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Responses to referee comments

Referee comments are given in black, author comments (AC) and changes in the manuscript
(CM) in blue

Referee #1: Taylor Lee

General comments

Machine learning has been previously well established in other fields, but has not grasped
attention in a similar way within the geosciences. This paper uses sparse p-wave velocity data
from DSDP/ODP/IODP as training data in a machine learning algorithm (Random Forest) to
predict p-wave velocity with depth. A thorough analysis was done to determine how effective
machine learning is at predicting vertical velocity profiles. This analysis included comparison of
p-wave velocity machine learning predictions with empirical estimates. A variety of appropriate
methods were tested to improve the machine learning prediction (e.g. smoothing input data
and prediction results, varying max_features and number of predictors used, 10-fold cross
validation, predictor value scaling). As a result, this work provides valuable information on
types of useful predictors and variables highly correlated to p-wave velocity. Additionally, this
method shows in some case superior to using strictly empirical methods to estimate p-wave
velocity with depth.

Results show this work is novel and useful. However, there is a major component of the analysis
missing. This work contains many examples of validation of previously existing p-wave velocity
but lacks demonstration on prediction of p-wave velocity in areas where no velocity data is
available.

AC: As we explain in the Methods section, due to our leave-location-out approach all predictions
are made for locations that were withheld from the training data and therefore act as unknown
locations. Validation of the prediction involved a comparison against the true v, data, but these
data were in no case part of the prediction model. We explain below (last “specific comment”)
why we refrain from making predictions for completely new locations as it is beyond the scope
of this paper, i.e. the purpose of this paper is to demonstrate the method and to discuss its
advantages and limitations. When more training data become available the method can be used
to make predictions elsewhere - probably first for limited areas and then globally.

Specific comments

Page 3 Section 2.1.2 (Predictors) Line 28 mentions that the continental crust was set at 1 billion
years to represent significant older crust than that of the oceanic crust. If all the observed data
(DSDP/ODP/IODP) are on oceanic crust, what is the importance/meaning of defining
continental crust age?

AC: [t is not true that all the data are from sites above oceanic crust. In fact, 142 of the 333
boreholes - 42% - were drilled on continental crust, e.g. in continental shelf regions. As the
thermal regime of continental crust is different to that of oceanic crust - with old continental



crust being of lower temperatures than young oceanic crust -, which affects density and hence
p-wave velocity, we thought it reasonable to differentiate between the two types of crust and
their ages.

CM: no changes made in the manuscript

Page 7 Section 3.3 (Predictor importance) Line 20 states that categorical predictors generally do
not have any importance in prediction performance. Additionally, it is again discussed in the
discussion section (Section 4.2- lines 8-14 page 9). What is the variance of your sampled data
set in categorical predictors? For example, for a given test data set (i.e. fold) are all of your
categorical predictors for that run a 1 or 07 If all of your test data set has only one categorical
value then that predictor would be of no importance.

AC: We do not claim that categorical predictors “generally” do not have “any importance” in
prediction performance. In the referenced line (now p. 8 line 10-11), we use the term “negligible
importance”, i.e. almost zero, and we explain that this only refers to the results of our own
study, not to studies involving categorical predictors in general.

The number of boreholes per predictor (for which the predictor is 1) varies between 2 (0.6%)
and 191 (57%), on average, it is 42 (12.7%). We therefore agree that predictors with a very low
representation will also be of low importance, and that this should be added as an explanation
in the Discussion.

CM: We added the following sentence to the end of section 2.1 in the Methods: “Across the
categorical predictors, the number of boreholes for which a predictor was set to 1 varied
between 2 (0.6 %) and 191 (57.4 %); on average, the geological setting represented by a
categorical predictor applied to 42 boreholes (12.7 %).”

We also included the sentence “The poor representation of some predictors, such as “cold_vent”,
“mud_volcano” and “hydroth_vent” in the dataset, causing these predictors to be 0 for all
boreholes in some test folds, may likely explain the low importance of these predictors in the
predictor ranking.” in the last paragraph of section 4.2 in the Discussion (p. 10 lines 2-5).

Consider, if true, explicitly stating that predictions of this kind have not done with depth before.
(page 2 ~ lines 16-20)

AC: As far as we know, predictions with depth have not been done before, and we agree that this
should be stated in the text.

CM: We added a sentence to this paragraph (lines 21-23): “These studies were in general
restricted to the prediction of one value per geographic location; the prediction of multiple
values, such as depth profiles, has, to our knowledge, not been attempted before.”

Minor suggestion to add in the abstract that this method is not designed to capture high
variance in a p-wave velocity profile, but is instead intended to capture the overall trend of p-
wave velocity profile.

AC: We agree that this should already be stated in the Abstract.

CM: We changed the sentence in line 9-10 (now lines 10-11) to read: “Here, we present a
machine learning approach to predict the overall trend of seismic p-wave velocity (vp) as a
function of depth (z) for any marine location.”

It is stated and supported (Line 1 page 7; Figure 3) that the RFE CV 16 predictors prediction
(green) is better than CV, max_features =22, 38 predictors however the error in the prediction
is significantly higher for the green prediction with roughly the same % boreholes labelled as



“good”. Why do you consider green prediction to be so much better than yellow prediction? It
might be useful if you explicitly state what your ultimate metric of correctness is (e.g. highest %
correct or lowest error?)

AC: We did not mean to imply that one of the two runs provides better results than the other,
and we also do not claim this anywhere. We merely stated the differences. However, we agree
that this could have been easily misunderstood due to our ill use of the term “performance” -
we meant performance to refer to both the highest % correct and the lowest error (i.e, in the
same model), but we seem to have used it in other ways too, which must have been confusing.
We now explain in more detail what we mean by performance and how our predictions were
evaluated.

CM: Paragraph 3 in the Methods section 2.3 was changed to read “Performance of the RF model
was evaluated in two ways: (1) by standard error metrics and (2) by the proportion of
boreholes with predicted vy(z) superior to that of empirical functions. The standard error
metrics root mean square error (RMSE), mean absolute error (MAE), and the coefficient of
determination (R2) were calculated based on the comparison of the predicted and true vy(z)
curves for each borehole in the test fold. RMSE, MAE and R2 of all test folds were then averaged
to give final performance values.”

Throughout the manuscript, we also replaced the term “performance” where necessary, to make
its use consistent. In the sentence reference above (now lines 19-22), we replaced
“performance” by “prediction scores”.

What is the final global spatial resolution? E.g. prediction of p-wave velocity profile every 1-
degree, 5-min, etc.?

AC: We do not want to go so far as to give a final global spatial resolution for the prediction of v,.
Our main aim was to investigate if it is at all possible to achieve realistic predictions of v,(z). We
have shown that this is generally the case, however, our results also clearly indicate that more
input data are required to overcome low prediction performance due to lack of suitable data.
For this reason, we think that the prediction model needs to be improved further before a “final
resolution” should be given. - In any case, one final resolution value likely would not be
sufficient. Due to the heterogeneous depth distribution of the boreholes used (in addition to the
heterogeneous spatial distribution), the resolution would vary with depth. Thus, separate
resolution values would need to be determined for different depths (here: range 0-2500 m),
which would likely be confusing and not very helpful for the reader.

