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Referee	#1:	Taylor	Lee	

General	comments	
Machine	learning	has	been	previously	well	established	in	other	fields,	but	has	not	grasped	
attention	in	a	similar	way	within	the	geosciences.	This	paper	uses	sparse	p-wave	velocity	data	
from	DSDP/ODP/IODP	as	training	data	in	a	machine	learning	algorithm	(Random	Forest)	to	
predict	p-wave	velocity	with	depth.	A	thorough	analysis	was	done	to	determine	how	effective	
machine	learning	is	at	predicting	vertical	velocity	profiles.	This	analysis	included	comparison	of	
p-wave	velocity	machine	learning	predictions	with	empirical	estimates.	A	variety	of	appropriate	
methods	were	tested	to	improve	the	machine	learning	prediction	(e.g.	smoothing	input	data	
and	prediction	results,	varying	max_features	and	number	of	predictors	used,	10-fold	cross	
validation,	predictor	value	scaling).	As	a	result,	this	work	provides	valuable	information	on	
types	of	useful	predictors	and	variables	highly	correlated	to	p-wave	velocity.	Additionally,	this	
method	shows	in	some	case	superior	to	using	strictly	empirical	methods	to	estimate	p-wave	
velocity	with	depth.	
Results	show	this	work	is	novel	and	useful.	However,	there	is	a	major	component	of	the	analysis	
missing.	This	work	contains	many	examples	of	validation	of	previously	existing	p-wave	velocity	
but	lacks	demonstration	on	prediction	of	p-wave	velocity	in	areas	where	no	velocity	data	is	
available.	
AC:	As	we	explain	in	the	Methods	section,	due	to	our	leave-location-out	approach	all	predictions	
are	made	for	locations	that	were	withheld	from	the	training	data	and	therefore	act	as	unknown	
locations.	Validation	of	the	prediction	involved	a	comparison	against	the	true	vp	data,	but	these	
data	were	in	no	case	part	of	the	prediction	model.	We	explain	below	(last	“specific	comment”)	
why	we	refrain	from	making	predictions	for	completely	new	locations	as	it	is	beyond	the	scope	
of	this	paper,	i.e.	the	purpose	of	this	paper	is	to	demonstrate	the	method	and	to	discuss	its	
advantages	and	limitations.	When	more	training	data	become	available	the	method	can	be	used	
to	make	predictions	elsewhere	–	probably	first	for	limited	areas	and	then	globally.	
	
Specific	comments	
Page	3	Section	2.1.2	(Predictors)	Line	28	mentions	that	the	continental	crust	was	set	at	1	billion	
years	to	represent	significant	older	crust	than	that	of	the	oceanic	crust.	If	all	the	observed	data	
(DSDP/ODP/IODP)	are	on	oceanic	crust,	what	is	the	importance/meaning	of	defining	
continental	crust	age?	
AC:	It	is	not	true	that	all	the	data	are	from	sites	above	oceanic	crust.	In	fact,	142	of	the	333	
boreholes	–	42%	–	were	drilled	on	continental	crust,	e.g.	in	continental	shelf	regions.	As	the	
thermal	regime	of	continental	crust	is	different	to	that	of	oceanic	crust	–	with	old	continental	



crust	being	of	lower	temperatures	than	young	oceanic	crust	–,	which	affects	density	and	hence	
p-wave	velocity,	we	thought	it	reasonable	to	differentiate	between	the	two	types	of	crust	and	
their	ages.	
CM:	no	changes	made	in	the	manuscript	
	
Page	7	Section	3.3	(Predictor	importance)	Line	20	states	that	categorical	predictors	generally	do	
not	have	any	importance	in	prediction	performance.	Additionally,	it	is	again	discussed	in	the	
discussion	section	(Section	4.2-	lines	8-14	page	9).	What	is	the	variance	of	your	sampled	data	
set	in	categorical	predictors?	For	example,	for	a	given	test	data	set	(i.e.	fold)	are	all	of	your	
categorical	predictors	for	that	run	a	1	or	0?	If	all	of	your	test	data	set	has	only	one	categorical	
value	then	that	predictor	would	be	of	no	importance.	
AC:	We	do	not	claim	that	categorical	predictors	“generally”	do	not	have	“any	importance”	in	
prediction	performance.	In	the	referenced	line	(now	p.	8	line	10-11),	we	use	the	term	“negligible	
importance”,	i.e.	almost	zero,	and	we	explain	that	this	only	refers	to	the	results	of	our	own	
study,	not	to	studies	involving	categorical	predictors	in	general.		
The	number	of	boreholes	per	predictor	(for	which	the	predictor	is	1)	varies	between	2	(0.6%)	
and	191	(57%),	on	average,	it	is	42	(12.7%).	We	therefore	agree	that	predictors	with	a	very	low	
representation	will	also	be	of	low	importance,	and	that	this	should	be	added	as	an	explanation	
in	the	Discussion.	
CM:	We	added	the	following	sentence	to	the	end	of	section	2.1	in	the	Methods:	“Across	the	
categorical	predictors,	the	number	of	boreholes	for	which	a	predictor	was	set	to	1	varied	
between	2	(0.6	%)	and	191	(57.4	%);	on	average,	the	geological	setting	represented	by	a	
categorical	predictor	applied	to	42	boreholes	(12.7	%).”		
We	also	included	the	sentence	“The	poor	representation	of	some	predictors,	such	as	“cold_vent”,	
“mud_volcano”	and	“hydroth_vent”	in	the	dataset,	causing	these	predictors	to	be	0	for	all	
boreholes	in	some	test	folds,	may	likely	explain	the	low	importance	of	these	predictors	in	the	
predictor	ranking.”	in	the	last	paragraph	of	section	4.2	in	the	Discussion	(p.	10	lines	2-5).	
	
Consider,	if	true,	explicitly	stating	that	predictions	of	this	kind	have	not	done	with	depth	before.	
(page	2	~	lines	16-20)	
AC:	As	far	as	we	know,	predictions	with	depth	have	not	been	done	before,	and	we	agree	that	this	
should	be	stated	in	the	text.	
CM:	We	added	a	sentence	to	this	paragraph	(lines	21-23):	“These	studies	were	in	general	
restricted	to	the	prediction	of	one	value	per	geographic	location;	the	prediction	of	multiple	
values,	such	as	depth	profiles,	has,	to	our	knowledge,	not	been	attempted	before.”	
	
Minor	suggestion	to	add	in	the	abstract	that	this	method	is	not	designed	to	capture	high	
variance	in	a	p-wave	velocity	profile,	but	is	instead	intended	to	capture	the	overall	trend	of	p-
wave	velocity	profile.	
AC:	We	agree	that	this	should	already	be	stated	in	the	Abstract.	
CM:	We	changed	the	sentence	in	line	9-10	(now	lines	10-11)	to	read:	“Here,	we	present	a	
machine	learning	approach	to	predict	the	overall	trend	of	seismic	p-wave	velocity	(vp)	as	a	
function	of	depth	(z)	for	any	marine	location.”	
	
It	is	stated	and	supported	(Line	1	page	7;	Figure	3)	that	the	RFE	CV	16	predictors	prediction	
(green)	is	better	than	CV,	max_features	=22,	38	predictors	however	the	error	in	the	prediction	
is	significantly	higher	for	the	green	prediction	with	roughly	the	same	%	boreholes	labelled	as	



“good”.	Why	do	you	consider	green	prediction	to	be	so	much	better	than	yellow	prediction?	It	
might	be	useful	if	you	explicitly	state	what	your	ultimate	metric	of	correctness	is	(e.g.	highest	%	
correct	or	lowest	error?)	
AC:	We	did	not	mean	to	imply	that	one	of	the	two	runs	provides	better	results	than	the	other,	
and	we	also	do	not	claim	this	anywhere.	We	merely	stated	the	differences.	However,	we	agree	
that	this	could	have	been	easily	misunderstood	due	to	our	ill	use	of	the	term	“performance”	–	
we	meant	performance	to	refer	to	both	the	highest	%	correct	and	the	lowest	error	(i.e.,	in	the	
same	model),	but	we	seem	to	have	used	it	in	other	ways	too,	which	must	have	been	confusing.	
We	now	explain	in	more	detail	what	we	mean	by	performance	and	how	our	predictions	were	
evaluated.		
CM:	Paragraph	3	in	the	Methods	section	2.3	was	changed	to	read	“Performance	of	the	RF	model	
was	evaluated	in	two	ways:	(1)	by	standard	error	metrics	and	(2)	by	the	proportion	of	
boreholes	with	predicted	vp(z)	superior	to	that	of	empirical	functions.	The	standard	error	
metrics	root	mean	square	error	(RMSE),	mean	absolute	error	(MAE),	and	the	coefficient	of	
determination	(R2)	were	calculated	based	on	the	comparison	of	the	predicted	and	true	vp(z)	
curves	for	each	borehole	in	the	test	fold.	RMSE,	MAE	and	R2	of	all	test	folds	were	then	averaged	
to	give	final	performance	values.”	
Throughout	the	manuscript,	we	also	replaced	the	term	“performance”	where	necessary,	to	make	
its	use	consistent.	In	the	sentence	reference	above	(now	lines	19-22),	we	replaced	
“performance”	by	“prediction	scores”.	
	
