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Abstract. Various types of heterogeneous observations can be combined within a parameter estimation process using spherical 

radial basis functions (SRBF) for regional gravity field refinement. However, this process is in most cases ill-posed, and thus, 10 

regularization is indispensable. We discuss two frequently used methods for choosing the regularization parameter which are 

the L-curve method and variance component estimation (VCE). Based on these two methods, we propose two new approaches 

for the regularization parameter determination, which combine the L-curve method and VCE. 

The first approach, denoted as ‘VCE + L-curve method’, starts with the calculation of the relative weights between the 

observation techniques by means of VCE. Based on these weights the L-curve method is applied to determine the regularization 15 

parameter. In the second approach, called ‘L-curve method + VCE’, the L-curve method determines first the regularization 

parameter and it is set to be fixed during the calculation of the relative weights between the observation techniques from VCE.   

These methods are investigated based on two different estimation concepts for combining various observation techniques. All 

the methods are applied and compared in six study cases using four types of observations in Europe. The results show that the 

‘VCE + L-curve method’ delivers the best results in all the six cases, no matter using SRBFs with smoothing or non-smoothing 20 

features. The ‘L-curve method + VCE’ also gives rather good results, generally outperforming the cases just using the L-curve 

method or VCE. Therefore, we conclude that the newly proposed methods are decent and stable for regularization parameter 

determination when different data sets are combined and can be recommended regardless of the type of SRBFs used. 

1 Introduction 

Gravity field modeling is a major topic in geodesy, and it supports lots of applications including physical height system 25 

realization, orbit determination and solid earth geophysics. To model the gravity field, a proper approach needs to be set up to 

represent the input data as good as possible. The global gravity field is usually described by spherical harmonics (SH), due to 

the fact that they are fulfilling the Laplacian differential equation and are orthogonal basis functions on a sphere. However, in 

the spatial domain, a global coverage of data sets is not always fulfilled sufficiently, and it is well-known that SHs cannot 
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represent data of heterogeneous density and quality in a proper way (Schmidt et al., 2007). Regional gravity refinement is, 

thus, performed for combining different observation types such as airborne, shipborne or terrestrial measurements which are 

only available in specific regions. Different regional gravity modeling methods have been developed during the last decades, 

e.g., the statistical method of Least Squares Collocation (LSC) (see Krarup, 1970; Moritz, 1980; Pail et al., 2010) or the method 

of mascons (mass concentrations) (see Rowlands, 2005). The method based on spherical radial basis functions (SRBF) will be 5 

the focus of this work. 

The fundamentals of SRBFs can be found amongst others in Holschneider et al. (2003) as well as Freeden and Michel (2004). 

Due to the fact that SRBFs are isotropic and characterized by their localizing feature, they can be used appropriately for 

regional approaches to consider the heterogeneity of data sources; examples are given by Marchenko et al. (2003), Schmidt et 

al. (2007), Lieb et al. (2016). There are many factors in SRBF modeling that influence the accuracy of the regional gravity 10 

model, e.g., the shape, bandwidth, locations of the SRBFs and the extension of the data zone. Tenzer and Klees (2008) 

compared the performance of different types of SRBFs using terrestrial data, Bentel et al. (2013a, b) gave a comparison of 

nine different SRBFs in regional gravity field modeling based on simulated data. Bentel et al. (2013a) also studied the influence 

of point grids, and the results show that the differences between SRBFs are much more significant than the differences between 

different point grids. Another detailed investigation about the locations of SRBFs can be found in Eicker (2008), where 15 

methods for choosing a proper bandwidth were also introduced. Bentel (2013a) discussed the reasons for edge effects and Lieb 

(2017) provided a possible way to choose area margins in order to minimize edge effects. 

After setting up all the factors, heterogeneous data sets are often combined within a parameter estimation process; two 

combination models (see Schmidt et al., 2015) are introduced and applied in this work. One model takes the relative weightings 

between the observation techniques into consideration while the other one relies on an equally weighted scenario. Regional 20 

gravity modeling is usually an ill-posed problem due to (1) the number of chosen basis functions, i.e. the SRBFs, (2) given 

data gaps, and (3) the downward continuation. Thus, regularization is in most cases inevitable in the parameter estimation 

process. Bouman (1998) discussed and compared different regularization methods, including Tikhonov regularization 

(Tikhonov and Arsenin, 1977), truncated singular value decomposition (TSVD, Xu, 1998), and iteration methods (Schuh, 

1996). Choosing an appropriate regularization parameter is a crucial issue for a proper regularization. Generalized cross 25 

validation (GCV, Golub et al., 1979), L-curve criterion (Hansen, 1990; Hansen and Oleary, 1993) and variance component 

estimation (VCE, Koch, 1999; Koch and Kusche, 2002) are the three most commonly used methods for estimating the 

regularization parameter.  

However, there are not many studies that compare the performance of each method, and the existing publications do not reach 

an agreement indicating which gives the best, i.e., the most realistic results. Kusche and Klees (2002) compared GCV and the 30 

L-curve method, and the results show that the L-curve criterion always yields over-smoothed solutions; the same results were 

indicated by Xu (1998). Naeimi (2013) showed that the L-curve method provides satisfactory results while VCE and GCV 

cannot regularize the regional solutions sufficiently. Bentel (2013) presented that the L-curve method leads to fairly good 

results for noise-free data but does not perform as good as VCE in the case of noisy observations. Naeimi et al. (2015) 
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investigated how the performance of the regularization method changes when different types of SRBFs are used. The L-curve 

method delivers the best results when a non-smoothing kernel (Shannon) is applied, while the opposite when smoothing kernels 

are used. Besides, Lonkhuyzen et al. (2001) showed that the knowledge of the variances of the observations is not a guarantee 

for obtaining good solutions.  

Thus, the purpose of this study is to find out the best-performing method for regularization parameter determination. We will 5 

(1) compare the performance of the L-curve method and VCE based on the aforementioned two combination models, (2) 

propose two new methods which combine the L-curve method and VCE together, (namely ‘VCE + L-curve method’ and ‘L-

curve method + VCE’) and compare the results to the ones obtained using the L-curve method or VCE alone, and (3) test the 

stability of each method when different SRBFs are applied.  