CM: no changes made in the manuscript

Page 9 Section 4.2 (Most important predictors for the prediction of vp(z)) Lines 2-8 discuss how
certain predictors are not used (porosity, density, pressure) as not all boreholes have depth
associated measurements. However, some of the predictors used in the prediction do not have
a depth component (e.g. crustage). Applying this logic, why do you not use seafloor porosity
(i.e. depositional porosity) or likewise predictors?

AC: We did not mean that we can only use predictors with depth measurements, we obviously
also used depth-independent predictors. The point here (which was not well explained in the
text) was that we could only use predictors that were available (or could be determined) for
every borehole location. This did not apply to many of the e.g. porosity measurements, which
had been measured in boreholes (with a depth component) but often not at the borehole
locations at which v, had been measured. Even in the relatively few boreholes where both
porosity (or density, pressure etc) and v, had been measured, the depth ranges did not always



match - so there would have been depths with v, data but no porosity data. It was impossible to
also account for such cases, which is why we decided to leave these parameters out. As reviewer
2 also asked for an explanation regarding choice of predictors, we clarified this in the Methods
section 2.1.2.

We also agree that a parameter like seafloor porosity, which is available as a global grid (we are
assuming that the reviewer is referring to the grid by Martin et al.,, 2015), could easily have been
added as a predictor. We did not do this at the time, and we hope the reviewer will understand
that it is now too late to add new predictors to our study - as we state in section 4.2, there are
several other predictors that could potentially be added, but this would have to be done in a
future study.

CM: We have clarified our choice of predictors by adding the following passage to the Methods
section 2.1.2 (p. 4 lines 5-13): “... These predictors were parameters that were assumed to
influence p-wave velocity. However, only predictors that could be obtained for each of the 333
borehole locations were used. Predictors such as latitude (lat), longitude (long), and water
depth (wdepth) were taken from the borehole’s metadata, whereas other predictors were
extracted from freely available global datasets and grids (Table 1). In addition, predictors
describing the borehole’s geological setting were determined from the site descriptions given in
the proceedings of each drilling campaign. Some parameters known to influence seismic
velocity - e.g. porosity, density, or pressure - had to be left out as suitable datasets were not
available. Although some of these parameters had been measured in DSDP, ODP and [ODP
boreholes, they had not necessarily been logged at the same locations and depths at which v,
data had been measured, and therefore could not be obtained at all of the 333 boreholes used.”

No supplemental material was provided for the global prediction of p-wave velocity with depth.
This paper should include the final global prediction of p-wave velocity with depth.

AC: No, we do not agree. As with the final spatial resolution, providing a final global prediction
of v, at this stage (i.e. when the prediction model still requires optimization and is therefore not
final yet) is neither feasible nor helpful. In fact, it would maybe give this method a bad
reputation to deploy it prematurely. Furthermore, we show that one “final global prediction”
would not be sufficient. We assume the reviewer expects a global map of final prediction values,
similar to Fig. 4 in Taylor et al. (2019) or Fig. 1c in Martin et al. (2015). While such a map may
be useful in cases with only one prediction value per location, in our case - taking into account
the depth component of the predicted v, - a whole range of prediction maps would seem
necessary, one for each depth. However, none of these maps would be of much use on its own. It
would only show the variation of velocity at a certain depth, but we are interested in the
variation (or trend) of velocity with depth (i.e., a profile), which is much better illustrated by the
predicted v,(z) profiles (of which we show sufficient examples). Thus, we do not think a final
global prediction is useful.

CM: no changes made in the manuscript

Technical corrections
Page 8 delete “the” on line 21: “by the at least 60% of test locations”
CM: deleted “the” (now p. 9 line 8)

Page 8 line 3 consider changing “our results show that vp(z) profiles” to “our results show that
the general trend of vp(z) profiles”
CM: We changed this sentence accordingly. (now line 24)



Page 16 Figure 2 caption (e) change “less good” to different word (substandard?)
CM: We changed this to “lower-quality prediction”.

Page 23 table 3, change words so they have consistent capitalization between table columns
(e.g. Long and long)
CM: We changed the capitalized letters accordingly (also in Table 2).

Page 12 Lee et al,, 2019 citation is missing the publication year.

AC: Sorry, this paper was fully published just before we submitted our manuscript and we
forgot to update the reference correctly.

CM: Added publication year.

Referee #2: Anonymous referee

The manuscript, " Prediction of seismic p-wave velocity using machine learning”, is a well-
written description of a machine learning method ~-Random Forests - to predict seismic p-wave
velocity as a function of depth for any a generic marine location. This manuscript is suitable for
Copernicus, but the manuscript needs to be revised before it can be accepted. I have some
suggestions here.

1 Introduction.

Page 2:

L24: You make the statement that the most widely used machine learning methods are ANNs,
SVMs, and RFs. It is hard to convince people that these three algorithms are the most widely
used. For specific problems, some algorithms may be more common than the other algorithms.
You may say that the most widely used machine learning includes ANNs, SVMs, and RFs.

AC: We agree with the reviewer that this is probably problem-dependent and should not be
generalized here.

CM: We replaced “are” by “include”. (now line 26)

L31: You mentioned that RF has been repeatedly found superior to other machine learning
methods. You need to specify the particular problems that RF has been found superior to “other
machine learning methods” in the text. And what other machine learning methods do you mean
here? Please specify in the text.

AC: We have given more details on the particular studies and algorithms tested.

CM: We added 2 sentences after the first sentence of this paragraph (now p.3 lines 1-5): “For
example, Li et al. (2011) tested 23 machine learning algorithms - including RF, SVM, and kriging
methods - to predict mud content in marine sediments, and found that RF, along with RF
combined with ordinary kriging or inverse distance squared, provided the best prediction
results. Cracknell and Reading (2014) applied five machine learning methods to lithology
classification of multispectral satellite data and reported higher classification accuracy for RF
than for Naive Bayes, SVM, ANN, and k-Nearest Neighbors.”

2 Methods
Page 3, section 2.1.2:



L25: How do you come up with these 38 predictors? Could you specify the reason why you
choose these 38 predictors in this section?

AC: We agree that further information would be helpful in this section.

CM: We shortened the first sentence to “A total of 38 geological and spatial variables were
included as predictors (Table 1).” and added the following passage: “These predictors were
parameters that were assumed to influence p-wave velocity. However, only predictors that
could be obtained for each of the 333 borehole locations were used. Predictors such as latitude
(lat), longitude (long), and water depth (wdepth) were taken from the borehole’s metadata,
whereas other predictors were extracted from freely available global datasets and grids (Table
1). In addition, predictors describing the borehole’s geological setting were determined from
the site descriptions given in the proceedings of each drilling campaign. Some parameters
known to influence seismic velocity - e.g. porosity, density, or pressure - had to be left out as
suitable datasets were not available. Although some of these parameters had been measured in
DSDP, ODP and IODP boreholes, they had not necessarily been logged at the same locations at
which v, data had been measured, and therefore could not be obtained at all of the 333
boreholes used.”

