
Author’s Response 

RC1 (Anonymous Referee #1) 

This is an interesting paper, I think that the use of loss functions in this setting is a 

useful development and one with considerable potential, and I think that the paper is 

to be welcomed because of this.  

 

● We thank the reviewer for this motivating content on the topic itself. 

 

That said, the account of the statistical formulation of the author’s model is very 

unclear and needs considerable improvement. 

In section 2.2 the authors present their synthetic setting. This can be modelled, by an 

implicit modelling algorithm, from some set of input values. I assume that these input 

values are notional values of the z coordinate for a particular contact at each of a set 

of locations{x, y}in addition to notional values of dip direction and angle.The authors 

state that they can sample ‘deviation values’ (I assume they mean errors) for these 

observations which are then added to the ‘known’ values. With one major caveat 

(below), the application of the implicit modelling algorithm to each of a series of 

‘observations’ with stochastic error would generate a series of models of the 

underlying state of affairs. The caveat is that the authors give no indication of how 

they specify the joint distribution of errors, i.e. the joint distribution for the errors in z 

at locations x1, y1 and x2, y2. One can assume only that they treat these errors as 

independent, but that is most implausible in any geological setting, and could have 

dramatic consequences for the resulting model output. There are several studies, 

including some cited in this paper, which have considered the spatial dependence of 

model errors, and the authors should give this careful consideration in revising their 

work. 

 

● The reviewer is right in his criticism of the description of our probabilistic model. 

We did not focus our attention too much on this aspect, as the probabilistic 

model is not the central point of the paper (see below). 

● In our conceptual case study, errors are indeed  treated as independent. The 

model is primarily aimed at providing an adequate base for generating 

distributions to apply our loss function to. This is, however, not a limitation - any 

knowledge about parameter correlations could be included in a  concrete 

application (as the ones mentioned by the reviewer). 

○ We clarified this aspect on P11 L18-20  



 

The authors then attempt to set their work in a Bayesian context. However, they do 

not make this at all explicit, and it is very difficult to understand or assess what they 

have done. A Bayesian analysis requires some model, for which some set of 

parameters are unknown and are treated as random variables to reflect this 

uncertainty. Prior probability distributions express the modeller’s subjective view, prior 

to examining the data under consideration, about the values of these parameters. 

Likelihood values can be computed for proposed values of the parameters, and this, 

possibly in conjunction with some sampling method such as MCMC, is then used to 

characterize the posterior distribution of the parameters, given the data. Posterior 

distributions, or samples from them, could then be used, for example, to estimate the 

expected value of a loss function under a particular decision rule. 

 

While the paper starts with some very generalized statements about Bayesian 

methods (Section 2.4), we are nowhere given a sufficiently clear account of their 

model system and how it is expressed in Bayesian form. The jump from 2.4 to 2.4.1 

is much too large. It is not possible for the reader to extract from section 2.4.1 a 

sufficiently clear account of what the authors have done to be able to reproduce it in 

a comparable setting, or to be confident that it has been done correctly. For example, 

the authors refer to ‘layer thickness likelihoods’. I assume that the thickness of a layer 

is a model parameter (assumed to be the same everywhere in space?). It is not made 

clear how the likelihood is defined, given a set of notional observations. Are the 

observations treated as independent? Is this reasonable? I would certainly be 

concerned if the thicknesses of the separate layers are treated as independent 

random variables. This does not strike me as implausible and, as assumptions go, it 

is likely to be a sensitive one in this particular context. 

 

● We didn’t go into too much detail about Bayesian inference, as it is not the 

central aspect of this work. The loss function approach should equally be 

applicable in a general probabilistic context, using results from common Monte 

Carlo simulation. 

● We now clearly emphasize the focus on the loss function approach. The 

manuscript was restructured accordingly: In the methods section, we first 

describe the concept of loss, loss functions and customization (P3 onwards), 

with a more in-depth explanation of the customization steps. In addition, we 

now included a more detailed figure explaining these aspects in a simple 1-D 

model (P8). 

● The significance of Bayesian inference as a method is a secondary aspect of 

this work. It was used to generate comparable distributions in our synthetic 



case study. We use it to update the model with additional information (e.g. 

combine prior information on interface depth with additional data on layer 

thickness). We clarified this aspect in the manuscript and provide references to 

similar previous work (P13-14). However, Bayesian inference is no strict 

prerequisite for the loss function application.   

 

In short, I think that the authors need to start again, aiming at the simplest and clearest 

account they can give of their modelling framework so as to exemplify the loss function 

concept to best advantage. At present this gets lost in vague and hand-waving 

description. 

 

● We took this comment very seriously, as we realized that the main focus of the 

paper was apparently not clear. As suggested, we streamlined the entire 

description and focused on the most important methods, with a clearer 

definition of the terms. Most importantly, we now included a simple 2-input-

parameter “1-D model” in the Figure explanation on P8 and we are confident 

that this figure now helps clarify the main concept and relevance of the paper. 

 

A couple of minor points. On page 6 line 10 you refer to a negatively skew normal 

distribution of mean zero used to generate errors of the throw for your fault. One would 

expect such a distribution to have a median value larger than the mean, and there 

statement that most of the values produced are negative is curious. Please clarify. 

 

● Yes, the statement was erroneous and is now corrected (P11 L15). 

 

Second, the statement of the loss functions from page 11 onward should be clarified. 

As stated Equations (4)–(7) are identical upto a constant value. I assume that you 

actually introduce the constants in (5) onward to introduce different degrees of 

asymmetry. This should be expressed in a rigorous way, indicating the conditions over 

which the constant is introduced. With some care a parsimonious but rigorous notation 

could be developed. 

 

● As mentioned above, the loss function customization is now explained in further 

detail. 

RC2 (Anonymous Referee #2) 

This is an interesting and original contribution on simulating uncertainties and their 

impact on decision making in a structural hydrocarbon trap. Monte Carlo error 



propagations and Markov Chain Monte Carlo sampling are used to consider the 

probability of different trap volume models based on stated uncertainties. Loss 

functions are used to explore potential decision making scenarios for high-risk and 

low-risk users. The technique has great potential to be used, with addition of more 

parameters, for hydrocarbon exploration and other geoscience applications. 

 

● We thank the reviewer for this positive and motivating comment! 

 

The main strengths of the paper are that it is tightly focused on a specific and important 

problem, it builds up the methods and results in logical step-wise sections, and it 

contains useful and clear figures to clarify key inputs/findings. The main weaknesses 

are that it is written in a fairly inaccessible way, with key elements and some 

assumptions undefined, and that it does not look beyond the broader applications 

beyond the specific one used. 

 

● We thank the reviewer for pointing this aspect out, as well. As described above, 

we took this criticism very seriously and restructured the entire manuscript, 

including now a conceptualized step-by-step description of the customization 

with explanations in a 2-input-parameter “1-D model” in the Figure on page 8. 

● We also extended the discussion with additional potential applications of the 

method.  

 

There a few ways that it could be made more accessible to a non-specialist in decision 

analysis (discussed below) and some general editing would shorten the text and 

increase its clarity. 

General: For reviewing, it would be much better to have continuous line numbers to 

refer to rather than numbering resetting back to 1 on each page, also every line rather 

than every 5th line should be numbered. 

 

● We agree that this numbering is a bit cumbersome, but we used the standard 

Copernicus template for our submission and did not find an option for 

continuous line numbering. 

 

Lots of instances of unnecessary modifiers e.g. line 10 (P1), line 3-4 (P4), convoluted 

sentences (e.g. line 2-4, P9) and redundant words (e.g. line 20 P12, line 4, P19) make 

the text difficult to access. Many of these could be drastically simplified, making the 

text shorter and more accessible. 



● Thank you very much for your constructive remarks, and especially for 

highlighting the strengths and weaknesses you identified. You pointed out 

numerous valid concerns that we considered and tried to improve upon. 

 

The word ‘actor’ is used throughout and in the title. It would be good to define the term 

in the context used early on. I see that it is commonly used in the decision sciences 

as a synonym for the more widely-understood term ‘decision maker’ or ‘user’, and 

seems to represent the human element of the process. However, in line 2 (P9) the 

phrase ‘the case of an actor or decision maker’ is used, suggesting that the two are 

different –perhaps actor has a very specific meaning here, which should be made 

clear. In line11 (P9), for example, the ‘actor’ would like to know the trap volume. Use 

of actor in this context seems obscure, and would be better replaced with a common 

word representing the human element in decision analysis like 

worker/geologist/company/user. Line15 (P17) reports observations of the behaviour 

of the modelled actors – reflecting that actors are a non-human element of the 

modelling (e.g. Fig. 3). Please clarify. 

 

● We now use the word “decision maker” preferably, to avoid confusion. But we 

also define early on that an estimate-based decision can be referred to as an 

action a, and thereby a decision maker can also be referred to as actor (P3 

L27-28).  

● We overall still prefer talking about “decision makers” and “actors”, due to the 

quite abstract nature of our approach. Our example application is not defined 

specifically enough, to name the exact type of individual, the decision maker 

could be. Therefore we prefer to clarify it in the introduction (P3 L4), as well as 

again on P4 L25. 

● We also talk about companies as an example on P5 L18-21. 

● As the sentence on P17 L15 was easily misunderstood, we dropped it. 

 

Several other key concepts, terms and abbreviations are used throughout, but not all 

are clearly defined. It would be beneficial to place the work in the framework of such 

definitions. 

The use of the hydrocarbon sector as an application for geological modelling is 

sensible. However, no other options are mentioned. What might other sectors be, and 

what modelling problems could be solved in the same way (perhaps things like nuclear 

waste disposal, landslide susceptibility)? 

 

● Relevance for other fields is now referred to at the end of the discussion. 

 



Throughout, volumetrics are discussed in the sense of ‘trap volume’ – which is 

appropriate and supported by the parameters used. However, there is one instance 

of the term ‘reservoir volume’, and there is consideration, in section 2.3, of OOIP. This 

indicates that actual hydrocarbon reserves are a key outcome of the analysis. But 

converting from a trap volume to a reserve volume of course involves extra 

parameters such as porosity, net:gross ratios, water saturation etc. These factors and 

their uncertainties may be as important or more important than the overall trap volume. 

While it is reasonable that other factors aren’t included in the present modelling, it 

would be beneficial to mention them, justify their omission, and perhaps consider how 

they might be integrated in a future iteration of the model. I think they are alluded to 

in Fig 7 (reservoir and recovery parameters) but these should be made explicit, given 

the geologic focus of the topic. 

 

● Very good point. The OOIP context is now established on P11 23 - P13 L9. 

OOIP is also mentioned before in the introduction, together with the NPV. 

 

Lines 6-8 (P6). Is there actually an independent uncertainty related to fault offset? 

Since that parameter can only be inferred indirectly via stratigraphic surface picks, I 

would argue that there is no additional uncertainty on either the hanging wall or 

footwall beyond what has already been accounted for by the surface uncertainty 

(which is the sole observational basis for fault offset). It would be useful to see a short 

descriptive justification for including this additional uncertainty. The significance of this 

parameter is clear in Fig. 5, where the smaller probabilities of hanging wall seal and 

reservoir result (I think) from the additional uncertainty applied. If this extra uncertainty 

is not justified (I think it is not), then it places the subsequent results in doubt. 

 

● We have now added an according statement that our model is not aimed at 

complete geological plausibility was added on P11 L18-20. 

 

Line 14 (P6) OOIP/OOIG – presumably this should be OOIP/OGIP instead? 

Line 25 (P6). SSF is not defined. I suspect it may be ‘shale smear factor’ (used without 

the abbreviation in line 19 (P18)). Please define accordingly. 

Line 18 (P13). ‘Low but positive volumes’ – is a negative volume possible/meaningful? 

If not, simply use ‘low volumes’. 

A few minor typos throughout (e.g. line 24 (P18) should read: an individual’s..., line 

29 (P18) should read: to what extent...). Please check and amend generally. 

 



● We overall found your comments and corrections highly useful. We named the 

Shale Smear Factor on P13 L14 and P15 L5, fixed the “low volumes” statement 

and corrected the typos. 
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Abstract. Uncertainties are common in geological models and have a considerable impact on model interpretations and sub-

sequent decision making. This is of particular significance for high-risk, high-reward sectors, such as hydrocarbon exploration

and production. Recent advances allows us to view geological modeling as a statistical problem that we can address with

probabilistic methods. Using stochastic simulations and Bayesian inference, uncertainties can be quantified and reduced by

incorporating additional geological information. In this work, we propose custom loss functions as a decision-making tool that5

builds upon such probabilistic approaches.

As an example, we devise a case in which the decision problem is one of estimating the uncertain volume of a structural

hydrocarbon trap. We construct a synthetic 3-D model to represent a potential hydrocarbon system and develop algorithms for

automatic trap volume calculation. Various volume probability distributions for different information scenarios are attained via

Monte Carlo error propagation and Markov chain Monte Carlo sampling.
:::::::
economic

:::::
value

:::
of

:
a
::::::::
potential

::::
fluid

::::::::
reservoir.

:
For10

subsequent true value estimation, we design a case-specific loss function to reflect not only the decision-making environment,

but also the preferences of differently risk-affine actors
:::::::
decision

::::::
makers. Based on this function, optimizing for expected loss

returns an actor’s best estimate to base decision making on.
:
,
:::::
given

:
a
::::::::::
probability

:::::::::
distribution

:::
for

::::
the

::::::::
uncertain

::::::::
parameter

:::
of

::::::
interest.

::::
We

:::::
apply

:::
the

:::::::::
customized

::::
loss

:::::::
function

:::
in

:::
the

::::::
context

::
of

::
a
::::
case

:::::
study

::::::::
featuring

:
a
::::::::
synthetic

::::
3-D

::::::::
structural

:::::::::
geological

::::::
model.

::
A
:::
set

::
of

::::::::::
probability

::::::::::
distributions

:::
for

:::
the

::::::::
maximum

::::
trap

::::::
volume

::
as

:::
the

:::::::::
parameter

::
of

::::::
interest

:::
are

::::::::
generated

:::
via

:::::::::
stochastic15

::::::::::
simulations.

:::::
These

::::::::
represent

:::::::
different

::::::::::
information

::::::::
scenarios

::
to

:::
test

:::
the

::::
loss

:::::::
function

::::::::
approach

:::
for

:::::::
decision

:::::::
making.

Our results show that the optimizing estimators shift according to the characteristics of the underlying value distribution.

While overall spread
:::::::
variation

:
leads to separation, risk-averse and risk-friendly decisions converge in the decision space and

decrease in expected loss given narrower distributions. We thus consider the degree of decision convergence to be a measure

for the state of knowledge and its inherent uncertainty at the moment of decision making. This decisive uncertainty does not20

change in alignment with model uncertainty but depends on alterations of critical parameters and respective interdependencies,

in particular relating to seal reliability. Additionally, actors are affected differently by one set of information
::::::
adding

::::
new

:::::::::
information

:::
to

::
the

::::::
model, depending on their risk affinity. It is therefore important to identify the model parameters which are

most influential for the final decision in order to optimize the decision-making process.

1



Copyright statement. TEXT

1 Introduction

In studies of the subsurface, data availability is often limited and characterized by high possibilities of error , as well as

epistemic uncertainty, due to signal noise or inaccuracies . This
:
,
:::::::
together

::::
with

:::
the

:::::::
inherent

::::::::
epistemic

:::::::::
uncertainty

:::
of

:::
the

::::::
modes,

leads to the inevitable presence of significant uncertainty in geological models, which in turn may affect interpretations and5

conclusions drawn from a model (Wellmann et al., 2018; de la Varga and Wellmann, 2016; de la Varga et al., 2019; Wellmann

et al., 2010a; Bardossy and Fodor, 2004; Randle et al., 2019; Lark et al., 2013; Caers, 2011; Chatfield, 1995). Uncertainties are

thus of particular importance for making responsible and good decisions in related economic settings, such as in hydrocarbon

exploration and production (Thore et al., 2002; McLane et al., 2008; Smalley et al., 2008). Quantification and visualization of

such uncertainties and their consequences is a currently
:::::::
currently

:::
an active field of research. Recent developments allow us to10

view geological modeling as a statistical problem (see Wellmann and Caumon (2018))
::::::::::::::::::::::::::::
(see Wellmann and Caumon, 2018). We

particularly regard approaches to couple implicit geological modeling with probabilistic methods, as presented by de la Varga

et al. (2019) with the Python library GemPy.

Following their example, we regard implicit geological modeling as a mathematical function of not only deterministic but

also stochastic, i.e. uncertain, model input parameters. An essential aspect of this approach to modeling is that it allows for15

full automation, so that the consequences of a change in an input parameter are realized directly without the need for any

further manual inspection or interaction (Wellmann et al., 2017; de la Varga and Wellmann, 2016). This not only enables us to

quantify model uncertainties using Monte Carlo error propagation, but also allows us to incorporate additional information

via Bayesian inference to reduce uncertainties.Building on this probabilistic perspective, in this work, we propose the use of

custom loss functions as a decision-making tool when dealing with uncertain geological models. In many applications, we20

are interested in some decisive model output value, for example reservoir volume. Given that such a value
::::::::
parameter is the

result of a deterministic function of uncertain variables in our model, the value
::::::::
parameter of interest is likewise uncertain and

can be represented by a probability distribution attained from stochastic simulations. A loss function can be applied to such a

distribution to return a case-specific best estimate to base decision making on.

We consider hydrocarbon exploration and production as an exemplary high-risk, high-reward sector, in which good deci-25

sion making is crucial.
::::::::
However,

:::
the

::::::::
described

::::::::
methods

:::
are

:::::::::
potentially

:::::::
equally

:::::::::
applicable

::
to

:::::
other

:::::
types

::
of

::::
fluid

:::::::::
reservoirs

::::
(e.g.