This work is organized as follows: in Section 2, we present the fundamental concepts of SRBFs, different types of gravitational 10 

functionals and SRBFs are also represented briefly. Section 3 discusses the parameter estimation, the Gauss-Markov model as 

well as the two combination models. Section 4 is dedicated to the regularization method, the L-curve method, VCE and the 

two newly proposed combination methods. In Section 5, the study area, the simulated data used in the study are presented as 

well as the results. The performance of all five methods for choosing the regularization parameter is compared. Finally, a 

summary and conclusions will be given in Section 6. 15 

2 Regional gravity field modelling using SRBF 

In general, a spherical basis function 𝐵(𝒙, 𝒙𝑘) related to a point 𝑃𝑘 with position vector 𝒙𝑘 on a sphere Ω𝑅 with radius R and 

an observation point 𝑃 with position vector x can be expressed by 

𝐵(𝒙, 𝒙𝑘) = ∑
2𝑛+1

4𝜋
(

𝑅

𝑟
)

𝑛+1

𝐵𝑛𝑃𝑛(𝒓T𝒓𝑘)
∞
𝑛=0  ,                     (1) 

(Schmidt et al., 2007), with 𝒙 = 𝑟 ∙ 𝒓 = 𝑟 ∙ [cos𝜑 cos𝜆, cos𝜑 sin𝜆, sin𝜑]𝑇 , where 𝜆  is the spherical longitude, 𝜑  is the 20 

spherical latitude, 𝒙𝑘 = 𝑅 ∙ 𝒓𝑘, 𝑃𝑛 is the Legendre polynomial of degree n and 𝐵𝑛 is a Legendre coefficient which specifies the 

shape of the SRBF. 

With the spherical basis function (Eq. 1), a harmonic signal 𝐹(𝒙) can be described as 

𝐹(𝒙) = ∑ 𝑑𝑘𝐵(𝒙, 𝒙𝑘)
𝐾
𝑘=1  ,           (2) 

where K is the number of basis functions. The unknown coefficients 𝑑𝑘 can be evaluated from the observations. As will be 25 

shown in the following subsection, using these coefficients, any functional of 𝐹(𝒙) can be described. 

2.1 Gravitational functionals 

Various functionals can be derived from the gravitational potential based on field transformations: 
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Disturbing potential 

The disturbing potential T is defined as the difference between the total gravity potential W and the normal gravity potential U 

𝑇 = 𝑊 − 𝑈 ,            (3) 

where the latter is the potential related to the level ellipsoid. The gravity potential W consists of two parts, the gravitational 

potential V and the centrifugal potential Z, i.e. 5 

𝑊 = 𝑉 + 𝑍 .             (4) 

Combining Eq. (3) and Eq. (4) yields 

𝑇 = 𝑉 − 𝑈 + 𝑍              (5) 

(Hofmann-Wellenhof and Moritz, 2005). 

Gravitational potential difference 10 

The satellite gravity field mission Gravity Recovery and Climate Experiment (GRACE, Tapley et al., 2004) consists of two 

satellites A and B. An observation ∆𝑉𝐴𝐵can be interpreted as the difference between the gravitational potential values V of A 

and B, i.e. ∆𝑉𝐴𝐵 = 𝑉(𝒙𝐴) − 𝑉(𝒙𝐵). Including the measurement error e, the observation equation reads 

∆𝑉(𝒙𝐴, 𝒙𝐵) + 𝑒(𝒙𝐴, 𝒙𝐵) = 𝑉(𝒙𝐴) − 𝑉(𝒙𝐵) + 𝑒(𝒙𝐴, 𝒙𝐵)  = ∑ 𝑑𝑘𝐵(𝒙𝐴, 𝒙𝐵 , 𝒙𝑘)
𝐾
𝑘=1  ;    (6) 

the function 𝐵 (𝒙𝐴, 𝒙𝐵 , 𝒙𝑘) is given in Table 1.  15 

Gravity disturbance 

The gravity disturbance is generally used in airborne and terrestrial gravity field determination (Alberts, 2009). The gravity 

disturbance vector δ𝒈 is expressed as the gradient of the disturbing potential T 

𝛿𝒈 = [
𝜕𝑇

𝜕𝑥
,
𝜕𝑇

𝜕𝑦
,
𝜕𝑇

𝜕𝑧
]
T

= grad𝑇 .           (7) 

In spherical approximation, the magnitude of the gravity disturbance can be written as 20 

𝛿𝑔 = −
𝜕𝑇

𝜕𝑟
= −𝑇𝑟  ,            (8) 

its observation equation reads 

𝛿𝑔(𝒙) + 𝑒(𝒙) = ∑ 𝑑𝑘𝐵𝑟(𝒙, 𝒙𝑘)
𝐾
𝑘=1  ,         (9) 

where the basis function 𝐵𝑟(𝒙, 𝒙𝑘) is given in Table 1. 
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Gravity gradients 

Equipped with a 3-axis gradiometer, the satellite mission Gravity Field and Steady-State Ocean Circulation Explorer (GOCE, 

Rummel et al., 2002) observed the tensor ∆𝑽 of the gravity gradients 𝑉𝑎𝑏 with 𝑎, 𝑏 ∈ {𝑥, 𝑦, 𝑧}, i.e. all second-order derivatives 

of the gravitational potential V 

 ∆𝑽 = [

𝑉𝑥𝑥 𝑉𝑥𝑦 𝑉𝑥𝑧

𝑉𝑦𝑥 𝑉𝑦𝑦 𝑉𝑦𝑧

𝑉𝑧𝑥 𝑉𝑧𝑦 𝑉𝑧𝑧

]            (10) 5 

with 𝑉𝑥𝑦 = 𝑉𝑦𝑥 , 𝑉𝑥𝑧 = 𝑉𝑧𝑥 , 𝑉𝑦𝑧 = 𝑉𝑧𝑦  and trace (∆𝑽) = 0  due to the Laplacian differential equation. In spherical 

approximation 𝑉𝑧𝑧 ≈ 𝑉𝑟𝑟 =
𝜕2𝑉

𝜕𝑟2 holds and the observation equation reads 

𝑉𝑟𝑟(𝒙) + 𝑒(𝒙) = ∑ 𝑑𝑘𝐵𝑟𝑟(𝒙, 𝒙𝑘)
𝐾
𝑘=1  ;          (11) 

the basis function 𝐵𝑟𝑟(𝒙, 𝒙𝑘) can be found in Table 1.  

2.2 Gravitational functionals in terms of SRBFs  10 

In this study, all observations are simulated in the sense of disturbing gravity field quantities, i.e. disturbing potential 

differences ∆𝑇 = 𝑇(𝒙𝐴) − 𝑇(𝒙𝐵) for GRACE, the first order radial derivatives 𝑇𝑟 for terrestrial and airborne observations as 

well as the second order radial derivatives 𝑇𝑟𝑟 for GOCE. For each type of observation, the adapted basis functions are listed 

in Table 1. 

Basis functions adapted to other functionals of the disturbing potential which are not used here are listed in Koop (1993), Lieb 15 

et al. (2016) and Lieb (2017). 

