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Abstract. TS1 CE1Uncertainties are common in geological
models and have a considerable impact on model interpre-
tations and subsequent decision-making. This is of partic-
ular significance for high-risk, high-reward sectors. Recent
advances allows us to view geological modeling as a statisti-5

cal problem that we can address with probabilistic methods.
Using stochastic simulations and Bayesian inference, uncer-
tainties can be quantified and reduced by incorporating addi-
tional geological information. In this work, we propose cus-
tom loss functions as a decision-making tool that builds upon10

such probabilistic approaches.
As an example, we devise a case in which the decision

problem is one of estimating the uncertain economic value
of a potential fluid reservoir. For subsequent true value esti-
mation, we design a case-specific loss function to reflect not15

only the decision-making environment, but also the prefer-
ences of differently risk-inclined CE2 decision makers. Based
on this function, optimizing for expected loss returns an ac-
tor’s best estimate to base decision-making on, given a proba-
bility distribution for the uncertain parameter of interest. We20

apply the customized loss function in the context of a case
study featuring a synthetic 3-D structural geological model.
A set of probability distributions for the maximum trap vol-
ume as the parameter of interest are generated via stochastic
simulations. These represent different information scenarios25

to test the loss function approach for decision-making.
Our results show that the optimizing estimators shift ac-

cording to the characteristics of the underlying distribution.
While overall variation leads to separation, risk-averse and
risk-friendly decisions converge in the decision space and de-30

crease in expected loss given narrower distributions. We thus
consider the degree of decision convergence to be a mea-

sure for the state of knowledge and its inherent uncertainty
at the moment of decision-making. This decisive uncertainty
does not change in alignment with model uncertainty but de- 35

pends on alterations of critical parameters and respective in-
terdependencies, in particular relating to seal reliability. Ad-
ditionally, actors are affected differently by adding new in-
formation to the model, depending on their risk affinity. It is
therefore important to identify the model parameters that are 40

most influential for the final decision in order to optimize the
decision-making process.

1 Introduction

In studies of the subsurface, data availability is often limited
and characterized by high possibilities of error due to signal 45

noise or inaccuracies. This, together with the inherent epis-
temic uncertainty of the modes, leads to the inevitable pres-
ence of significant uncertainty in geological models, which in
turn may affect interpretations and conclusions drawn from a
model (Wellmann et al., 2018, 2010a; de la Varga and Well- 50

mann, 2016; de la Varga et al., 2019; Bardossy and Fodor,
2004; Randle et al., 2019; Lark et al., 2013; Caers, 2011;
Chatfield, 1995). Uncertainties are thus of particular impor-
tance for making responsible and good decisions in related
economic settings, such as in hydrocarbon exploration and 55

production (Thore et al., 2002; McLane et al., 2008; Smal-
ley et al., 2008). The quantification and visualization of such
uncertainties and their consequences is currently an active
field of research. Recent developments allow us to view geo-
logical modeling as a statistical problem (see Wellmann and 60

Caumon, 2018). We particularly regard approaches to couple
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2 F. A. Stamm et al.: Actors, actions, and uncertainties

implicit geological modeling with probabilistic methods, as
presented by de la Varga et al. (2019) with the Python library
GemPy.

Building on this probabilistic perspective, we propose the
use of custom loss functions as a decision-making tool when5

dealing with uncertain geological models. In many applica-
tions, we are interested in some decisive model output value,
for example reservoir volume. Given that such a parameter
is the result of a deterministic function of uncertain variables
in our model, the parameter of interest is likewise uncertain10

and can be represented by a probability distribution attained
from stochastic simulations. A loss function can be applied
to such a distribution to return a case-specific best estimate
to base decision-making on.

We consider hydrocarbon exploration and production as15

an exemplary high-risk, high-reward sector, in which good
decision-making is crucial. However, the described methods
are potentially equally applicable to other types of fluid reser-
voirs (e.g., groundwater geothermal or CO2 sequestration)
and in the raw materials sector. Monte Carlo simulation for20

reservoir estimation and risk assessment has become com-
mon in this sector and is often used in combination with deci-
sion trees (see Murtha et al., 1997; Mudford et al., 2000; Wim
et al., 2001; Bratvold and Begg, 2010). However, it seems to
us that distributions resulting from probabilistic modeling are25

mostly only considered to attain best estimates in the form
of means. The most likely and extreme outcomes are identi-
fied as percentiles, typically P50 (the median), P10, and P90.
We believe that this practice does not harness the full po-
tential of such a probabilistic distribution and that much of30

the inherent information is discarded. Contrary to that, cus-
tomized loss functions, as a Bayesian method, take into ac-
count the full probability distribution and enable the inclu-
sion of various conditions in the process of finding an op-
timal estimate. While used in statistical decision theory and35

other scientific fields, loss functions have, to the best of our
knowledge, found no significant application in the context of
structural geological modeling. Thus, we intend to provide a
new perspective with our methodology.

To illustrate our approach of using custom loss func-40

tions for decision-making, we first illustrate what such cus-
tomization might look like step by step: starting off with a
standard symmetrical loss function, incorporating scenario-
specific conditions and assumptions, and lastly implement-
ing a factor to represent the varying risk affinities of dif-45

ferent decision makers. As we assume a petroleum explo-
ration and production decision-making scenario, our param-
eter of interest should be one that indicates the economic
value of a potential hydrocarbon accumulation. In a larger
context, including various geological and economic factors50

such as operational expenditures, this could be the net present
value (NPV) of a project. In preproduction stages, origi-
nal oil in place (OOIP) is commonly used for early assess-
ments (Dean, 2007; Morton-Thompson et al., 1993). Deci-
sion makers would want to best estimate the relevant parame-55

ter of interest to derive recoverable reserves, create economic
value, and subsequently allocate development resources ac-
cordingly, which includes the possibility of walking away
from a prospect. In this case, the decision maker might refer
to an individual geological expert, but also to an exploration 60

company as a whole.
Once we have set up a loss function customized to this de-

cision problem, we can apply it to probability density func-
tions that represent our knowledge about the true value of
the parameter of interest. As mentioned above, such distribu- 65

tions can result from geological modeling in a probabilistic
context. To illustrate this, we include a synthetic 3-D struc-
tural geological model as a case study. In this context, we
define the structurally determined maximum trap volume Vt
as our parameter of interest and indicator for economic value. 70

We generate different probability distributions via stochastic
simulations and based on various information scenarios. It is
important to note that these are always based on the same
primary input parameters. We attain altered states of infor-
mation by updating the reference case (prior) with secondary 75

information. In doing so, we make sure that the resulting dis-
tributions and the realizations of loss function applications
can be directly compared. These case studies are synthetic
and chosen here to exemplify the application of Bayesian de-
cision theory and to show how additional information affects 80

the optimality of decision.

2 Methods

2.1 Bayesian decision theory

We view the statistical analysis of geological models from a
probabilistic perspective, which is most importantly charac- 85

terized by its preservation of uncertainty. Its principles have
been presented and discussed extensively in the literature
(see Jaynes, 2003; Box and Tiao, 2011; Harney, 2013; Gel-
man et al., 2014; Davidson-Pilon, 2015). The Bayesian ap-
proach is widely seen as intuitive and inherent in the natural 90

human perspective. It regards probability as a measure of be-
lief about a true state of nature.

In many cases, decisions are made on the basis of sum-
mary parameters such as mean or standard deviation. This
approximation works for well-defined probability distribu- 95

tions but it may fail when the distribution does not have a de-
fined structure, which is the usual case of distribution gener-
ated as a result of a Bayesian inference. In this work, we aim
to tackle the decision problem associated with probabilistic
inferences. By applying Bayesian decision theory concepts, 100

we are capable of transforming an arbitrary complex set of
distributions onto a more adequate dimension for decision-
making, usually loss or score.