Page 4, section 2.2:

L14: How do you define “performance”? I saw you mentioned performance in the later section
2.3. But it is better to define that when you first mention that.

AC: We agree that it is not always clear what we mean by the term “performance”, and we also
used it inconsistently to refer to the standard error metrics, the proportion of well predicted
boreholes, or both - this is obviously confusing. By performance, we mean both the error
metrics and the proportion of well predicted boreholes. We now explain this in paragraph 3 of
section 2.3 (p. 5 lines 20-25) and removed /replaced the term in the previous paragraphs.

CM: Paragraph 3 was changed to read “Performance of the RF model was evaluated in two
ways: (1) by standard error metrics and (2) by the proportion of boreholes with predicted vp(z)
superior to that of empirical functions. The standard error metrics root mean square error
(RMSE), mean absolute error (MAE), and the coefficient of determination (R2) were calculated
based on the comparison of the predicted and true vp(z) curves for each borehole in the test
fold. RMSE, MAE and R2 of all test folds were then averaged to give final performance values.”
Throughout the manuscript, we replaced the term “performance” where necessary.

In addition, why do you choose 1000 trees? what is the maximum depth of each tree? How does
the number of trees and depth affect the bias and variance of the prediction?

AC: Our study of relevant literature showed that most studies used either 500 or 1000 trees. In
an early version of our prediction model, we ran RF repeatedly for numbers of trees between 2
and 1500 and evaluated model performance based on the OOB (out-of-bag) score. As the
performance still varied after 500 trees but stabilized around 1000 trees, we chose 1000 trees.
We did not repeat this procedure with our final prediction model (which no longer used the
0O0B approach), so it is possible that a lower number of trees might already have been sufficient.
In that case, however, a higher number would not have decreased model performance. The
depth of the trees was not defined and therefore not varied in the final prediction model. Early
tests showed that performance was generally worse when maximum tree depths were specified
(e.g. for max_depth = 5).

CM: no changes made in the manuscript



3 Results

Page 6, section 3.1:

The performance of an algorithm should be shown by both bias and variance. I only see the
comparison of errors and percentage of boreholes with scores 2 and 3 in Fig. 3 and 4. How does
the number of predictors and data smoothing affect the variance of the prediction?

AC: There is no strict rule that algorithm performance should always be evaluated by bias and
variance. Many studies applying machine learning methods use other means to validate their
results. We chose to evaluate performance by MAE, RMSE and R?, which have been used as
performance measures by several other studies that predicted environmental parameters (e.g.
Gasch et al. (2015), Lief et al. (2016), Meyer et al. (2015, 2016)). Our own borehole percentage
value serves as an additional measure. We think that our performance evaluation approach is
now well described in section 2.3. The effects of varying numbers of predictors and data
smoothing in terms of prediction performance are already described in the text.

CM: see above for changes regarding clarification of prediction performance

Since you only have 333 boreholes, 2% change due to different model runs only change scores
of 7 boreholes. I am curious about the location distributions of those boreholes which changed
their scores, and why their scores changed by changing the number of predictors or data
smoothing.

AC: Unfortunately, our applied prediction method does not allow determining which boreholes
changed their scores across different model runs. We agree that this would be an interesting
aspect to look into, but in this case our model cannot easily be adapted accordingly, so this
would likely require setting up a completely new model. This is beyond the scope of these
revisions.

CM: no changes made in the manuscript

4 Discussion

Page 10:

L1-5: You made a strong statement about performance of RF. As | suggested in your
introduction section, the performance of a machine learning algorithm really depends on
situations.

AC: We agree that this can also be misunderstood to mean that RF is always the perfect choice,
which is of course not the case. What we actually meant to say was that due to the issues with
our dataset (spatially inhomogeneous, varying depth ranges, etc), it is much more likely that the
cases of poor performance are due to the dataset itself, and not due to the choice of machine
learning algorithm.

CM: We rewrote the last sentence (now lines 31-33) to clarify this: “However, given the present
dataset and its spatial inhomogeneity, we doubt that a different algorithm would lead to a
significantly improved prediction performance for v,.”

5 Conclusion

Page 10:

L15: RF is hard to extrapolate to data outside the range they have been seen. I doubted that RF
can be used for geophysical modeling in areas lacking v_p(z) from boreholes or seismic data.

AC: This is why we recommend more data to be added - to increase the data ranges within the
RF model and the likelihood that when the RF model is applied to new data, these data are
within the ranges known to RF. We agree that at present, this is not always the case, which likely



explains some of the lower-performing locations. However, we also point out that our RF model
is not meant as a replacement for other sources of v,(z) data. It is meant only as an aid when no
other means are available. We do not expect RF to ever replace or be superior (or even very
close) to actual v, measurements or v, from seismic data (nor do we claim this in the
manuscript). Our approach is only meant to provide an alternative to using an (unrealistic)
constant velocity or empirically-derived v,(z) profiles, which are, as we show, often of lower
quality than our predicted v,(z) profiles.

CM: no changes made in the manuscript
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Prediction of seismic p-wave velocity using machinlearning

Ines Dumké, Christian Berndt
'GEOMAR Helmholtz Centre for Ocean Research KieklKGermany
Correspondence to: Christian Berndt (cberndt@geomar.de)

Abstract. Measurements of seismic velocity as a functiordefth are generally restricted to borehole locatiand are
therefore sparse in the world’s oceans. Conseqgueintlthe absence of measurements or suitable geidata, studies
requiring knowledge of seismic velocities often aibtthese from simple empirical relationships. Hegre empirically

derived velocities may be inaccurate, as they wgpecdlly limited to certain geological settings,daonther parameters
potentially influencing seismic velocities, suchdepth to basement, crustal age, or heatflow, atdaken into account.

Here, we present a machine learning approach wigbrie overall trend o$eismic p-wave velocity (¥ as a function of

depth (z) for any marine location. Based on a ingimlataset consisting of(z) data from 333 boreholes and 38 geological
and spatial predictors obtained from publicallyilalde global datasets, a prediction model wasterkasing the Random
Forests method. In 60 % of the tested locations, ghedicted seismic velocities were superior tos¢healculated
empirically. The results indicate a promising pdtnfor global prediction of yz) data, which will allow improving

geophysical models in areas lacking first-hand sigfadata.

1 Introduction

Seismic p-wave velocities {vand velocity-depth profiles are needed in manyimeageophysical applications, e.g. for
seismic data processing, for time-depth conversion$o estimate hydrate concentrations in gasdtgdmodelling. Direct
measurements of seismic velocities, however, aaesepand limited to borehole locations such asethivdled by the Deep
Sea Drilling Project (DSDP), the Ocean Drilling Bram (ODP), and the International Ocean Discoveogfam (IODP).
Seismic velocities can also be obtained indirefttiyn seismic data. Approaches include derivatiodDfvelocity profiles
via refraction seismology using ocean bottom seimgters (OBS) (Bunz et al., 2005; Mienert et alQ20/Nestbrook et al.,
2008; Plaza-Faverola et al. 2010a, 2010b, 2014),vatocity analysis of large-offset reflection seis data (Crutchley et
al., 2010, 2014; Plaza-Faverola et al., 2012). Henesuitable seismic datasets are only availabteitain areas, and OBS-
derived velocity profiles are of relatively low sj@hand vertical resolution.