::::::::::
groundwater

::::::::::
geothermal

:::
or

::::::::::::::::
CO2-sequestration)

:::
and

:::
in

:::
the

::::
raw

::::::::
materials

::::::
sector. Monte Carlo simulation for reservoir

estimation and risk assessment has become common in this sector and is often used in combination with decision trees (see

Murtha et al. (1997), Mudford et al. (2000), Wim et al. (2001) and Bratvold and Begg (2010))
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(see Murtha et al., 1997; Mudford et al., 2000; Wim et al., 2001; Bratvold and Begg, 2010)

. However, it seems to us that distributions resulting from probabilistic modeling are mostly only considered to attain best es-30

timates in the form of means. Most likely and extreme outcomes are identified as percentiles, typically P50 (the median), P10

and P90. We believe that this practice does not harness the full potential of such a probabilistic distribution and that much of

the inherent information is discarded. Contrary to that, customized loss functions, as a Bayesian method, take into account

2



the full probability distribution and enable the inclusion of various conditions in the process of finding an optimal estimate.

While used in statistical decision theory and other scientific fields, loss functions have, to the best of our knowledge, found no

significant application in the field of petroleum exploration and production
:::::
context

:::
of

::::::::
structural

::::::::
geological

::::::::
modeling. Thus, we

intend to provide a new perspective with our methodology.

To illustrate our approach , we apply it to a simple synthetic 3-D geological model that comprises deformed geological units5

and
::
of

:::::
using

::::::
custom

:::
loss

::::::::
functions

:::
for

:::::::
decision

:::::::
making,

:::
we

:::
first

::::::::
illustrate

::::
what

::::
such

::::::::::::
customization

:::::
might

::::
look

:::
like

:::::::::::
step-by-step:

::::::
starting

:::
off

::::
with

:
a
::::::::

standard
::::::::::
symmetrical

::::
loss

::::::::
function,

:::::::::::
incorporating

::::::::::::::
scenario-specific

:::::::::
conditions

:::
and

:::::::::::
assumptions,

::::
and

:::::
lastly

:::::::::::
implementing

::
a

:::::
factor

::
to

::::::::
represent

:::::::
varying

::::
risk

:::::::
affinities

:::
of

:::::::
different

::::::::
decision

::::::
makers.

:::
As

:::
we

:::::::
assume

:
a normal fault which

together form a potential structural hydrocarbon trap. Assuming a petroleum exploration and production case, we define the

maximum trap volume as our value of interest.
::::::::::::::
decision-making

:::::::
scenario,

:::
our

:::::::::
parameter

::
of

::::::
interest

::::::
should

::
be

::::
one

:::
that

::::::::
indicates10

::
the

:::::::::
economic

:::::
value

::
of

:
a
::::::::
potential

:::::::::::
hydrocarbon

::::::::::::
accumulation.

::
In

:
a
:::::
larger

:::::::
context,

:::::::::
including

::::::
various

:::::::::
geological

:::
and

:::::::::
economic

:::::
factors

:::::
such

::
as

::::::::::
operational

:::::::::::
expenditures,

::::
this

:::::
could

:::
be

:::
the

:::
net

:::::::
present

:::::
value

::::::
(NPV)

::
of

::
a
:::::::
project.

::
In

:::::::::::::
pre-production

::::::
stages,

::::::
original

::::::::::
oil-in-place

:::::::
(OOIP)

::
is

:::::::::
commonly

::::
used

:::
for

::::
early

:::::::::::
assessments

:::::::::::::::::::::::::::::::::::::
(Dean, 2007; Morton-Thompson et al., 1993).

:
Decision

makers would want to best estimate this volume
::
the

:::::::
relevant

:::::::::
parameter

::
of

:::::::
interest

:
to derive recoverable reserves, economic

value and subsequently allocate development resources accordingly.15

2 Methods

Design of our 3-D structural geological model. A 2-D cross section through the middle of the model (y = 500 m), perpendicular

to the normal fault (parallel to the x− z plane), is shown in (a). A 3-D voxel representation of the model, highlighting the

reservoir and seal formations, is visualized in (b). In (d) and (d), the inclusion of parameter uncertainties is presented. Colors

indicate certain layer bottoms (i.e. boundaries) which are assigned shared z-positional uncertainties (c). All points in the20

hanging wall are additionally assigned a fault offset uncertainty (d). Thicknesses of the three middle layers are defined by the

distances of boundary points (e) and are thus directly dependent on (c).

1.1 Computational implementation

Computationally and numerically, we implement all out methods in a Python programming environment, relying in particular

on the combination of two crucial open source libraries: (1) GemPy (version 1.0) for implicit geological modeling and25

(2) PyMC (version 2.3.6) for conducting probabilistic simulations.Gempy is able to generate and visualize complex 3-D

structural geological models based on a potential-field interpolation method originally introduced by Lajaunie et al. (1997)

and further elaborated by Calcagno et al. (2008). GemPy was specifically developed to enable the embedding of geological

modeling in probabilistic machine-learning frameworks, in particular by coupling it with PyMC (de la Varga et al., 2019)

.PyMC was devised for conducting Bayesian inference and prediction problems in an open-source probabilistic programming30

environment (Davidson-Pilon, 2015; Salvatier et al., 2016). Different model-fitting techniques are provided in this library, such

as various Markov chain Monte Carlo (MCMC) sampling methods. For our purpose we make use of Adaptive Metropolis

3



sampling by Haario et al. (2001) and check for MCMC convergence via a time-series method approach by Geweke et al. (1991)

. Components of a statistical model are represented by deterministic functions and stochastic variables in PyMC (Salvatier et al., 2016)

. We can thus use the latter to represent uncertain model input parameters and link them to additional data via likelihood

functions. Other parameters, such as the value of interest for decision making, can be determined over deterministic functions,

as children of parent input parameters.To visually compare the states of geological unit probabilities after conducting stochastic5

simulations, we consider the normalized frequency of lithologies in every single voxel and visualize the results in probability

fields (see Wellmann and Regenauer-Lieb (2012)). Illustration of the process of trap recognition in 2-D, i.e. the conditions that

have to be met by a model voxel, to be accepted as belonging to a valid trap. A voxel has to be labeled as part of the target

reservoir formation (a) and positioned in the footwall (b). Trap closure is defined by the seal shape and the normal fault (c).

Consequently, the maximum trap fill is defined by either the anticlinal spill point (S) or a point of leakage across the fault,10

depending on juxtapositions with layers underlying (L1) or overlying the seal (L2). The latter is only relevant if the critical

Shale Smear Factor is exceeded, as determined over D and T in (d). In this example, assuming sealing of the fault due to clay

smearing, the fill horizon is determined by the spill point in (d). Subsequently, only trap section 1 is isolated from the model

borders in (d) and can thus be considered a closed trap. Voxels included in this section are counted to calculate the maximum

trap volume.15

1.1 Synthetic geological model

Our geological example model is designed to represent a potential hydrocarbon trap system. Stratigraphically, it includes one

main reservoir unit (sandstone), one main seal unit (shale), an underlying basement and two overlying formations that are

assumed to be permeable, so that hydrocarbons could have migrated upwards. Structurally, it is constructed to feature an

anticlinal fold that is displaced by a normal fault.All layers are tilted and dip in the opposite direction of the fault plane dip. A20

potential hydrocarbon trap is thus found in the reservoir rock enclosed by the deformed seal and the normal fault.Using GemPy,

we construct the geological model as follows: In principle, it is defined as a cubic block with an extent of 2000 m in x-, y- and

z-directions. The basic input data for the interpolation of the geological features is composed of 3-D point coordinates for layer

interfaces and fault surfaces, as well as orientation measurements that indicate respective dip directions and angles. From this

data, GemPy is able to interpolate surfaces and compute a voxel-based 3-D model (see Fig. 3).
:::::
which

:::::::
includes

:::
the

:::::::::
possibility25

::
of

:::::::
walking

::::
away

:::::
from

:
a
::::::::
prospect.

::
In

:::
this

:::::
case,

:::
the

:::::::
decision

:::::
maker

::::::
might

::::
refer

::
to

::
an

:::::::::
individual

:::::::::
geological

::::::
expert,

:::
but

:::
also

::
to

:::
an

:::::::::
exploration

::::::::
company

::
as

:
a
::::::
whole.

We include uncertainties by assigning them to the z-positions of points which mark layer interfaces in the
::::
Once

:::
we

::::
have

:::
set

::
up

:
a
::::

loss
:::::::
function

::::::::::
customized

::
to
::::
this

:::::::
decision

::::::::
problem,

:::
we

:::
can

:::::
apply

::
it
::
to

::::::::::
probability

::::::
density

::::::::
functions

::::::
which

:::::::
represent

::::
our

:::::::::
knowledge

:::::
about

:::
the

:::
true

:::::
value

::
of

:::
the

::::::::
parameter

:::
of

::::::
interest.

:::
As

:::::::::
mentioned

::::::
above,

::::
such

::::::::::
distributions

::::
can

:::::
result

::::
from

:::::::::
geological30

::::::::
modeling

::
in

::
a

::::::::::
probabilistic

::::::::
context.

::
To

::::::::
illustrate

::::
this,

::::
we

::::::
include

::
a
::::::::
synthetic

:
3-D space. This is achieved via probability

distributions (PyMC stochastic variables) from which deviation values are drawn. These are then added to the original input

data z-value. As the z-position is the most sensible parameter for predominantly horizontal layers, we can hereby not only

implement uncertainties regarding layer surface positions in depth, but also layer thicknesses, geometrical shapes and degree
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of fault offset. Input parameter uncertainties defined by distributions with respective means µ, standard deviations σ and shape

factor α.mu sigma alpha 0 40 0 0 60 0 0 80 0 0 100 0 0 -150 -2 Such probability distributions can also be allocated as

homogeneous sets to point and feature groups which are to share a common degree of uncertainty (see Table 1). We assign

the same base uncertainty to groups of points belonging to the same layer bottom surface by referring them to one shared

distribution each. Assuming an increase of uncertainty with depth, standard deviations for the shared distributions are increased5

for deeper formations. Furthermore, uncertainty regarding the magnitude of fault offset is incorporated by adding a skew normal

probability distribution that is shared by all layer interface points in the hanging wall. A left skewed normal distribution is

chosen to reflect the nature of throw on a normal fault, in particular the slip motion of the hanging wall block. Mainly negative

values are returned by this distribution. This way, the offset nature of the normal fault is maintained and inversion to a reverse

fault is avoided.10

1.1 The value of interest for decision making

We define the trap volume Vt as the central feature of economic interest . For conducting straightforward volumetric calculations,

we assume that found closed traps are always filled to spill, i.e. we only consider structural features as controlling mechanisms.

This value is of central importance for calculating original oil or gas in place (OOIP/OOIG) and consequently, recoverable

reserves. This type of estimation is also the only approach to assess the amount of hydrocarbons in a reservoir before production15

has started (Dean, 2007; Morton-Thompson et al., 1993).By declaring these connections, we have given our model an economic

significance. We can assume that the hydrocarbon trap volume is directly linked to project development decisions, i.e. investment

and allocation of resources is represented by bidding on a volume estimate. In the course of this work, we developed a set of

algorithms to enable the automatic recognition and calculation of trap volumes in geological models computed by GemPy.

The volume is determined on a voxel-counted basis via four conditions illustrated in Fig. 4 and further explained in Appendix20

A.Following these conditions, we can define four major mechanisms which control the maximum trap volume: (1) the anticlinal

spill point of the seal cap, (2) the cross-fault leak point at a juxtaposition of the reservoir formation with itself, (3) leakage due

to juxtaposition with overlying layers and SSF failure, and (4) stratigraphical breach of the seal, when its voxels are not

continuously connected above the trap. Due to the nature of our model, (3) and (4) will always result in complete trap failure.

The trap volume Vt is a result from GemPy’s implicit geological model computation. It is an output parameter dependent on25

deterministic and stochastic input parameters. With every model realization, input uncertainties will respectively propagate to

::::::::
structural

:::::::::
geological

:::::
model

::
as

::
a
::::
case

:::::
study.

:::
In

:::
this

:::::::
context,

:::
we

::::::
define

:::
the

::::::::::
structurally

:::::::::
determined

:::::::::
maximum

::::
trap

::::::
volume

:::
Vt

::
as

:::
our

:::::::::
parameter

::
of

:::::::
interest

:::
and

::::::::
indicator

:::
for

::::::::
economic

::::::
value.

:::
We

:::::::
generate

::::::::
different

:::::::::
probability

:::::::::::
distributions

:::
via

:::::::::
stochastic

:::::::::
simulations

::::
and

:::::
based

::
on

::::::
various

::::::::::
information

:::::::::
scenarios.

:
It
::
is

::::::::
important

::
to

::::
note

::::
that

::::
these

:::
are

::::::
always

:::::
based

::
on

:::
the

:::::
same

:::::::
primary

::::
input

::::::::::
parameters.

:::
We

:::::
attain

::::::
altered

:::::
states

:::
of

::::::::::
information

:::
by

:::::::
updating

:::
the

::::::::
reference

::::
case

::::::
(prior)

::::
with

:::::::::
secondary

:::::::::::
information.30

::
In

:::::
doing

:::
so,

::
we

:::::
make

::::
sure

::::
that

:::
the

:::::::
resulting

:::::::::::
distributions

:::
and

:
the volume, which in turn is uncertain. We can thereby evaluate

it using probabilistic methods and
:::::::::
realizations

::
of
::::

loss
:::::::
function

:::::::::::
applications

:::
can

:::
be

::::::
directly

:::::::::
compared.

::::::
These

::::
case

::::::
studies

:::
are

:::::::
synthetic

::::
and

::::::
chosen

::::
here

::
to

::::::::
exemplify

:::
the

:::::::::
application

:::
of Bayesian decision theory in particular, as explained in the following.
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:::
and

::
to

:::::
show

::::
how

::::::::
additional

::::::::::
information

::::::
affects

:::
the

::::::::
optimality

:::
of

:::::::
decision.

:

2
:::::::
Methods

2.1 Bayesian decision theory

We view the statistical analysis of our model from a Bayesian
::::::::
geological

::::::
models

:::::
from

:
a
:::::::::::

probabilistic
:
perspective, which is

most importantly characterized by its preservation of uncertainty. Its principles have been presented and discussed extensively5

in literature (see Jaynes (2003), Box and Tiao (2011), Harney (2013), Gelman et al. (2014) and Davidson-Pilon (2015)). The

Bayesian approach is widely seen as intuitive and inherent in the natural human perspective. It regards probability as a measure

of belief about a true state of nature. Such beliefs can be assigned to individuals. Thus, different and even contradicting beliefs

about a true state of nature might be held by different individuals, based on variations and disparities in the information available

to each one individual.In this work, the decision problem is one of estimating the true state of our value of interest, which we10

denote θ. Estimations are based on probability distributions attained from: (1) simple Monte Carlo error propagation, and (2)

Bayesian inference using Markov chain Monte Carlo simulation. For (1), we are dealing with a prior probability distribution

p(θ) that results from the deterministic function of the uncertain model input parameters

::
In

::::
many

::::::
cases,

:::::::
decisions

:::
are

:::::
made

::
on

:::
the

:::::
basis

::
of

:::::::
summary

::::::::::
parameters

::::
such

::
as

::::
mean

::
or

::::::::
standard

::::::::
deviation.

::::
This

::::::::::::
approximation

:::::
works

:::
for

::::
well

::::::
defined

::::::::::
probability

::::::::::
distributions

:::
but

::
it

::::
may

:::
fail

:::::
when

:::
the

::::::::::
distribution

::::
does

:::
not

::::
have

::
a
::::::
defined

::::::::
structure,

::::::
which15

:
is
:::
the

:::::
usual

::::
case

::
of

::::::::::
distribution

:::::::::
generated

::
as

:
a
:::::
result

:::
of

:
a
::::::::
Bayesian

::::::::
inference. For (2), the prior distribution is revalued using

Bayesian inference (see Appendix ??) given the presence of additional statistical information y, and using likelihood functions

p(y|θ). Decision making is then based on the resulting posterior probability p(θ|y). In general, Bayesian inference is about

updating a belief and reaching an estimate that is less wrong.
:
In

::::
this

:::::
work,

:::
we

:::
aim

::
to

::::::
tackle

:::
the

:::::::
decision

:::::::
problem

:::::::::
associated

::
to

::::::::::
probabilistic

:::::::::
inferences.

:::
By

::::::::
applying

:::::::
Bayesian

::::::::
decision

:::::
theory

::::::::
concepts,

:::
we

:::
are

:::::::
capable

::
to

::::::::
transform

::
an

::::::::
arbitrary

:::::::
complex

:::
set20

::
of

::::::::::
distributions

::::
onto

::
a

::::
more

::::::::
adequate

:::::::::
dimension

::
for

::::::::
decision

:::::::
making,

::::::
usually

::::
loss

::
or

:::::
score.

2.1.1 Likelihoods

For the application of Bayesian inference, we implement two types of likelihoods:

1. Layer thickness likelihoods: With every model realization, we extract the z-distance between layer boundary input

points at a central x− y position (x = 1100 m, y = 1000 m) in our input interpolation data. Resulting thicknesses can25

then be passed on to stochastic functions in which we define thickness likelihoods via normal distributions.

2. SSF likelihood: SSF values are realized over more complex parameter compositions. We base this likelihood on a normal

distribution which we link to the geological model output.

The inclusion of these likelihood is based on purely hypothetical assumptions and is intended to provide the opportunity to

explore the effects different types and scenarios of additional information might have. While the thickness likelihood functions30
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are dependent on input parameters directly, the implementation of the SSF likelihood function requires a full computation of

the model and extended algorithms of structural analysis.