Solid Earth, 10, 1–29, 2019 www.solid-earth.net/10/1/2019/

anne.brekerbohm
Sticky Note
Marked set by anne.brekerbohm

anne.brekerbohm
Sticky Note
Marked set by anne.brekerbohm

anne.brekerbohm
Sticky Note
Marked set by anne.brekerbohm

anne.brekerbohm
Sticky Note
Marked set by anne.brekerbohm

anne.brekerbohm
Sticky Note
Marked set by anne.brekerbohm

anne.brekerbohm
Sticky Note
Marked set by anne.brekerbohm



F. A. Stamm et al.: Actors, actions, and uncertainties 3

2.1.1 Loss, expected loss, and loss functions

Common point estimates, such as the mean and the median of
a distribution, usually come with a measure for their accuracy
(Berger, 2013). However, it has been argued by Davidson-
Pilon (2015) that using pure accuracy metrics, while this5

technique is objective, ignores the original intention of con-
ducting the statistical inference in cases in which payoffs of
decisions are valued more than their accuracies. A more ap-
propriate approach can be seen in the use of loss functions
(Davidson-Pilon, 2015).10

Loss is a statistical measure of how “bad” an estimate is.
Estimate-based decisions are also referred to as actions a.
Therefore, we also refer to decision makers as actors. Loss
is defined as L(θ,a), so L(θ1,a1) is the actual loss incurred
when action a1 is taken, while the true state of nature is θ115

(Berger, 2013). The magnitude of incurred loss related to an
estimate is defined by a loss function, which is a function of
the estimate and the true value of the parameter (Wald, 1950;
Davidson-Pilon, 2015):

L(θ, θ̂)= f (θ, θ̂). (1)20

So, how “bad” a current estimate is depends on the way a
loss function weights accuracy errors and returns respective
losses. Two standard loss functions are the absolute-error and
the squared-error loss function. Both are objective, symmet-
ric, simple to understand, and commonly used.25

The presence of uncertainty during decision-making im-
plies that the true parameter value is unknown and thus the
truly incurred loss L(θ,a) cannot be known at the time of
making the decision. The Bayesian perspective considers un-
known parameters to be random variables and samples that30

are drawn from a probability distribution to be possible re-
alizations of the unknown parameter; i.e., all possible true
values are represented by this distribution.

Under uncertainty, the expected loss of choosing an es-
timate θ̂ over the true parameter value θ is defined by35

(Davidson-Pilon, 2015)

l(θ̂ )= Eθ [L(θ, θ̂)]. (2)

The expectation symbol E is subscripted with θ , by which
it is indicated that θ is the respective unknown variable. This
expected loss l is also referred to as the Bayes risk of estimate40

θ̂ (Berger, 2013; Davidson-Pilon, 2015).
By the law of large numbers, the expected loss of θ̂ can

be approximated by drawing a large sample size N from the
posterior distribution, applying a loss function L, and aver-
aging over the number of samples (Davidson-Pilon, 2015):45

1
N

N∑
i=1

L(θi, θ̂ )≈ Eθ [L(θ, θ̂)] = l(θ̂ ). (3)

Hereby, we can approximate the expected loss l for every
possible estimate θ̂ (every decision we can make) according

to the loss function in use. Minimization of a loss function re-
turns a point estimate known as a Bayes action or a Bayesian 50

estimator, which is the decision with the least expected loss
according to the loss function and the decision in which we
are interested in this work (Berger, 2013; Moyé, 2006).

2.1.2 Customization of our case-specific loss function

Davidson-Pilon (2015) and Hennig and Kutlukaya (2007) 55

have proposed that it might be useful to move on from stan-
dard objective loss functions to the design of customized
loss functions that specifically reflect an individual’s (i.e.,
the decision maker’s) objectives and preferences regarding
outcomes. Especially as we assign an economic notion to ge- 60

ological models and related estimation problems, we argue
that it is necessary to consider the subjective perspectives
of involved decision makers, for example exploration and
production companies. Consequently, the design of a more
specific nonstandard and possibly asymmetric loss function 65

might be required, one that includes subjective aspects and
differences in weighting of particular risks, arising from a
decision maker’s inherent preferences and the environment
in which this actor has to make a decision. In the face of
several uncertain parameters, which is a given in complex 70

geological models, a perfect estimate, a perfect decision, is
virtually unattainable. However, an attempt can be made to
design a custom loss function that returns a Bayesian estima-
tor involving the least bad consequences for a decision maker
in a specific environment (Davidson-Pilon, 2015; Hennig and 75

Kutlukaya, 2007).
Hennig and Kutlukaya (2007) argue that choosing and de-

signing a loss function involves the translation of informal
aims and interests into mathematical terms. This process nat-
urally implies the integration of subjective elements. Accord- 80

ing to them, this is not necessarily unfavorable or less objec-
tive, as it may better reflect an expert’s perspective on the
situation.

Standard symmetric loss functions can easily be adapted to
be asymmetric, for example by weighting errors to the neg- 85

ative side stronger than those to the positive side. Preference
over estimates larger than the true value, i.e., overestimation,
is thus incorporated in an uncomplicated way. Much more
complicated designs of loss functions are possible, depend-
ing on purpose, objective, and application. We will describe 90

potential design options in the following.
For our example of estimating the economic value of a hy-

drocarbon prospect, which is represented by the maximum
trap volume Vt, we develop a custom loss function in five
steps. Ideally, a decision maker would like to know the exact 95

true value so that resources can be allocated appropriately in
order to acquire economic gains by developing a project and
producing from a reservoir. This conscious and irrevocable
allocation of resources is the decision to be made or action to
be taken (Bratvold and Begg, 2010). Thus, we treat estimat- 100

ing as equivalent to making a decision. Deviations from the
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4 F. A. Stamm et al.: Actors, actions, and uncertainties

unknown true value in the form of over- and underestimation
bring about an error and loss accordingly.

It can be assumed that several decision makers in one such
environment or sector may have the same general loss func-
tion but different affinities concerning risks. This might be5

based, for example, on different psychological factors or eco-
nomic philosophies followed by companies. It might also be
based on the budgets and options such actors have available.
An intuitive example is the comparison of a small and a large
company. A false estimate and wrong decision might have a10

significantly stronger impact on a company that has a gen-
erally lower market share and few projects than on a larger
company that might possess higher financial flexibility and
for which one project is only one of many development op-
tions in a wide portfolio.15

In steps I–IV we make assumptions about the significance
of such deviations and how they differently contribute to ex-
pected losses in the general decision-making environment
and introduce the concept of varying risk affinities in the final
step V.20

– Step I – Choosing a standard loss function as a starting
point. In our case, we assume that investments increase
linearly with linear growth in the value of the prospect.
For this reason, we choose the symmetric absolute-error
loss function as a basis for further customization steps:25

L(θ, θ̂)= |θ − θ̂ |. (4)

– Step II – Simple overestimation. Considering the devel-
opment of a hydrocarbon reservoir, it can be assumed
that over-investing is worse than under-investing. Over-
estimating the size of an accumulation might, for ex-30

ample, lead to the installation of equipment or facilities
that are actually redundant or unnecessary. This would
come with additional unrecoverable expenditures. Con-
sequences from underestimating (0< θ̂ < θ ), however,
may presumably be easier to resolve. Additional equip-35

ment can often be installed later on. Hence, simple over-
estimation (0< θ < θ̂ ) is weighted stronger in this loss
function by multiplying the error with an overestimation
factor a:

L(θ, θ̂)= |(θ − θ̂ )| a. (5)40

– Step III – Critical overestimation. The worst case for
any project would be that its development is set into
motion expecting a gain only to discover later that the
value in the reservoir does not cover the costs of realiz-
ing the project, resulting in an overall loss. A petroleum45

system might also turn out to be a complete failure con-
taining no value (Vt = 0 in our 3-D case study) at all, al-
though the actor’s estimate indicated the opposite. Here,
we refer to this as critical overestimation. A positive
value is estimated, but the true value is zero or negative50

(θ ≤ 0< θ̂ ). This is worse than simple overestimation,
whereby both values are positive and a net gain is still
achieved, which is only smaller then the best possible
gain of expecting the true value. Critical overestimation
is included in the loss function by using another weight- 55

ing factor b that replaces a:

L(θ, θ̂)= |(θ − θ̂ )| b. (6)

In other words, with b = 2, critical overestimation is
twice as bad as simple overestimation.

