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Dear Reviewer, 

 

Thank you very much for taking the time to review the manuscript and give comments 

that help us to improve it. Please find below our point-by-point response to your 

comments. The original comments are in black, and our answers are in blue. The revised 

manuscript with tracked changes is also attached. 

 

General comments: The authors present a regularization method that is used in the 

combination of heterogeneous data. The novelty is the combination of two 

regularization methods, namely by combining VCE estimation and the L-curve criteria. 

Various combinations are discussed and compared to existing methods, primarily to 

VCE estimation or L-curve regularization alone. However, the applied methodology is 

questionable as the combination of the two criteria is essentially equivalent to a double 

regularization. The comparison to the calculation "VCE based on CM2" reveals that the 

same result can be achieved by ordinary approaches. Further, the usage of the Shannon 

function for analysis and Blackman/CuP function results in additional smoothing which 

has not been further explained or described. Thus, I consider this paper inconclusive.  

 

We do not apply a double regularization. We combine the VCE for determining the 

relative weighting between different observation types and the L-curve method for 

determining the regularization parameter. From the VCE procedure, only the relative 

weights are kept, the generated regularization parameter is not further used.  

 

The experiments show that ‘VCE based on CM 2’ cannot guarantee a reliable result. 

When the Shannon function is used for both analysis and synthesis as suggested, ‘VCE 

based on CM 2’ gives even worse results (larger RMS errors as well as smaller 

correlations) than ‘the L-curve method based on CM 1’ in the study cases B and D 

(please refer to Table 6 in the revised manuscript). The ‘VCE + L-curve method’ 

overperforms ‘VCE based on CM 2’ by 6.1%, 48%, 0.7%, 4.1%, 2.3% and 1.8% in 

terms of RMS error in the six study cases, respectively. When the CuP function is used, 

‘VCE based on CM 2’ gives smaller correlation results than the ‘L-curve method based 

on CM 1’ in three study cases. ‘VCE + L-curve method’ overperforms ‘VCE based on 

CM 2’ by 9.7%, 1.1%, 10.5%, 5.4%, 0.9%, 3.8%, respectively. More important, the 

performance of ‘VCE + L-curve method’ is stable in all the study cases. Thus, we think 

the improvement by using our proposed method is in fact significant. 

 

The idea to use certain spherical radial basis function for the analysis and the same or 



other functions for the synthesis in case of a band limitation is explained by Schreiner 

(1996), Schmidt et al. (2007, Theorem 1) and Lieb (2017). However, since our goal is 

to compare different types of regularization parameter choice methods but not different 

SRBFs, we have changed the experiments to using the same SRBF for both analysis 

and synthesis. Thus, we have modified Section 2.3, and we have updated the results and 

discussions in Section 5.3. 

 

Specific comments: Section 1: The motivation of the regularization is unclear. Why are 

new methods needed? What are the limitations of existing methods? Why is the specific 

approach of the authors chosen and what benefits do the authors expect from their 

approach?  

 

We have replaced the content of Page 2, Line 29 to Page 3, Line 9 in Section 1 by the 

following two paragraphs to explain the motivation of this study in more detail. In the 

revised manuscript, we explain the limitations of using the L-curve method or the VCE 

alone, and why we proposed the two new methods. 

“VCE estimates the variance components of different observation techniques as well as 

the regularization parameter simultaneously. However, in this case, the regularization 

parameter is handled as another variance component, and the prior information is 

interpreted as an additional observation technique, and, thus, assumed to be of random 

character. In most of the regional gravity modeling studies, a background model serves 

as prior information. In this case, the prior information has no random character, and 

the regularization parameter generated by VCE is not reliable (Liang, 2017). Lieb (2017, 

p.131) presents a case which shows the instability of VCE. Naeimi (2013, p.102) shows 

that VCE generally performs worse than the L-curve method.  