What	is	the	final	global	spatial	resolution?	E.g.	prediction	of	p-wave	velocity	profile	every	1-	
degree,	5-min,	etc.?	
AC:	We	do	not	want	to	go	so	far	as	to	give	a	final	global	spatial	resolution	for	the	prediction	of	vp.	
Our	main	aim	was	to	investigate	if	it	is	at	all	possible	to	achieve	realistic	predictions	of	vp(z).	We	
have	shown	that	this	is	generally	the	case,	however,	our	results	also	clearly	indicate	that	more	
input	data	are	required	to	overcome	low	prediction	performance	due	to	lack	of	suitable	data.	
For	this	reason,	we	think	that	the	prediction	model	needs	to	be	improved	further	before	a	“final	
resolution”	should	be	given.	–	In	any	case,	one	final	resolution	value	likely	would	not	be	
sufficient.	Due	to	the	heterogeneous	depth	distribution	of	the	boreholes	used	(in	addition	to	the	
heterogeneous	spatial	distribution),	the	resolution	would	vary	with	depth.	Thus,	separate	
resolution	values	would	need	to	be	determined	for	different	depths	(here:	range	0-2500	m),	
which	would	likely	be	confusing	and	not	very	helpful	for	the	reader.		
CM:	no	changes	made	in	the	manuscript	
	
Page	9	Section	4.2	(Most	important	predictors	for	the	prediction	of	vp(z))	Lines	2-8	discuss	how	
certain	predictors	are	not	used	(porosity,	density,	pressure)	as	not	all	boreholes	have	depth	
associated	measurements.	However,	some	of	the	predictors	used	in	the	prediction	do	not	have	
a	depth	component	(e.g.	crustage).	Applying	this	logic,	why	do	you	not	use	seafloor	porosity	
(i.e.	depositional	porosity)	or	likewise	predictors?		
AC:	We	did	not	mean	that	we	can	only	use	predictors	with	depth	measurements,	we	obviously	
also	used	depth-independent	predictors.	The	point	here	(which	was	not	well	explained	in	the	
text)	was	that	we	could	only	use	predictors	that	were	available	(or	could	be	determined)	for	
every	borehole	location.	This	did	not	apply	to	many	of	the	e.g.	porosity	measurements,	which	
had	been	measured	in	boreholes	(with	a	depth	component)	but	often	not	at	the	borehole	
locations	at	which	vp	had	been	measured.	Even	in	the	relatively	few	boreholes	where	both	
porosity	(or	density,	pressure	etc)	and	vp	had	been	measured,	the	depth	ranges	did	not	always	



match	-	so	there	would	have	been	depths	with	vp	data	but	no	porosity	data.	It	was	impossible	to	
also	account	for	such	cases,	which	is	why	we	decided	to	leave	these	parameters	out.	As	reviewer	
2	also	asked	for	an	explanation	regarding	choice	of	predictors,	we	clarified	this	in	the	Methods	
section	2.1.2.	
We	also	agree	that	a	parameter	like	seafloor	porosity,	which	is	available	as	a	global	grid	(we	are	
assuming	that	the	reviewer	is	referring	to	the	grid	by	Martin	et	al.,	2015),	could	easily	have	been	
added	as	a	predictor.	We	did	not	do	this	at	the	time,	and	we	hope	the	reviewer	will	understand	
that	it	is	now	too	late	to	add	new	predictors	to	our	study	–	as	we	state	in	section	4.2,	there	are	
several	other	predictors	that	could	potentially	be	added,	but	this	would	have	to	be	done	in	a	
future	study.			
CM:	We	have	clarified	our	choice	of	predictors	by	adding	the	following	passage	to	the	Methods	
section	2.1.2	(p.	4	lines	5-13):	“…	These	predictors	were	parameters	that	were	assumed	to	
influence	p-wave	velocity.	However,	only	predictors	that	could	be	obtained	for	each	of	the	333	
borehole	locations	were	used.	Predictors	such	as	latitude	(lat),	longitude	(long),	and	water	
depth	(wdepth)	were	taken	from	the	borehole’s	metadata,	whereas	other	predictors	were	
extracted	from	freely	available	global	datasets	and	grids	(Table	1).	In	addition,	predictors	
describing	the	borehole’s	geological	setting	were	determined	from	the	site	descriptions	given	in	
the	proceedings	of	each	drilling	campaign.	Some	parameters	known	to	influence	seismic	
velocity	–	e.g.	porosity,	density,	or	pressure	–	had	to	be	left	out	as	suitable	datasets	were	not	
available.	Although	some	of	these	parameters	had	been	measured	in	DSDP,	ODP	and	IODP	
boreholes,	they	had	not	necessarily	been	logged	at	the	same	locations	and	depths	at	which	vp	
data	had	been	measured,	and	therefore	could	not	be	obtained	at	all	of	the	333	boreholes	used.”						
	
No	supplemental	material	was	provided	for	the	global	prediction	of	p-wave	velocity	with	depth.	
This	paper	should	include	the	final	global	prediction	of	p-wave	velocity	with	depth.	
AC:	No,	we	do	not	agree.	As	with	the	final	spatial	resolution,	providing	a	final	global	prediction	
of	vp	at	this	stage	(i.e.	when	the	prediction	model	still	requires	optimization	and	is	therefore	not	
final	yet)	is	neither	feasible	nor	helpful.	In	fact,	it	would	maybe	give	this	method	a	bad	
reputation	to	deploy	it	prematurely.	Furthermore,	we	show	that	one	“final	global	prediction”	
would	not	be	sufficient.	We	assume	the	reviewer	expects	a	global	map	of	final	prediction	values,	
similar	to	Fig.	4	in	Taylor	et	al.	(2019)	or	Fig.	1c	in	Martin	et	al.	(2015).	While	such	a	map	may	
be	useful	in	cases	with	only	one	prediction	value	per	location,	in	our	case	–	taking	into	account	
the	depth	component	of	the	predicted	vp	–	a	whole	range	of	prediction	maps	would	seem	
necessary,	one	for	each	depth.	However,	none	of	these	maps	would	be	of	much	use	on	its	own.	It	
would	only	show	the	variation	of	velocity	at	a	certain	depth,	but	we	are	interested	in	the	
variation	(or	trend)	of	velocity	with	depth	(i.e.,	a	profile),	which	is	much	better	illustrated	by	the	
predicted	vp(z)	profiles	(of	which	we	show	sufficient	examples).	Thus,	we	do	not	think	a	final	
global	prediction	is	useful.	
CM:	no	changes	made	in	the	manuscript					
	
Technical	corrections	
Page	8	delete	“the”	on	line	21:	“by	the	at	least	60%	of	test	locations”	
CM:	deleted	“the”	(now	p.	9	line	8)	
	
Page	8	line	3	consider	changing	“our	results	show	that	vp(z)	profiles”	to	“our	results	show	that	
the	general	trend	of	vp(z)	profiles”	
CM:	We	changed	this	sentence	accordingly.	(now	line	24)	



	
Page	16	Figure	2	caption	(e)	change	“less	good”	to	different	word	(substandard?)	
CM:	We	changed	this	to	“lower-quality	prediction”.	
	
Page	23	table	3,	change	words	so	they	have	consistent	capitalization	between	table	columns	
(e.g.	Long	and	long)	
CM:	We	changed	the	capitalized	letters	accordingly	(also	in	Table	2).	
	