– Step IV – Critical underestimation. We also derive criti- 60

cal underestimation from the idea of estimating zero (or
a negative value) when the true value is actually positive
(θ̂ ≤ 0< θ ). This is assumed to be worse than simple
overestimation but clearly better than critical overesti-
mation. No already owned resources are wasted, and 65

it is only the potential value that is lost, i.e., opportu-
nity costs that arise from completely discarding a prof-
itable project. Critical underestimation is weighted us-
ing a third factor c:

L(θ, θ̂)= |(θ − θ̂ )| c. (7) 70

– Step V – Including different risk affinities. We now fur-
ther adapt the loss function to consider varying risk
affinities of different actors. We follow the approach of
Davidson-Pilon (2015), who implemented different risk
affinities by simply introducing a variable risk factor. 75

Using different values for this factor, we can represent
how comfortable an individual is with being wrong and
furthermore which “side of wrong” is preferred by that
decision maker (Davidson-Pilon, 2015). In our case,
bidding lower is considered the cautious, risk-averse op- 80

tion, as smaller losses can be expected from underes-
timating. Guessing higher is deemed riskier, as losses
from overestimation are greater. However, bidding cor-
rectly on a higher value will also return a greater gain. It
is assumed that risk-friendly actors care less about crit- 85

ical underestimation; i.e., they would rather develop a
project than discard it. In our finalized loss function, we
simply include these considerations via a risk affinity
factor r , which alters the incurred losses:

L(θ, θ̂)=


|θ − θ̂ | r−0.5, for 0< θ̂ < θ
|θ − θ̂ | a r, for 0< θ < θ̂
|θ − θ̂ | b r, for θ ≤ 0< θ̂
|θ − θ̂ | c r−0.5, for θ̂ ≤ 0< θ

,

with a,b,c,r ∈Q. (8) 90

This equation shows that the final custom loss function is in
essence a composite of four different functions for the over-
and underestimation cases explained in steps II–IV. It is im-
portant to note that the weighting factors a, b, and c can take

Solid Earth, 10, 1–29, 2019 www.solid-earth.net/10/1/2019/



F. A. Stamm et al.: Actors, actions, and uncertainties 5

basically any numerical values but should be chosen in a way
that they appropriately represent the framework conditions of
the problem. Here, we assume that simple overestimation is
25 % (a = 1.25), critical overestimation 100 % (b = 2), and
critical underestimation 50 % (c = 1.5) worse than simple5

underestimation.
According to Eq. (8), the risk-neutral loss function is re-

turned for r = 1, as no reweighting takes place. For r < 1,
the weight on overestimating (a, b) is reduced and increased
for critical underestimation (c), as well as normal underesti-10

mation. This represents a risk-friendlier actor that is willing
to bid on a higher estimate to attain a greater gain. For r > 1,
the overestimation weight (a, b) is increased in the loss func-
tion, underestimation and critical underestimation weight (c)
are decreased, and more risk-averse actors are prompted to15

bid on lower estimates. Since risk neutrality is expressed by
r = 1, we consider values 0< r < 2 to be the most appropri-
ate choices to represent both sides of risk affinity equally.

In Fig. 1, we illustrate different aspects and steps of adapt-
ing and applying the custom loss function. For these simple20

examples, we assume that the economic value of our reser-
voir is represented by an abstract score parameter. Figure 1a
depicts the plotting of the absolute-error loss function (cus-
tomization step I) applied to a normal distribution. It can be
seen that for this standard symmetrical function, the mini-25

mal point of expected losses and Bayes action corresponds
to the median (and mean for this symmetric distribution).
Figure 1b summarizes customization steps II–IV and visual-
izes how four different functions for four cases of under- and
overestimation are summed up to one combined loss function30

that comprises all of the assumptions made for the decision-
making environment. A jump of expected losses on the nega-
tive side of possible estimates can be attributed to the way we
defined the function for critical underestimation as dependent
on zero.35

In Fig. 1c, the risk factor of step V was implemented with-
out steps II–IV, i.e., only for the standard absolute-error loss
function. It can be seen that risk-averse and risk-friendly de-
cision makers are represented by different realizations of ex-
pected losses based on one and the same normal distribution:40

the narrow shape of the risk-friendly function represents im-
proved confidence in the decision, while the increased ex-
pected loss (Bayes risk) of the minimum indicates that this
comes along with the acceptance of a higher risk. Inversely,
the flat shape of the risk-averse function can be seen as re-45

duced confidence in the decision. There is less of a difference
in making a different decision than for the risk-friendly ac-
tor. At the same time, the expected loss of the minimum, and
thus the accepted risk, is lower. However, although they differ
in expected losses, both decision makers share the same in-50

dividual best estimate, since the loss function in itself is still
symmetric. This changes in panel (d), in which all customiza-
tion steps were applied. Here, the risk factor reweights the
influence of the subfunctions shown in panel (b). Under- and
overestimation cases are accordingly enhanced or reduced in55

impact so that the resulting loss function becomes asymmet-
ric and minima are found at different score estimates, given
the same underlying information.

In Fig. 1e and f, the functions from panels (c) and (d) are
applied on a score distribution resulting from the combina- 60

tion of two other uncertain parameters: reservoir thickness
and depth. This can be seen as an extremely simplified 1-D
model with only two inputs that define one output as a param-
eter of interest, the final score. In this case, thickness is seen
as the potential positive value in our reservoir, as it provides 65

space for hydrocarbons to accumulate. Depth is subtracted
from this, as it implies a cost of drilling. Thus, the final score
is a very essential representation of the economic value given
the information available. The respective final distribution is
slightly skewed. Figure 1e depicts the respective application 70

of the same functions used in panel (c): symmetric, but in-
cluding risk affinity. The overall effects are the same as in
panel (c). It can be additionally observed that since the under-
lying distribution is now asymmetric, all expected loss min-
ima are found on the median estimate, lower than the mean. 75

In panel (f), the complete custom loss function was applied
as in panel (d). Based on the uncertain information about the
final score, the three differently risk-affine loss functions plot
differently, with minima in the negative space, at zero, and in
the positive space. This illustrates how the risk-averse de- 80

cision maker tends to expect a possible negative outcome,
while the risk-friendly actor bids on a positive value. This
could be seen as the decision to abandon versus the decision
to invest in a prospect.

For a better understanding of how our finalized custom 85

loss function determines the incurrence of loss, actual losses
for three fixed true values and risk neutrality (r = 1) are plot-
ted in Fig. 2.

It has to be emphasized that this is just one possible pro-
posal for loss function customization. There is not one per- 90

fect design for such a case (Hennig and Kutlukaya, 2007).
Slight to strong changes can already be implemented by sim-
ply varying the values of the weighting factors a, b, and c.
Fundamentally different loss functions can also be based on
a significantly different mathematical structure. As loss func- 95

tions are customized regarding the problem environment and
according to the subjective needs and objectives of the de-
cision maker, they are mostly defined by the actor express-
ing his or her perspective (Davidson-Pilon, 2015; Hennig and
Kutlukaya, 2007). Changes in the individual’s perception and 100

attitude might lead to further customization needs at a future
point in time, as reported by Hennig and Kutlukaya (2007).

2.2 Case study: synthetic 3-D structural geological
model

Next we want to show that this loss function approach is not 105

only applicable to simple probability distributions but is an
equally useful tool to estimate the true value of a parameter of
interest resulting from more complex geological models that

www.solid-earth.net/10/1/2019/ Solid Earth, 10, 1–29, 2019



6 F. A. Stamm et al.: Actors, actions, and uncertainties

Figure 1. Illustration of different steps and aspects of our loss function customization. Functions are applied to an abstract score as the
parameter of interest.

encompass numerous uncertain input parameters. As a case
study, we now consider a synthetic 3-D structural geological
model that is placed in a probabilistic framework.

2.2.1 Computational implementation

Computationally, we implement all of our methods in a5

Python programming environment, relying in particular on
the combination of two open-source libraries: (1) GemPy
(version 1.0) for implicit geological modeling and (2) PyMC
(version 2.3.6) for conducting probabilistic simulations.

GemPy is able to generate and visualize complex 3-D10

structural geological models based on a potential-field in-
terpolation method originally introduced by Lajaunie et al.

(1997) and further elaborated by Calcagno et al. (2008).
GemPy was specifically developed to enable the embedding
of geological modeling in probabilistic machine-learning 15

frameworks, in particular by coupling it with PyMC (de la
Varga et al., 2019).