2.3 Types of spherical radial basis functions 

Since it is not possible to reach perfect localization in both the spectral and spatial domain due to the uncertainty principle 

(Freeden, 1998; Ozawa, 2003), we want to find an appropriate compromise between these two domains. Different types of 

SRBFs can be found amongst others in Schmidt (2007), Bentel (2013a, b). Three types of SRBFs are studied in this work, 20 

including functions with smoothing features (Blackman and Cubic Polynomial) and without smoothing features (Shannon).  

The Shannon function has the simplest representation; its Legendre coefficients are given by 

𝐵𝑛 = {
    1     for 𝑛 ∈ [0, 𝑁𝑚𝑎𝑥]   

0                            else
          (12) 

The Blackman function is derived from the Blackman window; its Legendre coefficients are given by 

𝐵𝑛 = {
1

(𝐴(𝑛))2

0

                  for 𝑛 ∈ [0, 𝑛1)

                       for 𝑛 ∈ [𝑛1, 𝑁𝑚𝑎𝑥]
else

        (13) 25 

where  

𝐴(𝑛) =
21

50
−

1

2
cos (

2𝜋(𝑛− 𝑁𝑚𝑎𝑥)

 2(𝑁𝑚𝑎𝑥−𝑛1)
) +

2

25
cos (

4𝜋(𝑛− 𝑁𝑚𝑎𝑥)

 2(𝑁𝑚𝑎𝑥−𝑛1)
)       (14) 
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In case of the Cubic Polynomial (CuP) function, the Legendre coefficients are given by a cubic polynomial, namely 

𝐵𝑛 = {(1 −
𝑛

 𝑁𝑚𝑎𝑥
)

2

(1 +
2𝑛

 𝑁𝑚𝑎𝑥
)

0

                      for 𝑛 ∈ [0, 𝑁𝑚𝑎𝑥]

else
       (15) 

𝑁𝑚𝑎𝑥  is a certain degree to which the SRBFs are expanded, representing the cut-off degree in the frequency domain. These 

three functions and their referring Legendre coefficients for 𝑁𝑚𝑎𝑥 = 255 are plotted in Figure 1, it visualizes the characteristics 

in the spatial and the spectral domain correspondingly.  5 

 

In the spatial domain, the Shannon function has the sharpest peak but the strongest oscillations; the Blackman function has 

less oscillations than the Shannon and the CuP function has the weakest ones. However, in the spectral domain, the Shannon 

function gets the strongest localization due to its exact band limitation without losing any spectral information; the Blackman 

function has a smoothing decay at the higher frequencies of the function; the CuP function has an even stronger smoothing 10 

decay and thus, extracts less spectral information compared to Shannon and Blackman. Therefore, in this study, we use the 

Shannon function for estimating the coefficients 𝑑𝑘within the analysis step to reduce the loss of signal content, and then use 

the Blackman function for the synthesis step to reduce erroneous systematic effects due to oscillations. The same experiments 

will be applied using the CuP function as well to test if different SRBFs will affect the performance of the regularization 

method. 15 

3. Parameter Estimation 

To determine the unknown coefficients 𝑑𝑘 from Eq. (2), the method of parameter estimation is used in this study. This process 

allows different types of observations to be combined considering their individual strength and favorable features (Schmidt et 

al., 2015). 

3.1 Gauss-Markov Model 20 

For one single observation, i.e. a functional of the disturbing potential T, the observation equation reads 

𝐹(𝒙) + 𝑒(𝒙) = ∑ 𝑑𝑘𝐵(𝒙, 𝒙𝑘)
𝐾
𝑘=1  ,           (16) 

𝐵(𝒙, 𝒙𝑘) represents the adapted SRBFs as listed in Table 1. Collecting the observations 𝐹(𝒙1), 𝐹(𝒙2), …, 𝐹(𝒙𝑛) in the 𝑛 × 1 

observation vector f, the Gauss-Markov model  

𝒇 + 𝒆 = 𝑨𝒅            with             𝐷(𝒇) = 𝜎2𝑷−1         (17) 25 

(deterministic part)                    (stochastic part) 

can be set up. In the deterministic part, 𝒆 = [𝑒(𝒙1), 𝑒(𝒙2), … , 𝑒(𝒙𝑛)]𝑇 is the 𝑛 × 1 vector of the observation errors and 𝑨 =

[𝐵(𝒙, 𝒙𝑘)] is the 𝑛 × 𝐾 design matrix containing the corresponding basis functions. In the stochastic part, 𝐷(𝒇) is the 𝑛 × 𝑛 

covariance matrix of the observation vector f with 𝜎2 the unknown variance factor and P the given positive definite weight 

matrix. 30 
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The least-squares adjustment can be applied to the model (Eq. 17) as long as the design matrix is of full column rank (Schmidt 

et al., 2015). Then the solution reads 

�̂� = (𝑨𝑇𝑷𝑨)−1𝑨𝑇𝑷𝒇           (18) 

𝐷(�̂�) = 𝜎2(𝑨𝑇𝑷𝑨)−1 .            (19) 

Due to the aforementioned three reasons, the normal equation matrix 𝑵 = 𝑨𝑇𝑷𝑨 is ill-posed or even singular. For handling 5 

this problem, we introduce an additional linear model 

𝝁𝑑 + 𝒆𝑑 = 𝒅   with  𝐷(𝝁𝑑) = 𝜎𝑑
2𝑷𝑑

−1            (20) 

as prior information. 𝝁𝑑 is the 𝐾 × 1 expectation vector of the coefficient vector 𝒅, 𝒆𝑑 is the corresponding error vector and 

𝐷(𝝁𝑑) is the 𝐾 × 𝐾 covariance matrix of the prior information with 𝜎𝑑
2 the unknown variance factor and 𝑷𝑑 the given positive 

definite weight matrix. 10 

Combining the two models (Eq. 17) and (Eq. 20) yields the extended linear model 

[
𝒇
𝝁𝑑

] + [
𝒆
𝒆𝑑

] = [
𝑨
𝑰
] 𝒅 with D([

𝒇
𝝁𝑑

]) = 𝜎2 [𝑷
−1 𝟎
𝟎 𝟎

] + 𝜎𝑑
2 [

𝟎 𝟎
𝟎 𝑷𝑑

−1]      (21) 

Now the least-squares adjustment can be applied and leads to the normal equations  

(
1

𝜎2 𝑨𝑇𝑷𝑨 +
1

𝜎𝑑
2 𝑷𝑑) �̂� =

1

𝜎2 𝑨𝑇𝑷𝒇 +
1

𝜎𝑑
2 𝑷𝑑𝝁𝑑 .         (22) 

The variance factors 𝜎2 and 𝜎𝑑
2 can either be given as prior information or estimated within a VCE, then the solution reads 15 

�̂� = (𝑨𝑇𝑷𝑨 + 𝜆𝑷𝑑)−1(𝑨𝑇𝑷𝒇 + 𝜆 𝑷𝑑𝝁𝑑)          (23) 

𝐷(�̂�) = 𝜎2(𝑨𝑇𝑷𝑨 + 𝜆𝑷𝑑)−1 ,           (24) 

wherein 𝜆 = 𝜎2 𝜎𝑑
2⁄  is the regularization parameter, see Koch and Kusche (2002) and Schmidt et al. (2007). 

