, e.g. to predict fault sealing properties such as shale gouge ratio (Yielding, 2002; Vrolijk et al., 2016), could      be significantly affected by uncertainty in the interpretation of 3-D seismic image cubes. Our work highlights areas where uncertainties in fault throw are likely to increase: with increasing distance from wells, where seismic image quality is poor
25  (and correspondingly with increasing depth), and where faults join or abut. Modelling of uncertainties in fault throw and using information such as that derived here to inform where uncertainties are likely to be greater could provide the basis for more informed modelling of fault seal parameters, such as through stochastic modelling discussed below, or integrated as uncertainty parameters into deterministic geo- and reservoir models. In summary, fault throw uncertainty together with fault network topology uncertainty has the potential to significantly alter predicted fluid-flow patterns in the crust with implications
30 for water-resources, reactive element transfer (e.g. to inform nuclear waste disposal engineering), or hydrocarbon and energy production.



4.3 Implications for stochastic modelling

Although we can outline how uncertainty information could be used to better inform use of deterministic models and their in- herent uncertainties, advances in both computational capabilities and implicit structural geomodelling have allowed for major improvements in the incorporation of uncertainties into structural geomodels by means of stochastic simulations. At its core
5 stochastic structural geomodelling requires adequate disturbance distributions to obtain reasonable estimates of geomodel un- certainty (see Wellmann and Caumon, 2018). This uncertainty parametrization can be used to better establish and account for interpretation uncertainties on-top of deterministic modelling workflows using a hybrid approach based on a single determinis- tic or multiple deterministic models. For example, a deterministic fault network topology model with fault throw uncertainties parameterized, or multiple deterministic models to characterize the most probable fault network topologies (e.g. Fig. 6) with
10 fault throw uncertainties parameterized. Such hybrid approaches may provide the best solutions when the time and compu- tational costs of full stochastic modelling are too high and/or when elements of the uncertainty in the geomodel are not best represented as simple stochastic functions, such as different conceptual models (e.g. for fault network topologies).
The work of Pakyuz-Charrier et al. (2018) discusses the importance of proper parametrization of input data measurement uncertainty when constructing stochastic geomodels, but little is known about the uncertainties in interpreting the dense 3-D
15 seismic datasets to obtain such input data for structural geomodels. Our work not only provides a first look at how significant these uncertainties can be, but additionally provides a first order approximation for parametrization of fault and horizon inter- pretation uncertainties within stochastic geomodels. Student interpretations will most certainly reside within the upper range of interpretation uncertainty, but we argue that it provides significant value to the parametrization of the emergent Bayesian approaches to stochastic structural geomodelling (Caers, 2011; de la Varga and Wellmann, 2016; Wellmann et al., 2017), as
20 it could provide informed—but not overly constrained—prior parametrization that can be reduced by case-specific geological likelihood functions and auxiliary data integration. We also agree with Caers (2018) on the need for a rigorous methodology of falsification in geomodelling. The integration of adequately parameterized seismic interpretation uncertainties into a Bayesian geomodelling framework could enable a quality control of the interpretation by probabilistic assessment of the stochastic geo- model against geological likelihood functions (e.g. fault length and throw relationships, fault population distributions, analog
25 studies).
Our findings underline the complexity involved in the adequate parametrization of interpretation uncertainty in stochastic geomodelling: while Normal distributions may capture uncertainty adequately in areas of good seismic imaging (Fig. 9a),  skewed fat-tailed distributions (e.g. Cauchy; Fig. 9b) or even Uniform distributions (Fig. 9c) are reasonable choices with degrading seismic quality. When implicitly modelling 3-D geological surfaces, many approaches are based on both surface	Comment by Billy Andrews: I think it would be unwise to suggest normal distributions, even in areas of good seismic data. I suspect in nearly all cases the distributions will be skewed. Most faults display an asymmetric damage zone, and such will also show an asymmetric signature in seismic, should the flat tail be towards the hanging wall?
30 points and strike and dip information. The latter carry significantly higher amounts of information (Calcagno et al., 2008; Laurent et al., 2016; Grose et al., 2017) than the surface points, thus emphasizing the need to quantify their uncertainty if it  is used to generate and constrain 3-D stochastic geomodels. The use of van Mises-Fisher distributions to model uncertainty of orientation vectors was shown as a robust way to describe surface orientation uncertainty (Pakyuz-Charrier et al., 2018),



and our analysis could provide valuable information for their parametrization in areas of high interpretation uncertainty within sedimentary basins.
4.4 Implications for machine learning	Comment by Billy Andrews: I found this an underwhelming end to a really neat dataset. Although the implications for machine learning are indeed relevant, I feel the MS is crying out for a conclusion section which ties the findings together and includes the ‘next stages’ in tackling uncertainty in 3D seismic interpretation. 

The section itself also seems somewhat out of the remit of this work, and could conceivably either be reduced or cut to make space for a discussion into the reasons behind the results as suggested previously. 

Recent efforts in automating seismic interpretation through the use of, mainly, Neural Networks (NN) has been increasingly
5 successful in interpreting high quality (synthetic) seismic data (e.g. Huang et al., 2017; Dramsch and Lüthje, 2018; Wu et al., 2018). But NNs inherently do not take into account any geological reasoning skills that could make sense of areas of low seismic image data quality, but rather infer abstract features from their training data. And while NNs can be constructed    and trained probabilistically, and thus enable uncertainty quantification of their outputs, they are likely to require additional information about the structures to be interpreted in areas where interpretation suffers from low data quality. In our analysis of
10 the uncertainties in interpretations of the Gullfaks field 3-D seismic cube the interpretations of faults in areas of low seismic image quality conform to known fault geometries and topologies and are likely informed by interpretations of adjacent higher quality seismic image data, rather than their uncertainty distributions being simply correlated to seismic image quality (Fig. 9). Such evidence highlights the nuances in geological interpretation, and the difficulties in creating algorithms that represent the complexities of human thought processes. Irrespective of how easy it is, or otherwise, to apply our findings to inform
15 automated interpretation efforts, there is value in studies such as the one presented here in generating understanding as to  when and where such machine learning processes maybe applied effectively and how they could be improved by integrating geological knowledge, maybe in the form of logic rules that influence NN weights and biases (Hu et al., 2016). Lu et al. (2018) show the use of Generative Adversarial Networks (GANs) in improving fault interpretation of low-resolution seismic image data by generating supersampled high-quality seismic images from lower quality data. One possibility could be to train similar
20 NNs on the structural geology represented by ideal synthetic seismic image data and artificially noisy perturbations of the same to let NNs learn how ideal structures that underlie noisy seismic image data might look like. They could then possibly generate possible higher-quality realizations of noisy, uncertain areas of seismic images to support interpretation efforts. Overall, the complex interplay of the underlying geology, computational and conceptual challenges of the machine learning approaches and the human-induced uncertainties will require strongly interdisciplinary approaches to combine state-of-the-art algorithms
25 and geological domain knowledge to further automate the laborious and uncertain task of 3-D seismic interpretation.
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