Since VCE does not guarantee a reliable regularization solution, and the L-curve 

method cannot weight heterogeneous observations, the purpose of this paper is to 

combine these two methods, and to improve the stability and reliability of the solutions. 

The idea of combining VCE for weighting different data sets and a method for 

determining the regularization parameter was introduced in the Section ‘future work’ 

of both Naeimi (2013, p.121) and Liang (2017, p.134). The study in this manuscript is 

also inspired by Wang et al. (2018), who combine two methods successively for 

determining the regularization parameter and relative weights for GPS and InSAR. 

However, to the best of our knowledge, there are still no publications applying this idea 

for combining heterogeneous observations in regional gravity field modeling. Thus, we 

introduce and discuss in the paper the two proposed new methods which combine VCE 

for determining the relative weighting between different observation types and the L-

curve method for determining the regularization parameter, denoted as ‘VCE + L-curve 

method’ and ‘L-curve method + VCE’, depending on the order of the applied 

procedures. Numerical experiments are carried out to compare their performance to the 

original L-curve method and VCE.” 

 

page 3, line 5: The authors argue to find the best-performing method (in what sense?) 

for regularization. However, they do not consider other methods than VCE and L-curve, 



e.g. GCV. Further, the method will be best-performing for their specific problem as no 

general criteria is derived which allows to conclude that the proposed method is best-

performing.  

 

We agree that the word “best-performing” is too “big” for this paper. The purpose of 

this paper is to test if the two combined methods give better results compared to VCE 

or the L-curve method alone. Since the L-curve method or other conventional 

regularization parameter choice methods cannot weight heterogeneous observations, 

and VCE does not guarantee a reliable regularization solution, we want to improve the 

stability and reliability of the solutions by combining these two methods. The criteria 

used for comparing the performance are the RMS error as well as the correlation 

between the estimated coefficients and the validation data (see Section 5.2, Page 11, 

Line 20-29).  

We have already changed the whole paragraph corresponding to the first specific 

comment and have rewritten the purpose of the paper. Please refer to the answer of the 

last comment and the revised manuscript.  

 

Section 2.3: The authors present three different SRBFs with various smoothing features. 

Why is the approach of Eicker (2008) not considered? By including gravity field 

information into Bn, a considerable improvement can be achieved.  

 

The focus of this work is not to compare the performance of different SRBFs, but to 

compare the performance of different regularization parameter choice methods. For 

each group of comparison, the same SRBF is used for every regularization parameter 

choice method. However, as mentioned in the future work, we plan to study the 

performance of more types of SRBFs using the newly devised method. 

 

Section 2.3: If I understood the author’s approach correctly, they use the Shannon 

function for the analysis of the simulated data but apply the estimated coefficients using 

either the Blackman or CuP function in the synthesis step. This approach is at least odd 

and inconsistent if not wrong from the beginning. In-fact, the approach introduces an 

additional smoothing. The authors state correctly that the latter two have smoothing 

features. Thus, the approach is unsuitable for the conducted research as it masks the 

effects of the regularization. It is another implicit regularization and thus the results 

cannot unambiguously assigned to the performance of the chosen methods. The only 

correct approach is therefore to use the same function for the analysis and synthesis 

step. The approach is even more questionable as Bentel2013 showed that differences 

between SRBFs matter (as also stated by the authors).  

 

In the previous version of the manuscript, we have conducted two sets of experiments; 

the first set uses the Shannon function for analysis and the Blackman function for 

synthesis; the second set uses both the CuP function for analysis and synthesis.  

Schreiner (1996) and Freeden et al. (1998) gave the proof that different types of SRBFs 

can be used in the analysis step and synthesis step in case of the same band limitation. 



This procedure was applied in Lieb et al. (2016), Lieb (2017), among many others. 

However, since our goal is to compare different types of regularization parameter 

choice methods but not different SRBFs, we have changed the first set of experiments 

to use the Shannon function for both analysis and synthesis. Thus, we have removed 

the Blackman function and modified Section 2.3, consequently, we have also updated 

the RMS results for the first set of experiments and the corresponding discussions in 

Section 5.3.  