3.2 Combination models  

To combine different types of heterogeneous data sets for regional gravity field modeling, combination models (CMs) need to 20 

be set up (see e.g. Schmidt et al., 2015). 

In general, let 𝒇𝑝  with 𝑝 = 1,… , 𝑃  be the observation vector of the pth observation technique, such as 𝒇𝑝 =

[𝐹𝑝(𝒙1), 𝐹𝑝(𝒙2), … , 𝐹𝑝 (𝒙𝑛𝑝
)]

𝑇

, 𝒆𝑝 and 𝑨𝑝 are the corresponding error vector and the design matrix. Note that for different 

techniques, the data are observed as different gravitational functionals and thus, the adapted SRBFs as discussed in the Sect. 

2.1 should be applied accordingly, and 𝑨𝑝 = [𝐵𝑝(𝒙, 𝒙𝑘)].  25 

For the combination of the P observation techniques, including the additional linear model for the prior information (Eq. 20), 

an extended Gauss-Markov model can be formulated (Lieb, 2017)  

[
 
 
 
 
𝒇1

𝒇2

⋮
𝒇𝑝

𝝁𝑑]
 
 
 
 

+

[
 
 
 
 
𝒆1

𝒆2

⋮
𝒆𝑝

𝒆𝑑]
 
 
 
 

=

[
 
 
 
 
𝑨1

𝑨2

⋮
𝑨𝑝

𝑰 ]
 
 
 
 

∙ 𝒅  with 𝐷

(

 
 

[
 
 
 
 
𝒇1

𝒇2

⋮
𝒇𝑝

𝝁𝑑]
 
 
 
 

)

 
 

=

[
 
 
 
 
𝜎1

2𝑷1
−1

𝟎
⋮
⋮
𝟎

𝟎
𝜎1

2𝑷1
−1

𝟎
⋮
𝟎

𝟎
⋮
⋱
⋮
…

…
⋮
⋮

𝜎1
2𝑷1

−1

𝟎

𝟎
⋮
⋮
𝟎

𝜎1
2𝑷1

−1]
 
 
 
 

 ,      (25) 
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where 𝑷𝑝 is the 𝑛𝑝 × 𝑛𝑝 positive definite weight matrix of the 𝑝𝑡ℎobservation technique.   

 

CM 1: We assume that for each technique p the variance factor 𝜎𝑝
2 is the same, i.e. 𝜎1

2 = 𝜎2
2 = ⋯ = 𝜎𝑝

2 = 𝜎2. Hence, with 

𝒇 = [𝒇1
𝑇 , 𝒇2

𝑇 , … , 𝒇𝑝
𝑇]

𝑇
the covariance matrix becomes 

D([
𝒇
𝝁𝑑

]) = [
𝜎2𝑷−1 𝟎

𝟎 𝜎𝑑
2𝑷𝑑

−1] .           (26) 5 

Thus, this combination model is transferred into the single observation model (Eq. 21) and the estimation of the coefficient 

vector �̂� can be obtained from the Eq. (23) if the regularization parameter 𝜆 is known. 

 

CM 2: Since different data sets have different spatial resolution and spectral characteristics, the assumption made in CM 1 is 

not always the most accurate case. Therefore, they can be combined in a way which takes the individual variance component 10 

of each observation technique into account.  

Applying the least-squares method to Eq. (25), the extended normal equations read 

(∑ (
1

𝜎𝑝
2 𝑨𝑝

𝑇𝑷𝑝𝑨𝑝)
𝑃
𝑝=1 +

1

𝜎𝑑
2 𝑷𝑑) �̂� = ∑ (

1

𝜎𝑝
2 𝑨𝑝

𝑇𝑷𝑝𝒇𝑝)
𝑃
𝑝=1 +

1

𝜎𝑑
2 𝑷𝑑𝝁𝑑 .       (27) 

Solving Eq. (27) with given values for the variance factors, we obtain 

�̂� = (∑ (
1

𝜎𝑝
2 𝑨𝑝

𝑇𝑷𝑝𝑨𝑝)
𝑃
𝑝=1 +

1

𝜎𝑑
2 𝑷𝑑)

−1

(∑ (
1

𝜎𝑝
2 𝑨𝑝

𝑇𝑷𝑝𝒇𝑝)
𝑃
𝑝=1 +

1

𝜎𝑑
2 𝑷𝑑𝝁𝑑)       (28) 15 

with the covariance matrix 

𝐷(�̂�) = (∑ (
1

𝜎𝑝
2 𝑨𝑝

𝑇𝑷𝑝𝑨𝑝)
𝑃
𝑝=1 +

1

𝜎𝑑
2 𝑷𝑑)

−1

          (29) 

Equation (28) can be rewritten as 

�̂� = (∑ (ω𝑝𝑨𝑝
𝑇𝑷𝑝𝑨𝑝)

𝑃
𝑝=1 + 𝜆𝑷𝑑)

−1
(∑ (ω𝑝𝑨𝑝

𝑇𝑷𝑝𝒇𝑝)
𝑃
𝑝=1 + 𝜆𝑷𝑑𝝁𝑑) ,       (30) 

such that the regularization parameter 𝜆 = 𝜎1
2 𝜎𝑑

2⁄  (Koch and Kusche, 2002), and the factors ω1 = 𝜎1
2 𝜎1

2⁄ = 1 , ω2 =20 

𝜎1
2 𝜎2

2⁄ , …, ω𝑝 = 𝜎1
2 𝜎𝑝

2⁄  express the relative weightings of the observation vector 𝒇𝑝 with respect to 𝒇1. 