Page	12	Lee	et	al.,	2019	citation	is	missing	the	publication	year. 
AC:	Sorry,	this	paper	was	fully	published	just	before	we	submitted	our	manuscript	and	we	
forgot	to	update	the	reference	correctly.	
CM:	Added	publication	year.	
 
 
Referee	#2:	Anonymous	referee	

The	manuscript,	"	Prediction	of	seismic	p-wave	velocity	using	machine	learning",	is	a	well-
written	description	of	a	machine	learning	method	–Random	Forests	–	to	predict	seismic	p-wave	
velocity	as	a	function	of	depth	for	any	a	generic	marine	location.	This	manuscript	is	suitable	for	
Copernicus,	but	the	manuscript	needs	to	be	revised	before	it	can	be	accepted.	I	have	some		
suggestions	here.	
	
1	Introduction.	
Page	2:	
L24:	You	make	the	statement	that	the	most	widely	used	machine	learning	methods	are	ANNs,	
SVMs,	and	RFs.	It	is	hard	to	convince	people	that	these	three	algorithms	are	the	most	widely	
used.	For	specific	problems,	some	algorithms	may	be	more	common	than	the	other	algorithms.	
You	may	say	that	the	most	widely	used	machine	learning	includes	ANNs,	SVMs,	and	RFs.	
AC:	We	agree	with	the	reviewer	that	this	is	probably	problem-dependent	and	should	not	be	
generalized	here.	
CM:	We	replaced	“are”	by	“include”.	(now	line	26)	
	
L31:	You	mentioned	that	RF	has	been	repeatedly	found	superior	to	other	machine	learning	
methods.	You	need	to	specify	the	particular	problems	that	RF	has	been	found	superior	to	“other	
machine	learning	methods”	in	the	text.	And	what	other	machine	learning	methods	do	you	mean	
here?	Please	specify	in	the	text.	
AC:	We	have	given	more	details	on	the	particular	studies	and	algorithms	tested.	
CM:	We	added	2	sentences	after	the	first	sentence	of	this	paragraph	(now	p.3	lines	1-5):	“For	
example,	Li	et	al.	(2011)	tested	23	machine	learning	algorithms	–	including	RF,	SVM,	and	kriging	
methods	–	to	predict	mud	content	in	marine	sediments,	and	found	that	RF,	along	with	RF	
combined	with	ordinary	kriging	or	inverse	distance	squared,	provided	the	best	prediction	
results.	Cracknell	and	Reading	(2014)	applied	five	machine	learning	methods	to	lithology	
classification	of	multispectral	satellite	data	and	reported	higher	classification	accuracy	for	RF	
than	for	Naive	Bayes,	SVM,	ANN,	and	k-Nearest	Neighbors.”	
	
2	Methods	
Page	3,	section	2.1.2:	



L25:	How	do	you	come	up	with	these	38	predictors?	Could	you	specify	the	reason	why	you	
choose	these	38	predictors	in	this	section?	
AC:	We	agree	that	further	information	would	be	helpful	in	this	section.	
CM:	We	shortened	the	first	sentence	to	“A	total	of	38	geological	and	spatial	variables	were	
included	as	predictors	(Table	1).”	and	added	the	following	passage:	“These	predictors	were	
parameters	that	were	assumed	to	influence	p-wave	velocity.	However,	only	predictors	that	
could	be	obtained	for	each	of	the	333	borehole	locations	were	used.	Predictors	such	as	latitude	
(lat),	longitude	(long),	and	water	depth	(wdepth)	were	taken	from	the	borehole’s	metadata,	
whereas	other	predictors	were	extracted	from	freely	available	global	datasets	and	grids	(Table	
1).	In	addition,	predictors	describing	the	borehole’s	geological	setting	were	determined	from	
the	site	descriptions	given	in	the	proceedings	of	each	drilling	campaign.	Some	parameters	
known	to	influence	seismic	velocity	–	e.g.	porosity,	density,	or	pressure	–	had	to	be	left	out	as	
suitable	datasets	were	not	available.	Although	some	of	these	parameters	had	been	measured	in	
DSDP,	ODP	and	IODP	boreholes,	they	had	not	necessarily	been	logged	at	the	same	locations	at	
which	vp	data	had	been	measured,	and	therefore	could	not	be	obtained	at	all	of	the	333	
boreholes	used.“	
	
Page	4,	section	2.2:	
L14:	How	do	you	define	“performance”?	I	saw	you	mentioned	performance	in	the	later	section	
2.3.	But	it	is	better	to	define	that	when	you	first	mention	that.	
AC:	We	agree	that	it	is	not	always	clear	what	we	mean	by	the	term	“performance”,	and	we	also	
used	it	inconsistently	to	refer	to	the	standard	error	metrics,	the	proportion	of	well	predicted	
boreholes,	or	both	–	this	is	obviously	confusing.	By	performance,	we	mean	both	the	error	
metrics	and	the	proportion	of	well	predicted	boreholes.	We	now	explain	this	in	paragraph	3	of	
section	2.3	(p.	5	lines	20-25)	and	removed/replaced	the	term	in	the	previous	paragraphs.		
CM:	Paragraph	3	was	changed	to	read	“Performance	of	the	RF	model	was	evaluated	in	two	
ways:	(1)	by	standard	error	metrics	and	(2)	by	the	proportion	of	boreholes	with	predicted	vp(z)	
superior	to	that	of	empirical	functions.	The	standard	error	metrics	root	mean	square	error	
(RMSE),	mean	absolute	error	(MAE),	and	the	coefficient	of	determination	(R2)	were	calculated	
based	on	the	comparison	of	the	predicted	and	true	vp(z)	curves	for	each	borehole	in	the	test	
fold.	RMSE,	MAE	and	R2	of	all	test	folds	were	then	averaged	to	give	final	performance	values.”	
Throughout	the	manuscript,	we	replaced	the	term	“performance”	where	necessary.		
	
In	addition,	why	do	you	choose	1000	trees?	what	is	the	maximum	depth	of	each	tree?	How	does	
the	number	of	trees	and	depth	affect	the	bias	and	variance	of	the	prediction?	
AC:	Our	study	of	relevant	literature	showed	that	most	studies	used	either	500	or	1000	trees.	In	
an	early	version	of	our	prediction	model,	we	ran	RF	repeatedly	for		numbers	of	trees	between	2	
and	1500	and	evaluated	model	performance	based	on	the	OOB	(out-of-bag)	score.	As	the	
performance	still	varied	after	500	trees	but	stabilized	around	1000	trees,	we	chose	1000	trees.	
We	did	not	repeat	this	procedure	with	our	final	prediction	model	(which	no	longer	used	the	
OOB	approach),	so	it	is	possible	that	a	lower	number	of	trees	might	already	have	been	sufficient.	
In	that	case,	however,	a	higher	number	would	not	have	decreased	model	performance.		The	
depth	of	the	trees	was	not	defined	and	therefore	not	varied	in	the	final	prediction	model.	Early	
tests	showed	that	performance	was	generally	worse	when	maximum	tree	depths	were	specified	
(e.g.	for	max_depth	=	5).	
CM:	no	changes	made	in	the	manuscript	
	



3	Results	
Page	6,	section	3.1:	
The	performance	of	an	algorithm	should	be	shown	by	both	bias	and	variance.	I	only	see	the	
comparison	of	errors	and	percentage	of	boreholes	with	scores	2	and	3	in	Fig.	3	and	4.	How	does	
the	number	of	predictors	and	data	smoothing	affect	the	variance	of	the	prediction?	
AC:	There	is	no	strict	rule	that	algorithm	performance	should	always	be	evaluated	by	bias	and	
variance.	Many	studies	applying	machine	learning	methods	use	other	means	to	validate	their	
results.	We	chose	to	evaluate	performance	by	MAE,	RMSE	and	R²,	which	have	been	used	as	
performance	measures	by	several	other	studies	that	predicted	environmental	parameters	(e.g.	
Gasch	et	al.	(2015),	Ließ	et	al.	(2016),	Meyer	et	al.	(2015,	2016)).	Our	own	borehole	percentage	
value	serves	as	an	additional	measure.	We	think	that	our	performance	evaluation	approach	is	
now	well	described	in	section	2.3.	The	effects	of	varying	numbers	of	predictors	and	data	
smoothing	in	terms	of	prediction	performance	are	already	described	in	the	text.		
CM:	see	above	for	changes	regarding	clarification	of	prediction	performance	
	