PyMC was devised for conducting Bayesian inference
and prediction problems in an open-source probabilistic
programming environment (Davidson-Pilon, 2015; Salvatier 20

et al., 2016). Different model-fitting techniques are provided
in this library, such as various Markov chain Monte Carlo
(MCMC) sampling methods. For our purpose we make use
of adaptive metropolis sampling by Haario et al. (2001) and
check MCMC convergence via a time series method ap- 25

Solid Earth, 10, 1–29, 2019 www.solid-earth.net/10/1/2019/



F. A. Stamm et al.: Actors, actions, and uncertainties 7

Figure 2. Loss based on the risk-neutral custom loss function
(Eq. 8) for determined true scores of −250, 0, and 250. This plot
is meant to clarify the way real losses are incurred for each esti-
mate relative to a given true value. The expected loss, as seen in
Fig. 1, is acquired by arithmetically averaging over all deterministic
loss realizations based on the score probability distribution by using
Eq. (3).

proach by Geweke et al. (1991). Components of a statis-
tical model are represented by deterministic functions and
stochastic variables in PyMC (Salvatier et al., 2016). We can
thus use the latter to represent uncertain model input parame-
ters and link them to additional data via likelihood functions.5

Other parameters, such as the value of interest for decision-
making, can be determined over deterministic functions as
children of parent input parameters.

To visually compare the states of geological unit probabil-
ities after conducting stochastic simulations, we consider the10

normalized frequency of lithologies in every single voxel and
visualize the results in probability fields (see Wellmann and
Regenauer-Lieb, 2012).

2.2.2 Design of the 3-D structural geological model

Our geological example model is designed to represent a15

potential hydrocarbon trap system. Stratigraphically, it in-
cludes one main reservoir unit (sandstone), one main seal
unit (shale), an underlying basement, and two overlying for-
mations that are assumed to be permeable so that hydrocar-
bons could have migrated upwards. Structurally, it is con-20

structed to feature an anticlinal fold that is displaced by a
normal fault. All layers are tilted and dip in the opposite di-
rection of the fault plane dip. A potential hydrocarbon trap
is thus found in the reservoir rock enclosed by the deformed
seal and the normal fault.25

Using GemPy, we construct the geological model as fol-
lows: in principle, it is defined as a cubic block with an extent
of 2000 m in the x, y, and z directions. The basic input data
for the interpolation of the geological features is composed of

Table 1. Input parameter uncertainties defined by distributions with
respective means µ, standard deviations σ , and shape factor α.

µ σ α

Overlying 0 40 0
Sandstone 2 0 60 0
Seal 0 80 0
Reservoir 0 100 0
Fault offset 0 −150 −2

3-D point coordinates for layer interfaces and fault surfaces, 30

as well as orientation measurements that indicate respective
dip directions and angles. From these data, GemPy is able to
interpolate surfaces and compute a voxel-based 3-D model
(see Fig. 3).

We include uncertainties by assigning them to the z po- 35

sitions of points that mark layer interfaces in the 3-D space.
This is achieved via probability distributions (PyMC stochas-
tic variables) from which error values are drawn. These are
then added to the original input data z value. As the z position
is the most sensible parameter for predominantly horizontal 40

layers, we can hereby not only implement uncertainties re-
garding layer surface positions in depth, but also layer thick-
nesses, geometrical shapes, and degree of fault offset.

Such probability distributions can also be allocated as
homogeneous sets to point and feature groups that are to 45

share a common degree of uncertainty (see Table 1). We as-
sign the same base uncertainty to groups of points belong-
ing to the same layer bottom surface by referring them to
one shared distribution each. Assuming an increase in un-
certainty with depth, standard deviations for the shared dis- 50

tributions are increased for deeper formations. Furthermore,
uncertainty regarding the magnitude of fault offset is incor-
porated by adding a skewed normal probability distribution
that is shared by all layer interface points in the hanging wall.
A left-skewed normal distribution is chosen to reflect the na- 55

ture of throw on a normal fault, in particular the slip motion
of the hanging wall block. Skew to the negative side ensures
that the offset nature of the normal fault is maintained and
inversion to a reverse fault is avoided.

This model was designed for the primary purpose of test- 60

ing our loss function method. All features, uncertainties, and
parameter relations were implemented in a way that they re-
sult in model variability and complexity that is adequate and
significant to the decision problem in this work. The model is
not aimed at representing a completely plausible or realistic 65

geological setting.

2.2.3 Vt as the parameter of interest

Given full 3-D representation of geological structures, we
can now define the trap volume Vt as the parameter of inter-
est, a feature that indicates the economic value of the reser- 70

voir in this case. For conducting straightforward volumetric
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8 F. A. Stamm et al.: Actors, actions, and uncertainties

Figure 3. Design of the 3-D structural geological model. A 2-D cross section through the middle of the model (y = 500 m), perpendicular
to the normal fault (parallel to the x–z plane), is shown in (a). A 3-D voxel representation of the model, highlighting the reservoir and seal
formations, is visualized in (b). In (d) and (d), the inclusion of parameter uncertainties is presented. Colors indicate certain layer bottoms
(i.e., boundaries) that are assigned shared z-positional uncertainties (c). All points in the hanging wall are additionally assigned a fault offset
uncertainty (d). Thicknesses of the three middle layers are defined by the distances of boundary points (e) and are thus directly dependent
on (c).

calculations, we assume that closed traps are always filled
to spill; i.e., we only consider structural features as control-
ling mechanisms and disregard other parameters in the OOIP
equation (Eq. 9).

We argue that Vt can be inserted for the hydrocarbon-filled5

rock volume A ·hTS2 in the OOIP equation (Dean, 2007;
Morton-Thompson et al., 1993):

OOIP= A ·h ·φ · (1− SW) · 1/FvF, (9)

where OOIP is returned in cubic meters, A is the drainage
area, h the net pay thickness, φ the porosity, SW the water10

saturation, and FvF the formation volume factor that deter-
mines the shrinkage of the oil volume brought to the surface.

By declaring these connections, we have given our model
an economic significance. We can assume that the hydrocar-
bon trap volume is directly linked to project development de-15

cisions; i.e., the investment and allocation of resources is rep-
resented by bidding on a volume estimate.

In the course of this work, we developed a set of algo-
rithms to enable the automatic recognition and calculation

of trap volumes in geological models computed by GemPy. 20

The volume is determined on a voxel-counted basis via four
conditions illustrated in Fig. 4 and further explained in Ap-
pendix A.

Following these conditions, we can define four major
mechanisms that control the maximum trap volume: (1) the 25

anticlinal spill point of the seal cap, (2) the cross-fault leak
point at a juxtaposition of the reservoir formation with itself,
(3) leakage due to juxtaposition with overlying layers and
cross-fault seal breach (failure related to the shale smear fac-
tor, SSF), and (4) stratigraphical breach of the seal when its 30

voxels are not continuously connected above the trap. Due to
the nature of our model, (3) and (4) will always result in com-
plete trap failure. The occurrence of these trap control mech-
anisms can be tracked throughout stochastic simulations of
the model. 35
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F. A. Stamm et al.: Actors, actions, and uncertainties 9

Figure 4. Illustration of the process of trap recognition in 2-D, i.e., the conditions that have to be met by a model voxel to be accepted as
belonging to a valid trap. A voxel has to be labeled as part of the target reservoir formation (a) and positioned in the footwall (b). Trap closure
is defined by the seal shape and the normal fault (c). Consequently, the maximum trap fill is defined by either the anticlinal spill point (S)
or a point of leakage across the fault, depending on juxtapositions with layers underlying (L1) or overlying the seal (L2). The latter is only
relevant if the critical shale smear factor is exceeded, as determined over D and T in (d). In this example, assuming sealing of the fault due
to clay smearing, the fill horizon is determined by the spill point in (d). Subsequently, only trap section 1 is isolated from the model borders
in (d) and can thus be considered a closed trap. Voxels included in this section are counted to calculate the maximum trap volume.

2.2.4 Generating different probability distributions for
Vt

The trap volume Vt is a result from GemPy’s implicit geo-
logical model computation. It is an output parameter depen-
dent on deterministic and stochastic input parameters. When5

conducting stochastic simulations, input uncertainties will
propagate to Vt, which is thereby represented by a respec-
tive probability distribution that our custom loss function can
be applied to. Using simple Monte Carlo error propagation,
with every iteration, we draw sample values for our uncer-10

tain primary model input parameters defined in Sect. 2.2.2,
and thus, with every iteration, we create one possible realiza-
tion of our geological model, which in turn comes with one
possible outcome for Vt. Results from all iterations together
approximate the probability distribution for Vt according to15

the input parameters.

