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Abstract. Earthquake aftershocks display spatio-temporal correlations arising from their self-organized critical behavior. Dy-

namic deterministic modeling of aftershock series is difficult to carry out due to both the physical complexity and uncertainties

related to the different parameters which govern the system. Nevertheless, numerical simulations with the help of stochastical

models such as the Fiber Bundle (FBM) permit the use of an analog of the physical model that produces a statistical behavior

with many similarities with real series. FBM are simple discrete element models that can be characterized by using few pa-5

rameters. In this work, a new model based on FBM that includes geometrical faults systems is proposed. Our analysis focuses

on aftershock statistics in space, time and magnitude domains. To analyze the model behavior a parametric study is carried

out. Moreover, we analyzed the synthetic aftershock sequences properties assuming initial load configurations and suitable

conditions to propagate the rupture. As an example case, we have modeled a set of real active faults related to the Northridge,

California, earthquake sequence. We compare the simulation results to statistical characteristics from the Northridge sequence10

determining which range of parameters in our FBM version reproduce the main features observed in real aftershock series. In

order to reproduce statistical characteristics of the real sequence larger πfrac values (0.85< πfrac < 0.95) and very low values

of P (0.0< P ≤ 0.08) are needed. This implies the important corollary that a very small departure from an initial random load

configuration (computed by P ), and also a large difference between the load transfer from on-fault segments than by off-faults

(computed by πfrac), is required to initiate a rupture sequence which conforms to observed statistical properties such as the15

Gutenberg-Richter law, Omori law and fractal dimension.

1 Introduction

Most earthquakes occur when adjacent blocks move along fractures in the Earth’s crust, as a consequence of stress build-up

arising from the regional strain and the stress change caused by a preceding earthquake or by the tectonic stress accumulation

(Stein et al., 1994). These fractures, or faults, are discontinuous geological features consisting of a number of discrete segments20

(Segall and Pollard, 1980), which can be up to hundreds of kilometers in total length. Faults are the weakest parts of the crust

and thus are more likely to release accumulated stresses, by means of slipping, than non-fractured crust. Earthquakes may

occur many times on the same fault over millions of years. Known active faults have ruptured several times in the last 120,000
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years and are considered likely to move again (Wallace, 1981). It has been observed that earthquakes are strongly correlated

in space around the active fault systems (Kroll, 2012). In addition, fault systems have a statistical self-similar structure over

a wide range of scales (Kagan and Knopoff, 1980; Sadovskiy et al., 1984; Hirata and Imoto, 1991) which can be described

by means of fractal geometry, as introduced by Mandelbrot and Pignoni (1983). Earthquakes follow power statistical laws

for their observed scaling properties such as the Gutenberg-Richter (GR) distribution (Gutenberg and Richter, 1942; Scholz,5

2002), the Modified Omori (MO) law , (Omori, 1894; Godano et al., 1996; Hirata and Imoto, 1991) or the fractal dimension of

their spatial distribution (Turcotte, 1997; Roy and Ram, 2006)

Geometrical fractal structures such as faults, arise from self-organized criticality (SOC) phenomena over large temporal

periods (Bak and Creutz, 1994). SOC systems have been studied as a means to explain seismicity (Barriere and Turcotte, 1994;

Scholz, 1991). In particular, cellular-automata type models have been used to describe SOC behaviour in Earthquake series10

(Aki, 1965; Barriere and Turcotte, 1994). The Fiber Bundle Model, FBM, is one such cellular-automata model which provides

conceptual and numerical description of the rupture process in heterogeneous and complex materials, such as the Earth’s crust

(Peirce, 1926; Daniels, 1945; Coleman, 1956; Hansen et al., 2015).