Since	you	only	have	333	boreholes,	2%	change	due	to	different	model	runs	only	change	scores	
of	7	boreholes.	I	am	curious	about	the	location	distributions	of	those	boreholes	which	changed	
their	scores,	and	why	their	scores	changed	by	changing	the	number	of	predictors	or	data	
smoothing.	
AC:	Unfortunately,	our	applied	prediction	method	does	not	allow	determining	which	boreholes	
changed	their	scores	across	different	model	runs.	We	agree	that	this	would	be	an	interesting	
aspect	to	look	into,	but	in	this	case	our	model	cannot	easily	be	adapted	accordingly,	so	this	
would	likely	require	setting	up	a	completely	new	model.	This	is	beyond	the	scope	of	these	
revisions.	
CM:	no	changes	made	in	the	manuscript	
	
4	Discussion	
Page	10:	
L1-5:	You	made	a	strong	statement	about	performance	of	RF.	As	I	suggested	in	your	
introduction	section,	the	performance	of	a	machine	learning	algorithm	really	depends	on	
situations.	
AC:	We	agree	that	this	can	also	be	misunderstood	to	mean	that	RF	is	always	the	perfect	choice,	
which	is	of	course	not	the	case.	What	we	actually	meant	to	say	was	that	due	to	the	issues	with	
our	dataset	(spatially	inhomogeneous,	varying	depth	ranges,	etc),	it	is	much	more	likely	that	the	
cases	of	poor	performance	are	due	to	the	dataset	itself,	and	not	due	to	the	choice	of	machine	
learning	algorithm.		
CM:	We	rewrote	the	last	sentence	(now	lines	31-33)	to	clarify	this:	“However,	given	the	present	
dataset	and	its	spatial	inhomogeneity,	we	doubt	that	a	different	algorithm	would	lead	to	a	
significantly	improved	prediction	performance	for	vp.”	
	
5	Conclusion	
Page	10:	
L15:	RF	is	hard	to	extrapolate	to	data	outside	the	range	they	have	been	seen.	I	doubted	that	RF	
can	be	used	for	geophysical	modeling	in	areas	lacking	v_p(z)	from	boreholes	or	seismic	data.	
AC:	This	is	why	we	recommend	more	data	to	be	added	–	to	increase	the	data	ranges	within	the	
RF	model	and	the	likelihood	that	when	the	RF	model	is	applied	to	new	data,	these	data	are	
within	the	ranges	known	to	RF.	We	agree	that	at	present,	this	is	not	always	the	case,	which	likely	



explains	some	of	the	lower-performing	locations.	However,	we	also	point	out	that	our	RF	model	
is	not	meant	as	a	replacement	for	other	sources	of	vp(z)	data.	It	is	meant	only	as	an	aid	when	no	
other	means	are	available.	We	do	not	expect	RF	to	ever	replace	or	be	superior	(or	even	very	
close)	to	actual	vp	measurements	or	vp	from	seismic	data	(nor	do	we	claim	this	in	the	
manuscript).	Our	approach	is	only	meant	to	provide	an	alternative	to	using	an	(unrealistic)	
constant	velocity	or	empirically-derived	vp(z)	profiles,	which	are,	as	we	show,	often	of	lower	
quality	than	our	predicted	vp(z)	profiles.	
CM:	no	changes	made	in	the	manuscript	
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Abstract. Measurements of seismic velocity as a function of depth are generally restricted to borehole locations and are 5 

therefore sparse in the world’s oceans. Consequently, in the absence of measurements or suitable seismic data, studies 

requiring knowledge of seismic velocities often obtain these from simple empirical relationships. However, empirically 

derived velocities may be inaccurate, as they are typically limited to certain geological settings, and other parameters 

potentially influencing seismic velocities, such as depth to basement, crustal age, or heatflow, are not taken into account. 

Here, we present a machine learning approach to predict the overall trend of seismic p-wave velocity (vp) as a function of 10 

depth (z) for any marine location. Based on a training dataset consisting of vp(z) data from 333 boreholes and 38 geological 

and spatial predictors obtained from publically available global datasets, a prediction model was created using the Random 

Forests method. In 60 % of the tested locations, the predicted seismic velocities were superior to those calculated 

empirically. The results indicate a promising potential for global prediction of vp(z) data, which will allow improving 

geophysical models in areas lacking first-hand velocity data. 15 

1 Introduction 

Seismic p-wave velocities (vp) and velocity-depth profiles are needed in many marine-geophysical applications, e.g. for 

seismic data processing, for time-depth conversions, or to estimate hydrate concentrations in gas hydrate modelling. Direct 

measurements of seismic velocities, however, are sparse and limited to borehole locations such as those drilled by the Deep 

Sea Drilling Project (DSDP), the Ocean Drilling Program (ODP), and the International Ocean Discovery Program (IODP).  20 

Seismic velocities can also be obtained indirectly from seismic data. Approaches include derivation of 1D velocity profiles 

via refraction seismology using ocean bottom seismometers (OBS) (Bünz et al., 2005; Mienert et al., 2005; Westbrook et al., 

2008; Plaza-Faverola et al. 2010a, 2010b, 2014), and velocity analysis of large-offset reflection seismic data (Crutchley et 

al., 2010, 2014; Plaza-Faverola et al., 2012). However, suitable seismic datasets are only available in certain areas, and OBS-

derived velocity profiles are of relatively low spatial and vertical resolution. 25 

In the absence of measurements and refraction seismic data, constant velocities are often used for time-depth conversions 

(e.g. Brune et al., 2010) or processing of reflection seismic data (Crutchley et al., 2010, 2011, 2013; Netzeband et al., 2010; 

Krabbenhoeft et al., 2013; Dumke et al., 2014), even though a constant velocity-depth profile is generally unrealistic and will 

thus lead to inaccurate results. 
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As an alternative, empirical velocity functions have been derived, which are based on averaged measurements and provide 

seismic velocity-depth relationships for different geological and geographical settings. For example, Hamilton (1979, 1980, 

1985) used averaged vp measurements from boreholes and sonobuoys to derive velocity-depth functions for different marine 

settings and sediment types. Velocities calculated from these empirical functions have been used e.g. for time-depth 

conversions (Lilly et al., 1993; Brune et al., 2010), brute stack processing of reflection seismic data, as well as local (Bünz et 5 

al., 2005) and regional (Scanlon et al., 1996; Wang et al., 2014) velocity models.    

Although velocity profiles calculated from empirical functions may work well in some cases, empirical functions do not 

always produce accurate vp(z) profiles, due to their use of depth as the only input parameter and their limitation to certain 

regions or geological settings. Mienert et al. (2005) observed both agreements and disagreements between velocity profiles 

derived from OBS data and calculated from Hamilton functions, whereas Westbrook et al. (2008) argue that empirical 10 

functions are in general not representative for other areas due to variations in lithology and compaction history. Moreover, 

the Hamilton functions fail to provide correct velocities in areas containing gas hydrates or gas-saturated sediments (Bünz et 

al., 2005; Westbrook et al., 2008). Consequently, an alternative method is required to estimate vp(z) profiles for a larger 

variety of geological settings. 

Over the last years, parameters in many different applications have been successfully predicted using machine learning 15 

techniques (e.g. Lary et al., 2016). In geosciences and remote sensing, machine learning methods have been used to predict 

soil properties (Gasch et al., 2015; Ließ et al., 2016; Meyer et al., 2018), air temperatures (Meyer et al., 2016a, 2018), 

biomass (Meyer et al., 2017), and the elasticity modulus of granitic rocks (Karakus, 2011). Applications also extended into 

marine settings, involving the prediction of sediment mud content off southwest Australia (Li et al., 2011), as well as 

parameters such as seafloor porosity (Martin et al., 2015; Wood et al., 2018), seafloor biomass (Wei et al., 2010), and 20 

seafloor total organic carbon (Wood et al., 2018; Lee et al., 2019) on a global scale. These studies were in general restricted 

to the prediction of one value per geographic location; the prediction of multiple values, such as depth profiles, has, to our 

knowledge, not been attempted before. 

In machine learning, a prediction model is constructed from a training dataset consisting of the target variable to be 

predicted, and a set of predictor variables. A random subset of the data, the test set, is typically held back for testing and 25 

validation of the prediction model. The most widely used machine learning methods includeare Artificial Neural Networks 

(ANN; e.g. Priddy and Keller, 2005), Support Vector Machines (SVM; Vapnik, 2000), and Random Forests (RF; Breiman, 

2001).  