In the absence of measurements and refraction igedata, constant velocities are often used foeitdapth conversions
(e.g. Brune et al., 2010) or processing of reftactgeismic data (Crutchley et al., 2010, 2011, 20izeband et al., 2010;
Krabbenhoeft et al., 2013; Dumke et al., 2014)nabheugh a constant velocity-depth profile is gafigrunrealistic and will

thus lead to inaccurate results.
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As an alternative, empirical velocity functions baween derived, which are based on averaged meaesuieand provide
seismic velocity-depth relationships for differgy@ological and geographical settings. For exantéamilton (1979, 1980,
1985) used averageg measurements from boreholes and sonobuoys toedegiocity-depth functions for different marine
settings and sediment types. Velocities calculdtedh these empirical functions have been used feigtime-depth
conversions (Lilly et al., 1993; Brune et al., 2DIfrute stack processing of reflection seismi@das well as local (Biinz et
al., 2005) and regional (Scanlon et al., 1996; Wetrej., 2014) velocity models.

Although velocity profiles calculated from empiridanctions may work well in some cases, empiriftaictions do not
always produce accuratg(x) profiles, due to their use of depth as the anput parameter and their limitation to certain
regions or geological settings. Mienert et al. ®00bserved both agreements and disagreementsdretweocity profiles
derived from OBS data and calculated from Hamilfonctions, whereas Westbrook et al. (2008) argwat ¢#mpirical
functions are in general not representative foeotireas due to variations in lithology and compachistory. Moreover,
the Hamilton functions fail to provide correct veilies in areas containing gas hydrates or gasatetl sediments (Biinz et
al., 2005; Westbrook et al., 2008). Consequenttyakernative method is required to estimaj@)vprofiles for a larger
variety of geological settings.

Over the last years, parameters in many differ@plieations have been successfully predicted usiraghine learning
techniques (e.g. Lary et al., 2016). In geosciemresremote sensing, machine learning methods Ihese used to predict
soil properties (Gasch et al., 2015; Lie3 et a801& Meyer et al., 2018), air temperatures (Meyealg 2016a, 2018),
biomass (Meyer et al., 2017), and the elasticitgluhas of granitic rocks (Karakus, 2011). Applicasoalso extended into
marine settings, involving the prediction of sedienud content off southwest Australia (Li et &Q11), as well as
parameters such as seafloor porosity (Martin et28115; Wood et al., 2018), seafloor biomass (Weale 2010), and

seafloor total organic carbon (Wood et al., 2018e ket al., 2019) on a global scaléese studies were in general restricted

to the prediction of one value per geographic iocatthe prediction of multiple values, such astdgmofiles, has, to our

knowledge, not been attempted before.

In machine learning, a prediction model is congedcfrom a training dataset consisting of the tanggiable to be

predicted, and a set of predictor variables. A camdubset of the data, the test set, is typicadld back for testing and
validation of the prediction model. The most wideled machine learning methadsludeareAtrtificial Neural Networks

(ANN; e.g. Priddy and Keller, 2005), Support Veckdachines (SVM; Vapnik, 2000), and Random ForeRfs; (Breiman,

2001).

RF is an ensemble classifier based on the condegéasion trees, which are grown from the trainged by randomly
drawing a subset of samples with replacement (Inaggi bootstrap approach) (Breiman, 2001). At éesf node, the data
are split based on a random subset of predictaablas to partition the data into relatively homoges subsets and
maximize the differences between the offspring bin@s. Each tree predicts on all samples in thesetsaind the final

prediction is obtained by averaging the predictifsom all trees.
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RF has been repeatedly found superior to other madbarning methods-or example, Li et al. (2011) tested 23 machine

learning algorithms — including RF, SVM, and krigimethods — to predict mud content in marine sedisy@nd found that

RF, along with RF combined with ordinary kriging mverse distance squared, provided the best giedicesults.

Cracknell and Reading (2014) applied five mach@sing methods to lithology classification of nepgectral satellite data
and reported higher classification accuracy fortR&h for Naive Bayes, SVM, ANN, and k-Nearest Néiops—{(e-g—Li-et

ak—2011; Cracknell-and-Reading;—201RFH is robust to noise and outliers (Breiman, 200hy & is also able to handle

high-dimensional and complex data. Moreover, RFsdua& require any preprocessing of the input véeslnd provides

variable importance measurements, making it tis¢ ¢inoice method in many applications.

Here, we apply RF to predict seismic p-wave vejedipth profiles on a global scale, based on @88 geological and
spatial predictors that are freely available frotobgl datasets. Prediction performance is evaluatedl compared to
velocity-depth profiles calculated from empirical functions. We also test additional methods forrimmgment of model

performance and determine which predictors are imgsbrtant for the prediction of,v

2 Methods

2.1 Dataset

2.1.1 y(z) data

vp(z) profiles for training of the RF model were dhtd from boreholes drilled by the DSDP, ODP an®ROcampaigns
between 1975 and 2016. All boreholes containipgneasurements were used, excluding those with bality logs
according to the logging description notes. Inlfd@83 boreholes were included in the datasetdtbibution of which is

shown in Fig. 1. All y(z) data from these boreholes are available thrdutgh//www.iodp.organd were downloaded from

the archive ahttp://mlp.ldeo.columbia.edu/logdb/scientific_ocednilling/.

A multitude of measuring methods and tools had beewployed by the different drilling campaigns totab v,
measurements, including wireline logging tools (esgnic digital tool, long-spacing sonic tool, diasonic imager,
borehole compensated sonic tool) and logging-wdhiléing tools (sonicVISION tool, ideal sonic-whi@rilling tool). The
majority of these methods provideglmeasurements at 0.15 m depth intervals. Lengthiseo§, logs varied greatly, ranging
between 10 m and 1800 m (average: 370 m), wittdeggihs of 0-1270 m (average: 138 m) and bottomhdeqft 16-2460 m
(average: 508 m).

After exporting the ¥(z) profiles for each borehole, the data were simeiusing a moving average filter with a window of
181 data points (corresponding to ca. 27 m forl®s @ depth interval). Smoothing was applied to reznoutliers and to
account for unknown and varying degrees of unaagtaassociated with the different measurement tolmlsaddition,

smoothing was expected to facilitate predictionthesaim was to predict the generglz) trend at a given location, rather
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than predicting exact,walues at a certain depth. Following smoothing, phofiles were sampled to 5 m depth intervals,

using the same depth steps in all boreholes.

2.1.2 Predictors

A total of 38 geological and spatial variablesai

included as predictors (Table 1Jhese predictors were parameters that were asstinéufluence p-wave velocity.