In this article, our objective is to study the effect of including geometrical fault systems in a FBM algorithm, over the

statistical parameters of simulated seismic aftershock catalogs. We test the FBM’s ability to capture the statistics coming from15

empirical laws (the GR law, the fractal capacity dimension, the MO law, and the Hurst exponent) by means of a parametric

study. As an example case we considered the Northridge aftershock sequence (January 17,1994,Mw=6.7). The geometry of the

fault system related to this sequence is incorporated in the model. The statistical characteristics from the Northridge aftershock

sequence are compared with the statistics obtained in synthetic catalogs. Finally, we study the event productivity as function of

the on-fault (or weakling areas) and off-fault parameters.20

2 Background

This section provides a general description of the Fiber Bundle model and the statistical relations used in this work.

2.1 Fiber Bundle Model, FBM: general description

The basic components necessary to construct an FBM model include: (Andersen et al., 1997; Phoenix and Beyerlein, 2000;

Pradhan and Chakrabarti, 2003; Sornette, 1989; Kloster et al., 1997):25

1. Discretization: The study area is represented as a discrete set of cells ("fibers") organized on an n-dimensional and

regular lattice (square, triangular, etc.).

2. Failure Law: The rupture of the individual elements or fibers is described by a probability distribution function.

3. Loading Sharing Rule: Once a cell fails, its load is shared by the neighboring fibers. The range and type of the interaction

of fibers is an important component of the model since it has a substantial effect on the behavior of the overall rupture30

(Kun et al., 2006b, a; Pradhan et al., 2010). For example, the most common sharing rules are:
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– Equal Load Sharing (ELS), for which the load is equally redistributed over all intact cells (Krajcinovic, 1996;

Turcotte et al., 2003).

– Local Load Sharing (LLS), in this scheme the load is equally redistributed over its nearest neighbours in the lattice.

This rule favores stress concentrations along failed regions and promotes that neighbors reach a critical rupture

state .5

There are two versions of the FBM model that simulate material rupture by different effects: static and dynamic. In the

static version, the fiber strength is time independent (Vázquez-Prada et al., 1999; Kun et al., 2006a; Pradhan et al., 2010)

and the interaction between the load sharing rule and the initial heterogeneity in the stress threshold generates avalanches of

ruptures (Pradhan et al., 2010), being this feature a used resource in our simulation. On the other hand, the dynamic FBM

version studies the material rupture considering time-dependent processes, such as stress-rupture, creep-rupture, static-fatigue10

or delayed-rupture (Coleman, 1956; Moral et al., 2001b). In this work we will use a dynamic FBM with LLS in the probabilistic

formulation developed in Moreno et al, (2001).

2.1.1 Probabilistic FBM

The FBM starts by discretizing a hypothetical surface in a bidimensional array (Nx×Ny).

Experimental studies support the Weibull distribution function as a relation that describes the stress behavior of materials15

subjected to a constant load, assigning a hazard rate as follows (Coleman, 1956; Phoenix, 1978; Phoenix and Tierney, 1983;

Vázquez-Prada et al., 1999; Moreno et al., 2001):

κ(σ) = ν0

(
σ

σ0

)ρ
, (1)

where ν0 is the hazard rate under stress σ0, and the ρ exponent is the Weibull index, a non-dimensional constant with values

in the range 2≤ ρ≤ 50 (Yewande et al., 2003; Kun et al., 2006a; Nanjo and Turcotte, 2005). In the present work we use a20

dimensionless representation of quantities, so that we can use normalized stresses and equation 1 can be written as κ(σ) = σρ,

following (Moreno et al., 2001; Monterrubio-Velasco et al., 2017). Gómez et al. (1998) introduced a probabilistic approach as

an alternative formulation to the dynamic FBM which we follow here.