RF is an ensemble classifier based on the concept of decision trees, which are grown from the training set by randomly 

drawing a subset of samples with replacement (bagging or bootstrap approach) (Breiman, 2001). At each tree node, the data 30 

are split based on a random subset of predictor variables to partition the data into relatively homogenous subsets and 

maximize the differences between the offspring branches. Each tree predicts on all samples in the test set and the final 

prediction is obtained by averaging the predictions from all trees. 
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RF has been repeatedly found superior to other machine learning methods. For example, Li et al. (2011) tested 23 machine 

learning algorithms – including RF, SVM, and kriging methods – to predict mud content in marine sediments, and found that 

RF, along with RF combined with ordinary kriging or inverse distance squared, provided the best prediction results. 

Cracknell and Reading (2014) applied five machine learning methods to lithology classification of multispectral satellite data 

and reported higher classification accuracy for RF than for Naive Bayes, SVM, ANN, and k-Nearest Neighbors (e.g. Li et 5 

al., 2011; Cracknell and Reading, 2014). RFIt is robust to noise and outliers (Breiman, 2001), and it is also able to handle 

high-dimensional and complex data. Moreover, RF does not require any preprocessing of the input variables and provides 

variable importance measurements, making it the first choice method in many applications. 

Here, we apply RF to predict seismic p-wave velocity-depth profiles on a global scale, based on a set of 38 geological and 

spatial predictors that are freely available from global datasets. Prediction performance is evaluated and compared to 10 

velocity-depth profiles calculated from empirical vp functions. We also test additional methods for improvement of model 

performance and determine which predictors are most important for the prediction of vp. 

2 Methods  

2.1 Dataset 

2.1.1 vp(z) data 15 

vp(z) profiles for training of the RF model were obtained from boreholes drilled by the DSDP, ODP and IODP campaigns 

between 1975 and 2016. All boreholes containing vp measurements were used, excluding those with bad-quality logs 

according to the logging description notes. In total, 333 boreholes were included in the dataset, the distribution of which is 

shown in Fig. 1. All vp(z) data from these boreholes are available through http://www.iodp.org and were downloaded from 

the archive at http://mlp.ldeo.columbia.edu/logdb/scientific_ocean_drilling/. 20 

A multitude of measuring methods and tools had been employed by the different drilling campaigns to obtain vp 

measurements, including wireline logging tools (e.g. sonic digital tool, long-spacing sonic tool, dipole sonic imager, 

borehole compensated sonic tool) and logging-while-drilling tools (sonicVISION tool, ideal sonic-while-drilling tool). The 

majority of these methods provided vp measurements at 0.15 m depth intervals. Lengths of the vp logs varied greatly, ranging 

between 10 m and 1800 m (average: 370 m), with top depths of 0-1270 m (average: 138 m) and bottom depths of 16-2460 m 25 

(average: 508 m). 

After exporting the vp(z) profiles for each borehole, the data were smoothed using a moving average filter with a window of 

181 data points (corresponding to ca. 27 m for a 0.15 m depth interval). Smoothing was applied to remove outliers and to 

account for unknown and varying degrees of uncertainty associated with the different measurement tools. In addition, 

smoothing was expected to facilitate prediction, as the aim was to predict the general vp(z) trend at a given location, rather 30 
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than predicting exact vp values at a certain depth. Following smoothing, the profiles were sampled to 5 m depth intervals, 

using the same depth steps in all boreholes. 

2.1.2 Predictors 

A total of 38 geological and spatial variables obtained from the borehole metadata and freely available global datasets were 

included as predictors (Table 1). These predictors were parameters that were assumed to influence p-wave velocity. 5 

However, only predictors that could be obtained for each of the 333 borehole locations were used. Predictors such as latitude 

(lat), longitude (long), and water depth (wdepth) were taken from the borehole’s metadata, whereas other predictors were 

extracted from freely available global datasets and grids (Table 1). In addition, predictors describing the borehole’s 

geological setting were determined from the site descriptions given in the proceedings of each drilling campaign. Some 

parameters known to influence seismic velocity – e.g. porosity, density, or pressure – had to be left out as suitable datasets 10 

were not available. Although some of these parameters had been measured in DSDP, ODP and IODP boreholes, they had not 

necessarily been logged at the same locations and depths at which vp data had been measured, and therefore could not be 

obtained at all of the 333 boreholes used.      

For predictor variables based on global grids, such as age of crust (crustage), sediment thickness (sedthick), and surface 

heatflow (heatflow), values were extracted for each borehole location in GMT (Wessel et al., 2013), using the command 15 

grdtrack. As the crustal age grid (Müller et al., 2008) contained only ages for oceanic crust, the age for locations above 

continental crust was set to 1 billion years to represent a significantly older age than that of oceanic crust. Depth to basement 

(depth2base) was calculated by subtracting the depth values from the (constant) sedthick value at each borehole location, so 

that depths below the basement were indicated by a negative depth2base value. The distance predictor variables, e.g. 

distance to the nearest seamount (dist2smt), were calculated based on the borehole location and the respective datasets 20 

(Table 1) via the GMT command mapproject.  

Of the 38 predictors, 15 were of the type continuous, whereas 23 were categorical variables describing the type of crust and 

the geological setting at each borehole location (Table 1). The categorical predictors were encoded as either 0 or 1, 

depending on whether the predictor corresponded to the geological setting at a given borehole. Multiple categories were 

possible; for example, a borehole located in a fore-arc basin above continental crust would be described by 1 for the 25 

predictors “contcrust”, “active_margin”, “subduction” and “fore-arc”, and 0 for all other categorical predictors. Across the 

categorical predictors, the number of boreholes for which a predictor was set to 1 varied between 2 (0.6 %) and 191 (57.4 

%); on average, the geological setting described by a categorical predictor applied to 42 boreholes (12.7 %). 

2.2 Random Forest implementation 

RF was implemented using the RandomForestRegressor in Python’s machine learning library scikit-learn (Pedregosa et al., 30 

2011). Two parameters needed to be set: the number of trees (n_estimators) and the number of randomly selected predictors 

to consider for splitting the data at each node (max_features). Many studies used 500 trees (e.g. Micheletti et al., 2014; 
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Belgiu and Drăguţ , 2016; Meyer et al., 2017, 2018), but as performance still increased after 500 trees, we chose 1000 trees 

instead. The max_features parameter was initially set to all predictors (38), as recommended for regression cases (Pedregosa 

et al., 2011; Müller and Guido, 2017), although some studies suggest tuning this parameter to optimize model results 

(Micheletti et al., 2014; Ließ et al., 2016; Meyer et al., 2016b).  

2.3 Model validation 5 

A 10-fold cross-validation (CV), an approach frequently used in model validation (e.g. Li et al., 2011; Gasch et al., 2015; 

Ließ et al., 2016; Meyer et al., 2016b, 2018), was applied to validate the RF model. CV involved partitioning the dataset into 

ten equally sized folds. Nine of these folds acted as the training set used for model building, whereas the remaining fold was 

used for testing the model and evaluating the performancepredictions. This procedure was repeated so that each fold acted 

once as the test fold, and hence each borehole was once part of the test set. Performances of all test folds were averaged to 10 

give a final model performance.  

Partitioning into folds was not done randomly from all available data points but by applying a leave-location-out (LLO) 

approach (Gasch et al., 2015; Meyer et al., 2016a, 2018) in which the data remained separated into boreholes, i.e., locations, 

so that each fold contained 1/10 of the boreholes. With 33-34 boreholes per fold, the size of the training dataset thus varied 

between 20166 and 20784 data points. By using the LLO approach, whole locations were left out of the training set, thereby 15 

allowing the RF model to be tested on unknown locations through prediction of vp for each borehole in the test fold. If the 

folds were chosen randomly from all data points, each borehole location would be represented in the training set by at least 

some data points, resulting in overoptimistic model performance due to spatial overfitting (Gasch et al., 2015; Meyer et al., 

2016a, 2018).  