Furthermore, we consider the possibility of updating
our model by adding additional secondary information via
Bayesian inference. We do this by introducing likelihood
functions that constrain our primary parameters. We have to 20

note that these inputs remain unchanged; however, their prior
probability distributions are revalued given the additional sta-
tistical information. We achieve this by conducting Markov
chain Monte Carlo (MCMC) simulations. Decision-making
is then based on the resulting posterior probability. Using dif- 25

ferent likelihood functions, we can create and generate differ-
ent posterior probability distributions for Vt, which represent
different information scenarios. Since we use Bayesian infer-
ence to revalue our original prior inputs, we can compare all
outcomes and realizations of our custom loss function. 30

For the application of Bayesian inference, we implement
two types of likelihoods.
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10 F. A. Stamm et al.: Actors, actions, and uncertainties

1. Layer thickness likelihoods. With every model realiza-
tion, we extract the z distance between layer bound-
ary input points at a central x–y position (x = 1100 m,
y = 1000 m) in our input interpolation data. Resulting
thicknesses can then be passed on to stochastic func-5

tions in which we define thickness likelihoods via nor-
mal distributions.

2. Shale smear factor (SSF) likelihood. SSF values are re-
alized over more complex parameter compositions. We
base this likelihood on a normal distribution that we link10

to the geological model output.

The inclusion of these likelihoods is based on purely hypo-
thetical assumptions and is intended to provide the opportu-
nity to explore the effects that different types and scenarios of
additional information might have. While the thickness like-15

lihood functions are dependent on input parameters directly,
the implementation of the SSF likelihood function requires
a full computation of the model and extended algorithms of
structural analysis.

Although Bayesian inference was utilized in this case20

study, it served primarily for the generation of these different
but comparable distributions on which to base our decision-
making, i.e., the application of our custom loss function. For
additional information on how implicit geological modeling
can be embedded in a Bayesian framework and how this can25

be used to reduce uncertainty, we refer to the work by Well-
mann et al. (2010b), de la Varga and Wellmann (2016), de la
Varga et al. (2019), and Wellmann et al. (2017).

3 Results

We applied our custom loss function to various different30

Vt probability distributions resulting from stochastic simu-
lations. First, reference results were created using only pri-
mary inputs (priors) and simple Monte Carlo error prop-
agation (10 000 sampling iterations, Scenario 1). Then we
devised several scenarios of additional information and in-35

cluded these via likelihoods and Bayesian inference. For this,
10 000 MCMC sampling steps were conducted, with an ad-
ditional burn-in phase of 1000 iterations. The prior parame-
ter uncertainties were chosen to be identical for all simula-
tions (see Table 1). Results of convergence diagnostics can40

be found in Appendix C.
We present the following information scenarios.

1. Prior-only model

2. Introducing seal thickness likelihoods

a. Likely thick seal45

b. Likely thin seal

3. Introducing reservoir thickness likelihoods

a. Likely thick reservoir

b. Likely thick reservoir and thick seal

4. Introducing SSF likelihoods 50

a. SSF likely near its critical value

b. Likely reliable SSF and thick seal

The implemented likelihoods are listed in Table 2.
For the comparison of results, we consider in particular

the following measures: (1) probability field visualization, 55

(2) occurrence of trap control mechanisms, (3) resulting trap
volume distributions, and (4) consequent realization of ex-
pected losses and related decisions.

3.1 Prior-only model (Scenario 1)

Probability field visualization illustrates well how the prior 60

uncertainty is based on normal distributions (see Fig. B2).
Trap control mechanisms are listed in Table B2. For this
prior-only scenario, all four relevant mechanisms occur. The
dominant factor is the anticlinal spill point with a 51.5 %
rate of occurrence. It is followed by cross-fault leakage to 65

the reservoir (25 %) and other permeable formations (12 %).
Stratigraphical breaches of the seal were registered to be de-
cisive in about 11 % of iterations. In only 0.5 % of iterations,
the algorithm failed to recognize a mechanism; i.e., correct
model realization failed. 70

Maximum trap volumes were calculated for each model
iteration and plotted as a probability distribution in Fig. 5.
In general, a wide range of volumes is possible, from zero
to more than 3 million m3. However, we can recognize a bi-
modal tendency: low volumes are less probable than signifi- 75

cantly high volumes or complete failure (Vt = 0).
Consequently, applying our custom loss function to this

distribution resulted in widely separated minimizing estima-
tors for the differently risk-inclined actors (see Fig. 5). Only
the risk-friendliest estimates are found within the described 80

highly positive mode of the distribution. Risk-averse individ-
uals bid on significantly lower estimates or even zero. The
risk-neutral decision is found between the two modes and
presents the highest expected loss. Expected losses decrease
towards the extreme decisions and closer to the modes. 85

3.2 Introducing seal thickness likelihoods (Scenarios 2a
and 2b)

We considered two scenarios of thickness likelihoods: the
seal being (Scenario 2a) likely very thick or (Scenario 2b)
likely very thin (see Table 2). 90

In Scenario 2a, probability visualization illustrates that the
presence of a thick seal is very probable (see Fig. B2). For
Scenario 2b, the presence of a reliable seal is questionable.

A high likelihood of a reliable seal cap (2a) significantly
reduced the probability of trap failure, while enhancing the 95

mode of highly positive outcomes (see Fig. 5). This coincides
with the predominance of the anticlinal spill point (63 %) and
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Table 2. Normal distribution mean (µ) and standard deviations (σ ) for the likelihoods implemented in the different scenarios.

Seal thickness Reservoir thickness SSF

µ (m) σ (m) µ (m) σ (m) µ σ

Scenario 1 – – - – – -
Scenario 2a 300 30 - – – -
Scenario 2b 50 30 - – – -
Scenario 3a 350 30 - – – -
Scenario 3b 300 30 300 30 – -
Scenario 4a – – - – 5.1 0.3
Scenario 4b 300 30 - – 2 0.3

Figure 5. Trap volume distribution and resulting loss function realizations for Scenario 1 (prior) and Scenario 2a, in which we introduced the
likelihood of a thick seal. Comparing both, we can observe how the additional information reduced the bimodality in the posterior distribution
(2a), particularly by reducing the probability of complete failure and enhancing positive probabilities. Consequently, Bayes actions converged
and expected losses were reduced.

the leak point to the same reservoir (36 %) as control mech-
anisms. The occurrence of other mechanisms was negligi-
ble (see Table B2). Inversely, a likely thin seal (2b) virtually
eliminated the positive mode and focused almost the whole
distribution on complete failure. Accordingly, seal-breach-5

related control mechanisms gained importance (65.5 % oc-
currence rate for stratigraphical seal breach).

In both scenarios, Bayes actions shifted towards the re-
spectively emphasized modes. This came with the overall
convergence of decisions and reduction of expected losses.10

In Scenario 2a, all decision makers bid on a positive out-
come. Risk-averse individuals experienced the strongest shift
but also present the highest expected losses. In Scenario 2b,
all individuals decide not to allocate resources. Even the risk-
friendliest actor moved to a zero estimate, with the most risk-15

averse bid having already been placed in the prior Scenario 1.

However, although all decisions coincide, expected losses in-
crease from risk averse to risk friendly (see Table B1).

3.3 Introducing reservoir thickness likelihoods
(Scenarios 3a and 3b) 20

We also tested scenarios for the likelihood of a thick reser-
voir formation alone (Scenario 3a) and in combination with
the likelihood of a thick seal (Scenario 3b; see Table 2).
The overall effect of using these reservoir-based likelihoods
turned out to be minor compared to the seal-related scenar- 25

ios.
In Scenario 3a, failure probabilities slightly increased, re-

sulting in a decision shift towards lower values (see Fig. B1).
Results for Scenario 3b are very similar to those of 2b, as
can also be seen in Table B1. There was no significant re- 30

duction of expected losses or a shift in decisions by adding
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12 F. A. Stamm et al.: Actors, actions, and uncertainties

Figure 6. Probability field visualizations for seal and reservoir units in Scenarios 1 (prior), 4a, and 4b. For Scenario 1, we used 3-D voxel
visualizations and set a threshold at a probability of 0.5 (only voxels with a probability higher than 0.5 are shown). It can be recognized that
the seal is disrupted across the fault in more than 50 % of the prior model realizations. For the other scenarios, we show the full probability
field for both units on a section through the middle of the model (y = 500 m), parallel to the x–z plane.

the likelihood of a thick reservoir to the likelihood of a thick
seal.