4. Choice of the regularization parameter 

A critical question of regularization is the selection of an appropriate regularization parameter 𝜆 (Kusche and Klees, 2002). In 

the following, the L-curve method and the VCE will be explained in more detail. Finally, two new proposed methods are 

presented as a combination of VCE and the L-curve method. 25 
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4.1 L-curve method 

The L-curve is a graphical procedure for regularization (Hansen, 1990; Hansen and OLeaary, 1993; Bouman, 1998; Hansen, 

2000). Plotting the norm of the regularized solution ‖�̂�𝜆 − 𝝁𝑑‖  against the norm of the residuals ‖�̂�‖ = ‖𝑨�̂�𝜆 − 𝒇‖  by 

changing the numerical value for the regularization parameter 𝜆 shows a typical ‘L-curve’ behavior, i.e. it looks like the capital 

letter ‘L’ (see Fig. 3). The corner point in this ‘L-shaped’ curve means a compromise of the minimization of the solution norm 5 

and the residual norm, and thus can be interpreted as the ‘best fit’ point that corresponds to the desired regularization parameter. 

4.2 VCE 

Variance component estimation is a useful method when several data sets need to be combined in a parameter estimation 

procedure (Koch, 1999; Naeimi, 2015). The variance components are estimated by an iterative process, starting from initial 

values for 𝜎𝑝
2, 𝜎𝑑

2 and ending in the convergence point. The estimations read  10 

{
�̂�𝑝

2 =
�̂�𝑝
𝑇𝑷𝑝�̂�𝑝

𝑟𝑝

�̂�𝑑
2 =

�̂�𝑑
𝑇𝑷𝑑�̂�𝑑

𝑟𝑑

               (31) 

where 𝑟𝑝 and 𝑟𝑑 are the partial redundancies computed following Koch and Kusche (2002), and the residual vectors �̂�𝑝 and �̂�𝑑 

are given by 

{
�̂�𝑝 = 𝑨𝑝�̂� − 𝒇𝑝

�̂�𝑑 = �̂� − 𝝁𝑑

 .            (32) 

4.3 Combination of VCE and the L-curve method 15 

Two ways of combining VCE and the L-Curve method are discussed and applied in this study, namely ‘VCE + L-curve method’ 

and ‘L-curve method + VCE’.  

1. ‘VCE + L-curve method’ 

Figure 2 illustrates the procedure of the ‘VCE + L-curve method’. In the first step, the VCE is applied according to the 

combination model CM 2. This step gives the regularization parameter 𝜆VCE  and the relative weighting factors ω𝑝 . The 20 

weighting factors ω𝑝 are then used in the L-curve method to regenerate a new regularization parameter 𝜆 (Fig. 3). In this case, 

the coefficient vector �̂� = �̂�𝜆 is calculated for a group of changing regularization parameters 𝜆 using Eq. (30). 

Thus, the final solution is computed using Eq. (30) with the weights ω𝑝 and the new regularization parameter 𝜆 from the L-

curve criterion. 

Solid Earth Discuss., https://doi.org/10.5194/se-2019-60
Manuscript under review for journal Solid Earth
Discussion started: 5 April 2019
c© Author(s) 2019. CC BY 4.0 License.



10 

 

2. ‘L-curve method + VCE’ 

Figure 4 illustrates the procedure of the ‘L-curve method + VCE’. In opposite to the ‘VCE + L-curve method’, in the ‘L-curve 

method + VCE’ the L-curve method is applied according to the combination model CM 1 first. A regularization parameter 

𝜆L−curve is obtained in the first step, and it is used for defining the value of 𝜎𝑑
2 in the variance component estimation.  

In the second step, the VCE is applied according to CM 2, with initial values 𝜎1
2 = 𝜎2

2 = ⋯ = 𝜎𝑝
2 = 1 and 𝜎𝑑

2 = 𝜎1
2/𝜆L−curve. 5 

After each iteration within the VCE, the value of 𝜎𝑑
2 is set to 𝜎1

2/𝜆L−curve again, with the new value of 𝜎1
2 obtained in this 

iteration. In this case, the regularization parameter 𝜆 calculated from the L-curve method will be kept, but the relative weighting 

factors ω𝑝 are recomputed in each iteration step. The final solution is computed using Eq. (30) with the relative weights ω𝑝 

and the regularization parameter 𝜆L−curve. 

To summarize, the purpose of these two proposed methods is to bring the L-curve method and VCE together, and test if the 10 

regularization results will be improved. ‘VCE + L-curve method’ fixes the relative weights of each observation technique first 

and tries to find a ‘best fit’ regularization parameter; while ‘L-curve + VCE’ fixes the regularization parameter first and then 

tries to find the relative weights for each observation technique. 

5. Numerical investigation 

5.1 Data description 15 

The data used in this study are obtained from the ICCT (Inter-Commission Committee on Theory) Joint Study Group 0.3, part 

of the IAG (International Association of Geodesy) programme running from 2011 to 2015. The observation data are simulated 

from the Earth gravitational model EGM2008 (Pavlis et al., 2012) and are provided along with simulated observation noise. 

The standard deviation of the white noise is set to  8 ∙ 10−4  m2 s2⁄  for GRACE, 10 mE for GOCE, 10 μGal for the terrestrial 

data and 1 mGal for the airborne data. The study area chosen here is ‘Europe’ where the validation data are also provided on 20 

geographic grid points in terms of disturbing potential values T with different grid resolutions (30’×30’ and 5’×5’) and 

different spherical harmonic resolutions (maximum degree 250 and 2190).  

Figure 5 illustrates the available observation data as well as the validation data. Three types of observations are included: 

1. Satellite data: provided along the real satellite orbits of GRACE (green tracks in Fig. 5) and GOCE (red tracks). GRACE 

data span a one month period, and GOCE data cover a full repeat cycle of 61 days. 25 

2. Terrestrial data: provided on a regular grid with two different resolutions, one over an area of 20o × 30o (latitude × 

longitude) with a grid spacing of 30’ (blue shaded area) and the other one over an inner area of 6o × 10o with a grid spacing 

of 5’ (yellow shaded area). 

3. Airborne data: provided on two different flight tracks, one over the Adriatic Sea (magenta shaded area) and the other one 

over Corsica connecting Southern Europe with Northern Africa (cyan shaded area). 30 
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5.2 Model configuration 

A Remove-Compute-Restore approach is applied in this study, i.e., from each type of observations, the background model 

EGM96 (Lemoine et al., 1998) up to spherical harmonic degree 60 is removed and restored after computation. The background 

model serves additionally as prior information, and in this case, the expectation vector 𝝁𝑑 can be assumed to be the zero vector 

(Lieb, 2017). We assume that the coefficients have the same accuracies and are uncorrelated, thus, 𝑷𝑑 = 𝑰, where 𝑰 denotes 5 

the identity matrix. Further, we set 𝑷𝑝 = 𝑰 by assuming the measurement errors to be uncorrelated and the observations to 

have the same accuracy.  