Performance of the RF model was evaluated in two ways: (1) by standard error metrics and (2) by the proportion of 20 

boreholes with predicted vp(z) superior to that of empirical functions. by comparing the predicted and true vp(z) curves for 

each borehole in the test fold and calculating tThe standard error metrics root mean square error (RMSE), mean absolute 

error (MAE), and the coefficient of determination (R2). were calculated based on the comparison of the predicted and true 

vp(z) curves for each borehole in the test fold. RMSE, MAE and R2 of all test folds were then averaged over the ten foldsto 

give final performance values. 25 

To determine the proportion of boreholes with better vp(z) trends than those from empirical functions, In addition, we also 

tested how well the predicted vp(z) curves performed compared to vp(z) curves calculated from empirical functions. Using 

the depth values of the respective test borehole, vp(z) profiles were therefore calculated from the five empirical functions 

presented by Hamilton (1985) for deep-sea sediments, i.e., for terrigenous silt and clays (termed H1 in the following), 

terrigenous sediments (H2), siliceous sediments (H3), calcareous sediments (H4), and pelagic clay (H5). These vp functions 30 

were chosen because the deep-sea setting applied to the majority of the boreholes, or was the best choice in absence of 

empirical functions for other geological settings such as mid-ocean ridges. The resulting Hamilton curves were evaluated 

against the true vp(z) profile, and RMSE, MAE and R2 were averaged over the five curves. The averaged error metrics were 
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then compared to the error metrics of the prediction, and each borehole was assigned a score between 0 and 3 as shown in 

Table 2. Scores 2 and 3 were interpreted as a good prediction, i.e., better than the Hamilton curves, whereas scores 0 and 1 

represented generally bad predictions. The proportion of boreholes with good predictions was then, averaged over the ten 

folds., served as another performance evaluation measure. 

2.4 Predictor selection 5 

To determine the most important predictors for vp prediction, a predictor selection approach was performed. Although RF 

can deal with high data dimensionality, predictor selection is still recommended, not only to remove predictors that could 

cause overfitting but also to increase model performance (e.g. Belgiu and Drăguţ, 2016, and references therein). We applied 

Recursive Feature Elimination (RFE), which is based on the variable importance scores provided by the RF algorithm. After 

calculating and evaluating a model with all 38 predictors, the least important predictor according to the variable importance 10 

scores was removed and the model was calculated again. This procedure was repeated until only one predictor was left. By 

evaluating model performance for each run via CV, using the same ten folds as before, the optimum number of predictors 

was determined.    

2.5 Tests to improve prediction performance 

Additional tests to improve prediction performance included predictor scaling, variation of the max_features parameter, and 15 

stronger smoothing of the vp(z) curves. All models were evaluated via a 10-fold CV, using the same folds as in the previous 

model runs. 

Predictor scaling was applied to account for the different data ranges of continuous and categorical features. Model 

performance may be negatively affected if different types of variables or data ranges are used (Otey et al., 2006; Strobl et al., 

2007), even though RF does not normally require scaled input data. All continuous predictors were scaled to between 0 and 1 20 

to match the range of the categorical predictors, and RFE was repeated. 

As tuning of the max_features parameter, i.e., the number of predictors to consider at each split, is recommended by some 

studies (Ließ et al., 2016; Meyer et al., 2018), an additional model was run in which max_features was varied between 2 and 

38 (all features) with an interval of 2. Performance was evaluated for each case to find the optimum number of predictors to 

choose from at each split.  25 

A third attempt to improve model performance involved enhanced filtering of the vp(z) curves so that larger vp variations 

were smoothed out and the curves indicated only a general trend, which would likely be sufficient for many applications 

requiring knowledge of vp with depth. The vp curves therefore underwent spline smoothing using Python’s scipy function 

UnivariateSpline. Three separate RF models were calculated: (i) spline1, which involved spline smoothing of the predicted 

curve of each test borehole; (ii) spline2, in which the input vp(z) data were smoothed; and (iii) spline3, where both the input 30 

vp(z) curves and the predictions were smoothed. All three cases were run with the 16 most important predictors as 

determined from the RFE results, and compared to the previous models.  
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3 Results  

3.1 Prediction performance 

Overall, many vp(z) profiles were predicted well by the RF models. For the 38-predictor CV, about 59.5 % of the boreholes 

had prediction scores of 2 or 3, representing a prediction performance superior to that of the Hamilton functions. 

Predictions of prediction score 3, which were characterised by lower RMSE and MAE values and a higher R2 than the five 5 

empirical functions, often exhibited a good fit to the true vp(z) curve (Fig. 2a-d). Even for more complex velocity profiles, 

e.g. involving a velocity reduction at depth (Fig. 2d), or a strong increase such as that from 2.2 km s-1 to >4 km s-1 at the 

basement contact in Fig. 2b, the predicted vp(z) curves generally matched the true curves well. In some cases, score 3 

predictions did not provide a good fit but still performed better than the empirical functions (Fig. 2e). Score 2 predictions 

generally indicated the correct trend of the true vp(z) profile (Fig. 2f), whereas score 1 and score 0 predictions failed to do so, 10 

with velocities often considerably higher or lower than the true velocities (Fig. 2g, h). 

The RFE CV revealed best performance for 33 predictors, as indicated by the lowest RMSE and MAE values (Fig. 3a). The 

proportion of boreholes with prediction scores of 2 or 3 was 59.2 % and thus slightly lower than for the 38-predictor CV 

(59.5 %; Fig. 3b). The highest proportion of 61.9 % was achieved by the 16-predictor model (Fig. 3b), but this also led to the 

highest errors (Fig. 3a). 15 

By scaling all predictors to between 0 and 1 and repeating RFE, RMSE and MAE were reduced further, with the best errors 

obtained for 35 predictors (Fig. 3a). These errors were only slightly lower than those of the 30-predictor case, which 

achieved a higher percentage of boreholes with good prediction (60.4 %; Fig. 3b). 

Varying the number of predictors to consider for splitting the data at each tree node also improved the performance. For 

max_features = 22, RMSE and MAE were lower than in all previous RF cases (Fig. 3a), while the proportion of boreholes 20 

with good performance prediction scores was 61.3 % and thus only slightly lower than for the 16-predictor case in which all 

38 predictors were considered (Fig. 3b). 

The three attempts of stronger smoothing of the vp(z) profiles via splines resulted in overall worse performance than the 16-

predictor case, both in terms of errors and proportion of well-predicted boreholes (Fig. 4a). An exception is the spline1 case 

(spline smoothing of the predicted vp(z) profile), for which 62.4 % of the boreholes had scores of 2 or 3 (Fig. 4b), although 25 

RMSE and MAE were slightly worse than for the other RF cases. 

3.2 Score distribution 

The global distribution of boreholes with different prediction scores, shown in Fig. 5 for the 16-predictor case without spline 

smoothing, did not indicate a clear separation into areas with relatively good (scores 2 and 3) or bad (scores 0 and 1) 

prediction performancescores. Some areas contain clusters of >10 boreholes, many of which had a prediction score of 3. 30 

Examples included the Sea of Japan (area A in Fig. 5a), the Nankai Trough (B), the Ontong-Java Plateau (C), the 
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Queensland Plateau (D), and the Great Australian Bight (E). However, nearly all of these cluster areas also contained 

boreholes with bad prediction scores (Fig. 5b). Similarly, single boreholes in remote locations were often characterised by a 

prediction score of 0 (Fig. 5b), but there were also several remote boreholes with scores of 3, e.g. on the Mid-Atlantic Ridge 

(area F in Fig. 5a).    

3.3 Predictor importance 5 

For the 38-predictor CV, the five most important predictors were “depth2base”, “crustage”, “depth”, “dist2smt”, and 

“wdepth” (Fig. 6). Continuous predictors and categorical predictors were clearly separated in the predictor importance plot 

(Fig. 6), with continuous predictors being of high importance in the RF model, whereas categorical predictors appeared less 

important. The only exception was the categorical predictor variable “spreading_ridge”, which had a slightly higher 

importance ranking than the continuous predictors “long” and “dist2transform”. Many of the categorical predictors were of 10 

negligible (almost 0) importance (Fig. 6). 

When the least important predictor was eliminated after each model run using RFE, the same trend was observed: in both the 

unscaled and scaled RFE cases, all categorical predictors were eliminated before the continuous predictors (Table 3). In the 

16-predictor case, which had the highest proportion of well-predicted boreholes (61.9 %), the only categorical predictor 

included was “spreading_ridge”. 15 

In the unscaled RFE case, the five most important predictors were the same as in the feature importance plot of the 38-

predictor case (Fig. 6). However, the order differed slightly, with “depth” being eliminated before “dist2smt”, “wdepth”, 

“depth2base”, and “crustage” (Table 3). When using scaled predictors, the five top predictors included “heatflow” (ranked 

sixth in both the 38-predictor CV and unscaled RFE cases) instead of “crustage”. “Crustage” dropped to position 15 and was 

thus the least important of the continuous predictors (Table 3). In general, however, the position ranking of most predictors 20 

varied only by up to five positions between the unscaled and the scaled RFE cases (Table 3).    