In the initial state, the load of the cells in the bundle is assigned following a uniform distribution σ(x,y) = U [0,1),x=

1, ...,Nx, and y = 1, ...,Ny . This assumption simulates an initial heterogeneity in the load cells properties. The hazard rate25

assigned at each cell is computed using Eq. 1. (Moreno et al., 1999; Pradhan et al., 2010). Furthermore, a rupture probability,

F(x,y), is computed for each cell and at each step. This value is load dependent and is defined by,

F(x,y) = σρ(x,y)δ , (2)
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where δ is the time interval (or inter-event time), until the next rupture occurs valid for any load share rule (Moral et al.,

2001a), computed as

δ =
1

Nx,Ny∑

x=1,y=1

σρ(x,y)

. (3)

δ is a dimensionless quantity since σ(x,y) and ρ are dimensionless. In particular, we use Eqs. 2, 3 and 6, to compute the

rupture probability and the inter-event time and in our algorithm.5

2.2 Statistical and Fractal relations

In order to quantify the resemblance between synthetic catalogs and real seismic catalogs, we use statistical measures that are

relevant for evaluating the SOC behavior. These measures are represented by power laws in magnitude (Gutenberg-Richter,

GR, law), in time (Modified Omori, MO, law) or in space (e.g. fractal dimension). In Appendix A1 we introduce these relations,

describing their applicability, as well as the interpretation, and the methods of quantification. We summarize the characteristics,10

the acronym, and usefulness of the empirical relations used in this work in Table 1.

3 Fault systems model

In previous work Monterrubio-Velasco et al. (2017), developed a FBM version, to simulate spatial and magnitude aftershocks

patterns. However, the model did not incorporate the information of the fault geometry which is a fundamental property to

describe a particular tectonic region. In this work, we add the fault system geometry and prescribe a parameter that quantifies15

the "weakness" of such faults, i.e. the capacity to produce load concentrations that generates rupture. This parameter is the

load transfer, π, which controls the amount of load distributed from a failed cell to its neighbors. Since the seismic rupture is

not conservative, the parameter π(x,y) defines the percentage of load lost at each step. The output of the model is a synthetic

catalog with statistical properties that depend on the input parameters.

3.1 Algorithm20

Following the general assumptions proposed in Correig et al. (1997) and modified by Monterrubio-Velasco et al. (2017), the

main algorithm requires a definition of the 2D Cartesian grid of a rectangular domain Ω of Nx×Ny =NT square cells. The

domain is a planar representation of the study area. We then require to define a discrete value of load σ(x,y), the load-transfer

value π(x,y) and the rupture probability F(x,y) (Eq. 2) at each cell in x ∈ [1, ...,Nx] and y ∈ [1, ...,Ny]. A local load sharing

rule including the eight nearest neighbors is consider.25

As mentioned in section 2, the initial load distribution is taken from a uniform distribution function, where values are in the

range [0,1). No external load is received after the initial load assignation. Note that this model version describes the relaxation

process after a mainshock. Therefore we do not discuss or simulate neither mainshock nor foreshocks. The load increase in
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a cell is due to internal load transfer processes. Moreover, the initial load values are ordered according to a probability value

P . P=0 represents a random spatial distribution of initial loads (heterogeneous), and P=1 implies the most homogeneous

distribution in agreement with a proxy of Coulomb stress changes produced by a main event in the center of Ω (Monterrubio-

Velasco et al., 2017). Also, a threshold load, σth ≡ 1, is defined. When the load in a cell exceeds this threshold load, a critical

point is reached (called avalanches). Consequently, that cell has to fail and distribute its respective percentage of load (σT =5

σF ∗π) to its eight neighbors. Perpendicular neighbors will receive the largest amount of load ((σT ∗ 0.98)/4) while diagonal

neighbors get a load of (σT ∗ 0.02)/4. If more than one cell exceeds σth, the cell to fail is that which exhibits the maximum

load. The parameters ρ (Weibull index) (Eq. 1) and P (heterogeneity of the initial load distribution) have global extent and

need to be prescribed initially in order to run a scenario. Both σ(x,y) and F(x,y) are dynamic variables, since will be modified

during the algorithm execution.10

An FBM simulation should be terminated when any cell in the system is unable of exceed σth. We have empirically deter-

mined that the total number of steps kmax when this situation occurs is typically kmax ≈ 3NT /4. Beyond this value the system

no longer generates load that overpass σth. Hence we take this value as a terminal condition in our simulations.