In the analysis step we use the Shannon function for estimating the vector �̂� of the unknown coefficients 𝑑𝑘 related to the grid 

points 𝑃𝑘  within the area 𝜕Ω𝐶  of computation (see Fig. 6) from the measurements available within the area 𝜕Ω𝑂  of 

observations. In the following synthesis step the Blackman function is used for calculating the output gravity functional within 10 

the area 𝜕Ω𝐼 of investigation. It has to be mentioned that the points 𝑃𝑘 within the area 𝜕Ω𝐶  of computation are defined by a 

Reuter grid.  

Margins 𝜂 have to be defined between the three areas to minimize edge effects in the computation process (Lieb et al., 2016). 

In this study, we conducted the experiments using different margin sizes, and the one which gives the smallest RMS error is 

finally chosen.  15 

The aforementioned five methods for choosing the regularization parameter (Table 2) are applied to six groups of data sets 

(Table 3), respectively. 

The computed disturbing potential 𝑇𝑐  is compared with the corresponding validation data 𝑇𝑣  and assessed following three 

criteria: 

1. Root mean square error (RMS) of the computed disturbing potential 𝑇𝑐 with respect to the validation data 𝑇𝑣 over the 20 

investigation area 𝜕Ω𝐼  

RMS = √
∑ (𝑇𝑣−𝑇𝑐)

2
𝑛points

𝑛points
 .           (33) 

2. Correlation coefficient between the estimated coefficients 𝑑𝑘 collected in the vector �̂� and the validation data 𝑇𝑣.  

The reason that this correlation can be used as a criterion is that the estimated coefficients 𝑑𝑘 reflect the energy of the 

gravity field at their locations. The energy 𝐸𝑘 at location 𝒙𝑘 can be expressed by 25 

𝐸𝑘 = 𝑑𝑘 ∑ 𝑑𝑝
𝐾
𝑝=1 ∑

2𝑛+1

4𝜋
𝐵𝑛

2𝑃𝑛(𝒓𝑝
T𝒓𝑘)

𝑁𝑚𝑎𝑥
𝑛=0  ,         (34) 

(Lieb, 2017). For 𝑁𝑚𝑎𝑥 → ∞ and 𝐵𝑛 = 1, the relation (Eq. 34) equals approximately  𝐸𝑘 = 𝑑𝑘
2.    

The same criterion is used as a quality measure by Bentel et al. (2013a) and Naeimi et al. (2015). 

3. Correlation coefficient between the recovered gravity field 𝑇𝑐 and the validation data 𝑇𝑣. 
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5.3 Results 

For the sake of brevity, only the results of two study cases (A and F) are detailed here. However, results obtained from all 

study cases, including the RMS error and the correlations between the estimated coefficients 𝑑𝑘 and the validation data 𝑇𝑣 of 

each method are summarized in the Tables 6 and 7, respectively. To test the stability of our new methods, the same experiments 

are also applied using the CuP function for analysis and synthesis as a comparison scenario. The results are listed in the Tables 5 

8 and 9. 

Study case A 

GRACE observations and terrestrial observations with a 30’ resolution are combined. The maximum degree in the expansion 

in terms of SRBF is set to  𝑁𝑚𝑎𝑥 = 300  for the Shannon function (Eq. 12) in the analysis step as well as 

𝑛1 = 250 and  𝑁𝑚𝑎𝑥 = 350 for the Blackman function (Eq. 13) in the synthesis step. The margin 𝜂 between the different 10 

areas (Fig. 6) is chosen to 4o. Five solutions are performed according to the five parameter choice methods 1) to 5) listed in 

Table 2. For each solution, the estimated coefficients 𝑑𝑘, the calculated disturbing potential 𝑇𝑐 as well as its difference to the 

validation data are plotted in Fig. 7. The results for the three criteria measures from above are listed in Table 4. 

The correlations between the modelled gravity field 𝑇𝑐 and the validation data 𝑇𝑣 for all parameter choice methods are rather 

satisfying. However, the CM 1 based methods give slightly smaller correlations than the others. The last three methods are 15 

comparable and provide better results than the CM 1 based methods with respect to both RMS values and correlations. The 

lowest RMS error is obtained from the ‘VCE + L-curve method’ which is 3.61 m2 s2⁄ . This method also delivers the highest 

correlation between the estimated coefficient 𝑑𝑘 and the validation data. “L-curve method + VCE’ gives the second-best RMS 

value which is 3.64 m2 s2⁄ , followed by ‘VCE based on CM 2’. The same rank applies to the correlation between the estimated 

coefficient 𝑑𝑘 and the validation data. The largest RMS value and smallest correlation are both obtained from parameter choice 20 

methods based on CM 1. Among the methods based on CM 1, the L-curve method provides smaller RMS value compare to 

VCE, but smaller correlation factor as well. 

It is worth clarifying that the solution obtained from the ‘L-curve method + VCE’ is not unique. Due to the fact that the 

regularization parameter 𝜆L−curve is fixed during VCE, the results change when it refers to different observation techniques. 

Here, two solutions are obtained by setting GRACE data and the terrestrial data as the reference observation technique, 25 

respectively. In this study case, the better result (smaller RMS value and larger correlation) is the one when choosing the 

terrestrial data as the reference. Generally, a better solution is obtained when the terrestrial data are chosen as the reference, 

and the results for ‘L-curve method + VCE’ listed in this paper are always the better ones.  

Study case F 

In case F, the maximum degree in the expansion in terms of SRBF is set to  𝑁𝑚𝑎𝑥 = 1050 for the Shannon function (Eq. 12) 30 

in the analysis step as well as 𝑛1 = 900 and 𝑁𝑚𝑎𝑥 = 1100 for the Blackman function (Eq. 13) in the synthesis step. The 
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margin 𝜂 between the different areas (Fig. 6) is chosen to 2o. For each method, the estimated coefficients 𝑑𝑘, the calculated 

disturbing potential 𝑇𝑐 as well as its difference to the validation data are plotted in Fig. 8. The results for the three criteria 

measures from above are listed in Table 5. 

Compared to the study case A, the results in the study case F shows a general improvement, in terms of all three criteria. The 

correlations between the estimated coefficients and the validation data are promising, which can be observed in Fig. 8. It shows 5 

that the estimated coefficients reflect the energy of the recovered gravity signal rather well. ‘VCE + L-curve method’ still 

provides the smallest RMS error 0.78 m2 s2⁄  as well as the highest correlations. ‘L-curve method + VCE’ gives RMS value 

0.80 m2 s2⁄ , followed by ‘VCE based on CM 2’ with 0.82 m2 s2⁄ . The same rank applies to the correlation between the 

estimated coefficient 𝑑𝑘 and the validation data. 