3.4 Introducing SSF likelihoods

We considered two SSF-related likelihood scenarios. In Sce-
nario 4a, we implemented solely an SSF likelihood that was5

based on a narrow normal distribution (µ= 5.1, σ = 0.3)
with a mean near the critical value SSFc = 5. In Scenario 4b,
we combined the likelihood of a thick seal (2a) with a likely
moderate but reliable SSF value (SSF normal distribution
with µ= 2 and σ = 0.3). Figure 6 illustrates the posterior10

situations well.
Scenario 4a resulted in increased bimodality of the pos-

terior distribution (see Fig. 7). Accordingly, the Bayes ac-
tion divergence and expected losses increased. Only two trap
control mechanisms remained relevant for 4a (see Table B2):15

anticlinal spill (66 %) and cross-fault leakage to overlying
formations (34 %).

The results for 4b were comparable to those of 2a but
more pronounced. Entropies, particularly related to the seal
thickness, were clearly reduced, also in the hanging wall.20

Probabilities of failure and low volumes were almost elimi-
nated, further enhancing the highly positive mode. This con-

sequently resulted in an even higher convergence of Bayes
actions, as well as reduction of expected losses compared to
Scenario 2a. Anticlinal spill is the decisive control mecha- 25

nism in 79.5 % of cases; otherwise, only cross-fault leakage
to the reservoir occurred (20.5 %).

4 Discussion

Our results show that it is possible to apply Bayesian deci-
sion theory to geological models as an approach to obtain an 30

objective basis for decisions by considering uncertainties in
these models. Even though the concept itself is not new, the
application to the context of probabilistic geological mod-
eling requires some adaptation and care when constructing
appropriate loss functions. Our results highlight the potential 35

use of custom loss functions, first for a simplified 1-D case,
and then for a more complex full 3-D model. Even though
these models are both conceptual, they highlight in our point
of view the interesting potential of the method, as the opti-
mal decision, the Bayes action, is not always directly obvi- 40

ous when only considering posterior predictive distributions.
The addition of subjective risk affinity and the risk of critical
overestimation particularly lead to interesting changes in the
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F. A. Stamm et al.: Actors, actions, and uncertainties 13

Figure 7. Trap volume distribution and resulting loss function realizations for Scenario 4a and Scenario 4b. Adding a likelihood of the SSF
being around its critical value led to increased bimodality and an elimination of low to moderate volume probabilities. Bayes actions diverged
accordingly in Scenario 4a. Implementing a reliable SSF value likelihood (µ= 2, σ = 0.3) in combination with the thick seal likelihood from
Scenario 2a resulted in a emphasis on highly positive volumes. This, in turn, led to a stark convergence of decisions and reduction of expected
losses.

optimal decision. Given these aspects, we consider the use
of custom loss functions with probabilistic geological mod-
eling to be a very suitable combination in the framework of
Bayesian decision theory.

The case study considered here addressed a typical sce-5

nario of exploration for a fluid reservoir. We first discuss ad-
ditional relevant points with regard to this specific case and
then provide more general comments on extensions and the
application in additional fields in which geological models
are commonly used.10

4.1 On the impact of additional information on
decision-making

We used these loss-function-related indicators to assess the
significance of additional information on a decision. We ob-
served that the impact on decision uncertainty, induced by15

Bayesian inference, is not simply strictly aligned with the
change in uncertainty regarding model parameters but on
parameter combinations that are relevant for the outcome
of the value of interest. It seems to be of central impor-
tance (1) “where” in the model uncertainty is reduced, i.e.,20

in which spatial area or regarding which model parameters,
and (2) which possible outcome is enhanced in terms of prob-
ability. An increased probability of a thick or thin seal in our
model equally reduced decision uncertainty significantly by
raising the probability of a positive or negative outcome, re-25

spectively. Improved certainty about our reservoir thickness,
however, had far lesser impact on decision-making. This

shows that some areas and parameter combinations have a
much greater influence on the decision uncertainty than oth-
ers, depending on the way they contribute to the outcome of 30

the value of interest.
Some types of additional information could even lead to

increased decision uncertainty. We observed this in Sce-
nario 4a. The introduced SSF likelihood practically con-
strained our geological model to two possible situations: (1) a 35

trap that is sealed off from juxtaposing layers and full to spill
and (2) complete failure of the trap due to a breached seal
across the fault. This made the decision problem a predomi-
nantly binary one and split the outcome distribution into two
narrowed but distant modes. The resulting increase in deci- 40

sion divergence and expected losses show that, in some cases,
adding information might leave actors in greater disagree-
ment than before.

However, we furthermore have to consider that actors
weight possible outcomes of the value distribution differ- 45

ently. They are consequently affected differently by the same
type of information. Risk-friendly actors were the most ro-
bust in their decision-making in the face of possible trap
failure. Eliminating this risk proved to be far less signifi-
cant for the most risk-friendly than for risk-averse actors. 50

Accordingly, it should be of foremost importance for risk-
averse actors to reduce the uncertainty regarding critical fac-
tors, such as seal integrity, which might decide between the
success and complete failure of a project. This is less rele-
vant for risk-friendly decisions makers, who might acquire a 55

www.solid-earth.net/10/1/2019/ Solid Earth, 10, 1–29, 2019

Fabian
Hervorheben
This subsection is supposed to be 4.2

anne.brekerbohm
Sticky Note
Marked set by anne.brekerbohm



14 F. A. Stamm et al.: Actors, actions, and uncertainties

comparable benefit from knowing more about the probability
of positive outcomes. They are less afraid of failure than they
are of missing out on opportunity.

Crucial risks might be easily assessed if they are depen-
dent on only one or a few parameters, such as seal thickness.5

In other cases, they are derived from more complex parame-
ter interrelations, as is the case for the shale smear factor. To
approach an effective mitigation of high risks, the complex-
ities behind decisive factors need to be assessed thoroughly,
and respective parent parameters, as well as their interde-10

pendencies, need to be identified. This might enable a better
understanding of which type of information is missing and
where in the model additional data might be of use for im-
proved decision-making.

More of simply any type of information does not neces-15

sarily lead to better decisions. Instead, improved decision-
making is achieved by attaining the right kind of information
that is able to shed light on uncertainties that are relevant
to an individual’s own goals and preferences, as well as the
general problem at hand. Bratvold and Begg (2010) stated20

that value is not generated by uncertainty quantification or
reduction in itself but is created to the extent that these pro-
cesses have the potential to change a decision. Such deci-
sion changes were clearly indicated by the shifting of ac-
tions in our different scenarios. According to Hammitt and25

Shlyakhter (1999), the difference in expected payoff between
the prior and posterior optimal decision gives the expected
value of information. This raises the question of to what ex-
tent a change in expected losses in itself might be an indicator
for the value of information and if there is value in gaining30

confidence in a decision, even though it remains unchanged.
While Monte Carlo simulation is by now common in the

hydrocarbon sector, it does not make decisions, as Murtha
et al. (1997) emphasized – it merely prepares for it. We be-
lieve that loss functions have the potential to go one step fur-35

ther. A hypothetical ideal loss function would consider all
conditions in an economic environment, as well as perfectly
represent the preferences and goals of an actor and conse-
quently be able to automatically find an optimal decision.
While this is obviously unrealistic, we presume that an elab-40

orate loss function might at least provide a very good pre-
liminary decision recommendation. It might furthermore be
able to weight risks that are not immediately apparent to an
individual as a person. Furthermore, the influence of human
biases and psychological behavioral challenges, as described45

by Bratvold and Begg (2010), could be mitigated.
Bayesian inference and MCMC methods have been ap-

plied for OOIP estimation and forecasting of reservoir pro-
ductivity by Wadsley et al. (2005), Ma et al. (2006), and Liu
et al. (2010). However, their research focused on history-50

matching simulations for already producing fields. Our ap-
proach of applying Bayesian inference for structural geo-
logical modeling and volumetric reservoir calculations is in-
tended to support decision-making in the earliest stages of a
reservoir when it has to be decided whether a project should55

be developed or not. Nevertheless, it was shown in the re-
search conducted by Wadsley et al. (2005) that early volu-
metric OOIP estimates can be combined with later calcula-
tions from production data via MCMC methods.