However, only predictors that could be obtainedefach of the 333 borehole locations were used.i®oesl such as latitude

(lat), longitude (long), and water depth (wdeptlerevtaken from the borehole’s metadata, whereaer gifedictors were

extracted from freely available global datasets ands (Table 1). In addition, predictors descripithe borehole’s

geological setting were determined from the sitecdptions given in the proceedings of each ddlltampaign. Some

parameters known to influence seismic velocityg- porosity, density, or pressure — had to bedeftas suitable datasets

were not available. Although some of these paramétad been measured in DSDP, ODP and IODP borethbky had not

necessarily been logged at the same locations epthsl at which ydata had been measured, and therefore could not be

obtained at all of the 333 boreholes used.

For predictor variables based on global grids, saglage of crust (crustage), sediment thicknesithjsk), and surface
heatflow (heatflow), values were extracted for ehohehole location in GMT (Wessel et al., 2013jngghe command
grdtrack. As the crustal age grid (Miller et al., 2008) teamed only ages for oceanic crust, the age foatlons above
continental crust was set to 1 billion years tarespnt a significantly older age than that of o@earust. Depth to basement
(depth2base) was calculated by subtracting thendegdties from the (constant) sedthick value at dmckhole location, so
that depths below the basement were indicated Imggative depth2base value. The distance predi@drbles, e.g.
distance to the nearest seamount (dist2smt), welculated based on the borehole location and thpertive datasets
(Table 1) via the GMT commarndapproject.

Of the 38 predictors, 15 were of the type contirsjavhereas 23 were categorical variables describi@dype of crust and
the geological setting at each borehole locatioab{@ 1). The categorical predictors were encodecither O or 1,
depending on whether the predictor correspondettieageological setting at a given borehole. Multiphtegories were
possible; for example, a borehole located in a-&webasin above continental crust would be deedriby 1 for the
predictors “contcrust”, “active_margin”, “subduatiband “fore-arc”, and 0O for all other categorigakdictors.Across the

categorical predictors, the number of boreholesafbich a predictor was set to 1 varied between.g ¢0) and 191 (57.4

%); on average, the geological setting described &gtegorical predictor applied to 42 borehol @71 20).

2.2 Random Forest implementation

RF was implemented using tlRRandomForestRegressor in Python’s machine learning library scikit-legiPedregosa et al.,
2011). Two parameters needed to be set: the nuafilieres (n_estimators) and the number of rand@®lgcted predictors

to consider for splitting the data at each nodex(rfeatures). Many studies used 500 trees (e.g. dlith et al., 2014;
4
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Belgiu and Digu , 2016; Meyer et al., 2017, 2018), but as perforeastill increased after 500 trees, we chose 1GEG
instead. The max_features parameter was initigiyysall predictors (38), as recommended for regiom cases (Pedregosa
et al., 2011; Miller and Guido, 2017), although sostudies suggest tuning this parameter to optiminelel results
(Micheletti et al., 2014; Liel3 et al., 2016; Mewral., 2016b).

2.3 Model validation

A 10-fold cross-validation (CV), an approach freqile used in model validation (e.g. Li et al., 20Qasch et al., 2015;
Lie3 et al., 2016; Meyer et al., 2016b, 2018), apglied to validate the RF model. CV involved gaotiing the dataset into
ten equally sized folds. Nine of these folds a@tedhe training set used for model building, whetba remaining fold was

used for testing the model and evaluatinggh&ormancepredictiond his procedure was repeated so that each foltlact

once as the test fold, and hence each borehol@ema@s part of the test s@erformances-of-al-testfolds-were-averaged to
gheoro-tanlmedoloorermonce.

Partitioning into folds was not done randomly frath available data points but by applying a leaweation-out (LLO)
approach (Gasch et al., 2015; Meyer et al., 202648) in which the data remained separated intetmles, i.e., locations,
so that each fold contained 1/10 of the borehdéth 33-34 boreholes per fold, the size of thenirag dataset thus varied
between 20166 and 20784 data points. By using L@ &pproach, whole locations were left out of ttaning set, thereby
allowing the RF model to be tested on unknown locatthrough prediction of,vfor each borehole in the test fold. If the
folds were chosen randomly from all data pointghdaorehole location would be represented in thimittg set by at least
some data points, resulting in overoptimistic mqukatformance due to spatial overfitting (GaschletZz®15; Meyer et al.,
20164, 2018).

Performance of the RF model was evaluatedwo ways: (1) by standard error metrics and §2)the proportion of
boreholes with predicted,fz) superior to that of empirical functions—by-qeaming-the-predicted-and-trug(z)-curvesfor
each-borehole-in-the-test-fold-and-caleulatinhet Btandard error metrics root mean square ermiS(), mean absolute
error (MAE), and the coefficient of determinatidR’._were calculated based on the comparisothefpredicted and true
Vs(z) curves for each borehole in the test fRMSE, MAE and R of all test foldswere then averagesier-the-ten-foldsto

give final performance values
To determine the proportion of boreholes with breti§z) trends than those from empirical functiorsabeitior;we-also

tested how well the predicteg(z) curves performed compared tgz) curves calculated from empirical functions. rigsi

the depth values of the respective test borehg(e) profiles were therefore calculated from theefempirical functions
presented by Hamilton (1985) for deep-sea sedimesmts for terrigenous silt and clays (termed Hlthe following),
terrigenous sediments (H2), siliceous sedimenty,(Elcareous sediments (H4), and pelagic clay .(ABgse y functions
were chosen because the deep-sea setting applid tmajority of the boreholes, or was the besticghn absence of
empirical functions for other geological settinggls as mid-ocean ridges. The resulting Hamiltorvesiwere evaluated

against the truep(z) profile, and RMSE, MAE andRvere averaged over the five curves. The averaged metrics were
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then compared to the error metrics of the predictamd each borehole was assigned a score betwaed B as shown in
Table 2. Scores 2 and 3 were interpreted as a guartiction, i.e., better than the Hamilton curwebereas scores 0 and 1

represented generally bad predictions. The praponif boreholes with good predictiongs thenaveraged over the ten

folds.-served-as-anotherperformance-evaluation-measure

2.4 Predictor selection

To determine the most important predictors fpiprediction, a predictor selection approach wadopered. Although RF
can deal with high data dimensionality, predictelestion is still recommended, not only to removedictors that could
cause overfitting but also to increase model perforce (e.g. Belgiu and Byut, 2016, and references therein). We applied
Recursive Feature Elimination (RFE), which is basadhe variable importance scores provided byRRealgorithm. After
calculating and evaluating a model with all 38 jctats, the least important predictor accordingh® variable importance
scores was removed and the model was calculated. adas procedure was repeated until only one iptedwas left. By
evaluating model performance for each run via C3ing the same ten folds as before, the optimum eurabpredictors

was determined.

2.5 Tests to improve prediction performance

Additional tests to improve prediction performameeluded predictor scaling, variation of the mavatéees parameter, and
stronger smoothing of they(z) curves. All models were evaluated via a 10-0M, using the same folds as in the previous
model runs.

Predictor scaling was applied to account for thiedint data ranges of continuous and categorieatufes. Model
performance may be negatively affected if differgpies of variables or data ranges are used (Qtaly, 006; Strobl et al.,
2007), even though RF does not normally requiréeddaput data. All continuous predictors were edab between 0 and 1
to match the range of the categorical predictord, RFE was repeated.