 

Section 3.1 provides no new information. The content can be reduced to the most 

significant equations and appropriate referencing.  

 

We have shortened some of the content. Since Section 3.1 is not very long, and it 

discusses how the coefficients are estimated and how the regularization parameter is 

introduced, we have kept significant equations. 

 

Section 3.2: CM1 can obviously be removed as the assumption \sigma_1ˆ2 = 

\sigma_2ˆ2 = ... is hardly valid in any case (except for simulated data with exactly this 

assumption). Furthermore, applying VCE is the proper tool to consider data with 

varying variance factors. Thus, the results of CM1 are superfluous and the results prove 

the invalidity of the assumption.  

 

The ordinary L-curve method can only be applied based on CM 1 because it cannot 

estimate the variance factors. And the results show that although results based on CM 

1 are expected to be worse than those based on CM 2, ‘the L-curve method based on 

CM 1’ still performs better than ‘VCE based on CM 2’ in some study cases. So, the 

results of CM 1 prove that VCE does not guarantee reliable regularization results, and 

thus show the importance of our combined method.  

However, we have removed the method ‘VCE based on CM 1’ since the variance factors 

need to be considered for different data sets, and the results from ‘VCE based on CM 

1’ are expected and proved to be worse than ‘VCE based on CM 2’. Section 5.3 and 6 

are thus rewritten. 

 

Section 4.3: The regularization is essentially a double differentiation as the estimated 

variance factors during the VCE will reflect the regularization parameters. Practically 

the \lambda of equation 30 is split in \lambda_1 + \lambda_2 where one is estimated by 

VCE and the other by the L-curve criterion or vice-versa. Due to the double 

regularization, the results will be further smoothed than in case of applying just one of 

the methods alone. A better fit is therefore expected as the inherent effects due to ill-

posedness is dominating. Also, the authors do not motivate the need for a second 

regularization and also do not discuss the effect of the second regularization step.  

 

We do not apply a double regularization. We used VCE for determining the relative 

weight between each observation types and the L-curve method for determining the 

regularization parameter. The regularization parameter that was generated from VCE is 



not further used. The 𝜆 of Eq. (30) is only estimated by the L-curve criterion, and the 

relative weights ω𝑝 in Eq. (30) are estimated by VCE. 

For clarification, we have extended the description part in Section 4.3 in the revised 

paper. 

 

Section 5.3: The authors present two study cases: A and F; why not naming them A and 

B as you only present results of those two. The reader will have no information on cases 

B to E. Further, the results of CuP function can also be removed as they do not introduce 

any new insight.  

 

The naming depends on how many types of observations are combined; from A to F, 

more types of observations are combined. However, we have rewritten Section 5.3, 

because we have changed the first set of experiments to using the Shannon function for 

both analysis and synthesis, and the results from ‘VCE based on CM 1’ are removed. 

In the revised version, we discuss all the cases together, and Section 5.3 is rewritten. 

We think the results of the CuP function are necessary for two reasons. The first reason 

is that Naeimi (2013, p. 121) points out that VCE gives better performance when 

smoothing kernels which have built-in regularization are used. Our results of the CuP 

function show that even with a built-in regularization, VCE still does not guarantee a 

reliable result, and ‘VCE + L-curve method’ outperforms VCE in all the study cases. 

The second reason is that when the Shannon function is used for both analysis and 

synthesis, ‘VCE + L-curve method’ always outperforms the original L-curve method 

and VCE, and ‘L-curve method + VCE’ also generally outperforms the L-curve method 

and VCE. But when the CuP function is used, ‘VCE + L-curve method’ still performs 

the best but ‘L-curve method + VCE’ does not show significant improvements 

compared to VCE. So, we conclude that the ‘VCE + L-curve method’ improves the 

stability and reliability of the solution no matter the used SRBFs have a smoothing 

feature or not.  
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