The largest RMS values and the smallest correlations are still both obtained from parameter choice methods based on CM 1. 10 

The differences between CM 1 and CM 2 based methods are considerable. It could be caused by the large variation between 

the spectral resolution of GRACE, GOCE, terrestrial and airborne data. Therefore, giving each observation technique a relative 

weight in the combination might help to provide better results. Among the two methods based on CM 1, the L-curve method 

provides worse RMS value in comparison to VCE but, a much more significant correlation between 𝑑𝑘 and 𝑇𝑣.  

Results of all study cases 15 

Table 6 lists the RMS values of each method obtained from all the study cases. Table 7 lists the correlations between the 

estimated coefficients 𝑑𝑘 and the validation data 𝑇𝑣 of each method obtained from all the study cases. The best results (smallest 

RMS value and largest correlation) in each study case are bold-typed and the second bests are italicized. 

Based on these results, the following conclusions can be drawn: 

1. From the five parameter choice methods considered here, ‘VCE + L-curve method’ performs the best, and always gives 20 

the smallest RMS error as well as the largest correlation. 

2. ‘L-curve method + VCE’ and ‘VCE based on CM 2’ also show a good and stable performance, especially when the 

spectral resolution of the combined data sets differs. ‘L-curve method + VCE’ generally outperforms ‘VCE based on 

CM 2’ slightly. 

3. The results in terms of RMS value and correlation are consistent, i.e., in most cases, the regularization parameter choice 25 

method which gives the smaller RMS error also delivers the larger correlation.  

4. Generally, results provided by CM 1 based methods are not as good as the others. The larger the spectral resolution 

between each observation technique is, the worse these methods perform (e.g. case E and F). However, for case D 

where the combined data sets have similar resolution, ‘the L-curve method based on CM 1’ perform even better than 

‘L-curve method + VCE’ and ‘VCE based on CM 2’. 30 

5. The results also indicate that when the Shannon function is used for analysis and the same combination model CM 1 is 

used, the L-curve method generally outperforms VCE (case A, B, C, D, E regarding the RMS value and case B, C, D, 

E, F regarding the correlation).  
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Results using the CuP function 

The Tables 8 and 9 list the RMS values as well as the correlations between the estimated coefficients 𝑑𝑘 and the validation 

data 𝑇𝑣 of each method when the CuP function is used. Again, the best results (smallest RMS value and largest correlation) in 

each study case are bold-typed and the second bests are italicized. 

In this comparison scenario, ‘VCE + L-curve method’ still delivers always the best results for all six study cases in terms of 5 

both RMS value and correlation, which proves that its performance does not depend on the type of SRBF used. The 

performance of ‘L-curve method + VCE’ and ‘VCE based on CM 2’ are also stable and provide rather good results. The RMS 

values provided by ‘the L-curve method based on CM 1’ are not as good as those obtained when using the Shannon function 

for analysis. While in opposite, the correlations provided by ‘the L-curve method based on CM 1’ are better than those obtained 

when using the Shannon function. This behavior is consistent with the publication of Naeimi (2015). 10 

It was not the purpose of this paper to compare the performance of different types of SRBFs. However, it can be observed 

clearly from the Tables 6 and 7 as well as  8 and 9 that when the CuP function is used, the correlations between the estimated 

coefficients 𝑑𝑘 and the validation data 𝑇𝑣 dropped significantly; especially, for the study cases D, E and F, where the maximum 

degree  𝑁𝑚𝑎𝑥  of the expansion in terms of SRBFs  is high (𝑁𝑚𝑎𝑥 = 1100). This can probably be explained by the fact that 

smoothing functions lead to the loss of some signal components, particularly the higher frequencies. The results regarding the 15 

RMS value when using the Shannon/Blackman functions are similar to those when the CuP/CuP functions are used. For study 

cases C, D, E and F, the RMS error are slightly smaller when the CuP/CuP functions are applied. It is worth mentioning that 

the same experiments were also implemented using the Shannon function for analysis and the CuP function for synthesis. The 

performance of each method stays the same and ‘VCE + L-curve method’ still delivers the best results. However, the RMS 

values of each study case are generally larger in comparison to the results when using Shannon function for analysis but 20 

Blackman for synthesis. Thus, the detailed results of that application are not listed here due to the length of this paper. 

6. Summary and conclusions 

We discussed the parameter estimation using SRBFs for combining heterogeneous data sets, and two types of combination 

models were introduced. CM 1 merges all types of observations into one observation vector without weighting, and CM 2 

gives each type of observation techniques a relative weight using VCE. Based on these two combination models, the 25 

determination of the regularization parameter is investigated using simulated satellite, terrestrial and airborne data.  

We presented five methods for choosing the regularization parameter, including ‘the L-curve method based on CM 1’; ‘VCE 

based on CM 1’; ‘VCE based on CM 2’ and two newly proposed methods which are ‘VCE + L-curve method’ and ‘L-curve 

method + VCE’. Each method is applied to six groups of data sets, and the results are compared to the validation data with 

corresponding spatial and spectral resolutions. The investigation showed that our new proposed ‘VCE + L-curve method’ gives 30 

the best results in all the six study cases; ‘L-curve method + VCE’ also provides fairly good solutions. The results also indicate 
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that the larger the spectral resolution differs between each type of observation technique, the better ‘VCE based on CM 2’ and 

‘L-curve method + VCE’ perform compared to the L-curve method or VCE based on CM 1; which is reasonable.  

We also carried out the same investigation using the CuP function for comparison scenario to test the dependency of our new 

methods against the type of SRBFs used. In this scenario, the performance of the L-curve method is slightly lower than the 

one obtained using the Shannon function. This behavior is consistent with the results from the literature. Our newly proposed 5 

‘VCE + L-curve method’ still provides the best results in all the six cases and the ‘L-curve method + VCE’ is also performing 

well. Thus, we are able to conclude that our new methods provide good regularization results for different observation 

combinations and are stable regardless of the type of SRBF used. From our investigation, we conclude that ‘VCE + L-curve 

method’ is the best choice among those five methods for the determination of the regularization parameter. 