2.1.1 Loss, expected loss and loss functions

Common point estimates, such as the mean and the median of a distribution, usually come with a measure for their accuracy

(Berger, 2013). However, it has been argued by Davidson-Pilon (2015) that by using pure accuracy metrics, while this technique5

is objective, it ignores the original intention of conducting the statistical inference in cases, in which payoffs of decisions are

valued more than their accuracies. A more appropriate approach can be seen in the use of loss functions (Davidson-Pilon,

2015).

Loss is a statistical measure of how "bad" an estimate is. Estimate-based decision
::::::::
decisions are also referred to as actions a.

::::::::
Therefore,

:::
we

::::
also

::::
refer

::
to
::::::::
decision

::::::
makers

::
as

::::::
actors. Loss is defined as L(θ,a), so L(θ1,a1) is the actual loss incurred when10

action a1 is taken while the true state of nature is θ1 (Berger, 2013). The magnitude of incurred loss related to an estimate is

defined by a loss function, which is a function of the estimate and the true value of the parameter (Wald, 1950; Davidson-Pilon,

2015):

L(θ, θ̂) = f(θ, θ̂). (1)

So, how "bad" a current estimate is, depends on the way a loss function weights accuracy errors and returns respective losses.15

Two standard loss functions are the absolute-error and the squared-error loss function. Both are objective, symmetric, simple

to understand and commonly used

Davidson-Pilon (2015) and Hennig and Kutlukaya (2007) have proposed that it might be useful to move on from standard

objective loss functions to the design of customized loss functions that specifically reflect an individual’s (i.e. the decision

maker’s) objectives, preferences and outcomes. Hennig and Kutlukaya (2007) argue that choosing and designing a loss function20

involves the translation of informal aims and interests into mathematical terms. This process naturally implies the integration of

subjective decisions and subjective elements. According to them, this is not necessarily unfavorable or less objective, as it may

better reflect an expert’s perspective on the situation.Standard symmetric loss functions can easily be adapted to be asymmetric,

for example by weighting errors on the negative side stronger than those on the positive side. Preference over estimates larger

than the true value (i.e. overestimation) is thus incorporated in an uncomplicated way.. Much more complicated designs of loss25

functions are possible, depending on purpose, objective and application.The presence of uncertainty during decision making

implies that the true parameter value is unknown and thus the truly incurred loss L(θ,a) cannot be known at the time of

making the decision. The Bayesian perspective considers unknown parameters as random variables and samples that are drawn

from the posterior
:
a
:::::::::
probability

:
distribution as possible realizations of the unknown parameter, i.e. all possible true values are

represented by this distribution.30

Given a posterior distribution p(θ|y)
:::::
Under

::::::::::
uncertainty, the expected loss of choosing an estimate θ̂ over the true parameter

::::
value

:
θ (after evidence y has been observed) is defined by (Davidson-Pilon, 2015):

l(θ̂) = Eθ[L(θ, θ̂)]. (2)
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The expectation symbol E is subscripted with θ, by which it is indicated that θ is the respective unknown variable. This

expected loss l is also referred to as the Bayes risk of estimate θ̂ (Berger, 2013; Davidson-Pilon, 2015).

By the Law of Large Numbers, the expected loss of θ̂ can be approximated drawing a large sample size N from the posterior

distribution, respectively applying a loss function L and averaging over the number of samples (Davidson-Pilon, 2015):

1

N

N∑
i=1

L(θi, θ̂)≈ Eθ[L(θ, θ̂)] = l(θ̂). (3)5

::::::
Hereby,

:::
we

::::
can

::::::::::
approximate

:::
the

::::::::
expected

::::
loss

:
l
:::
for

:::::
every

:::::::
possible

:::::::
estimate

::
θ̂
::::::
(every

:::::::
decision

:::
we

:::
can

::::::
make)

:::::::::
according

::
to

::
the

::::
loss

:::::::
function

::
in

::::
use. Minimization of a loss function returns a point estimate known as Bayes action or Bayesian estimator,

which is the decision with the least expected loss according to the loss function, and the decision we are interested in in this

work (Berger, 2013; Moyé, 2006).

2.2 Customization of our case-specific loss function10

Assigning an economic notion to our model and assuming the case of an actor or decision makerin any field naturally

necessitates the consideration of preferences , interests and the overall subjective perspective such an individual or for example

a company might have. Further constraints and conditions can also be specific to the field, industry or generally to the problem

at hand

2.1.1
::::::::::::
Customization

:::
of

:::
our

:::::::::::
case-specific

::::
loss

:::::::
function15

:::::::::::::::::::
Davidson-Pilon (2015)

:::
and

:::::::::::::::::::::::::
Hennig and Kutlukaya (2007)

::::
have

::::::::
proposed

::::
that

:
it
::::::

might
:::
be

:::::
useful

:::
to

:::::
move

::
on

:::::
from

::::::::
standard

:::::::
objective

::::
loss

::::::::
functions

::
to
::::

the
:::::
design

:::
of

::::::::::
customized

:::
loss

:::::::::
functions

:::
that

::::::::::
specifically

::::::
reflect

::
an

::::::::::
individual’s

::::
(i.e.

:::
the

::::::::
decision

:::::::
maker’s)

::::::::
objectives

::::
and

:::::::::
preferences

:::::::::
regarding

::::::::
outcomes.

:::::::::
Especially

::
as

:::
we

:::::
assign

:::
an

::::::::
economic

:::::
notion

::
to
:::::::::
geological

::::::
models

::::
and

:::::
related

:::::::::
estimation

:::::::::
problems,

:::
we

:::::
argue

:::
that

::
it

::
is

::::::::
necessary

::
to

:::::::
consider

:::
the

:::::::::
subjective

::::::::::
perspectives

::
of

::::::::
involved

:::::::
decision

:::::::
makers,

:::
say

::
for

::::::::
example

:::::::::
exploration

::::
and

:::::::::
production

:::::::::
companies. Consequently, the design of a more specific non-standard and possibly20

asymmetric loss function might be required. One that includes subjective aspects and difference
:::::::::
differences in weighting of

particular risks, arising from an actor
:
a
:::::::
decision

::::::
maker’s inherent preferences and the environment in which the

:::
this actor has

to make a decision. In the face of several uncertain parameters, a perfectly true estimate
:::::
which

:
is
::
a
:::::
given

::
in

:::::::
complex

:::::::::
geological

::::::
models,

::
a
::::::
perfect

::::::::
estimate,

:
a
::::::
perfect

::::::::
decision,

:
is virtually unattainable. However, an attempt can be made to design a custom

loss function that returns a Bayesian estimator involving the least bad consequences for an individual
:
a
:::::::
decision

::::::
maker

:
in a25

specific environment (Davidson-Pilon, 2015; Hennig and Kutlukaya, 2007).

::::::::::::::::::::::::
Hennig and Kutlukaya (2007)

:::::
argue

:::
that

::::::::
choosing

:::
and

::::::::
designing

::
a

:::
loss

:::::::
function

:::::::
involves

:::
the

:::::::::
translation

::
of

:::::::
informal

::::
aims

::::
and

:::::::
interests

:::
into

:::::::::::
mathematical

::::::
terms.

::::
This

::::::
process

::::::::
naturally

::::::
implies

:::
the

:::::::::
integration

::
of

:::::::::
subjective

::::::::
elements.

::::::::
According

::
to
:::::
them,

::::
this

:
is
:::
not

::::::::::
necessarily

::::::::::
unfavorable

::
or

:::
less

:::::::::
objective,

::
as

:
it
::::
may

:::::
better

::::::
reflect

::
an

:::::::
expert’s

::::::::::
perspective

::
on

:::
the

::::::::
situation.

:::::::
Standard

:::::::::
symmetric

::::
loss

::::::::
functions

:::
can

:::::
easily

:::
be

::::::
adapted

::
to
:::
be

::::::::::
asymmetric,

:::
for

:::::::
example

:::
by

::::::::
weighting

::::::
errors

::
to

:::
the

:::::::
negative30

:::
side

:::::::
stronger

::::
than

:::::
those

:::
to

:::
the

::::::
positive

:::::
side.

:::::::::
Preference

::::
over

::::::::
estimates

:::::
larger

:::::
than

:::
the

:::
true

::::::
value,

:::
i.e.

:::::::::::::
overestimation,

::
is

::::
thus

8



::::::::::
incorporated

::
in

:::
an

::::::::::::
uncomplicated

::::
way.

:::::
Much

:::::
more

::::::::::
complicated

:::::::
designs

::
of

::::
loss

:::::::
functions

:::
are

::::::::
possible,

:::::::::
depending

::
on

::::::::
purpose,

:::::::
objective

::::
and

::::::::::
application.

:::
We

:::
will

:::::::
describe

::::::::
potential

::::::
design

::::::
options

::
in

:::
the

:::::::::
following.

For our example case of trap volume estimation
::
of

:::::::::
estimating

:::
the

:::::::::
economic

:::::
value

::
of

::
a
:::::::::::
hydrocarbon

::::::::
prospect,

::::::
which

::
is

:::::::::
represented

:::
by

:::
the

:::::::::
maximum

::::
trap

::::::
volume

:::
Vt, we develop a custom loss function in five steps. Ideally, an actor

:
a
::::::::

decision

:::::
maker would like to know the exact trap volume

:::
true

:::::
value, so that resources can be allocated appropriately in order to acquire5

economic gains
::
by

:::::::::
developing

::
a

::::::
project

:::
and

::::::::
producing

:::::
from

:
a
::::::::
reservoir. This conscious and irrevocable allocation

::
of

::::::::
resources

is the decision to be made or action to be taken (Bratvold and Begg, 2010). Thus, we treat estimating as equivalent to making

a decision. Deviations from the unknown true value in the form of over- and underestimation bring about an error and loss

accordingly. In steps I - IV we make assumptions about the significance of such deviations and how they differently contribute

to risks in the general decision making environment.10

It can be assumed that several actors
::::::
decision

:::::::
makers in one such environment or sector may have the same general loss

function but different affinities concerning the risks. This might be based for example on different psychological factors or

economic philosophies followed by companies. It might also be based on budgets and options such actors have available. An

intuitive example is the comparison of a small and a large company. A certain false estimate or error
::::
false

:::::::
estimate

:::
and

::::::
wrong

:::::::
decision might have a significantly stronger impact on a company which has a generally lower market share and only few15

projects, than on a larger company which might possess a higher financial flexibility and for which one project is only one of

many development options in a portfolio. We therefore
::::
wide

::::::::
portfolio.

:

::
In

::::
steps

:
I
:
-
:::
IV

:::
we

::::
make

:::::::::::
assumptions

::::
about

:::
the

::::::::::
significance

::
of

::::
such

:::::::::
deviations

:::
and

::::
how

::::
they

:::::::::
differently

::::::::
contribute

::
to

::::::::
expected

:::::
losses

::
in

:::
the

:::::::
general

::::::::::::::
decision-making

:::::::::::
environment

:::
and

:
introduce the concept of varying risk affinities in the final step V.

Plotting of expected loss realizations after including the risk affinity factor r in the loss function (see Eq. 8) for actors with risk20

affinities ranging from risk-friendly (r = 0.5 and 0.75), over risk-neutral (r = 1), to risk-averse (r = 1.25 and r = 1.5). Dots mark

the respective positions of minimizing actions. We applied the function to samples from a normal distribution (µ= 0, σ = 500)

that represents the probability of a hypothetical score which is to be estimated. Jumps at zero are caused by the implementation

of fatal over- and underestimation. Taking a closer look at the realizations for r = 1.5 and r = 0.5, we can recognize how

they expect different losses and come to a different optimal decision given the same information. As in this case, positive and25

negative score values are equally likely, and overestimation errors are weighted stronger, only the most risk-friendly actor will

bid on a positive estimate. Also, expected losses are lower for more risk-friendly decision makers.

– Step I - Choosing a standard loss function as starting point: In our case, we assume that investments increase linearly

with linear growth in the value of the resource (i. e. the volume).
:::::::
prospect.

:
For this reason, we choose the symmetric

absolute-error loss function as a basis for further customization steps:30

L(θ, θ̂) = |θ− θ̂|. (4)

– Step II - Simple overestimation: Considering the development of a hydrocarbon reservoir, it can be assumed that

over-investing is worse than under-investing. Overestimating the size of an accumulation might for example lead to

the installation of equipment or facilites
:::::::
facilities that are actually redundant or unnecessary. This would come with

9



additional unrecoverable expenditures. Consequences from underestimating (0< θ̂ < θ), however, may presumably be

easier to resolve. Additional equipment can often be installed later on. Hence, simple overestimation (0< θ < θ̂) is

weighted stronger in this loss function by multiplying the error with an overestimation factor a:

L(θ, θ̂) = |(θ− θ̂)| a. (5)

– Step III - Fatal
::::::
Critical

:
overestimation: The worst case for any project would be that its development is set into motion,5

expecting a gain, only to discover later that the value in the reservoir does not cover the costs of realizing the project,

resulting in an overall loss. A petroleum system might also turn out to be a complete failure, containing no value
::::::
(Vt = 0

::
in

:::
our

:::
3-D

::::
case

::::::
study)

:
at all, although the actor’s estimate indicated the opposite. Here, we refer to this as fatal

::::::
critical

overestimation. A positive value is estimated, but the true value is zero or negative (θ ≤ 0< θ̂). This is worse than simple

overestimation, where both values are positive and a net gain is still achieved, which is only smaller then the best possible10

gain of expecting the true value. Fatal
::::::
Critical

:
overestimation is included in the loss function by using another weighting

factor b that replaces a:

L(θ, θ̂) = |(θ− θ̂)| b. (6)

In other words: With b= 2, fatal
::::::
critical

:
overestimation is twice as bad as simple underestimation

::::::::::::
overestimation.

– Step IV - Fatal
::::::
Critical

:
underestimation: We also derive fatal

::::::
critical

:
underestimation from the idea of estimating15

zero (or a negative value), when the true value is actually positive (θ̂ ≤ 0< θ). This is assumed to be worse than simple

overestimation, but clearly better than fatal
:::::
critical

:
overestimation. No already owned resources are wasted, it is only the

potential value that is lost, i.e. opportunity costs that arise from completely discarding a profitable project. Fatal
::::::
Critical

underestimation is weighted using a third factor c:

L(θ, θ̂) = |(θ− θ̂)| c. (7)20

– Step V - Including different risk affinities: We now further adapt the loss function to consider varying risk affinities

of different actors. We follow the approach of Davidson-Pilon (2015), who implemented different risk affinities by

simply introducing a variable risk factor. Using different values for this factor, we can represented how comfortable an

individual is with being wrong and furthermore which "side of wrong" is preferred by that decision maker (Davidson-

Pilon, 2015). In our case, bidding lower is considered the cautious, risk-averse option, as smaller losses can be expected25

from underestimating. Guessing higher is deemed riskier, as losses from overestimation are greater. However, bidding

correctly on a higher value, will also return a greater gain. It is assumed that risk-friendly actors care less about fatal

::::::
critical underestimation, i.e. they will rather develop a project than discard it. In our finalized loss function, we simply

10



include these considerations via a risk affinity factor r which alters the incurred losses respectively:

L(θ, θ̂) =



|θ− θ̂| r−0.5, for 0< θ̂ < θ

|θ− θ̂| a r, for 0< θ < θ̂

|θ− θ̂| b r, for θ ≤ 0< θ̂

|θ− θ̂| c r−0.5, for θ̂ ≤ 0< θ

, with a,b,c,r ∈Q. (8)

::::
This

:::::::
equation

:::::
shows

::::
that

:::
the

::::
final

::::::
custom

::::
loss

:::::::
function

::
is
::
in
:::::::
essence

:
a
:::::::::

composite
::
of

::::
four

::::::::
different

::::::::
functions

:::
for

:::
the

::::
over-

::::
and

:::::::::::::
underestimation

:::::
cases

::::::::
explained

::
in

:::::
steps

:
II
::
-
:::
IV. It is important to note that the weighting factors a, b and c can take basically

any numerical values but should be chosen in a way that they appropriately represent the framework conditions of the problem.5

Here, we assume that simple overestimation is 25 % (a = 1.25), fatal
:::::
critical

:
overestimation 100 % (b = 2) and fatal

::::::
critical

underestimation 50 % (c = 1.5) worse than simple underestimation.An example plot of actual incurred losses via this loss

function can be found in Appendix ??

According to Eq. 8, the risk-neutral loss function is returned for r = 1, as no re-weighting takes place. For r < 1, the weight

on overestimating (a, b) is reduced and increased for fatal
::::::
critical underestimation (c), as well as normal underestimation. This10

represents a risk-friendlier actor that is willing to bid on a higher estimate to attain a greater gain. For r > 1, the overestimation

weight (a, b) is increased in the loss function, underestimation and fatal
:::::
critical

:
underestimation weight (c) are decreased

and respectively more risk-averse actors are prompted to bid on lower estimates. Since risk neutrality is expressed by r = 1,

we consider values 0 < r < 2 to be the most appropriate choices to represent both sides of risk affinity equally.Accordingly

different loss function realizations are15

::
In

::::
Fig.

::
1,

:::
we

::::::::
illustrate

:::::::
different

:::::::
aspects

:::
and

:::::
steps

:::
of

:::::::
adapting

::::
and

::::::::
applying

:::
the

::::::
custom

::::
loss

::::::::
function.

::::
For

:::::
these

::::::
simple

::::::::
examples,

:::
we

::::::
assume

::::
that

:::
the

::::::::
economic

:::::
value

::
of

:::
our

::::::::
reservoir

::
is

:::::::::
represented

:::
by

::
an

:::::::
abstract

:::::
score

:::::::::
parameter.