As tuning of the max_features parameter, i.e. ntimaber of predictors to consider at each splitec®mmended by some
studies (Liel3 et al., 2016; Meyer et al., 2018)additional model was run in which max_features va$ed between 2 and
38 (all features) with an interval of 2. Performaneas evaluated for each case to find the optimumber of predictors to
choose from at each split.

A third attempt to improve model performance inealvenhanced filtering of the,(z) curves so that largey, variations
were smoothed out and the curves indicated onlgre@l trend, which would likely be sufficient forany applications
requiring knowledge of ywith depth. The ycurves therefore underwent spline smoothing uSiyihon’s scipy function
UnivariateSpline. Three separate RF models were calculated: (ipespl which involved spline smoothing of the preeit
curve of each test borehole; (i) spline2, in whibb input y(z) data were smoothed; and (jii) spline3, wherthlibe input
Vy(z) curves and the predictions were smoothed. iikd¢ cases were run with the 16 most importantigiad as

determined from the RFE results, and comparedetavious models.
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3 Results
3.1 Prediction performance

Overall, many Mz) profiles were predicted well by the RF mod&ler the 38-predictor CV, about 59.5 % of the botetio
had prediction scores of 2 or 3, representing diptien performance superior to that of the Hamilfanctions.

Predictions of prediction score 3, which were cbamased by lower RMSE and MAE values and a hidkfethan the five
empirical functions, often exhibited a good fittte true y(z) curve (Fig. 2a-d). Even for more complex velpgirofiles,
e.g. involving a velocity reduction at depth (Fagl), or a strong increase such as that from 2.Zkio >4 km & at the
basement contact in Fig. 2b, the predictgtz)vcurves generally matched the true curves wellsome cases, score 3
predictions did not provide a good fit but stillrfiemed better than the empirical functions (Fig).2Score 2 predictions
generally indicated the correct trend of the try(@)vprofile (Fig. 2f), whereas score 1 and scopedllictions failed to do so,
with velocities often considerably higher or lovtlean the true velocities (Fig. 2g, h).

The RFE CV revealed best performance for 33 predicts indicated by the lowest RMSE and MAE valliég. 3a). The
proportion of boreholes with prediction scores ofr23 was 59.2 % and thus slightly lower than fog 88-predictor CV
(59.5 %; Fig. 3b). The highest proportion of 61.9%s achieved by the 16-predictor model (Fig. Bbj,this also led to the
highest errors (Fig. 3a).

By scaling all predictors to between 0 and 1 ameating RFE, RMSE and MAE were reduced furtherh wie best errors
obtained for 35 predictors (Fig. 3a). These ermese only slightly lower than those of the 30-potdi case, which
achieved a higher percentage of boreholes with goediction (60.4 %; Fig. 3b).

Varying the number of predictors to consider folitépg the data at each tree node also improvedgérformance. For
max_features = 22, RMSE and MAE were lower thaaliprevious RF cases (Fig. 3a), while the proporiof boreholes
with goodperfermanee prediction scorems 61.3 % and thus only slightly lower than fag fl6-predictor case in which all
38 predictors were considered (Fig. 3b).

The three attempts of stronger smoothing of t}fe)\profiles via splines resulted in overall wopsformance than the 16-
predictor case, both in terms of errors and prapormf well-predicted boreholes (Fig. 4a). An exttep is the splinel case
(spline smoothing of the predicteg(z) profile), for which 62.4 % of the boreholes smbres of 2 or 3 (Fig. 4b), although
RMSE and MAE were slightly worse than for the otRér cases.

3.2 Score distribution

The global distribution of boreholes with differgarediction scores, shown in Fig. 5 for the 16-potd case without spline
smoothing, did not indicate a clear separation emteas with relatively good (scores 2 and 3) or (smbres 0 and 1)
predictionperformancescoresSome areas contain clusters of >10 boreholesy mamhich had a prediction score of 3.
Examples included the Sea of Japan (area A in &), the Nankai Trough (B), the Ontong-Java Platé@y the
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Queensland Plateau (D), and the Great AustraligghtB(E). However, nearly all of these cluster aral® contained
boreholes with bad prediction scores (Fig. 5b).iliy, single boreholes in remote locations weftem characterised by a
prediction score of 0 (Fig. 5b), but there wer alsveral remote boreholes with scores of 3, eghe Mid-Atlantic Ridge

(area F in Fig. 5a).

3.3 Predictor importance

For the 38-predictor CV, the five most importanegictors were “depth2base”, “crustage”, “depth”jstdsmt”, and
“wdepth” (Fig. 6). Continuous predictors and catécad predictors were clearly separated in the joted importance plot
(Fig. 6), with continuous predictors being of highportance in the RF model, whereas categoricalipi@s appeared less
important. The only exception was the categoricadjctor variable “spreading_ridge”, which had &lstly higher
importance ranking than the continuous predicttoag” and “dist2transform”. Many of the categorigakdictors were of
negligible (almost 0) importance (Fig. 6).

When the least important predictor was eliminatiéer @ach model run using RFE, the same trend Wwasreged: in both the
unscaled and scaled RFE cases, all categoricaicppesiwere eliminated before the continuous ptedéc(Table 3). In the
16-predictor case, which had the highest proportbrvell-predicted boreholes (61.9 %), the onlyegatrical predictor
included was “spreading_ridge”.

In the unscaled RFE case, the five most importaediptors were the same as in the feature impogtauhat of the 38-
predictor case (Fig. 6). However, the order diffestightly, with “depth” being eliminated beforeist2smt”, “wdepth”,
“depth2base”, and “crustage” (Table 3). When usiagled predictors, the five top predictors inclulegatflow” (ranked
sixth in both the 38-predictor CV and unscaled RBEes) instead of “crustage”. “Crustage” droppeplasition 15 and was
thus the least important of the continuous predic{@able 3). In general, however, the positiorkiag of most predictors

varied only by up to five positions between theaahsd and the scaled RFE cases (Table 3).

4 Discussion

4.1 Prediction performance in comparison with empiical functions

Our results show thahe general trend ofy(z) profiles can be predicted successfully usingtmtee learning. Overall, the

applied RF approach is superior to the empirigafunctions of Hamilton (1985), as indicated by #@ % of tested
boreholes with prediction scores of 3 or 2. Althowgyich a quantitatively better performance (i@yer RMSE and MAE,
and higher Rthan the Hamilton Xz) profiles) does not always mean a perfect fithe true y(z) curve of the tested
borehole, the RF approach has a promising poteotidghe prediction of ywith depth.

Slight improvements of the prediction performanceravachieved by applying RFE, resulting in a praporof well-

predicted boreholes of 61.9 % for the 16-predictardel. Smoothing the predictegi(z) profiles via spline smoothing
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(splinel case) provided a further increase to 82.4f well-predicted boreholes. In addition, redgcithe max_features
parameter from 38 (all predictors) to 22 also reslin a slight improvement (61.3 %), thus suppgribther studies that
recommended tuning the max_features parameter piooira results (Liel3 et al., 2016; Meyer et al., @0However, to

increase model performance even further, to a ptigmoof well-predicted boreholes well exceeding %0 other changes

are required.