Our continuous approach could be integrated into common 60

discrete decision-making frameworks, such as decision trees.
In real cases, normally only a limited number of options is
given. In the context of hydrocarbon exploration and produc-
tion, this would relate to fixed magnitudes of resource allo-
cation, such as a certain number of required drilling wells or 65

the size of a production platform. Based on such previously
defined actual options, we could discretize our value prob-
ability distribution into sections, which represent each deci-
sion scenario accordingly. Our minimizing estimators would
then indicate the best discrete option for a decision maker. 70

4.2 State of knowledge, decision uncertainty, and
consistent decision-making

We applied the concept here to a synthetic geological model.
Nevertheless, it was designed to include some typical struc-
tural characteristics related to fluid reservoir systems. We de- 75

veloped algorithms aimed to consider the most common con-
ditions that define structural traps. However, these conditions
needed to be simplified and were implemented on a very con-
ceptual level. Furthermore, uncertainties employed in the 3-
D model related to z-positional values only and were thus of 80

a primarily one-dimensional nature. It follows that no effec-
tive uncertainty concerning the overall structural shape was
implemented, particularly regarding anticlinal features and
the lateral position of the spill point.

As we defined trap volume to be in essence a determinis- 85

tic function of uncertain model input parameters, uncertain-
ties propagate to this parameter of interest when conduct-
ing stochastic simulations. We consider the resulting volume
probability distributions to be expressions of the respective
state of knowledge (or information) on which the decision- 90

making is to be based. As this should include all parameters
and conditions relevant for decision-making, we furthermore
propose that the overall uncertainty inherent in this probabil-
ity distribution can be referred to as “decision uncertainty”
and that this entity should be viewed separately from geolog- 95

ical model uncertainty.
By viewing decision-making as a problem of optimizing a

case-specific custom loss function applied to such a state of
knowledge and decision uncertainty, we were able to observe
clear differences in the respective behavior of distinctly risk- 100

inclined actors.
The position and separation of their minimizing estima-

tors, i.e., their decisions, manifested according to the proper-
ties of the value distributions. The general spread and the oc-
currence of modes relative to the overall distribution and the 105

relevant decision space appear to be particularly significant.
High spread and bimodal tendencies, i.e., high overall uncer-
tainty, resulted in a wider separation of different actions. Re-
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Figure 8. In this work, we applied our loss function approach to estimate a hydrocarbon trap volume. For this, we considered stochastic
geomodeling parameters, defined deterministic functions to acquire volume, layer thicknesses, and SSF values, and linked the latter two to
respective likelihoods. Regarding the bigger picture, this methodology is expandable and could include other parameters and dependencies.
By taking into account other reservoir parameters and recovery factors, we could, for example, base decision-making on recoverable volumes.
We could also take depth information from our model and combine this with other cost parameters to calculate drilling costs. Including
additional costs, but also the selling price of hydrocarbons, we could attain the NPV as our final value of interest.

duction of the distribution to one mode conversely led to their
convergence. A decrease in decision uncertainty was further-
more accompanied by a reduction in expected loss for each
Bayes estimator.

Considering these observations, we derive the degree of5

action convergence and respective expected losses as mea-
sures for the state of knowledge and decision uncertainty at
the moment of making a decision. The better these are, the
more similar the decisions of differently risk-inclined actors
and the lower their loss expectations are. Given perfect in-10

formation all actors would bid on the same estimate (the true
value) and expect no loss, since no risk would be present. It
furthermore follows from this that the relevance of risk affin-
ity decreases with greater reduction of decision uncertainty.

4.3 Extensions and outlook15

We applied the concept of decision theory here to an implicit
geological modeling method (de la Varga et al., 2019). De-
pending on the application, other types of geometric inter-
polations may be more suitable to represent the geological

setting. More details on these methods, as well as the con- 20

sideration of respective model uncertainties and the potential
integration into probabilistic frameworks, are described, for
example, in Wellmann and Caumon (2018).

We defined risk affinity to be dependent on arbitrarily cho-
sen risk factors that led to according reweighting. Davidson- 25

Pilon (2015) used risk parameters determined by the maxi-
mal loss each actor could incur. Other approaches could be
based on more tangible values, for example by making risk
attitude dependent on a fixed budget.

There are still many points that could be expanded on in 30

future research. It would be of interest to apply the same
overall concept and methodology to an authentic case based
on real datasets. Given a realistic economic scenario includ-
ing the capital and operational expenditures of a project, a
full net-present-value (NPV) analysis could possibly be con- 35

ducted by applying a loss function to an NPV distribution
(see Fig. 8). A more elaborate loss function could be cus-
tomized on the basis of surveys, thereby acquiring the spe-
cific preferences of one or several companies and thus ob-
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taining a better profile of the economic environment, as well
as the individuals acting in it.

We chose hydrocarbon systems and petroleum exploration
as a sector for an exemplary application, as studies on risk
related to geological modeling are most prominent in this5

field. However, geological modeling is of central importance
to decision-making in several other fields. Directly related
are all other types of subsurface fluid reservoirs, for exam-
ple in groundwater extraction or geothermal energy usage.
Also closely related are applications of fluid storage in sub-10

surface reservoirs, most prominently carbon capture and stor-
age (CCS) applications. Questions regarding storage capac-
ity and safety deal with similar conditions and geological
problems as the ones presented in this work. The described
concepts can similarly be applied to other types of geologi-15

cal features, for example ore bodies in mineral exploration or
subsurface structures and materials in geotechnical applica-
tions. In all of these cases, the geological model can have sig-
nificant uncertainties and, similar to the example described in
this paper, further engineering and usage aspects carry high20

costs. We are therefore confident that a more detailed analy-
sis of uncertainties and the definition and understanding of
custom loss functions in the context of Bayesian decision
theory are very interesting paths for more research with wide
possible applications.25

Code and data availability. The code and model data used in
this study are available in a GitHub repository found at http:
//github.com/cgre-aachen/loss_function_decision_making_paper
(https://doi.org/10.5281/zenodo.2595357; Stamm, 2019TS3 ).
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Appendix A: Determination of the maximum trap
volume

The volume is calculated on a voxel-count basis. To assign
model voxels to the trap feature, it is necessary to check
whether the following conditions (illustrated in Fig. 4) are5

satisfied by each individual voxel.

1. Labeled as reservoir formation. The voxel has been as-
signed to the target reservoir formation (see Sandstone 1
in Fig. 4 (1)) in GemPy’s lithology block model.

2. Location above spill point horizon. The voxel is located10

vertically above the final spill point of the trap. In the
algorithm to find this final spill point, a spill point de-
fined by the folding structure, referred to as an anticlinal
spill point, and a cross-fault leak point that depends on
the magnitude of displacement and the resulting nature15

of juxtapositions are distinguished. Once both of these
points have been determined, the higher one is defined
to be the final spill point used to determine the maxi-
mum fill capacity of the trap. Given a juxtaposition with
layers overlying the seal, due to fault displacement, the20

respective section is checked for fault sealing by taking
into account the shale smear factor (SSF) value, which
is the ratio of fault throw magnitude D to displaced
shale thickness T (Lindsay et al., 1993; Yielding et al.,
1997; Yielding, 2012):25

SSF=
D

T
. (A1)

We attain both D and T by examining the contact be-
tween the seal lithology voxels and the fault surface.

For our model, we define the critical SSF to be SSFc =

5. We assume that cross-fault sealing is breached when30

this threshold is surpassed. For simplicity, the fault is
considered to be sealing along its plane.

3. Location inside a closed system. The voxel is part of
a model section inside the main anticlinal feature. All
of the voxels inside this particular section are separated35

from the borders of the model by voxels that do not meet
the first two conditions above, which primarily means
that they are encapsulated by seal voxels upwards and
laterally. This condition is relevant under the assump-
tion that connection to the borders of the model leads to40

leakage. A trap is thus defined as a closed system in this
model and trap closure is assumed to be void outside
the space of information, i.e., the model space. In our
example model, this also means that hydrocarbons es-
cape in the hanging wall due to respective layer dipping45

upwards towards the model borders.

It has to be emphasized that these conditions have been fitted
to our synthetic example model. For other models featuring

different geological properties, structures, and levels of com-
plexities, these conditions and respective algorithms might 50

not apply. Models of higher complexities will surely require
the introduction of further conditions.

A1 Anticlinal spill point detection

Regarding anticlinal structures and traps, it can be observed
that, geometrically and mathematically, a spill point is a sad- 55

dle point of the reservoir top surface in 3-D. This was de-
scribed by Collignon et al. (2015), who pointed out that the
linkage of folds is given by saddle points. These are thus a
controlling factor for spill-related migration from respective
structural traps. For anticlinal traps, closure can consequently 60

be defined as the distance between the saddle point (i.e., spill
point) and maximal point of the trap (Collignon et al., 2015).