:::
Fig.

::
1
:::
(a)

::::::
depicts

::
the

:::::::
plotting

:::
of

:::
the

::::::::::::
absolute-error

::::
loss

:::::::
function

:::::::::::::
(customization

::::
step

::
I)

::::::
applied

:::
to

:
a
:::::::

normal
::::::::::
distribution.

::
It
::::
can

::
be

:::::
seen,

::::
that

::
for

::::
this

:::::::
standard

:::::::::::
symmetrical

::::::::
function,

:::
the

:::::::
minimal

:::::
point

::
of

::::::::
expected

:::::
losses

::::
and

:::::
Bayes

::::::
action

::::::::::
corresponds

:::
the

:::::::
median

::::
(and

::::
mean

:::
for

::::
this

:::::::::
symmetric

:::::::::::
distribution).

::::
Fig.

::
1

:::
(b)

::::::::::
summarizes

::::::::::::
customization

:::::
steps

::
II

:
-
:::
IV

:::
and

:::::::::
visualizes

::::
how

::::
four

::::::::
different20

:::::::
functions

:::
for

::::
four

:::::
cases

::
of

::::::
under-

:::
and

:::::::::::::
overestimation

:::
are

:::::::
summed

:::
up

::
to

:::
one

:::::::::
combined

:::
loss

::::::::
function

:::
that

:::::::::
comprises

::
all

:::
of

:::
the

::::::::::
assumptions

:::::
made

:::
for

:::
the

:::::::::::::
decision-making

:::::::::::
environment.

::
A
:::::
jump

::
of

::::::::
expected

:::::
losses

:::
on

:::
the

:::::::
negative

::::
side

::
of

:::::::
possible

::::::::
estimates

:::
can

::
be

::::::::
attributed

::
to

:::
the

::::
way

:::
we

::::::
defined

:::
the

:::::::
function

:::
for

::::::
critical

::::::::::::::
underestimation

::
as

:::::::::
dependent

::
on

:::::
zero.

::
In

:::
Fig.

::
1
:::
(c),

:::
the

::::
risk

:::::
factor

:::
of

:::
step

::
V
::::

was
:::::::::::
implemented

:::::::
without

::::
steps

::
II
::
-
:::
IV,

:::
i.e.

::::
only

:::
for

:::
the

:::::::
standard

::::::::::::
absolute-error

::::
loss

:::::::
function.

::
It

:::
can

:::
be

::::
seen

:::
that

:::::::::
risk-averse

::::
and

::::::::::
risk-friendly

:::::::
decision

::::::
makers

:::
are

::::::::::
represented

:::
by

::::::::::
respectively

:::::::
different

::::::::::
realizations25

::
of

:::::::
expected

::::::
losses

:::::
based

::
on

::::
one

:::
and

:::
the

:::::
same

::::::
normal

:::::::::::
distribution:

:::
The

:::::::
narrow

:::::
shape

::
of

:::
the

:::::::::::
risk-friendly

:::::::
function

:::::::::
represents

::::::::
improved

:::::::::
confidence

::
in

:::
the

::::::::
decision,

:::::
while

::
the

:::::::::
increased

:::::::
expected

::::
loss

::::::
(Bayes

::::
risk)

::
of

:::
the

:::::::::
minimum

:::::::
indicates

::::
that

:::
this

::::::
comes

::::
along

::::
with

:::
the

:::::::::
acceptance

:::
of

:
a
:::::
higher

::::
risk.

::::::::
Inversely,

:::
the

:::
flat

:::::
shape

::
of

:::
the

:::::::::
risk-averse

:::::::
function

::::
can

::
be

::::
seen

::
as

:::::::
reduced

:::::::::
confidence

::
in

:::
the

:::::::
decision.

::::::
There

::
is

:::
less

::
of

::
a
:::::::::
difference

::
in

:::::
taking

::
a
:::::::
different

::::::::
decision,

::::
than

:::
for

:::
the

:::::::::::
risk-friendly

:::::
actor.

::
At

:::
the

:::::
same

:::::
time,

:::::::
expected

::::
loss

::
of

:::
the

:::::::::
minimum,

::::
and

::::
thus

:::
the

::::::::
accepted

::::
risk,

::
is

:::::
lower.

:::::::::
However,

:::::::
although

::::
they

::::::
differ

::
in

::::::::
expected

:::::
losses,

:::::
both30

:::::::
decision

::::::
makers

:::::
share

:::
the

::::
same

:::::::::
individual

:::
best

::::::::
estimate,

:::::
since

::
the

::::
loss

:::::::
function

::
in

:::::
itself

::
is

:::
still

:::::::::
symmetric.

::::
This

:::::::
changes

::
in
::::
(d),

11



(a) (b)

(c) (d)

(e) (f )

Figure 1.
::::::::
Illustration

::
of

:::::::
different

::::
steps

:::
and

::::::
aspects

::
of

:::
our

:::
loss

:::::::
function

:::::::::::
customization.

::::::::
Functions

:::
are

::::::
applied

::
to

::
an

::::::
abstract

:::::
score

::
as

:::
the

:::::::
parameter

::
of

::::::
interest.

12



::
in

:::::
which

::
all

::::::::::::
customization

:::::
steps

::::
were

:::::::
applied.

:::::
Here,

:::
the

:::
risk

:::::
factor

:::::::::
re-weights

:::
the

::::::::
influence

::
of

:::
the

::::::::::::
sub-functions

:::::
shown

::
in
::::
(b).

::::::
Under-

:::
and

:::::::::::::
overestimation

::::
cases

:::
are

::::::::::
accordingly

:::::::::
enhanced

::
or

:::::::
reduced

::
in

:::::::
impact,

::
so

:::
that

::::
the

:::::::
resulting

::::
loss

:::::::
function

::::::::
becomes

:::::::::
asymmetric

::::
and

::::::
minima

:::
are

:::::
found

::
at
::::::::
different

::::
score

:::::::::
estimates,

:::::
given

:::
the

::::
same

:::::::::
underlying

:::::::::::
information.

::
In

:::
Fig.

::
1
:::
(e)

::::
and

:::
(f),

:::
the

::::::::
functions

::::
from

:::
(c)

::::
and

:::
(d)

:::
are

:::::::
applied

::
on

::
a
:::::
score

:::::::::
distribution

::::::::
resulting

:::::
from

:::
the

::::::::::
combination

:::
of

:::
two

:::::
other

::::::::
uncertain

::::::::::
parameters:

::::::::
Reservoir

::::::::
thickness

::::
and

:::::
depth.

::::
This

::::
can

::
be

::::
seen

:::
as

::
an

:::::::::
extremely

::::::::
simplified

::::
1-D

::::::
model

::::
with5

::::
only

:::
two

:::::
inputs

::::
that

:::::
define

::::
one

:::::
output

:::
as

:
a
:::::::::
parameter

::
of

:::::::
interest,

:::
the

::::
final

:::::
score.

::
In

::::
this

::::
case,

::::::::
thickness

::
is

::::
seen

::
as

:::
the

::::::::
potential

::::::
positive

:::::
value

::
in

:::
our

::::::::
reservoir,

::
as

::
it
:::::::
provides

:::::
space

:::
for

:::::::::::
hydrocarbons

::
to
::::::::::
accumulate.

::::::
Depth

::
is

::::::::
subtracted

:::::
from

::::
this,

::
as

:
it
:::::::
implies

:
a
::::
cost

::
of

:::::::
drilling.

:::::
Thus,

:::
the

::::
final

::::
score

::
is
::
a

::::
very

:::::::
essential

::::::::::::
representation

::
of

:::
the

::::::::
economic

:::::
value

:::::
given

:::
the

::::::::::
information

::::::::
available.

:::
The

:::::::::
respective

::::
final

::::::::::
distribution

:
is
:::::::

slightly
:::::::
skewed.

::::
Fig.

:
1
:::
(e)

::::::
depicts

:::
the

:::::::::
respective

:::::::::
application

:::
of

:::
the

::::
same

::::::::
functions

:::::
used

::
in

:::
(c).

::::::::::
Symmetric,

:::
but

::::::::
including

::::::::::
risk-affinity.

::::::
Overall

::::::
effects

:::
are

:::
the

:::::
same

::
as

::
in

:::
(c).

::
It
:::
can

:::
be

::::::::::
additionally

::::::::
observed

:::
that

:::::
since

:::
the10

:::::::::
underlying

:::::::::
distribution

::
is
::::
now

:::::::::::
asymmetric,

::
all

::::::::
expected

::::
loss

::::::
minima

:::
are

:::::
found

:::
on

:::
the

:::::::
median

:::::::
estimate,

:::::
lower

::::
than

:::
the

::::::
mean.

::
In

:::
(f),

:::
the

::::::::
complete

::::::
custom

::::
loss

:::::::
function

::::
was

::::::
applied

::
as

:::
in

:::
(d).

:::::
Based

:::
on

:::
the

::::::::
uncertain

::::::::::
information

:::::
about

:::
the

::::
final

::::::
score,

:::
the

::::
three

:::::::::
differently

:::::::::
risk-affine

:::
loss

::::::::
functions

::::
plot

:::::::::
differently,

::::
with

:::::::
minima

::
in

:::
the

:::::::
negative

:::::
space,

::
at

::::
zero

::::
and

::
in

:::
the

::::::
positive

::::::
space.

::::
This

::::::::
illustrates

::::
how

:::
the

:::::::::
risk-averse

:::::::
decision

::::::
maker

:::::
tends

::
to

::::::
expect

:
a
:::::::
possible

::::::::
negative

::::::::
outcome,

:::::
while

:::
the

::::::::::
risk-friendly

:::::
actor

:::
bids

:::
on

:
a
:::::::
positive

:::::
value.

::::
This

:::::
could

:::
be

::::
seen

::::::::::
respectively

::
as

:::
the

:::::::
decision

::
to

:::::::
abandon

::::::
versus

:::
the

:::::::
decision

::
to

:::::
invest

::
in
::
a
::::::::
prospect.15

:::
For

:::::
better

::::::::::::
understanding

::
of

::::
how

:::
our

:::::::
finalized

:::::::
custom

:::
loss

:::::::
function

::::::::::
determines

:::
the

:::::::::
incurrence

::
of

::::
loss,

:::::
actual

:::::
losses

:::
for

:::::
three

::::
fixed

::::
true

:::::
values

::::
and

:::::::::::
risk-neutrality

::
(r
::
=
::
1)

:::
are

:
plotted in Fig. ??.

::
2.

1000 750 500 250 0 250 500 750 1000
Score estimate

0

250

500

750

1000

1250

1500

1750

2000

Lo
ss

True score = -250
True score = 0
True score = 250

Figure 2.
:::

Loss
:::::
based

::
on

:::
the

::::::::
risk-neutral

::::::
custom

::::
loss

::::::
function

::::
(Eq.

::
8)

::
for

:::::::::
determined

:::
true

:::::
scores

::
of
:::::

-250,
:
0
:::
and

::::
250.

::::
This

:::
plot

::
is

:::::
meant

::
to

:::::
clarify

::
the

::::
way

:::
real

:::::
losses

:::
are

::::::
incurred

:::
for

::::
each

:::::::
estimate,

::::::
relative

:
to
::

a
::::
given

::::
true

::::
value.

::::
The

:::::::
expected

:::
loss,

::
as
::::

seen
::
in

::::
Fig.

:
1
::
is

::::::
acquired

:::
by

::::::::::
arithmetically

:::::::
averaging

::::
over

::
all

::::::::::
deterministic

:::
loss

:::::::::
realizations

:::::
based

::
on

:::
the

::::
score

::::::::
probability

:::::::::
distribution

::
by

:::::
using

::
Eq.

::
3.
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It has to be emphasized that this is just one possible proposal for loss function customization. There exists not one perfect

design for such a case (Hennig and Kutlukaya, 2007). Slight to strong changes can already be implemented by simply varying

the values of the weighting factors a, b and c. Fundamentally different loss functions can also be based on a significantly

different mathematical structure. Loss
::
As

::::
loss

:
functions are customized regarding the problem environment and according to

the subjective needs and objectives of the decision maker(Davidson-Pilon, 2015; Hennig and Kutlukaya, 2007). Thus, they are5

mostly defined by the actor expressing his perspective
:::::::::::::::::::::::::::::::::::::::::::
(Davidson-Pilon, 2015; Hennig and Kutlukaya, 2007). Changes in the

individual’s perception and attitude might lead to further customization needs at a future point in time, as was reported by

Hennig and Kutlukaya (2007).

2.2
::::

Case
:::::
study:

:::::::::
Synthetic

::::
3-D

:::::::::
structural

:::::::::
geological

:::::
model

::::
Next

:::
we

:::::
want

::
to

:::::
show

::::
that

:::
this

::::
loss

:::::::
function

::::::::
approach

:::
is

:::
not

::::
only

:::::::::
applicable

::
to
:::::::

simple
:::::::::
probability

:::::::::::
distributions

:::
but

::
is

:::
an10

::::::
equally

:::::
useful

::::
tool

::
to

:::::::
estimate

:::
the

::::
true

:::::
value

::
of

:
a
:::::::::
parameter

::
of

::::::
interest

::::::::
resulting

::::
from

:::::
more

:::::::
complex

:::::::::
geological

::::::
models

::::::
which

:::::::::
encompass

::::::::
numerous

::::::::
uncertain

:::::
input

:::::::::
parameters.

:::
As

:
a
::::
case

:::::
study,

:::
we

:::::::
consider

::::
now

:
a
::::::::
synthetic

::::
3-D

::::::::
structural

::::::::
geological

::::::
model

:::::
which

::
is

:::::
placed

::
in
::
a
::::::::::
probabilistic

::::::::::
framework.

:

2.2.1
:::::::::::::
Computational

::::::::::::::
implementation

::::::::::::::
Computationally,

:::
we

:::::::::
implement

:::
all

:::
of

:::
our

::::::::
methods

:::
in

:
a
:::::::

Python
::::::::::::
programming

:::::::::::
environment,

:::::::
relying

::
in

:::::::::
particular

::
on

::::
the15

::::::::::
combination

::
of

::::
two

::::::::::
open-source

::::::::
libraries:

:::
(1)

:::::::
GemPy

:::::::
(version

:::
1.0)

:::
for

:::::::
implicit

:::::::::
geological

::::::::
modeling

::::
and

:::
(2)

::::::
PyMC

:::::::
(version

:::::
2.3.6)

::
for

::::::::::
conducting

::::::::::
probabilistic

:::::::::::
simulations.

::::::
Gempy

::
is

::::
able

::
to

:::::::
generate

::::
and

:::::::
visualize

::::::::
complex

::::
3-D

::::::::
structural

:::::::::
geological

::::::
models

:::::
based

:::
on

:
a
::::::::::::
potential-field

:::::::::::
interpolation

::::::
method

::::::::
originally

:::::::::
introduced

::
by

:::::::::::::::::::
Lajaunie et al. (1997)

::
and

::::::
further

:::::::::
elaborated

::
by

:::::::::::::::::::
Calcagno et al. (2008).

::::::
GemPy

::::
was

:::::::::
specifically

::::::::
developed

::
to
::::::

enable
::::

the
:::::::::
embedding

:::
of

:::::::::
geological

::::::::
modeling

::
in

:::::::::::
probabilistic

:::::::::::::::
machine-learning

::::::::::
frameworks,

:::
in

::::::::
particular

:::
by20

:::::::
coupling

:::
it

::::
with

:::::
PyMC

:::::::::::::::::::::
(de la Varga et al., 2019).

:::::
PyMC

::::
was

::::::
devised

:::
for

:::::::::
conducting

::::::::
Bayesian

::::::::
inference

:::
and

:::::::::
prediction

::::::::
problems

::
in

::
an

::::::::::
open-source

::::::::::
probabilistic

::::::::::::
programming

::::::::::
environment

:::::::::::::::::::::::::::::::::::::
(Davidson-Pilon, 2015; Salvatier et al., 2016).

::::::::
Different

:::::::::::
model-fitting

:::::::::
techniques

:::
are

:::::::
provided

::
in

::::
this

::::::
library,

::::
such

::
as

::::::
various

:::::::
Markov

:::::
chain

::::::
Monte

:::::
Carlo

:::::::::
(MCMC)

::::::::
sampling

::::::::
methods.

:::
For

:::
our

:::::::
purpose

::::
we

:::::
make

:::
use

::
of

::::::::
Adaptive

::::::::::
Metropolis

:::::::
sampling

:::
by

:::::::::::::::::
Haario et al. (2001)

:::
and

:::::
check

:::::::
MCMC

::::::::::
convergence

:::
via

::
a

:::::::::
time-series

::::::
method

::::::::
approach

:::
by

:::::::::::::::::
Geweke et al. (1991)

:
.25

::::::::::
Components

::
of

:
a
::::::::
statistical

::::::
model

:::
are

:::::::::
represented

:::
by

::::::::::
deterministic

::::::::
functions

:::
and

:::::::::
stochastic

:::::::
variables

::
in

::::::
PyMC

::::::::::::::::::
(Salvatier et al., 2016)

:
.
:::
We

:::
can

::::
thus

::::
use

:::
the

:::::
latter

::
to

::::::::
represent

::::::::
uncertain

::::::
model

:::::
input

:::::::::
parameters

::::
and

::::
link

:::::
them

::
to

:::::::::
additional

::::
data

:::
via

:::::::::
likelihood

::::::::
functions.

:::::
Other

::::::::::
parameters,

::::
such

::
as

:::
the

:::::
value

::
of

::::::
interest

:::
for

:::::::
decision

:::::::
making,

::::
can

::
be

:::::::::
determined

::::
over

:::::::::::
deterministic

:::::::::
functions,

::
as

:::::::
children

::
of

:::::
parent

:::::
input

::::::::::
parameters.