4 Discussion 

4.1 Prediction performance in comparison with empirical functions 

Our results show that the general trend of vp(z) profiles can be predicted successfully using machine learning. Overall, the 

applied RF approach is superior to the empirical vp functions of Hamilton (1985), as indicated by the 60 % of tested 25 

boreholes with prediction scores of 3 or 2. Although such a quantitatively better performance (i.e., lower RMSE and MAE, 

and higher R2 than the Hamilton vp(z) profiles) does not always mean a perfect fit to the true vp(z) curve of the tested 

borehole, the RF approach has a promising potential for the prediction of vp with depth. 

Slight improvements of the prediction performance were achieved by applying RFE, resulting in a proportion of well-

predicted boreholes of 61.9 % for the 16-predictor model. Smoothing the predicted vp(z) profiles via spline smoothing 30 
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(spline1 case) provided a further increase to 62.4 % of well-predicted boreholes. In addition, reducing the max_features 

parameter from 38 (all predictors) to 22 also resulted in a slight improvement (61.3 %), thus supporting other studies that 

recommended tuning the max_features parameter to improve results (Ließ et al., 2016; Meyer et al., 2018). However, to 

increase model performance even further, to a proportion of well-predicted boreholes well exceeding 60 %, other changes 

are required. 5 

4.2 Most important predictors for the prediction of vp(z) 

Both the predictor importance ranking of RF and the RFE results revealed “depth” as one of the most important predictors. 

However, “depth” was not the most important predictor, which is surprising as empirical vp functions, including those of 

Hamilton (1985), all use depth as the only input parameter. Our results showed that “depth2base” was always ranked higher 

than “depth”, and often the predictors “wdepth”, “dist2smt” and “crustage” also had higher importance scores than “depth”. 10 

Although “depth” is obviously still an important parameter in the prediction of vp, these observations imply that empirical 

functions using only depth as input and neglecting all other influences may not produce realistic vp values, which is 

supported by the at least 60 % of test locations for which the RF approach produced better vp(z) profiles than the Hamilton 

functions. 

The high importance of the predictors “depth2base”, “wdepth”, “dist2smt”, “crustage”, as well as “heatflow”, seems 15 

reasonable. The depth to the basement, which is related to the sediment thickness, is relevant because of the rapid vp increase 

at the basement contact and the associated transition from relatively low (<2.5 km s-1) to higher (> 4 km s-1) vp values. Even 

though in the majority of boreholes, the basement was not reached, the depth to the basement strongly influences vp. The 

high ranking of the distance to the neareast seamount is likely attributed to the associated change in heatflow at seamount 

locations. Higher heatflow and hence higher temperatures affect density, which in turn affects vp. The predictor “crustage” 20 

indicates young oceanic crust, which is characterised by higher temperature and hence lower density, affecting vp. Moreover, 

“crustage” differentiates between oceanic (<200 Myr) and continental (here: 1 Byr) crust, and apparently more effectively 

than the categorical predictors “oceancrust” and “contcrust”, which are of considerably lower importance.   

It has to be noted that the high-importance predictors discussed above only represent the most important of the 38 predictors 

used for prediction of vp; they are not necessarily the parameters that most strongly influence vp in general. If other 25 

parameters, such as porosity, density, pressure, or saturation, had been included as predictors, they would likely have 

resulted in a higher importance ranking than, e.g., “dist2smt” or “crustage”. However, these parameters were not included in 

the model as they were restricted to measurements at borehole locations – not necessarily those from which vp(z) data were 

obtained – and are therefore not available for every location in the oceans. For the same reason, other geophysical 

parameters, e.g. electrical resistivity and magnetic susceptibility, were also not included. 30 

A surprising finding in terms of predictor importance is the low importance of all categorical predictors. The clear separation 

between continuous and categorical predictors in the predictor importance plots may be due to biased predictor selection, as 

observed by Strobl et al. (2007) when different types of predictors were used. In such cases, categorical predictors may often 
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be neglected and ignored by the machine learning algorithm (Otey et al., 2006). Scaling the continuous predictors to the 

same range as the categorical predictors did not help to change the importance ranking, but bias cannot be excluded. The 

poor representation of some predictors, such as “cold_vent”, “mud_volcano” and “hydroth_vent” in the dataset, causing 

these predictors to be 0 for all boreholes in some test folds, may likely explain the low importance of these predictors in the 

predictor ranking. On the other hand, it is also possible that the geological setting described by the categorical predictors was 5 

simply not relevant to the prediction of vp. This possibility appears to be supported by the RFE results, which reveal the best 

performance prediction scores (61.9 % well-predicted boreholes) when all but one categorical predictors were excluded (16-

predictor case).  

4.3 Suggestions for further improvement of performance 

The fact that prediction performance could not be much improved by predictor selection, tuning the max_features parameter, 10 

or additional smoothing suggests that other measures are needed to further improve the prediction performance. The 

comparatively high proportion of boreholes with badly predicted vp(z) profiles (about 40 %) is likely due to the limited 

number of boreholes that were available in this study, but may also have been influenced by the choice of machine learning 

algorithm. 

It is possible to add more predictors that potentially influence vp, for example, seafloor gradient, bottom water temperature, 15 

and distance to the shelf edge. In addition, some of the predictors could be improved. For example, the age of the continental 

crust, currently set to the constant value of 1 Byr, could be adapted based on the crustal age grid by Poupinet and Shapiro 

(2009). Other studies also suggest including the first and second derivatives of predictors or other mathematical 

combinations of predictors (Obelcz and Wood, 2018; Wood et al., 2018; Lee et al., 2019). 

Another way to extend the dataset is to include more vp(z) data. Given the relatively inhomogeneous global distribution of 20 

borehole locations used in this study (Fig. 1), adding more vp(z) data is highly recommended. On a much smaller scale, 

Gasch et al. (2015) noted that high spatial heterogeneity of input locations limits the prediction performance and increases 

prediction errors. Adding more vp(z) data, especially from regions such as the southern Pacific and Atlantic oceans that are 

presently not covered, will likely help to increase the prediction performance. For example, the vp(z) records from recent 

IODP expeditions may be added to the dataset as they become available. Additional vp data could also be obtained from 25 

commercial boreholes and refraction seismic data from ocean bottom seismometers, although the latter would be of lower 

vertical resolution.   

The choice of machine learning algorithm may also influence model performance. Studies comparing RF against other 

machine learning algorithms reported different trends: in some cases, RF was superior in terms of prediction performance 

(e.g. Li et al., 2011; Cracknell and Reading, 2014), whereas in other cases, no strong differences were observed between the 30 

different methods (e.g. Goetz et al., 2015; Meyer et al., 2016b). However, Ggiven the present dataset and its spatial 

inhomogeneitygenerally positive reputation of RF as a prediction method, we doubt that a different algorithm would lead to 

a significantly improveddifferent prediction performance for vp. 
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5 Conclusions 

In this study, we presented an RF model for the prediction of vp(z) anywhere in the oceans. In about 60 % of the tested 

locations, the RF approach produced better vp(z) profiles than empirical vp functions. This indicates a promising potential for 

the prediction of vp(z) using machine learning, although some improvement is still required. In particular, the model input 

data should be extended to increase spatial coverage, which is expected to significantly improve prediction performance. Our 5 

results showed that depth, which is the only input in empirical vp functions, is not the most important parameter for the 

prediction of vp. Distance to the basement, water depth, age of crust, and distance to the nearest seamount are, in general, 

equally or even more important than depth. By including these parameters in the determination of vp, the RF model is able to 

produce more accurate vp(z) profiles and can therefore be used as an alternative to empirical vp functions. This is of 

particular interest for geophysical modelling applications, such as modelling gas hydrate concentrations, in areas lacking 10 

alternative vp(z) information from boreholes or seismic data.       
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Figure 1. Distribution of the 333 boreholes from which vp(z) profiles were extracted. DSDP – Deep Sea Drilling Project, ODP – 

Ocean Drilling Program, IODP – International Ocean Discovery Program. Bathymetry (30 s resolution) is from the GEBCO_2014 

grid (http://www.gebco.net). 