Regarding a surface defined by f (x,y), a local maxi-
mum at (x0,y0,z0)would resemble a hilltop (Guichard et al.,
2013). Local maxima will be found looking at the cross sec- 65

tions in the planes y = y0 and x = x0. Furthermore, the re-
spective partial derivatives (i.e., gradients) δz

δx
and δz

δy
will

equal zero at x0 and y0, i.e., the extremum is a stationary
point (Guichard et al., 2013; Weisstein, 2017). In the context
of a geological reservoir system, such a hill can be regarded 70

as a representation of an anticlinal structural trap. Local min-
ima are defined analogously, presenting local minima in both
planes at a stationary point (Guichard et al., 2013). A saddle
point, however, is a stationary point, while not being an ex-
tremum (Weisstein, 2017). In general, saddle points can be 75

distinguished from extrema by applying the second deriva-
tive test (Guichard et al., 2013; Weisstein, 2017): considering
a 2-D function f (x,y) with continuous partial derivatives at
a point (x0,y0) so that fx(x0,y0)= 0 and fx(x0,y0)= 0, the
following discriminant D can be introduced: 80

D(x0,y0)= fxx(x0,y0)fyy(x0,y0)− fxy(x0,y0)
2. (A2)

Using this, the following holds for a point (x0,y0).

1. IfD > 0 and fxx(x0,y0) < 0, there is a local maximum.

2. IfD > 0 and fxx(x0,y0) > 0, there is a local minimum.

3. If D < 0, there is a saddle point at the point (x0,y0). 85

4. If D = 0, the test fails (Guichard et al., 2013).

According to Verschelde (2017), a saddle point in a matrix
is maximal in its row and minimal in its column. This cor-
responds to the logical geometrical deduction that a saddle
point for a surface defined by f (x,y) is marked by a lo- 90

cal maximum in one plane but a local minimum in the per-
pendicular plane. In our spill point detection algorithm, we
make use of GemPy’s ability to return layer boundary sur-
faces (simplices and vertices) as well as the gradients of the
potential fields in discretized arrays. 95

1. We first look for vertices at which the surface of interest
coincides with a gradient zero point.
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2. Then, we check for the change in gradient sign at each
such point in perpendicular directions. If they are oppo-
site to one another, we can classify the vertex as a saddle
point.

3. Lastly, we declare the highest saddle point to be our an-5

ticlinal spill point.

A2 Cross-fault leak point detection

For the potential point of leakage to formations underlying
the seal across the normal fault (including the reservoir it-
self), we take the highest z position of the reservoir units’10

contact (voxelized) with the fault in the hanging wall.
In the case of a juxtaposition with seal-overlying forma-

tions and a failed SSF check, the maximum contact of the
trap with the fault becomes the final spill point. Due to the
shape of the trap in our model, we can then expect full leak-15

age and set the maximum trap volume to zero.

A3 Calculating the maximum trap volume

When all trap voxels have been determined via the condi-
tions defined in Sect. 2.2.3, the maximum trap volume Vt is
calculated by simply counting the number of trap voxels and 20

rescaling their cumulative volume depending on the resolu-
tion in which the model was computed:

Vt = nv ·

(
So

Rm

)3

, (A3)

where nv is the number of trap voxels, So gives the original
scale, and Rm is the resolution used for the model. 25

For the example of a cubic geological model with an orig-
inal extent of 2000 m in three directions, computed using a
resolution of 50 voxels in every direction, the scale factor is
40 m. Every voxel thus accounts for 40m× 40m× 40m=
64000m3 in volume. It has to be noted that this direct ap- 30

proach to rescaling and calculating the volume requires the
model to be computed in cubic voxels.

Solid Earth, 10, 1–29, 2019 www.solid-earth.net/10/1/2019/
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Appendix B: Results data

Figure B1. Posterior trap volume distributions and respective loss function realization plots for Scenarios 1 (prior), 2b, 3a, and 3b.
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Figure B2. Probability field visualizations for Scenarios 1 to 3b.
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Table B1. Decision results for all considered scenarios and each actor. Respective optimal estimates (decisions) are represented by θ̂ , while
1θ̂ indicates posterior changes relative to the prior (Scenario 1) result. Expected losses are given by l, and changes relative to the prior by
1l.

Decision makers

Risk friendly Risk neutral Risk averse

r = 0.5 r = 0.75 r = 1.0 r = 1.25 r = 1.5

Scenario 1 θ̂ 19 072 000.00 15 616 000.00 8 960 000.00 1 280 000.00 0.00
Prior l 8 582 112.55 10 785 632.54 12 100 484.80 11 759 772.46 10 763 671.94

Scenario 2a θ̂ 22 528 000.00 19 712 000.00 17 920 000.00 16 448 000.00 15 232 000.00
Thick seal 1θ̂ 3 456 000.00 4 096 000.00 8 960 000.00 15 168 000.00 15 232 000.00

l 5 387 582.96 6 654 239.73 7 544 384.00 8 220 155.30 8 776 678.80
1l −3194529.59 −4131392.81 −4556100.80 −3539617.16 −1986993.14

Scenario 2b θ̂ 0.00 0.00 0.00 0.00 0.00
Thin seal 1θ̂ −19072000.00 −15616000.00 −8960000.00 −1280000.00 0.00

l 2 743 719.13 2 240 237.29 1 940 102.40 1 735 280.34 1 584 086.98
1l −5838393.42 −8545395.25 −10160382.40 −10024492.12 −9179584.96

Scenario 3a θ̂ 17 408 000 8 640 000 0 0 0
Thick reservoir 1θ̂ −1664000.00 −6976000.00 −8960000.00 −1280000.00 0.00

l 10 073 515.53 12 159 993.48 11 319 609.6 10 124 566.62 9 242 422.54
1l 1 491 402.98 1 374 360.94 −780875.20 −1635205.84 −1521249.40

Scenario 3c θ̂ 22 784 000.00 20 096 000.00 18 432 000.00 16 960 000.00 15 680 000.00
Thick reservoir and seal 1θ̂ 3 712 000.00 4 480 000.00 9 472 000.00 15 680 000.00 15 680 000.00

l 5 380 782.45 6 658 861.07 7 551 644.80 8 278 631.71 8 857 405.68
1l −3201330.10 −4126771.47 −4548840.00 −3481140.75 −1906266.26

Scenario 4a θ̂ 19 264 000.00 15 744 000.00 0.00 0.00 0.00
Near-critical SSF 1θ̂ 192 000.00 128 000.00 −8960000.00 −1280000.00 0.00

l 8 959 284.13 11 533 073.67 13 250 828.80 11 851 901.58 10 819 256.41
1l 377 171.58 747 441.13 1 150 344.00 92 129.12 55 584.47

Scenario 4b θ̂ 23 040 000.00 20 992 000.00 19 584 000.00 18 496 000.00 17 664 000.00
Reliable SSF and thick seal 1θ̂ 3 968 000.00 5 376 000.00 10 624 000.00 17 216 000.00 17 664 000.00

l 4 112 858.01 4 964 529.37 5 513 651.20 5 929 335.97 6 245 426.13
1l −4469254.54 −5821103.17 −6586833.60 −5830436.49 −4518245.81

Table B2. Occurrence rate of trap control mechanisms in percent for each information scenario.

1 – Anticlinal spill 2 – Leak to reservoir 3 – Leak to overlying 4 – Stratigraphic breach 5 – Unclear

Scenario 1 51.47 25.11 12.36 10.56 0.5
Scenario 2a 63.1 35.8 0.41 0.49 0.2
Scenario 2b 10.04 1.53 20.82 65.51 2.1
Scenario 3a 41.99 23.21 23.06 11.38 0.36
Scenario 3b 61.86 36.59 0.53 1.02 0
Scenario 4a 66.4 0.01 33.59 0 0
Scenario 4b 79.45 20.55 0 0 0
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Appendix C: MCMC convergence

Figure C1.
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Figure C1.
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Figure C1.
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Figure C1. Geweke plots and traces for Scenarios 2a to 3b.
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Figure C2.
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Figure C2. Geweke plots and traces for Scenarios 4a and 4b.
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