::
To

:::::::
visually

::::::::
compare

:::
the

:::::
states

:::
of

:::::::::
geological

::::
unit

:::::::::::
probabilities

::::
after

::::::::::
conducting

::::::::
stochastic

:::::::::::
simulations,

:::
we

:::::::
consider

::::
the30

:::::::::
normalized

::::::::
frequency

::
of

:::::::::
lithologies

::
in

:::::
every

:::::
single

:::::
voxel

:::
and

::::::::
visualize

::
the

::::::
results

::
in

:::::::::
probability

:::::
fields

:::
(see

:::::::::::::::::::::::::::::::
Wellmann and Regenauer-Lieb (2012)

:
).
:
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Table 1.
::::
Input

::::::::
parameter

::::::::::
uncertainties

:::::
defined

:::
by

:::::::::
distributions

::::
with

:::::::
respective

:::::
means

::
µ,
:::::::
standard

::::::::
deviations

:
σ
:::
and

:::::
shape

:::::
factor

::
α.

:::
mu

:::::
sigma

:::::
alpha

Overlying
:
0
: ::

40
:
0
:

Sandstone 2
:
0
: ::

60
:
0
:

Seal
:
0
: ::

80
:
0
:

Reservoir
:
0
: :::

100
:
0
:

Fault offset
:
0
: :::

-150
: ::

-2

2.2.2
::::::
Design

::
of

:::
the

::::
3-D

:::::::::
structural

:::::::::
geological

:::::
model

:::
Our

:::::::::
geological

:::::::
example

::::::
model

::
is

:::::::
designed

::
to
::::::::
represent

::
a
:::::::
potential

:::::::::::
hydrocarbon

::::
trap

::::::
system.

::::::::::::::
Stratigraphically,

::
it
:::::::
includes

::::
one

::::
main

::::::::
reservoir

::::
unit

::::::::::
(sandstone),

::::
one

::::
main

::::
seal

::::
unit

:::::::
(shale),

::
an

::::::::::
underlying

::::::::
basement

:::
and

::::
two

::::::::
overlying

::::::::::
formations

::::
that

:::
are

:::::::
assumed

::
to

:::
be

:::::::::
permeable,

:::
so

::::
that

:::::::::::
hydrocarbons

::::::
could

::::
have

::::::::
migrated

::::::::
upwards.

:::::::::::
Structurally,

:
it
::

is
::::::::::

constructed
:::

to
::::::
feature

:::
an

:::::::
anticlinal

::::
fold

::::
that

:
is
::::::::
displaced

:::
by

:
a
:::::::
normal

::::
fault.

:::
All

:::::
layers

:::
are

:::::
tilted

:::
and

:::
dip

::
in
:::
the

::::::::
opposite

:::::::
direction

::
of

:::
the

::::
fault

:::::
plane

::::
dip.

::
A5

:::::::
potential

:::::::::::
hydrocarbon

:::
trap

::
is

::::
thus

:::::
found

::
in

:::
the

::::::::
reservoir

::::
rock

:::::::
enclosed

:::
by

:::
the

::::::::
deformed

:::
seal

::::
and

:::
the

::::::
normal

:::::
fault.

:::::
Using

:::::::
GemPy,

:::
we

::::::::
construct

:::
the

:::::::::
geological

:::::
model

:::
as

:::::::
follows:

::
In

::::::::
principle,

::
it
::
is

::::::
defined

:::
as

:
a
:::::
cubic

:::::
block

::::
with

:::
an

:::::
extent

:::
of

::::
2000

::
m

::
in

:::
x-,

::
y-

:::
and

:::::::::::
z-directions.

:::
The

:::::
basic

::::
input

::::
data

:::
for

:::
the

:::::::::::
interpolation

::
of

:::
the

::::::::
geological

:::::::
features

::
is

::::::::
composed

:::
of

:::
3-D

:::::
point

:::::::::
coordinates

:::
for

:::::
layer

::::::::
interfaces

:::
and

:::::
fault

:::::::
surfaces,

:::
as

::::
well

::
as

:::::::::
orientation

::::::::::::
measurements

::::
that

:::::::
indicate

::::::::
respective

:::
dip

:::::::::
directions

:::
and

::::::
angles.

:::::
From

:::
this

:::::
data,

::::::
GemPy

::
is

::::
able

::
to

:::::::::
interpolate

:::::::
surfaces

:::
and

::::::::
compute

:
a
::::::::::
voxel-based

::::
3-D

:::::
model

::::
(see

::::
Fig.

::
3).10

:::
We

::::::
include

:::::::::::
uncertainties

::
by

:::::::::
assigning

::::
them

::
to

:::
the

::::::::::
z-positions

::
of

:::::
points

::::::
which

::::
mark

:::::
layer

::::::::
interfaces

::
in
:::
the

::::
3-D

::::::
space.

::::
This

:
is
::::::::
achieved

:::
via

:::::::::
probability

:::::::::::
distributions

::::::
(PyMC

::::::::
stochastic

:::::::::
variables)

::::
from

:::::
which

:::::
error

:::::
values

:::
are

::::::
drawn.

::::::
These

:::
are

:::
then

::::::
added

::
to

:::
the

:::::::
original

::::
input

::::
data

:::::::
z-value.

:::
As

:::
the

:::::::::
z-position

::
is
:::
the

:::::
most

:::::::
sensible

:::::::::
parameter

:::
for

::::::::::::
predominantly

:::::::::
horizontal

::::::
layers,

:::
we

:::
can

::::::
hereby

:::
not

::::
only

:::::::::
implement

:::::::::::
uncertainties

::::::::
regarding

::::
layer

::::::
surface

::::::::
positions

::
in

::::::
depth,

:::
but

:::
also

:::::
layer

::::::::::
thicknesses,

::::::::::
geometrical

:::::
shapes

::::
and

::::::
degree

::
of

::::
fault

:::::
offset.15

::::
Such

:::::::::
probability

:::::::::::
distributions

::::
can

::::
also

::
be

::::::::
allocated

::
as

::::::::::::
homogeneous

::::
sets

::
to

:::::
point

:::
and

:::::::
feature

::::::
groups

:::::
which

::::
are

::
to

:::::
share

:
a
::::::::
common

::::::
degree

::
of

::::::::::
uncertainty

::::
(see

:::::
Table

:::
1).

:::
We

::::::
assign

:::
the

:::::
same

::::
base

::::::::::
uncertainty

::
to

::::::
groups

:::
of

::::::
points

::::::::
belonging

:::
to

:::
the

::::
same

:::::
layer

::::::
bottom

::::::
surface

:::
by

:::::::
referring

:::::
them

::
to

:::
one

::::::
shared

::::::::::
distribution

::::
each.

:::::::::
Assuming

::
an

:::::::
increase

:::
of

:::::::::
uncertainty

::::
with

::::::
depth,

:::::::
standard

:::::::::
deviations

:::
for

:::
the

::::::
shared

::::::::::
distributions

:::
are

:::::::::
increased

:::
for

::::::
deeper

:::::::::
formations.

::::::::::::
Furthermore,

:::::::::
uncertainty

:::::::::
regarding

:::
the

::::::::
magnitude

:::
of

::::
fault

:::::
offset

:
is
:::::::::::
incorporated

::
by

::::::
adding

::
a

::::::
skewed

::::::
normal

:::::::::
probability

::::::::::
distribution

:::
that

::
is
::::::
shared

::
by

:::
all

::::
layer

::::::::
interface20

:::::
points

::
in

:::
the

:::::::
hanging

:::::
wall.

::
A

::::
left

::::::
skewed

::::::
normal

::::::::::
distribution

::
is
:::::::

chosen
::
to

::::::
reflect

:::
the

:::::
nature

:::
of

:::::
throw

:::
on

:
a
:::::::
normal

::::
fault,

:::
in

::::::::
particular

:::
the

:::
slip

::::::
motion

::
of

:::
the

:::::::
hanging

::::
wall

:::::
block.

:::::
Skew

::
to

:::
the

:::::::
negative

::::
side

:::::::
ensures

:::
that

:::
the

:::::
offset

:::::
nature

:::
of

::
the

:::::::
normal

::::
fault

:
is
::::::::::
maintained

:::
and

::::::::
inversion

::
to

:
a
:::::::
reverse

::::
fault

::
is

:::::::
avoided.

::::
This

:::::
model

::::
was

::::::::
designed

:::
for

::::
the

:::::::
primary

:::::::
purpose

::
of
:::::::

testing
:::
our

::::
loss

::::::::
function

:::::::
method.

:::
All

::::::::
features,

:::::::::::
uncertainties

::::
and

::::::::
parameter

::::::::
relations

::::
were

::::::::::::
implemented

::
in

::
a

::::
way

:::
that

:::::
they

:::::
result

::
in

::::::
model

:::::::::
variability

::::
and

:::::::::
complexity

::::
that

::
is
::::::::
adequate

::::
and25
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Figure 3.
::::::
Design

::
of

::
the

::::
3-D

:::::::
structural

::::::::
geological

:::::
model.

::
A
::::
2-D

::::
cross

:::::
section

:::::::
through

::
the

::::::
middle

::
of

::
the

:::::
model

:::
(y

:
=
:::
500

:::
m),

:::::::::::
perpendicular

:
to
:::
the

::::::
normal

:::
fault

:::::::
(parallel

::
to

::
the

:::::
x− z

:::::
plane),

::
is

:::::
shown

::
in

:::
(a).

:
A
::::
3-D

::::
voxel

:::::::::::
representation

::
of

::
the

::::::
model,

:::::::::
highlighting

:::
the

::::::
reservoir

:::
and

::::
seal

::::::::
formations,

::
is

::::::::
visualized

:
in
:::
(b).

::
In

:::
(d)

:::
and

:::
(d),

::
the

:::::::
inclusion

::
of

::::::::
parameter

:::::::::
uncertainties

::
is

::::::::
presented.

:::::
Colors

::::::
indicate

:::::
certain

::::
layer

:::::::
bottoms

:::
(i.e.

::::::::
boundaries)

:::::
which

:::
are

:::::::
assigned

:::::
shared

:::::::::
z-positional

::::::::::
uncertainties

:::
(c).

:::
All

:::::
points

::
in

::
the

:::::::
hanging

:::
wall

:::
are

:::::::::
additionally

:::::::
assigned

:
a
::::
fault

:::::
offset

::::::::
uncertainty

:::
(d).

:::::::::
Thicknesses

::
of

:::
the

::::
three

:::::
middle

:::::
layers

:::
are

:::::
defined

:::
by

::
the

:::::::
distances

::
of

:::::::
boundary

:::::
points

:::
(e)

:::
and

::
are

::::
thus

::::::
directly

:::::::
dependent

:::
on

::
(c).

::::::::
significant

:::
to

:::
the

:::::::
decision

:::::::
problem

:::
in

:::
this

:::::
work.

::::
The

::::::
model

::
is

:::
not

::::::
aimed

::
at

::::::::::
representing

::
a
:::::::::
completely

::::::::
plausible

:::
or

:::::::
realistic

::::::::
geological

:::::::
setting.

2.2.3
::
Vt::

as
::::
the

:::::::::
parameter

::
of

:::::::
interest

:::::
Given

:::
full

::::
3-D

::::::::::::
representation

::
of

:::::::::
geological

:::::::::
structures,

:::
we

:::
can

::::
now

::::::
define

:::
the

::::
trap

::::::
volume

:::
Vt::

as
:::
the

:::::::::
parameter

::
of

:::::::
interest,

::
a

::::::
feature

:::
that

::::::::
indicates

:::
the

::::::::
economic

:::::
value

::
of

:::
the

::::::::
reservoir

::
in

:::
this

::::
case.

::::
For

:::::::::
conducting

:::::::::::::
straightforward

:::::::::
volumetric

:::::::::::
calculations,5
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::
we

:::::::
assume

:::
that

::::::
closed

::::
traps

:::
are

:::::::
always

::::
filled

::
to
:::::
spill,

:::
i.e.

:::
we

::::
only

:::::::
consider

::::::::
structural

:::::::
features

::
as
::::::::::

controlling
::::::::::
mechanisms

::::
and

:::::::
disregard

:::::
other

:::::::::
parameters

::
in

:::
the

:::::
OOIP

::::::::
equation

::::::
(Eq.9).

:::
We

::::
argue

::::
that

::
Vt:::

can
::
be

:::::::
inserted

:::
for

:::
the

:::::::::::::::
hydrocarbon-filled

::::
rock

::::::
volume

:::::
A ∗h

::
in

:::
the

:::::
OOIP

:::::::
equation

:::::::::::::::::::::::::::::::::::::
(Dean, 2007; Morton-Thompson et al., 1993)

:
:

OOIP =A ∗h ∗φ ∗ (1−SW ) ∗ 1/FvF,
:::::::::::::::::::::::::::::::

(9)5

:::::
Where

::::::
OOIP

::
is

:::::::
returned

::
in

:::
m3,

:::
A

:
is
::::

the
:::::::
drainage

::::
area,

::
h
:::
the

:::
net

::::
pay

::::::::
thickness,

::
φ
:::
the

::::::::
porosity,

:::
SW:::

the
:::::
water

:::::::::
saturation,

::::
and

::::
FvF

:::
the

:::::::::
formation

::::::
volume

:::::
factor

:::::
which

::::::::::
determines

:::
the

::::::::
shrinkage

::
of

:::
the

:::
oil

::::::
volume

:::::::
brought

::
to

:::
the

:::::::
surface.

::
By

::::::::
declaring

:::::
these

:::::::::::
connections,

:::
we

::::
have

:::::
given

:::
our

::::::
model

::
an

:::::::::
economic

::::::::::
significance.

::::
We

:::
can

::::::
assume

::::
that

:::
the

:::::::::::
hydrocarbon

:::
trap

:::::::
volume

::
is

::::::
directly

::::::
linked

::
to

::::::
project

:::::::::::
development

:::::::::
decisions,

:::
i.e.

:::::::::
investment

:::
and

:::::::::
allocation

::
of

::::::::
resources

::
is
::::::::::
represented

:::
by

::::::
bidding

:::
on

:
a
::::::
volume

::::::::
estimate.10

::
In

:::
the

::::::
course

::
of

::::
this

:::::
work,

:::
we

:::::::::
developed

:
a
:::

set
:::
of

:::::::::
algorithms

::
to

::::::
enable

:::
the

:::::::::
automatic

::::::::::
recognition

:::
and

::::::::::
calculation

::
of

::::
trap

:::::::
volumes

::
in

:::::::::
geological

::::::
models

:::::::::
computed

::
by

:::::::
GemPy.

::::
The

:::::::
volume

::
is

:::::::::
determined

:::
on

:
a
::::::::::::
voxel-counted

:::::
basis

:::
via

::::
four

:::::::::
conditions

::::::::
illustrated

::
in

::::
Fig.

:
4
::::
and

::::::
further

::::::::
explained

::
in

::::::::
Appendix

:::
A.

::::::::
Following

:::::
these

:::::::::
conditions,

:::
we

:::
can

:::::
define

::::
four

:::::
major

::::::::::
mechanisms

:::::
which

:::::::
control

::
the

:::::::::
maximum

:::
trap

:::::::
volume:

:::
(1)

:::
the

::::::::
anticlinal

:::
spill

:::::
point

::
of

:::
the

::::
seal

::::
cap,

::
(2)

:::
the

:::::::::
cross-fault

::::
leak

:::::
point

::
at

:
a
:::::::::::
juxtaposition

::
of

:::
the

::::::::
reservoir

::::::::
formation

::::
with

:::::
itself,

:::
(3)

::::::
leakage

::::
due15

::
to

:::::::::::
juxtaposition

::::
with

::::::::
overlying

::::::
layers

:::
and

:::::::::
cross-fault

::::
seal

::::::
breach

:::::::
(failure

::::::
related

::
to

:::
the

:::::
Shale

::::::
Smear

::::::
Factor

::::::
(SSF)),

::::
and

:::
(4)

:::::::::::
stratigraphical

::::::
breach

:::
of

:::
the

::::
seal,

:::::
when

:::
its

::::::
voxels

:::
are

:::
not

:::::::::::
continuously

:::::::::
connected

:::::
above

::::
the

::::
trap.

::::
Due

::
to

:::
the

::::::
nature

::
of

::::
our

::::::
model,

:::
(3)

::::
and

:::
(4)

:::
will

::::::
always

:::::
result

::
in

::::::::
complete

::::
trap

::::::
failure.

:::
The

::::::::::
occurrence

::
of

:::::
these

:::
trap

::::::
control

:::::::::::
mechanisms

:::
can

::
be

:::::::
tracked

:::::::::
throughout

::::::::
stochastic

::::::::::
simulations

::
of

:::
the

::::::
model.

2.2.4
::::::::::
Generating

::::::::
different

::::::::::
probability

:::::::::::
distributions

:::
for

:::
Vt20

:::
The

::::
trap

:::::::
volume

::
Vt::

is
::
a
:::::
result

:::::
from

::::::::
GemPy’s

:::::::
implicit

:::::::::
geological

:::::
model

::::::::::::
computation.

::
It

::
is

::
an

::::::
output

:::::::::
parameter

:::::::::
dependent

::
on

:::::::::::
deterministic

::::
and

:::::::::
stochastic

:::::
input

::::::::::
parameters.

::::::::::
Conducting

:::::::::
stochastic

::::::::::
simulations,

:::::
input

:::::::::::
uncertainties

::::
will

:::::::::::
respectively

::::::::
propagate

::
to

:::
Vt,::::::

which
::
is

:::::::
thereby

:::::::::
represented

:::
by

::
a
:::::::::
respective

:::::::::
probability

::::::::::
distribution

::::
that

:::
our

::::::
custom

::::
loss

::::::::
function

:::
can

:::
be

::::::
applied

::
to.