In future, a primary concern is to apply the newly devised methods using more types of SRBFs, so that the performance of 10 

different SRBFs can be compared while making sure that the differences in results are not coming from the regularization 

method. In addition, further investigations are planned for using real observations instead of simulated data sets.  
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Table 1: Adapted basis functions for each type of observation 

observation adapted basis function B 

GRACE 𝐵(𝒙𝐴, 𝒙𝐵 , 𝒙𝑘) = ∑
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∞
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terrestrial 

and 
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(𝑛 + 1)
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GOCE 𝐵𝑟𝑟(𝒙, 𝒙𝑘) = ∑
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Table 2: Regularization parameter choice methods 

Number Method 

1) ‘the L-curve method based on CM 1’ 

2) ‘VCE based on CM 1’ 

3) ‘VCE based on CM 2’ 

4) ‘VCE + L-curve method’ 

5) ‘L-curve method + VCE’ 

 5 

 

Table 3: Study cases 

Study Case Data combination Validation data 

A GRACE + Terrestrial I 
30’×30’ 

highest degree 250 
B GRACE + GOCE 

C GOCE + Terrestrial I 

D Terrestrial II + Airborne I  
5’×5’ 

highest degree 2190 
E GRACE + Terrestrial II + Airborne I 

F GRACE + GOCE + Terrestrial II +Airborne I 

 

 

 10 
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Table 4: Results of Study Case A: the RMS values (second column), the correlations between the estimated coefficients 𝒅𝒌 and the 

validation data (third column) as well as the correlations between the recovered gravity field and the validation data (forth column) 

for each regularization parameter choice method 

 RMS 

(m2 s2⁄ ) 

Correlation 

𝒅𝒌 and 𝑇𝑣 

Correlation 

𝑇𝒄 and 𝑇𝑣 

‘the L-curve method based on CM 1’ 4.4317 0.5578 0.9975   

‘VCE based on CM 1’ 4.4421 0.5590 0.9974 

‘VCE based on CM 2’ 3.7648 0.5598 0.9982 

‘VCE + L-curve method’ 3.6107 0.5687 0.9984  

‘L-curve method + VCE’ 3.6422 0.5636 0.9983 

 

 5 

Table 5: Results of Study Case F: the RMS values (second column), the correlations between the estimated coefficients 𝒅𝒌 and the 

validation data (third column) as well as the correlations between the recovered gravity field and the validation data (forth column) 

for each regularization parameter choice method 

 RMS 

(m2 s2⁄ ) 

Correlation 

𝒅𝒌 and 𝑇𝑣 

Correlation 

𝑇𝒄 and 𝑇𝑣 

‘the L-curve method based on CM 1’ 3.2876 0.8746 0.9950  

‘VCE based on CM 1’ 2.5510 0.6022 0.9957 

‘VCE based on CM 2’ 0.8282 0.9050 0.9996 

‘VCE + L-curve method’ 0.7837 0.9199 0.9996   

‘L-curve method + VCE’ 0.7983 0.9167 0.9996 

 

 10 

Table 6: RMS value results of each method for different study cases 

Parameter choice method A B C D E F 

1) 4.4317 7.4624 4.6946 1.0178 3.0465 3.2876 

2) 4.4421 14.230 4.7025 1.0325 3.1195 2.5510 

3) 3.7648 6.5635 3.2108 1.0446 0.8418 0.8282 

4) 3.6107 4.4325 3.2072 1.0148 0.8192 0.7837 

5) 3.6422 4.7446 3.2229 1.0317 0.8229 0.7983 
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Table 7: Correlations between the estimated coefficients and the validation data of each method for different study cases 

Parameter choice method A B C D E F 

1) 0.5578 0.5435 0.5292 0.9172 0.8795 0.8746 

2) 0.5590 0.5070 0.5242 0.9172 0.7374 0.6022 

3) 0.5598 0.5336 0.5527 0.9169 0.8973 0.9050 

4) 0.5687 0.5617 0.5562 0.9173 0.9114 0.9199 

5) 0.5636 0.5572 0.5433 0.9169 0.9002 0.9167 

 

 

Table 8: RMS value results of each method for different study cases using the CuP function (as a comparison scenario w.r.t Table 

6) 5 

Parameter choice method A B C D E F 

1) 5.1476 7.5402 6.5893 0.9545 3.1474 2.6667 

2) 4.5741 9.1576 6.1179 0.9768 2.6592 2.0826 

3) 3.9995 4.7468 3.4102 1.0088 0.7935 0.8102 

4) 3.6128 4.6946 3.0537 0.9541 0.7860 0.7795 

5) 3.9394 4.7735 3.4449 0.9963 0.8438 0.8084 

 

 

Table 9: Correlations between the estimated coefficients and the validation data of each method using the CuP function (as a 

comparison scenario w.r.t Table 7) 

Parameter choice method A B C D E F 

1) 0.4956 0.4752 0.3800 0.7954 0.6957 0.6955 

2) 0.4370 0.4709 0.3845 0.7922 0.3647 0.3950 

3) 0.5264 0.5165 0.5144 0.7892 0.5613 0.6031 

4) 0.5397 0.5344 0.5187 0.8045 0.7197 0.7679 

5) 0.5296 0.5237 0.5116 0.7824 0.6940 0.6190 

 10 
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Figure 1: Different SRBFs in the spatial domain (top, ordinate values are normed to 1) and the spectral domain (bottom) for 𝑵𝒎𝒂𝒙 =

𝟐𝟓𝟓.   

 

 5 

Figure 2: Analysis and synthesis for combining different types of observations based on the ‘VCE + L-curve method’ 
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Figure 3: The L-curve function 

 

 

Figure 4: Analysis and synthesis for combining different types of observations based on the ‘L-curve method + VCE’ 5 

Solid Earth Discuss., https://doi.org/10.5194/se-2019-60
Manuscript under review for journal Solid Earth
Discussion started: 5 April 2019
c© Author(s) 2019. CC BY 4.0 License.



24 

 

 

Figure 5: Simulated GRACE, GOCE, terrestrial and airborne observations in ‘Europe’ 

 

 

Figure 6: Different extensions for the areas of computation 𝝏𝛀𝑪, of observations 𝝏𝛀𝑶 and of investigation 𝝏𝛀𝑰 5 
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Figure 7: The estimated coefficients 𝒅𝒌 (left column), the recovered disturbing potential (mid column) and the differences w.r.t the 

validation data (right column) for study case A. The results are obtained using regularization methods ‘the L-curve method based 

on CM 1’ (first row), ‘VCE based on CM 1’ (second row), ‘VCE based on CM 2’ (third row), ‘VCE + L-curve method’ (forth row) 

and ‘L-curve method + VCE’ (fifth row); see also Table 4 for numerical results.   5 
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Figure 8: The estimated coefficients 𝒅𝒌 (left column), the recovered disturbing potential (mid column) and the differences w.r.t the 

validation data (right column) for study case F. The results are obtained using regularization methods ‘the L-curve method based 

on CM 1’ (first row), ‘VCE based on CM 1’ (second row), ‘VCE based on CM 2’ (third row), ‘VCE + L-curve method’ (forth row) 

and ‘L-curve method + VCE’ (fifth row); see also Table 5 for numerical results.   5 

 

Solid Earth Discuss., https://doi.org/10.5194/se-2019-60
Manuscript under review for journal Solid Earth
Discussion started: 5 April 2019
c© Author(s) 2019. CC BY 4.0 License.