4.2 Most important predictors for the prediction of v,(z)

Both the predictor importance ranking of RF and Ri€E results revealed “depth” as one of the mogbitiant predictors.
However, “depth” was not the most important preafictvhich is surprising as empirica} functions, including those of
Hamilton (1985), all use depth as the only inputapzeter. Our results showed that “depth2base” Weaya ranked higher
than “depth”, and often the predictors “wdepth”ist@smt” and “crustage” also had higher importasceres than “depth”.
Although “depth” is obviously still an important r@ameter in the prediction of,vthese observations imply that empirical
functions using only depth as input and neglectatigother influences may not produce realistjc values, which is
supported bythe at least 60 % of test locations for which the RBraach produced betteg(z) profiles than the Hamilton
functions.

The high importance of the predictors “depth2baseidepth”, “dist2smt”, “crustage”, as well as “h#aw’, seems
reasonable. The depth to the basement, whichaterkto the sediment thickness, is relevant becaiuge rapid y increase
at the basement contact and the associated tmm8gioim relatively low (<2.5 km™ to higher (> 4 km) v, values. Even
though in the majority of boreholes, the basemeas wot reached, the depth to the basement stramihgnces y. The
high ranking of the distance to the neareast seatrisuikely attributed to the associated changéeatflow at seamount
locations. Higher heatflow and hence higher tempeea affect density, which in turn affects ¥he predictor “crustage”
indicates young oceanic crust, which is characdrisy higher temperature and hence lower dendfgctang v,. Moreover,
“crustage” differentiates between oceanic (<200 )Mamd continental (here: 1 Byr) crust, and app#yenbre effectively
than the categorical predictors “oceancrust” arahtcrust”, which are of considerably lower importan

It has to be noted that the high-importance predictliscussed above only represent the most imgarfehe 38 predictors
used for prediction of i they are not necessarily the parameters that stoshgly influence yin general. If other
parameters, such as porosity, density, pressursatmration, had been included as predictors, theyld likely have
resulted in a higher importance ranking than, édist2smt” or “crustage”. However, these parametegere not included in
the model as they were restricted to measuremensrahole locations — not necessarily those frdmchvy,(z) data were
obtained — and are therefore not available for yevecation in the oceans. For the same reason,r ageephysical
parameters, e.g. electrical resistivity and magratsceptibility, were also not included.

A surprising finding in terms of predictor importanis the low importance of all categorical prealist The clear separation
between continuous and categorical predictorsemptiedictor importance plots may be due to biasedigtor selection, as

observed by Strobl et al. (2007) when differenetypf predictors were used. In such cases, catedpriedictors may often
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be neglected and ignored by the machine learniggritthm (Otey et al., 2006). Scaling the continuguedictors to the

same range as the categorical predictors did ripttbechange the importance ranking, but bias cabeoexcludedThe

poor representation of some predictors, such akl “gent”, “mud_volcano” and “hydroth_vent” in theatset, causing

these predictors to be 0 for all boreholes in stasefolds, may likely explain the low importandetliese predictors in the

predictor rankingOn the other hand, it is also possible that théaggeal setting described by the categorical predgwas

simply not relevant to the prediction gf. Whis possibility appears to be supported by tR& Results, which reveal the best
performance prediction scorfdl.9 % well-predicted boreholes) when all but oagegorical predictors were excluded (16-

predictor case).

4.3 Suggestions for further improvement of performace

The fact that prediction performance could not heimimproved by predictor selection, tuning the nfaatures parameter,
or additional smoothing suggests that other measare needed to further improve the prediction qarhnce. The
comparatively high proportion of boreholes with lyadredicted y(z) profiles (about 40 %) is likely due to the lted
number of boreholes that were available in thisigtbut may also have been influenced by the choiiceachine learning
algorithm.

It is possible to add more predictors that potdigtiafluence vy, for example, seafloor gradient, bottom water terafure,
and distance to the shelf edge. In addition, sofhtkeopredictors could be improved. For example,abe of the continental
crust, currently set to the constant value of 1,Bpuld be adapted based on the crustal age grielobpinet and Shapiro
(2009). Other studies also suggest including thet fand second derivatives of predictors or othexthematical
combinations of predictors (Obelcz and Wood, 2048pd et al., 2018; Lee et al., 2019).

Another way to extend the dataset is to includeemg(z) data. Given the relatively inhomogeneous glabstribution of
borehole locations used in this study (Fig. 1),iagldnore y(z) data is highly recommended. On a much smatiates
Gasch et al. (2015) noted that high spatial hetsreigy of input locations limits the prediction fimance and increases
prediction errors. Adding more,(z) data, especially from regions such as the sootRacific and Atlantic oceans that are
presently not covered, will likely help to increatbe prediction performance. For example, th)vrecords from recent
IODP expeditions may be added to the dataset gskibeome available. Additional,\data could also be obtained from
commercial boreholes and refraction seismic datenfocean bottom seismometers, although the latbetdabe of lower
vertical resolution.

The choice of machine learning algorithm may alsttuence model performance. Studies comparing R&inay other
machine learning algorithms reported different dienin some cases, RF was superior in terms ofigiied performance
(e.g. Li et al., 2011; Cracknell and Reading, 20ereas in other cases, no strong differences wleserved between the
different methods (e.g. Goetz et al.,, 2015; Meyemle 2016b).However,-Given the present dataset and its spatial

inhomogeneitygeneralhypositive-reputation-of RRagwrediction-methgdve doubt that a different algorithm would lead to
a significantlyimprovedditferenprediction performance for,v
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5 Conclusions

In this study, we presented an RF model for theliptien of y(z) anywhere in the oceans. In about 60 % of tiseete
locations, the RF approach produced betger)\profiles than empiricalMunctions. This indicates a promising potential fo
the prediction of z) using machine learning, although some improvenstill required. In particular, the model inpu
data should be extended to increase spatial comewdgch is expected to significantly improve pridin performance. Our
results showed that depth, which is the only inpuempirical y functions, is not the most important parameter tfar
prediction of y. Distance to the basement, water depth, age ef,cand distance to the nearest seamount are nerge
equally or even more important than depth. By idtlg these parameters in the determination,ofhe RF model is able to
produce more accuratg,(z) profiles and can therefore be used as an alieento empirical y functions. This is of
particular interest for geophysical modelling apations, such as modelling gas hydrate concentigtim areas lacking

alternative y(z) information from boreholes or seismic data.
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Figure 1. Distribution of the 333 boreholes from with v,(z) profiles were extracted. DSDP — Deep Sea Drilly Project, ODP —
Ocean Dirilling Program, IODP — International OceanDiscovery Program. Bathymetry (30 s resolution) ifrom the GEBCO_2014
grid (http://www.gebco.ne).

Figure 2. Examples for true y(z) curves, predicted y(z) curves, and y(z) calculated from the five Hamilton functions (Hamilton,
1985) used in model evaluation. (a)-(d) well predied v,(z) curves of score 3, (epwer-qualityless-geedprediction of score 3, (f)
score 2, (g)-(h) bad predictions of scores 1 and Bee 2.3 for a description of H1 to H5.