::::::
Using

:::::
simple

::::::
Monte

:::::
Carlo

::::
error

:::::::::::
propagation,

::::
with

:::::
every

:::::::
iteration,

:::
we

::::
draw

:::::::
sample

:::::
values

:::
for

:::
our

::::::::
uncertain

:::::::
primary

:::::
model

:::::
input

:::::::::
parameters

:::::::
defined

::
in

:::::
2.2.2

:::
and

:::::
thus,

::::
with

:::::
every

::::::::
iteration,

:::
we

:::::
create

::::
one

:::::::
possible

:::::::::
realization

::
of

::::
our

:::::::::
geological25

::::::
model,

::::::
which

::
in

::::
turn

:::::
comes

::::
with

::::
one

:::::::
possible

:::::::
outcome

:::
for

:::
Vt.::::::

Results
:::::
from

::
all

::::::::
iterations

:::::::
together

:::::::::::
approximate

::
the

::::::::::
probability

:::::::::
distribution

:::
for

::
Vt:::::::::

according
::
to

:::
the

::::
input

::::::::::
parameters.

::::::::::
Furthermore,

::::
we

:::::::
consider

:::
the

:::::::::
possibility

:::
to

::::::
update

:::
our

::::::
model

:::
by

::::::
adding

::::::::
additional

:::::::::
secondary

::::::::::
information

::::
via

::::::::
Bayesian

::::::::
inference.

:::
We

:::
do

:::
this

:::
by

:::::::::
introducing

:::::::::
likelihood

::::::::
functions

:::::
which

::::::::
constrain

:::
our

:::::::
primary

::::::::::
parameters.

:::
We

::::
have

:::
to

::::
note

:::
that

:::::
these

:::::
inputs

::::::
remain

:::::::::
unchanged,

::::::::
however,

::::
their

:::::
prior

:::::::::
probability

::::::::::
distributions

:::
are

:::::::
revalued

:::::
given

:::
the

::::::::
additional

::::::::
statistical

:::::::::::
information.30

:::
We

::::::
achieve

:::
this

:::
by

:::::::::
conducting

:::::::
Markov

::::
chain

::::::
Monte

:::::
Carlo

::::::::
(MCMC)

::::::::::
simulations.

:::::::
Decision

:::::::
making

:
is
::::
then

:::::
based

:::
on

::
the

::::::::
resulting

:::::::
posterior

::::::::::
probability.

:::::
Using

::::::::
different

::::::::
likelihood

:::::::::
functions,

:::
we

:::
can

:::::
create

::::::::
generate

:::::::
different

::::::::
posterior

:::::::::
probability

:::::::::::
distributions
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Figure 4.
::::::::
Illustration

::
of
:::

the
::::::
process

::
of

:::
trap

:::::::::
recognition

::
in

::::
2-D,

:::
i.e.

::
the

::::::::
conditions

::::
that

::::
have

::
to

::
be

:::
met

::
by

::
a
:::::
model

:::::
voxel,

::
to

::
be

:::::::
accepted

::
as

:::::::
belonging

::
to

:
a
::::
valid

::::
trap.

:
A
:::::
voxel

:::
has

:
to
:::
be

:::::
labeled

::
as

:::
part

::
of

:::
the

::::
target

:::::::
reservoir

:::::::
formation

:::
(a)

:::
and

::::::::
positioned

:
in
:::
the

::::::
footwall

:::
(b).

::::
Trap

::::::
closure

:
is
::::::
defined

::
by

:::
the

:::
seal

:::::
shape

:::
and

:::
the

::::::
normal

:::
fault

:::
(c).

:::::::::::
Consequently,

:::
the

::::::::
maximum

:::
trap

:::
fill

:
is
::::::
defined

:::
by

::::
either

:::
the

:::::::
anticlinal

::::
spill

::::
point

:::
(S)

:
or
::

a
::::
point

::
of

::::::
leakage

:::::
across

:::
the

::::
fault,

::::::::
depending

::
on

:::::::::::
juxtapositions

::::
with

::::
layers

:::::::::
underlying

:::
(L1)

::
or
::::::::
overlying

::
the

::::
seal

::::
(L2).

:::
The

::::
latter

::
is
::::
only

::::::
relevant

:
if
:::
the

:::::
critical

:::::
Shale

:::::
Smear

:::::
Factor

:
is
::::::::
exceeded,

::
as

::::::::
determined

::::
over

::
D

:::
and

::
T

::
in

:::
(d).

::
In

:::
this

:::::::
example,

:::::::
assuming

:::::
sealing

::
of
:::
the

::::
fault

:::
due

:
to
::::
clay

:::::::
smearing,

:::
the

::
fill

::::::
horizon

::
is
:::::::::
determined

::
by

:::
the

:::
spill

::::
point

::
in

:::
(d).

:::::::::::
Subsequently,

:::
only

::::
trap

:::::
section

::
1

:
is
::::::
isolated

::::
from

:::
the

:::::
model

::::::
borders

:
in
:::
(d)

:::
and

:::
can

:::
thus

:::
be

::::::::
considered

:
a
:::::
closed

::::
trap.

:::::
Voxels

:::::::
included

::
in

:::
this

:::::
section

:::
are

::::::
counted

::
to

:::::::
calculate

::
the

::::::::
maximum

:::
trap

:::::::
volume.
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::
for

:::
Vt,::::::

which
::::::::
represent

:::::::
different

::::::::::
information

:::::::::
scenarios.

:::::
Since

:::
we

:::
use

::::::::
Bayesian

::::::::
inference

::
to

::::::
revalue

:::
our

:::::::
original

:::::
prior

::::::
inputs,

::
we

::::
can

:::::::
compare

::
all

:::::::::
outcomes

:::
and

::::::::::
realizations

::
of

:::
our

::::::
custom

::::
loss

::::::::
function.

:::
For

:::
the

:::::::::
application

::
of

::::::::
Bayesian

:::::::::
inference,

::
we

:::::::::
implement

::::
two

:::::
types

::
of

::::::::::
likelihoods:

1.
:::::
Layer

:::::::::
thickness

::::::::::
likelihoods:

::::
With

:::::
every

::::::
model

:::::::::
realization,

:::
we

::::::
extract

::::
the

:::::::::
z-distance

:::::::
between

:::::
layer

::::::::
boundary

:::::
input

:::::
points

::
at

:
a
:::::::

central
:::::
x− y

:::::::
position

::
(x

::
=

::::
1100

:::
m,

::
y

:
=
:::::

1000
:::
m)

::
in

:::
our

:::::
input

:::::::::::
interpolation

::::
data.

:::::::::
Resulting

:::::::::
thicknesses

::::
can5

:::
then

:::
be

::::::
passed

::
on

::
to

:::::::::
stochastic

::::::::
functions

::
in

:::::
which

:::
we

:::::
define

::::::::
thickness

::::::::::
likelihoods

::
via

:::::::
normal

:::::::::::
distributions.

2.
:::::
Shale

::::::
Smear

::::::
Factor

:::::
(SSF)

:::::::::
likelihood

:
:
::::
SSF

::::::
values

:::
are

:::::::
realized

::::
over

::::
more

::::::::
complex

:::::::::
parameter

:::::::::::
compositions.

::::
We

::::
base

:::
this

::::::::
likelihood

:::
on

:
a
:::::::
normal

:::::::::
distribution

::::::
which

::
we

::::
link

::
to

:::
the

:::::::::
geological

:::::
model

::::::
output.

:

:::
The

::::::::
inclusion

::
of

:::::
these

:::::::::
likelihood

::
is

:::::
based

:::
on

:::::
purely

:::::::::::
hypothetical

:::::::::::
assumptions

:::
and

::
is

::::::::
intended

::
to

::::::
provide

::::
the

::::::::::
opportunity

::
to

::::::
explore

:::
the

::::::
effects

:::::::
different

:::::
types

:::
and

::::::::
scenarios

::
of

::::::::
additional

::::::::::
information

:::::
might

:::::
have.

:::::
While

:::
the

::::::::
thickness

:::::::::
likelihood

::::::::
functions10

::
are

:::::::::
dependent

:::
on

::::
input

::::::::::
parameters

:::::::
directly,

:::
the

:::::::::::::
implementation

::
of

:::
the

::::
SSF

:::::::::
likelihood

:::::::
function

:::::::
requires

::
a

:::
full

::::::::::
computation

:::
of

::
the

::::::
model

:::
and

::::::::
extended

:::::::::
algorithms

::
of

::::::::
structural

::::::::
analysis.

::::::::
Although

::::::::
Bayesian

::::::::
inference

::::
was

::::::
utilized

::
in
::::

this
::::
case

::::::
study,

:
it
::::::

served
::::::::

primarily
::::

for
:::
the

:::::::::
generation

::
of

:::::
these

::::::::
different

:::
but

:::::::::
comparable

:::::::::::
distributions

::
to
:::::

base
:::
our

::::::::
decision

:::::::
making,

:::
i.e.

:::
the

::::::::::
application

::
of

::::
our

::::::
custom

::::
loss

::::::::
function,

:::
on.

::::
For

:::::::::
additional

:::::::::
information

:::
on

::::
how

:::::::
implicit

:::::::::
geological

::::::::
modeling

::::
can

::
be

:::::::::
embedded

::
in
::

a
::::::::
Bayesian

::::::::::
framework,

:::
and

:::::
how

:::
this

::::
can

::
be

::::
used

:::
to15

:::::
reduce

::::::::::
uncertainty,

:::
we

::::
refer

::
to

:::
the

::::
work

:::
by

:::::::::::::::::::
Wellmann et al. (2010b)

:
,
:::::::::::::::::::::::::::
de la Varga and Wellmann (2016)

:
,
::::::::::::::::::::
de la Varga et al. (2019)

:::
and

:::::::::::::::::::
Wellmann et al. (2017).

:

3 Results

We applied our custom loss function to various different volume
::
Vt:probability distributions resulting from stochastic simula-

tions. First, reference results were created using only priors
::::::
primary

::::::
inputs

::::::
(priors)

:
and simple Monte Carlo error propagation20

(10,000 sampling iterations, Scenario 1). Then we devised several scenarios of additional information and included these via

likelihoods and Bayesian inference. For this, 10,000 MCMC sampling steps were conducted, with an additional burn-in phase

of 1000 iterations. The prior parameter uncertainties were chosen to be identical for all simulations (see Table 1). Results of

convergence diagnostics can be found in Appendix C.

We present the following information scenarios:25

1. Prior-only model

2. Introducing seal thickness likelihoods

(a) Likely thick seal

(b) Likely thin seal

3. Introducing reservoir thickness likelihoods30
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Table 2. Normal distribution mean (µ) and standard deviations (σ) for the likelihoods implemented in the different scenarios.

Seal thickness Reservoir thickness SSF

µ [m] σ [m] µ [m] σ [m] µ σ

Scenario 1 - - - - - -

Scenario 2a 300 30 - - - -

Scenario 2b 50 30 - - - -

Scenario 3a 350 30 - - - -

Scenario 3b 300 30 300 30 - -

Scenario 4a - - - - 5.1 0.3

Scenario 4b 300 30 - - 2 0.3

(a) Likely thick reservoir

(b) Likely thick reservoir and thick seal

4. Introducing SSF likelihoods

(a) SSF likely near its critical value

(b) Likely reliable SSF and thick seal5

The implemented likelihoods are listed in Table 2.

For the comparison of results, we consider in particular the following measures: (1) probability field visualization, (2)

occurrence of trap control mechanisms, (3) resulting trap volume distributions, and (4) consequent realization of expected

losses and related decisions.

3.1 Prior-only model (Scenario 1)10

Probability field visualization illustrates well how the prior uncertainty is based on normal distributions (see Fig. B2). Trap

control mechanisms are listed in Table B2. For this prior-only scenario, all four relevant mechanisms occurred
::::
occur. The

dominant factor is the anticlinal spill point with a 51.5 % rate of occurrence. It is followed by cross-fault leakage to the

reservoir (25 %) and other permeable formations (12 %). Stratigraphical breaches of the seal were registered to be decisive

in about 11 % of iterations. In only 0.5 % of iterations, the algorithm failed to recognize a mechanism, i.e. correct model15

realization failed.

Maximum trap volumes were calculated for each model iteration and plotted as a probability distribution in Fig. 5. In general,

a wide range of volumes is possible, from zero to more than 3 million m3. However, we can recognize a bimodal tendency:

Low but positive volumes are less probable than significantly high volumes or complete failure (Vt = 0).

Consequently, applying our custom loss function to this distribution resulted in widely separated minimizing estimators for20

the differently risk-affine actors (see Fig. 5). Only the risk-friendliest estimates are found within the described highly positive
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mode of the distribution. Risk-averse individuals bid on significantly lower estimates or even zero. The risk-neutral decision

is found between both modes and presents the highest expected loss. Expected losses decrease towards the extreme decisions

and closer to the modes.

bimodality
high probability

of complete failure large proportion of distribution
at a range of 12 - 30 million [m³]

wide decision
separation

diminished probability 
of failure positive mode

enhanced

Bayes actions:
convergence and shift

to higher estimates

Figure 5. Trap volume distribution and resulting loss function realizations for Scenario 1 (prior) and Scenario 2a, where we introduced the

likelihood of a thick seal. Comparing both, we can observe how the additional information reduced the bimodality in the posterior distribution

(2a), particularly by reducing the probability of complete failure and enhancing positive probabilities. Consequently, Bayes actions converged

and expected losses were reduced.

3.2 Introducing seal thickness likelihoods (Scenarios 2a and 2b)

We considered two scenarios of thickness likelihoods: The seal being (Scenario 2a) likely very thick, or (Scenario 2b) likely5

very thin (see Table 2).

In Scenario 2a, probability visualization illustrates that the presence of a thick seal is very probable (see Fig. B2). For

Scenario 2b, the presence of a reliable seal is questionable.

A high likelihood of a reliable seal cap (2a) significantly reduced the probability of trap failure, while enhancing the mode

of highly positive outcomes (see Fig. 5). This coincides with the predominance of the anticlinal spill point (63 %) and the leak10

point to the same reservoir (36%) as control mechanisms. The occurrence of other mechanisms was negligible (see Table B2).

Inversely, a likely thin seal (2b) virtually eliminated the positive mode and focused almost the whole distribution on complete

failure. Accordingly, seal-breach related control mechanisms gained importance (65.5 % occurrence rate for stratigraphical

seal breach).
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In both scenarios, Bayes actions shifted towards the respectively emphasized modes. This came with overall convergence

of decisions and reduction of expected losses. In Scenario 2a, all decision makers bid on a positive outcome. Risk-averse

individuals experienced the strongest shift, but also present the highest expected losses. In Scenario 2b, all individuals decide

to not allocate resources. Even the risk-friendliest actor moved to a zero estimate, where the most risk-averse bid had already

been placed in the prior Scenario 1. However, although all decision coincide, expected losses increase from risk-averse to5

risk-friendly (see Table B1).
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Figure 6. Probability field visualizations for seal and reservoir units in Scenarios 1 (prior), 4a and 4b. For Scenario 1, we used 3-D voxel

visualizations and set a threshold at a probability of 0.5 (only voxels with a probability higher than 0.5 are shown). It can be recognized, that

the seal is disrupted across the fault in more than 50 % of the prior model realizations. For the other scenarios, we show the full probability

field for both units on a section through the middle of the model (y = 500 m), parallel to the x− z plane.

3.3 Introducing reservoir thickness likelihoods (Scenarios 3a and 3b)

We also tested scenarios for a likelihoods of a thick reservoir formation alone (Scenario 3a) and in combination with the

likelihood of a thick seal (Scenario 3b; see Table 2. The overall effect of using these reservoir-based likelihoods turned out to

be minor compared to the seal-related scenarios.10
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In Scenario 3a, failure probabilities slightly increased, resulting in a decision shift towards lower values (see Fig. B1). Results

for Scenario 3b are very similar to those of 2b, as can also be seen in Table B1. There was no significant reduction of expected

losses or shift in decisions by adding the likelihood of a thick reservoir to the likelihood of a thick seal.

decision convergence
and decrease in
expected losses

very low
failure probability positive mode

enhanced

enhanced bimodality

no probability
of low to moderate

volumes

enhanced decision
divergence

Figure 7. Trap volume distribution and resulting loss function realizations for Scenario 4a and Scenario 4b. Adding a likelihood of the SSF

being around its critical value led to increased bimodality and an elimination of low to moderate volume probabilities. Bayes actions diverged

accordingly in Scenario 4a. Implementing a reliable SSF value likelihood (µ = 2, σ = 0.3) in combination with the thick seal likelihood from

Scenario 2a, resulted in a emphasis on highly positive volumes. This, in turn, led to a stark convergence of decisions and reduction of expected

losses.

3.4 Introducing SSF likelihoods

We considered two SSF-related likelihood scenarios. In Scenario 4a, we implemented solely a SSF likelihood that was based5

on a narrow normal distribution (µ = 5.1, σ = 0.3) with a mean near the critical value SSFc = 5. In Scenario 4b, we combined

the likelihood of a thick seal (2a) with a likely moderate but reliable SSF value (SSF normal distribution with mu = 2 and σ =

0.3). Figure 6 illustrates the posterior situations well.

Scenario 4a resulted in increased bimodality of the posterior distribution (see Fig. 7). Accordingly, the Bayes action diver-

gence and expected losses increased. Only two trap control mechanisms remained relevant for 4a (see Table B2): anticlinal10

spill (66 %) and cross-fault leakage to overlying formations (34 %).