Figure 2. Examples for true vp(z) curves, predicted vp(z) curves, and vp(z) calculated from the five Hamilton functions (Hamilton, 5 

1985) used in model evaluation. (a)-(d) well predicted vp(z) curves of score 3, (e) lower-qualityless good prediction of score 3, (f) 

score 2, (g)-(h) bad predictions of scores 1 and 0. See 2.3 for a description of H1 to H5. 

Figure 3. Comparison of (a) error metrics and (b) proportion of well predicted boreholes (scores 2 and 3) for different model runs. 

RMSE – root mean square error, MAE – mean absolute error, CV – cross-validation, RFE – Recursive Feature Elimination. 

Figure 4. Comparison of (a) error metrics and (b) proportion of well predicted boreholes (scores 2 and 3) for model runs with 10 

different degrees of data smoothing. RMSE – root mean square error, MAE – mean absolute error, CV – cross-validation. 

Figure 5. Distribution of boreholes with (a) good (scores 2 and 3) and (b) bad (scores 0 and 1) vp predictions. Areas A-E mark 

clusters of boreholes in the Sea of Japan (A), the Nankai Trough (B), the Ontong-Java Plateau (C), the Queensland Plateau (D), 

and in the Great Australian Bight (E). Area F indicates an example for remote boreholes of score 3 on the Mid-Atlantic Ridge. 

Bathymetry (30 s resolution) is from the GEBCO_2014 grid (http://www.gebco.net). 15 

Figure 6. Predictor importance ranking for the 38-predictor model run. For each predictor, the importance was averaged over the 

ten runs of the 10-fold CV. Categorical predictors are marked with an asterisk. Predictor names are explained in Table 1. 
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Table captions 

 

Table 1.  Overview of the 38 predictors and their sources. 

Table 2. Scores for performance comparison between RF prediction and vp calculated from the empirical functions of Hamilton 25 
(1985). 

Table 3. Predictor ranking based on the RFE results for unscaled and scaled predictors. Categorical predictors are marked with 
an asterisk. See Table 1 for an explanation of predictor names. 
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Table 1 20 

predictor description type source description reference 

lat latitude continuous DSDP/ODP/IODP data processing notes  

long longitude continuous DSDP/ODP/IODP data processing notes  

wdepth water depth continuous DSDP/ODP/IODP data processing notes  

depth depth below seafloor continuous vp logs  

crustage age of crust continuous ocean crust: global crustal age grid (2 min 
res.) 

Müller et al. (2008) 
 

continental crust: 1 Byr (const.)  

sedthick sediment thickness continuous global sediment thickness grid (5 min 
res.) 

Whittaker et al. 
(2013) 

spreadrate spreading rate continuous global spreading rate grid (2 min res.) Müller et al. (2008) 

heatflow surface heatflow continuous global surface heatflow grid (2° res.) Davies (2013) 
 

depth2base depth to acoustic 
basement 

continuous derived from sediment thickness and 
depth 

 

dist2smt distance to nearest 
seamount 

continuous derived from global seamount dataset Kim and Wessel 
(2011) 

dist2hole distance to nearest 
borehole 

continuous derived from borehole locations   
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dist2coast distance to nearest 
coast 

continuous derived from global shoreline dataset Wessel and Smith 
(1996) 

dist2trench distance to nearest 
trench 

continuous derived from global trench dataset Coffin et al. (1998) 

dist2ridge distance to nearest 
spreading ridge 

continuous derived from global spreading ridge 
dataset 

Coffin et al. (1998) 

dist2transform distance to nearest 
transform boundary 

continuous derived from global transform boundary 
dataset 

Coffin et al. (1998) 

oceancrust oceanic crust categorical derived from crustal age  

contcrust continental crust categorical derived from crustal age  

active_margin geological setting: 
active margin 

categorical DSDP/ODP/IODP proceedings (site 
descriptions) 

 

passive_margin geological setting: 
passive margin 

categorical DSDP/ODP/IODP proceedings (site 
descriptions) 

 

spreading_ridge geological setting: 
spreading ridge 

categorical DSDP/ODP/IODP proceedings (site 
descriptions) 

 

subduction geological setting: 
subduction zone 

categorical DSDP/ODP/IODP proceedings (site 
descriptions) 

 

volcanic_arc geological setting: 
volcanic arc 

categorical DSDP/ODP/IODP proceedings (site 
descriptions) 

 

fore-arc geological setting: fore-
arc basin 

categorical DSDP/ODP/IODP proceedings (site 
descriptions) 

 

accretion_wedge geological setting: 
accretionary wedge 

categorical DSDP/ODP/IODP proceedings (site 
descriptions) 

 

trench geological setting: 
trench 

categorical DSDP/ODP/IODP proceedings (site 
descriptions) 

 

cont_slope geological setting: 
continental slope 

categorical DSDP/ODP/IODP proceedings (site 
descriptions) 

 

shelf geological setting: 
continental shelf 

categorical DSDP/ODP/IODP proceedings (site 
descriptions) 

 

reef geological setting: 
(former) reef 

categorical DSDP/ODP/IODP proceedings (site 
descriptions) 

 

basin geological setting: 
basin 

categorical DSDP/ODP/IODP proceedings (site 
descriptions) 

 

struct_high geological setting: 
structural high 

categorical DSDP/ODP/IODP proceedings (site 
descriptions) 

 

cont_plateau geological setting: 
continental plateau 

categorical DSDP/ODP/IODP proceedings (site 
descriptions) 

 

aseismic_ridge geological setting: 
aseismic ridge 

categorical DSDP/ODP/IODP proceedings (site 
descriptions) 

 

seamount geological setting: 
seamount 

categorical DSDP/ODP/IODP proceedings (site 
descriptions) 

 

guyot geological setting: 
guyot 

categorical DSDP/ODP/IODP proceedings (site 
descriptions) 

 

mud_volcano geological setting: mud 
volcano 

categorical DSDP/ODP/IODP proceedings (site 
descriptions) 

 

ds_fan geological setting: 
deep-sea fan 

categorical DSDP/ODP/IODP proceedings (site 
descriptions) 

 

hydroth_vent geological setting: 
hydrothermal vent 

categorical DSDP/ODP/IODP proceedings (site 
descriptions) 

 

cold_vent geological setting: cold 
vent 

categorical DSDP/ODP/IODP proceedings (site 
descriptions) 
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Table 2 20 

Score Description Inferred 
prediction 
performance 

3 all 3 error metrics of RF prediction indicate better fit than 
empirical functions 

Ggood 

2 2 of 3 error metrics of RF prediction indicate better fit than 
empirical functions 

gGood 

1 1 of 3 error metrics of RF prediction indicate better fit than 
empirical functions 

Bbad 

0 all 3 error metrics of empirical functions indicate better fit than 
RF prediction 

Bbad 
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Table 3 20 

Position Predictor 

RFE unscaled RFE scaled 

1 Ccrustage wdepth 
2 depth2base depth2base 
3 Wwdepth dist2smt 
4 dist2smt depth 
5 Ddepth heatflow 
6 Hheatflow sedthick 
7 dist2hole dist2trench 
8 dist2coast dist2hole 
9 dist2trench dist2coast 
10 Llat spreadrate 
11 Ssedthick dist2ridge 
12 Sspreadrate long 
13 dist2ridge lat 
14 Llong dist2transform 
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15 dist2transform crustage 
16 spreading_ridge* contcrust* 
17 cont_plateau* basin* 
18 reef* active_margin* 
19 aseismic_ridge* struct_high* 
20 basin* oceancrust* 
21 struct_high* passive_margin* 
22 oceancrust* subduction* 
23 volcanic_arc* reef* 
24 active_margin* accretion_wedge* 
25 contcrust* cont_plateau* 
26 guyot* cont_slope* 
27 passive_margin* spreading_ridge* 
28 trench* fore-arc* 
29 subduction* shelf* 
30 seamount* ds_fan* 
31 fore-arc* volcanic_arc* 
32 hydroth_vent* trench* 
33 cont_slope* seamount* 
34 shelf* aseismic_ridge* 
35 accretion_wedge* guyot* 
36 ds_fan* cold_vent* 
37 mud_volcano* hydroth_vent* 
38 cold_vent* mud_volcano* 
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