Figure 3. Comparison of (a) error metrics and (b) poportion of well predicted boreholes (scores 2 an8) for different model runs.
RMSE - root mean square error, MAE — mean absolutereor, CV — cross-validation, RFE — Recursive FeatureElimination.

Figure 4. Comparison of (a) error metrics and (b) poportion of well predicted boreholes (scores 2 an@®) for model runs with
different degrees of data smoothing. RMSE — root messquare error, MAE — mean absolute error, CV — cros-validation.

Figure 5. Distribution of boreholes with (a) good gcores 2 and 3) and (b) bad (scores 0 and 1) predictions. Areas A-E mark
clusters of boreholes in the Sea of Japan (A), théankai Trough (B), the Ontong-Java Plateau (C), th&Queensland Plateau (D),
and in the Great Australian Bight (E). Area F indicaes an example for remote boreholes of score 3 ohet Mid-Atlantic Ridge.
Bathymetry (30 s resolution) is from the GEBCO_2014rid (http://www.gebco.ne).

Figure 6. Predictor importance ranking for the 38-predictor model run. For each predictor, the importance was averaged over the

ten runs of the 10-fold CV. Categorical predictorsare marked with an asterisk. Predictor names are eplained in Table 1.

Table captions

Table 1. Overview of the 38 predictors and their aarces.

Table 2. Scores for performance comparison betweenFRprediction and v, calculated from the empirical functions of Hamiltan
(2985).

Table 3. Predictor ranking based on the RFE resultsdr unscaled and scaled predictors. Categorical préctors are marked with
an asterisk. See Table 1 for an explanation of prectior names.
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Table 1
predictor description type source description refeence
lat latitude continuous DSDP/ODP/IODP data procesabtes
long longitude continuous DSDP/ODP/IODP data prsicesnotes
wdepth water depth continuous DSDP/ODP/IODP datagssing notes
depth depth below seafloor continuou$ |, logs
crustage age of crust continuous ocean crust: btobstal age grid (2 min Mdller et al. (2008)
res.)
continental crust: 1 Byr (const.)
sedthick sediment thickness continuous global sextirthickness grid (5 min Whittaker et al.
res.) (2013)
spreadrate spreading rate continuoys global sprgadie grid (2 min res.) Mdiller et al. (2008
heatflow surface heatflow continuousg global surfaeatflow grid (2° res.) Davies (2013)
depth2base depth to acoustic continuous derived from sediment thickness and
basement depth
dist2smt distance to nearest continuous derived from global seamount dataset &ioh Wessel
seamount (2011)
dist2hole distance to nearest continuous derived from borehole locations
borehole
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dist2coast distance to nearest continuous derived from global shoreline dataset s&kand Smith
coast (1996)

dist2trench distance to nearest continuous derived from global trench dataset Cadffial. (1998)
trench

dist2ridge distance to nearest continuous derived from global spreading ridge Coffin et al. (1998)
spreading ridge dataset

dist2transform distance to nearest continuous derived from global transform boundary Coffin et al. (1998)
transform boundary dataset

oceancrust oceanic crust categorical derived fmarstal age

contcrust continental crust categorica derivednfryustal age

active_margin geological setting: categorical DSDP/ODP/IODP proceedings (site
active margin descriptions)

passive_margin geological setting: categorical DSDP/ODP/IODP proceedings (site
passive margin descriptions)

spreading_ridge geological setting: categorical DSDP/ODP/IODP proceedings (site
spreading ridge descriptions)

subduction geological setting: categorical DSDP/ODP/IODP proceedings (site
subduction zone descriptions)

volcanic_arc geological setting: categorical DSDP/ODP/IODP proceedings (site
volcanic arc descriptions)

fore-arc geological setting: forg- categorical DSDP/ODP/IODP proceedings (site
arc basin descriptions)

accretion_wedge geological setting: categorical DSDP/ODP/IODP proceedings (site
accretionary wedge descriptions)

trench geological setting: categorical DSDP/ODP/IODP proceedings (site
trench descriptions)

cont_slope geological setting: categorical DSDP/ODP/IODP proceedings (site
continental slope descriptions)

shelf geological setting: categorical DSDP/ODP/IODP proceedings (site
continental shelf descriptions)

reef geological setting: categorical DSDP/ODP/IODP proceedings (site
(former) reef descriptions)

basin geological setting: categorical DSDP/ODP/IODP proceedings (site
basin descriptions)

struct_high geological setting: categorical DSDP/ODP/IODP proceedings (site
structural high descriptions)

cont_plateau geological setting: categorical DSDP/ODP/IODP proceedings (site
continental plateau descriptions)

aseismic_ridge geological setting: categorical DSDP/ODP/IODP proceedings (site
aseismic ridge descriptions)

seamount geological setting: categorical DSDP/ODP/IODP proceedings (site
seamount descriptions)

guyot geological setting: categorical DSDP/ODP/IODP proceedings (site
guyot descriptions)

mud_volcano geological setting: mugdcategorical DSDP/ODP/IODP proceedings (site
volcano descriptions)

ds_fan geological setting: categorical DSDP/ODP/IODP proceedings (site
deep-sea fan descriptions)

hydroth_vent geological setting: categorical DSDP/ODP/IODP proceedings (site
hydrothermal vent descriptions)

cold_vent geological setting: cold categorical DSDP/ODP/IODP proceedings (site

vent

descriptions)
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20 Table 2
Score | Description Inferred
prediction
performance
Il 3 all 3 error metrics of RF prediction indicate betfit than| Ggood
empirical functions
| 2 2 of 3 error metrics of RF prediction indicateteeffit than | gGood
empirical functions
| 1 1 of 3 error metrics of RF prediction indicate teeffit than| Bbad
empirical functions
[ o all 3 error metrics of empirical functions indiedetter fit than| Bbad
RF prediction
25
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Table 3
Position Predictor
RFE unscaled RFE scaled
1 Ccrustage wdepth
2 depth2base depth2base
3 Wwdepth dist2smt
4 dist2smt depth
> Ddepth heatflow
6 Hheatflow sedthick
7 dist2hole dist2trench
8 dist2coast dist2hole
9 dist2trench dist2coast
10 Hat spreadrate
11 Sedthick dist2ridge
12 Sgreadrate long
13 dist2ridge lat
14 Hong dist2transform
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dist2transform crustage
16 spreading_ridge* contcrust*
17 cont_plateau* basin*
18 reef* active_margin*
19 aseismic_ridge* struct_high*
20 basin* oceancrust*
21 struct_high* passive_margin*
22 oceancrust* subduction*
23 volcanic_arc* reef*
24 active_margin* accretion_wedge*
25 contcrust* cont_plateau*
26 guyot* cont_slope*
27 passive_margin* spreading_ridge*
28 trench* fore-arc*
29 subduction* shelf*
30 seamount* ds_fan*
31 fore-arc* volcanic_arc*
32 hydroth_vent* trench*
33 cont_slope* seamount*
34 shelf* aseismic_ridge*
35 accretion_wedge* guyot*
36 ds fan* cold_vent*
37 mud_volcano* hydroth_vent*
38

cold_vent*

mud_volcano*
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