The results for 4b were comparable to those of 2a, but more pronounced. Entropies, particularly related to the seal thick-

ness, were clearly reduced, also in the hanging wall. Probabilities of failure and low volumes were almost eliminated, further
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enhancing the highly positive mode. This consequently resulted in an even higher convergence of Bayes actions, as well as

reduction of expected losses compared to Scenario 2a. Anticlinal spill is the decisive control mechanism in 79.5 % of cases,

otherwise only cross-fault leakage to the reservoir occurred (20.5 %).

4 Discussion

In this work, we build upon the recent advances presented by de la Varga et al. (2019) which enable us to view geological5

modeling as a probabilistic statistical problem. We expand on this by proposing custom loss functions as a useful decision-making

tool when dealing with uncertain structural geological settings and to measure the effects of adding new information to a

model. This is also aimed to illustrate the significance of the Bayesian perspective with regards to model interpretation in an

economic context. As an explanatory example, we chose the hydrocarbon sector. This field is characterized by the necessity to

make decisions in the face of high risks and potentially high rewards. These decisions are often closely linked to geological10

modeling and

:::
Our

::::::
results

:::::
show

::::
that

::
it

::
is

:::::::
possible

:::
to

:::::
apply

::::::::
Bayesian

::::::::
decision

::::::
theory

::
to

:::::::::
geological

:::::::
models,

:::
as

::
an

:::::::::
approach

::
to

::::::
obtain

::
an

::::::::
objective

:::::
basis

:::
for

::::::::
decisions,

:::::::::::
considering

::::::::::
uncertainties

:::
in

:::::
these

:::::::
models.

:::::
Even

::::::
though

:::
the

:::::::
concept

:::::
itself

::
is

:::
not

:::::
new,

:::
the

:::::::::
application

::
to the estimation of reservoir-related values. By developing case-specific

::::::
context

::
of

::::::::::
probabilistic

:::::::::
geological

::::::::
modeling

::::::
requires

:::::
some

:::::::::
adaptation

:::
and

::::
care

:::::
when

::::::::::
constructing

::::::::::
appropriate

::::
loss

::::::::
functions.

::::
Our

:::::
results

::::::::
highlight

:::
the

::::::::
potential

:::
use

::
of cus-15

tom loss functions, we intended to show that this estimation approach is suitable and useful to express the nature of complexities

behind decision-making problems, decision environments and
:::
first

:::
for

:
a
:::::::::
simplified

::::
1-D

::::
case,

:::
and

::::
then

:::
for

:
a
:::::
more

:::::::
complex

::::
full

:::
3-D

::::::
model.

:::::
Even

::::::
though

:::::
these

:::::::
models

:::
are

::::
both

::::::::::
conceptual,

::::
they

::::::::
highlight

::
in

::::
our

::::
point

:::
of

::::
view

:::
the

::::::::::
interesting

:::::::
potential

:::
of

::
the

::::::::
method,

::
as

:::
the

:::::::
optimal

::::::::
decision,

:
the risk-related behavior of actors.

:::::
Bayes

::::::
action,

::
is
::::

not
::::::
always

:::::::
directly

:::::::
obvious

:::::
when

::::
only

::::::::::
considering

:::::::
posterior

:::::::::
predictive

:::::::::::
distributions.

:::::::::
Especially

:::
the

::::::::
addition

::
of

:::::::::
subjective

:::
risk

:::::::
affinity

:::
and

:::
the

::::
risk

::
of
:::::::

critical20

::::::::::::
overestimation

::::
lead

::
to

:::::::::
interesting

:::::::
changes

::
in
::::

the
::::::
optimal

::::::::
decision.

::::::
Given

::::
these

:::::::
aspects,

:::
we

::::::::
consider

:::
the

:::
use

:::
of

::::::
custom

::::
loss

:::::::
functions

::::
with

:::::::::::
probabilistic

:::::::::
geological

::::::::
modeling

::
as

:
a
::::
very

:::::::
suitable

:::::::::::
combination

::
in

::
the

::::::::::
framework

::
of

::::::::
Bayesian

:::::::
decision

::::::
theory.

:::
The

::::
case

:::::
study

:::::::::
considered

::::
here

:::::::::
addressed

:
a
::::::
typical

:::::::
scenario

:::
of

:::::::::
exploration

:::
for

::
a

::::
fluid

::::::::
reservoir.

:::
We

::::
first

::::::
discuss

:::::::::
additional

::::::
relevant

::::::
points

::::
with

:::::
regard

:::
to

:::
this

:::::::
specific

::::
case

:::
and

:::::::
provide

::::
then

::::
more

:::::::
general

::::::::
comments

:::
on

:::::::::
extensions

:::
and

:::
the

::::::::::
application

::
in25

::::::::
additional

:::::
fields

:::::
where

:::::::::
geological

::::::
models

:::
are

:::::::::
commonly

:::::
used.

4.1 State of knowledge, decision uncertainty and consequent decision making

As we defined trap volume to be in essence a deterministic function of uncertain modelinput parameters, uncertainties propagate

to this parameter of interest when conducting stochastic simulations. We consider the resulting volume probability distributions

to be expressions of the respective state of knowledge (or information) on which the decision making is to be based. As this30

should include all parameters and conditions relevant for decision making, we furthermore propose that the overall uncertainty

inherent in this probability distribution can be referred to as "decisionuncertainty" and that this entity should be viewed

24



separately from geological model uncertainty.By viewing decision making as a problem of optimizing a case-specific custom

loss function applied to such a state of knowledge and decision uncertainty, we were able to observe clear differences in

the respective behavior of distinctly risk-affine actors.The position and separation of their minimizing estimators, i.e. their

decisions, manifested according to the properties of the value distributions. General spread and the occurrence of modes

relative to the overall distribution and the relevant decision space appear to be particularly significant. High spread and bimodal5

tendencies, i.e. high overall uncertainty, resulted in a wider separation of different actions. Reduction of the distribution to one

mode conversely led to their convergence. A decrease in decision uncertainty furthermore was accompanied by a reduction in

expected loss for each Bayes estimator. Considering these observations, we derive that the degree of action convergence and

respective expected losses can be considered measures for the state of knowledge and decision uncertainty at the moment of

making a decision. The better these are, the more similar the decisions of differently risk-affine actors and the lower their loss10

expectations are . Given perfect information all actors would bid on the same estimate (the true value) and expect no loss, since

no risk would be present. It furthermore follows from this that the relevance of risk affinity decreases with greater reduction of

decision uncertainty.

4.1 The
:::
On

:::
the

:
impact of additional information on decision making

We used these loss-function-related indicators to assess the significance additional information might have for decisionmaking
::
of15

::::::::
additional

::::::::::
information

:::
on

:
a
:::::::
decision. We observed that the impact on decision uncertainty, induced by Bayesian inference, is

not simply strictly aligned with the change in uncertainty regarding model parameters, but on those parameter combinations

which are relevant for the outcome of the value of interest. It seems to be of central importance (1) "where" in the model uncer-

tainty is reduced, i.e. in which spatial area or regarding which model parameters, and (2) which possible outcome is enhanced

in terms of probability. An increased probability of a thick or thin seal in our model equally reduced decision uncertainty20

significantly, by raising the probability of a positive or negative outcome, respectively. Improved certainty about our reservoir

thickness, however, had far lesser impact on decision making. This shows that some areas and parameter combinations have

a much greater influence on the decision uncertainty than others, depending on the way they contribute to the outcome of the

value of interest.

Some types of additional information could even lead to increased decision uncertainty. We observed this in Scenario 4a.25

The introduced SSF likelihood practically constrained our geological model to two possible situations: (1) a trap which is

sealed off from juxtaposing layers and full-to-spill, and (2) complete failure of the trap due to a breached seal across the fault.

This made the decision problem a predominantly binary one and split the outcome distribution into two narrowed but distant

modes. The resulting increase in decision divergence and expected losses show that, in some cases, adding information might

leave actors in greater disagreement than before.30

However, we furthermore have to consider that actors weight possible outcomes of the value distribution differently. They

consequently are affected differently by the same type of information. Risk-friendly actors were the most robust in their

decision making in the face of possible trap failure. Eliminating this risk proved to be far less significant to the most risk-

friendly, than for risk-averse actors. Accordingly, it should be of foremost importance for risk-averse actors to reduce the

25



uncertainty regarding critical factors, such as seal integrity, which might decide between the success and complete failure of

a project. This is less relevant for risk-friendly decisions makers, who respectively might acquire a comparable benefit from

knowing more about the probability of positive outcomes. They are less afraid of failure and than they are of missing out on

opportunity.

Crucial risks might be easily assessed if they are dependent on only one or a few parameters, such as seal thickness. In other5

cases, they are derived from more complex parameter interrelations, as is the case for the Shale Smear Factor. To approach an

effective mitigation of high risks, the complexities behind decisive factors need to be assessed thoroughly and respective parent

parameters, as well as their interdependencies, need to be identified. This might enable a better understanding of which type of

information is missing and where in the model additional data might be of use for improved decision making.

More of simply any type of information does not necessarily lead to better decisions. Instead, improved decision making is10

achieved by attaining the right kind of information that is able to shed light on uncertainties which are relevant to an individuals

:::::::::
individual’s

:
own goals and preferences, as well as the general problem at hand. Bratvold and Begg (2010) stated that value is not

generated by uncertainty quantification or reduction in itself, but is created to the extent that these processes have potential to

change a decision. Such decision changes were clearly indicated by the shifting of actions in our different scenarios. According

to Hammitt and Shlyakhter (1999), the difference in expected payoff between the prior and posterior optimal decision gives15

the expected value of information. This raises the question as to what extend
:::::
extent a change in expected losses in itself might

be an indicator for the value of information and if there is value in gaining confidence in a decision, even though it remains

unchanged.

4.1.1 The significance of our method for the hydrocarbon sector

While Monte Carlo simulation is by now common in the hydrocarbon sector, it does not make decisions, as Murtha et al.20

(1997) emphasized. It
:::::::::::::
emphasized—it merely prepares for it. We believe that loss functions have the potential to go one step

further. A hypothetical ideal loss function would consider all conditions in an economic environment, as well as perfectly

represent preferences and goals of an actor and consequently be able to automatically find an optimal decision. While this

is obviously unrealistic, we presume that an elaborate loss function might at least provide a very good preliminary decision

recommendation. It might furthermore be able to weight risks that are not immediately apparent to an individual as a person.25

Furthermore, the influence of human biases and psychological behavioral challenges, as described by Bratvold and Begg

(2010), could be mitigated.

Bayesian inference and MCMC methods have been applied for OOIP estimation and forecasting of reservoir productivity by

Wadsley et al. (2005), Ma et al. (2006) and Liu et al. (2010). However, their research focused on history-matching simulations

for already producing fields. Our approach of applying Bayesian inference for structural geological modeling and volumetric30

reservoir calculations is intended to support decision making in the earliest stages of a reservoir, when it has to be decided

whether a project should be developed or not. Nevertheless, it was shown in the research conducted by Wadsley et al. (2005)

that early volumetric OOIP estimates can be combined with later calculations from production data via MCMC methods.
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Our continuous approach could be integrated into common discrete decision-making frameworks, such as decision trees. In

real cases, normally only a limited number of options is given. In the context of hydrocarbon exploration and production, this

would relate to fixed magnitudes of resource allocation, such as a certain number of required drilling wells or the size of a

production platform. Based on such previously defined actual options, we could discretize our value probability distribution

into sections, which represent each decision scenario accordingly. Our minimizing estimators would then indicate the best5

discrete option for a decision maker.

Depth
 

Layer thicknesses

Layer thickness
likelihoods

SSF

SSF likelihoods

Geomodel parameters

Geological model

Trap volume

Reservoir and
recovery 

parameters

Recoverable volumes Net Present Value

Drilling costs

OPEX, CAPEX, ...

Other costs

Selling price

IN THIS WORK OUTLOOK

Figure 8. In this work, we applied our loss function approach to estimate a hydrocarbon trap volume. For this, we considered stochastic

geomodeling parameters, defined deterministic functions to acquire volume, layer thicknesses and SSF values, and linked the latter two to

respective likelihoods. Regarding the bigger picture, this methodology is expandable and could include other parameters and dependencies.

By taking into account other reservoir parameters and recovery factors, we could for example base decision making on recoverable volumes.

We could also take depth information from our model and combine this with other cost parameters to calculate drilling costs. Including

additional costs, but also the selling price of hydrocarbons, we could attain the NPV as our final value of interest.

4.1.1 Limitations and outlook
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It has to be emphasized that we used

4.2
::::

State
::
of

::::::::::
knowledge,

:::::::
decision

:::::::::::
uncertainty

::::
and

:::::::::
consistent

:::::::
decision

:::::::
making

:::
We

::::::
applied

:::
the

:::::::
concept

:::::
here

::
to

:
a synthetic geological model, not based on real data. Nevertheless, it was designed to in-

clude some typical structural characteristics related to hydrocarbon
::::
fluid

::::::::
reservoir systems. We developed algorithms aimed

to consider the most common conditions that define structural traps. However, these conditions needed to be simplified and5

were implemented on a very conceptual level. Furthermore, uncertainties employed in the 3-D model related to z-positional

values only and were thus of primarily one-dimensional nature. It follows that no effective uncertainty concerning the overall

structural shape was implemented, particularly regarding anticlinal features and the lateral position of the spill point.

::
As

:::
we

:::::::
defined

::::
trap

::::::
volume

:::
to

::
be

:::
in

::::::
essence

::
a
:::::::::::
deterministic

::::::::
function

::
of

::::::::
uncertain

::::::
model

:::::
input

::::::::::
parameters,

:::::::::::
uncertainties

::::::::
propagate

::
to

:::
this

:::::::::
parameter

::
of

:::::::
interest

:::::
when

:::::::::
conducting

::::::::
stochastic

:::::::::::
simulations.

:::
We

:::::::
consider

:::
the

::::::::
resulting

::::::
volume

::::::::::
probability10

::::::::::
distributions

::
to

:::
be

::::::::::
expressions

::
of

:::
the

:::::::::
respective

::::
state

::
of
::::::::::

knowledge
:::
(or

:::::::::::
information)

::
on

::::::
which

:::
the

:::::::
decision

:::::::
making

::
is

::
to

:::
be

:::::
based.

:::
As

::::
this

::::::
should

::::::
include

:::
all

:::::::::
parameters

::::
and

:::::::::
conditions

:::::::
relevant

:::
for

:::::::
decision

::::::::
making,

:::
we

::::::::::
furthermore

:::::::
propose

::::
that

:::
the

:::::
overall

::::::::::
uncertainty

::::::::
inherent

::
in

:::
this

::::::::::
probability

::::::::::
distribution

:::
can

:::
be

:::::::
referred

::
to

:::
as

::::::::
"decision

::::::::::
uncertainty"

::::
and

::::
that

:::
this

::::::
entity

:::::
should

:::
be

::::::
viewed

:::::::::
separately

::::
from

:::::::::
geological

:::::
model

::::::::::
uncertainty.

::
By

:::::::
viewing

::::::::
decision

:::::::
making

::
as

::
a

:::::::
problem

::
of

::::::::::
optimizing

:
a
:::::::::::

case-specific
:::::::

custom
::::
loss

:::::::
function

:::::::
applied

::
to

::::
such

::
a
::::
state

:::
of15

:::::::::
knowledge

:::
and

:::::::
decision

::::::::::
uncertainty,

:::
we

::::
were

::::
able

::
to

::::::
observe

::::
clear

::::::::::
differences

::
in

::
the

:::::::::
respective

:::::::
behavior

::
of

::::::::
distinctly

:::::::::
risk-affine

:::::
actors.

:::
The

:::::::
position

:::
and

:::::::::
separation

::
of

::::
their

::::::::::
minimizing

:::::::::
estimators,

:::
i.e.

::::
their

:::::::::
decisions,

:::::::::
manifested

::::::::
according

::
to

:::
the

:::::::::
properties

::
of

:::
the

::::
value

:::::::::::
distributions.

:::::::
General

::::::
spread

::::
and

:::
the

:::::::::
occurrence

::
of

::::::
modes

:::::::
relative

::
to

:::
the

::::::
overall

::::::::::
distribution

:::
and

:::
the

:::::::
relevant

::::::::
decision

::::
space

::::::
appear

::
to

::
be

::::::::::
particularly

:::::::::
significant.

:::::
High

:::::
spread

::::
and

:::::::
bimodal

:::::::::
tendencies,

:::
i.e.

::::
high

::::::
overall

::::::::::
uncertainty,

::::::
resulted

::
in
::
a
:::::
wider20

::::::::
separation

::
of
::::::::

different
:::::::
actions.

:::::::::
Reduction

::
of

:::
the

::::::::::
distribution

::
to

:::
one

:::::
mode

:::::::::
conversely

::::
led

::
to

::::
their

:::::::::::
convergence.

::
A

::::::::
decrease

::
in

:::::::
decision

:::::::::
uncertainty

::::::::::
furthermore

::::
was

:::::::::::
accompanied

::
by

::
a
::::::::
reduction

::
in

:::::::
expected

::::
loss

:::
for

::::
each

:::::
Bayes

:::::::::
estimator.

::::::::::
Considering

:::::
these

:::::::::::
observations,

:::
we

::::::
derive

::::
that

:::
the

::::::
degree

::
of

::::::
action

:::::::::::
convergence

:::
and

:::::::::
respective

::::::::
expected

::::::
losses

:::
can

:::
be

:::::::::
considered

::::::::
measures

::
for

:::
the

:::::
state

::
of

:::::::::
knowledge

:::
and

:::::::
decision

::::::::::
uncertainty

::
at

:::
the

:::::::
moment

::
of

::::::
making

::
a
:::::::
decision.

::::
The

:::::
better

:::::
these

:::
are,

:::
the

:::::
more

::::::
similar

:::
the

:::::::::
decisions

::
of

:::::::::
differently

:::::::::
risk-affine

:::::
actors

::::
and

:::
the

:::::
lower

:::::
their

::::
loss

::::::::::
expectations

::::
are.

:::::
Given

:::::::
perfect25

:::::::::
information

:::
all

:::::
actors

::::::
would

:::
bid

:::
on

:::
the

:::::
same

:::::::
estimate

::::
(the

:::
true

::::::
value)

:::
and

::::::
expect

:::
no

::::
loss,

:::::
since

::
no

::::
risk

::::::
would

::
be

:::::::
present.

::
It

::::::::::
furthermore

::::::
follows

::::
from

::::
this

:::
that

:::
the

::::::::
relevance

::
of

::::
risk

::::::
affinity

::::::::
decreases

::::
with

::::::
greater

:::::::::
reduction

::
of

:::::::
decision

::::::::::
uncertainty.

4.3
:::::::::
Extensions

:::
and

::::::::
Outlook

:::
We

::::::
applied

:::
the

::::::
concept

::
of
::::::::
decision

:::::
theory

::::
here

::
to

::
an

:::::::
implicit

:::::::::
geological

::::::::
modeling

::::::
method

::::::::::::::::::::
(de la Varga et al., 2019)

:
.
:::::::::
Depending

::
on

:::
the

::::::::::
application,

::::
other

:::::
types

::
of

::::::::
geometric

::::::::::::
interpolations

:::
may

:::
be

::::
more

:::::::
suitable

::
to

::::::::
represent

::
the

:::::::::
geological

::::::
setting.

:::::
More

::::::
details30

::
on

:::::
these

:::::::
methods,

:::
as

:::
well

:::
as

:::
the

:::::::::::
consideration

::
of

::::::::
respective

::::::
model

:::::::::::
uncertainties

:::
and

:::
the

::::::::
potential

:::::::::
integration

:::
into

:::::::::::
probabilistic

:::::::::
frameworks

:::
are

:::::::::
described,

:::
for

::::::::
example,

::
in

:::::::::::::::::::::::::
Wellmann and Caumon (2018).

:
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We defined risk affinity to be dependent on arbitrarily chosen risk factors which led to according reweighting. Davidson-

Pilon (2015) used risk parameters determined by the maximal loss each actor could incur. Other approaches could be based on

more tangible values, for example by making risk attitude dependent on a fixed budget.

There are still many points that could be expanded on in future research. It would be of interest to apply the same overall

concept and methodology to an authentic case based on real datasets. Given a realistic economic scenario, including capital5

and operational expenditures of a project, possibly a full net-present-value (NPV) analysis could be conducted, applying a

loss function to a NPV distribution (see Fig. 8). A more elaborate loss function could be customized on the base of surveys,

acquiring the specific preferences of one or several companies and thus attaining a better profile of the economic environment,

as well as the individuals acting in it.

Furthermore, additional and different uncertain parameters should be considered in the future. A respective next step10

regarding our model would be the incorporation of uncertainties which to a wider extent affect structural shapes in all three

dimensions. Otherwise, non-structural reservoir parameters could be included as uncertain values, such as porosities and

permeabilities of different layers. This might be of particular interest considering factors which are related to high risks in

decision making.We chose hydrocarbon systems and petroleum exploration as a sector for an exemplary application, but many

other settings can be found in which
::
as

::::::
studies

::
on

:::
risk

::::::
related

::
to

:::::::::
geological

::::::::
modeling

:::
are

::::
most

:::::::::
prominent

::
in

:::
this

:::::
field.

::::::::
However,15

geological modeling is of central significance for decision making . One example would be subsurface storage of fluids in a

reservoir, such as
:::::::::
importance

::
to
::::::::
decision

::::::
making

::
in

::::::
several

:::::
other

:::::
fields.

:::::::
Directly

::::::
related

:::
are

:::
all

:::::
other

::::
types

::
of
::::::::::
subsurface

::::
fluid

::::::::
reservoirs,

:::
for

::::::::
example

::
in

:::::::::::
groundwater

::::::::
extraction

:::
or

:::::::::
geothermal

::::::
energy

::::::
usage.

::::
Also

:::::::
closely

::::::
related

:::
are

::::::::::
applications

::
of

:::::
fluid

::::::
storage

::
in

:::::::::
subsurface

:::::::::
reservoirs,

::::
most

::::::::::
prominently

:
carbon capture and storage (CCS)

::::::::::
applications. Questions regarding storage

capacity and safety deal with similar conditions and geological problems as the ones presented this work. Other examples20

might be mining or geotechnical projects. In general, it does not lack of geo-related areas in which a good understanding

of uncertainties , risks and the general state of information is crucial for good decision making, and in which
:::
The

:::::::::
described

:::::::
concepts

::::
can

:::::::
similarly

:::
be

:::::::
applied

::
to

:::::
other

:::::
types

::
of
::::::::::

geological
:::::::
features,

:::
for

::::::::
example

:::
ore

::::::
bodies

:::
in

::::::
mineral

::::::::::
exploration

:::
or

:::::::::
subsurface

::::::::
structures

:::
and

::::::::
materials

::
in

::::::::::
geotechnical

:::::::::::
applications.

::
In

:::
all

::
of

::::
these

:::::
cases,

:::
the

:::::::::
geological

::::::
model

:::
can

::::
have

:::::::::
significant

::::::::::
uncertainties

::::
and,

::::::
similar

::
to

:::
the

::::::::
example

::::::::
described

::
in

:::
this

::::::::::
manuscript,

::::::
further

::::::::::
engineering

::::
and

:::::
usage

::::::
aspects

:::::
carry

::::
high

:::::
costs.25

:::
We

:::
are

:::::::
therefore

::::::::
confident

::::
that

::
a

::::
more

:::::::
detailed

:::::::
analysis

::
of

:::::::::::
uncertainties

::::
and

:::
the

::::::::
definition

:::
and

::::::::::::
understanding

:::
of custom loss

functions could prove to be a beneficial tool
:
in

:::
the

:::::::
context

::
of

::::::::
Bayesian

::::::::
decision

:::::
theory

::::
are

::::
very

:::::::::
interesting

:::::
paths

:::
for

:::::
more

:::::::
research

::::
with

::::
wide

:::::::
possible

::::::::::
applications.

Code and data availability. Code and model data used in this study are available in a GitHub repository found at http://github.com/cgre-

aachen/loss_function_decision_making_paper (DOI: 10.5281/zenodo.2595357).30
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Appendix A: Determination of the maximum trap volume

The volume is calculated on a voxel-count basis. To assign model voxels to the trap feature, it is checked whether the following

conditions (illustrated in Figure 4) are satisfied by each individual voxel:

1. Labeled as reservoir formation: The voxel has been assigned to the target reservoir formation (see Sandstone 1 in Fig.

4 (1)) in GemPy’s lithology block model.5

2. Location above spill point horizon: The voxel is located vertically above the final spill point of the trap. In the algorithm

to find this final spill point, it is distinguished between a spill point defined by the folding structure, referred to as

anticlinal spill point, and a cross-fault leak point, that depends on the magnitude of displacement and the resulting nature

of juxtapositions. Once both of these points have been determined, the higher one is defined to be the final spill point

used to determine the maximum fill capacity of the trap. Given a juxtapostion with layers overlying the seal, due to fault10

displacement, the respective section is checked for fault sealing by taking into account the Shale Smear Factor (SSF)

value which is the ratio of fault throw magnitude D to displaced shale thickness T (Lindsay et al., 1993; Yielding et al.,

1997; Yielding, 2012):

SSF =
D

T
. (A1)

We attain both D and T by examining the contact between the seal lithology voxels and the fault surface.15

For our model, we define the critical SSF to be SSFc = 5. We assume that cross-fault sealing is breached when this

threshold is surpassed. For simplicity, the fault is considered to be sealing along its plane.

3. Location inside of closed system: The voxel is part of a model section inside of the main anticlinal feature. All of the

voxels inside this particular section are separated from the borders of the model by voxels that do not meet the first two

conditions above, which primarily means that they are encapsulated by seal voxels upwards and laterally. This condition20

is relevant under the assumption, that connection to the borders of the model lead to leakage. A trap is thus defined

as a closed system in this model and trap closure is assumed to be void outside of the space of information, i.e. the

model space. In our example model, this also means that hydrocarbons escape in the hanging wall due to respective layer

dipping upwards towards the model borders.

It has to be emphasized that these conditions have been fitted to our synthetic example model. For other models featuring25

different geological properties, structures and levels of complexities, these conditions and respective algorithms might not

apply. Models of higher complexities will surely require the introduction of further conditions.

A1 Anticlinal spill point detection

Regarding anticlinal structures and traps, it can be observed that, geometrically and mathematically, a spill point is a saddle

point of the reservoir top surface in 3-D. This was described by Collignon et al. (2015), who pointed out that the linkage of30
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folds is given by saddle points. These are thus a controlling factor for spill-related migration from respective structural traps.

For anticlinal traps, closure can consequently be defined as the distance between the saddle point (i.e. spill point) and maximal

point of the trap (Collignon et al., 2015).

Regarding a surface defined by f(x,y), a local maximum at (x0,y0,z0) would resemble a hill top (Guichard et al., 2013).

Local maxima will be found looking at the cross-sections in the planes y = y0 and x= x0. Furthermore, the respective partial5

derivatives (i.e. gradients) δz
δx and δz

δy will equal zero at x0 and y0, i.e. that the extremum is a stationary point (Guichard et al.,

2013; Weisstein, 2017). In the context of a geological reservoir system, such a hill can be regarded as a representation of

an anticlinal structural trap. Local minima are defined analogously, presenting local minima in both planes at a stationary

point (Guichard et al., 2013). A saddle point, however, is a stationary point, while not being an extremum (Weisstein, 2017).

In general, saddle points can be distinguished from extrema by applying the second derivative test (Guichard et al., 2013;10

Weisstein, 2017): Considering a 2D function f(x,y) with continuous partial derivatives at a point (x0,y0), so that fx(x0,y0) =

0 and fx(x0,y0) = 0, the following discriminant D can be introduced:

D(x0,y0) = fxx(x0,y0)fyy(x0,y0)− fxy(x0,y0)2. (A2)

Using this, the following holds for a point (x0,y0):

1. If D > 0 and fxx(x0,y0)< 0, there is a local maximum.15

2. If D > 0 and fxx(x0,y0)> 0, there is a local minimum.

3. If D < 0, there is a saddle point at the point (x0,y0).

4. If D = 0, the test fails (Guichard et al., 2013).

According to Verschelde (2017), a saddle point in a matrix is maximal in its row and minimal in its column. This corresponds

to the logical geometrical deduction, that a saddle point for a surface defined by f(x,y) is marked by a local maximum in one20

plane, but a local minimum in the perpendicular plane. In our spill point detection algorithm, we make use of GemPy’s ability

to return layer boundary surfaces (simplices and vertices) as well as the gradients of the potential fields in discretized arrays:

1. We first look for vertices at which the surface of interest coincides with a gradient zero point.

2. Then, we check for the change in gradient sign at each such point in perpendicular directions. If they are opposite to one

another, we can classify the vertex as a saddle point.25

3. Lastly, we declare the highest saddle point to be our anticlinal spill point.

A2 Cross-fault leak point detection

For the potential point of leakage to formations underlying the seal across the normal fault (including the reservoir itself), we

take the highest z-position of the reservoir units’ contact (voxelized) with the fault in the hanging wall.
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In the case of a juxtaposition with seal-overlying formations and a failed SSF-check, the maximum contact of the trap with

the fault becomes the final spill point. Due to the shape of the trap in our model, we can then expect full leakage and set the

maximum trap volume to zero.

A3 Calculating the maximum trap volume

Have all trap voxels been determined via the conditions defined in Section 2.2.3, the maximum trap volume Vt is calculated5

by simply counting the number of trap voxels and rescaling their cumulative volume depending on the resolution in which the

model was computed:

Vt = nv ∗ (
So
Rm

)3, (A3)

Where nv is the number of trap voxels, So gives the original scale and Rm the used resolution for the model.

For the example of a cubic geological model with an original extent of 2000 m in three directions, computed using a10

resolution of 50 voxels in every direction, the scale factor is 40 m. Every voxel thus accounts for 40 m∗40 m∗40 m = 64,000 m3

in volume. It has to be noted, that this direct approach to rescaling and calculating the volume requires the model to be computed

in cubic voxels.

Appendix B: Bayesian inference

Bayesian inference is defined by and conducted via the following equation, called the Bayes’ Theorem (Jaynes, 2003; Gelman et al., 2014; Box and Tiao, 2011; Harney, 2013; Davidson-Pilon, 2015)15

:

p(θ|y) = p(y|θ)p(θ)
p(y)

∝ p(y|θ)p(θ).

Appendix B: Further analysis of the custom loss function

For better understanding of how our custom loss function determines the incurrence of loss, actual losses for three fixed true

values and risk-neutrality (r = 1) are plotted in Fig. 2. Loss based on the risk-neutral custom loss function (Eq. 8) for determined20

true scores of -250, 0 and 250. This plot is meant to clarify the way real losses are incurred for each guess, relative to a given

true value. The expected loss, as seen in Fig. ?? is acquired by arithmetically averaging such deterministic loss realizations

based on the true score probability distribution by using Eq. 3.

Appendix B: Results data
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Figure B1. Posterior trap volume distributions and respective loss function realization plots for Scenarios 1 (prior), 2b, 3a and 3b.
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Table B1. Decision results for all considered scenarios and each actor. Respective optimal estimates (decisions) are represented by θ̂, while

∆θ̂ indicates posterior changes relative to the prior (Scenario 1) result. Expected losses are given by l, changes relative to the prior by ∆l.

Decision makers

risk-friendly risk-neutral risk-averse

r = 0.5 r = 0.75 r = 1.0 r = 1.25 r = 1.5

Scenario 1 θ̂ 19072000.00 15616000.00 8960000.00 1280000.00 0.00

Prior l 8582112.55 10785632.54 12100484.80 11759772.46 10763671.94

Scenario 2a θ̂ 22528000.00 19712000.00 17920000.00 16448000.00 15232000.00

Thick seal ∆θ̂ 3456000.00 4096000.00 8960000.00 15168000.00 15232000.00

l 5387582.96 6654239.73 7544384.00 8220155.30 8776678.80

∆l -3194529.59 -4131392.81 -4556100.80 -3539617.16 -1986993.14

Scenario 2b θ̂ 0.00 0.00 0.00 0.00 0.00

Thin seal ∆θ̂ -19072000.00 -15616000.00 -8960000.00 -1280000.00 0.00

l 2743719.13 2240237.29 1940102.40 1735280.34 1584086.98

∆l -5838393.42 -8545395.25 -10160382.40 -10024492.12 -9179584.96

Scenario 3a θ̂ 17408000 8640000 0 0 0

Thick reservoir ∆θ̂ -1664000.00 -6976000.00 -8960000.00 -1280000.00 0.00

l 10073515.53 12159993.48 11319609.6 10124566.62 9242422.54

∆l 1491402.98 1374360.94 -780875.20 -1635205.84 -1521249.40

Scenario 3c θ̂ 22784000.00 20096000.00 18432000.00 16960000.00 15680000.00

Thick reservoir and seal ∆θ̂ 3712000.00 4480000.00 9472000.00 15680000.00 15680000.00

l 5380782.45 6658861.07 7551644.80 8278631.71 8857405.68

∆l -3201330.10 -4126771.47 -4548840.00 -3481140.75 -1906266.26

Scenario 4a θ̂ 19264000.00 15744000.00 0.00 0.00 0.00

Near critical SSF ∆θ̂ 192000.00 128000.00 -8960000.00 -1280000.00 0.00

l 8959284.13 11533073.67 13250828.80 11851901.58 10819256.41

∆l 377171.58 747441.13 1150344.00 92129.12 55584.47

Scenario 4b θ̂ 23040000.00 20992000.00 19584000.00 18496000.00 17664000.00

Reliable SSF and thick seal ∆θ̂ 3968000.00 5376000.00 10624000.00 17216000.00 17664000.00

l 4112858.01 4964529.37 5513651.20 5929335.97 6245426.13

∆l -4469254.54 -5821103.17 -6586833.60 -5830436.49 -4518245.81
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Figure B2. Probability field visualizations for Scenarios 1 to 3b.
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Table B2. Occurrence rate of trap control mechanisms in % for each information scenario.

1 - Anticlinal spill 2 - Leak to reservoir 3 - Leak to overlying 4 - Stratigraphic breach 5 - Unclear

Scenario 1 51.47 25.11 12.36 10.56 0.5

Scenario 2a 63.1 35.8 0.41 0.49 0.2

Scenario 2b 10.04 1.53 20.82 65.51 2.1

Scenario 3a 41.99 23.21 23.06 11.38 0.36

Scenario 3b 61.86 36.59 0.53 1.02 0

Scenario 4a 66.4 0.01 33.59 0 0

Scenario 4b 79.45 20.55 0 0 0

Appendix C: MCMC convergence
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Scenario 2a: Geweke plots Scenario 2a: Traces

Scenario 2b: Geweke plots Scenario 2b: Traces

Scenario 3a: Geweke plots Scenario 3a: Traces

Scenario 3b: Geweke plots Scenario 3b: Traces

Figure C1. Geweke plots and traces for Scenarios 2a to 3b.
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Scenario 4a: Geweke plots Scenario 4a: Traces

Scenario 4b: Geweke plots Scenario 4b: Traces

Figure C2. Geweke plots and traces for Scenarios 4a and 4b.
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