Throughout the iterations of the simulation we identify two possible outcomes: normal events, i.e. minor or background

ruptures, and avalanches, i.e. a collections of spatio-temporally clustered events that result in large rupture. We remark that,15

in the present work, avalanches are actual secondary ruptures, whereas normal are minor events of negligible magnitude.

The consecutive rupture of avalanches events will produce a rupture cluster with a size determined by their area in [cells]

units S(NA). After the simulation is finished, we obtain a synthetic seismic catalog which includes: the number of simulated

earthquakes, NA, as well as their area S(NA) (number of events that behaves a single rupture) and occurrence time tA (Eq.

3), together with their spatial location (x,y). We will later discuss how the avalanche size S(NA) can be converted into20

magnitude. It should be noted that two realizations with identical parameters result in different seismic catalogs due to the

random component in the initial load.

The procedure is detailed explained in the pseudo-codes provided in Appendix A2.

The π(x,y) value is statically distributed according to the given fault system geometry. The values of π(x,y) are chosen to

have either a background value (πback) or a fault value (πfrac), i.e. only one of two values are possible for each cell.25

3.2 Methodology

The discrete planar faults of a particular region are modeled by using an image of the real faults system. This image is mapped

in the domain Ω (see example in Fig. 2). A parametric study is employed to determine the best range of values to produce

synthetic catalogs with appropriate statistical characteristics. In this work, we use the following parameters: ρ= 30, σth = 1,

σD = 0.02/4 and σN = 0.98/4. We also fix a background πback = 0.65 value for all non-faulted cells and assume a square30

grid, with same lateral size in x-axis and y-axis, i.e. Nx =Ny =
√
NT . These values are considered from the results obtained

in Monterrubio-Velasco et al. (2017).
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The map of faults has a real physical size in km2. So, after executing the algorithm 1, in the post-processing analysis, we

assign an area at each cell in km2, namely Acell. To compute the avalanche area S(NA)in km2 we use the relation,

Aj = S(j) ·Acell , (4)

for j = 1, ...,NA. We computed an equivalent magnitude using the scale magnitude-area relation proposed by (Hanks and

Bakun, 2008) in Eq. 5.5

Mw = 4/3logA+ (3.07± 0.04) , (5)

where Aj ,forj = 1, ...,NA is the rupture area expressed in km2 and MW is the moment magnitude. This relation is specific

for events in a Crustal-Plate-Boundary tectonic regime (Stirling M.W., 2012).

Careful attention has been given to minimum magnitudes which depend on size of the cell Acell (i.e. are proportional to

N−2). In order to make results comparable for different grid sizes, we filter out events rupturing less than a minimum amount10

of cells for the finer grids.

We are left with three freely varying parameters for our study. Based on previous results we use Nx = [180,240,300] cells,

πfrac = [0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1.0] and P = [0.0,0.08,0.16,0.24,0.32,0.38] (Monterrubio-Velasco et al., 2018).

This results in 162 samples in the parametric space.

The epicentral location of the simulated aftershocks is the position of the first avalanche event ((Ex(j),Ey(j))) in the cluster.15

The time of occurrence T (j) is,

T (k) =
k∑

i=1

δi , (6)

where k = 1, ...,kmax. We define ∆(r) as series of the euclidean distance between two consecutive epicenters, and τ(t) the

inter-event time series corresponding to two consecutive avalanches (see Eq. 6).

Table 2 summarizes the model parameters, and list their search range and a brief definition.20

4 Test case: Northridge aftershock sequence

In order to validate and compare our synthetic results with real seismicity, we modeled as an example case the fault system

geometry and seismicity related to the Northridge aftershock sequence. The Northridge mainshock (MW = 6.7) occurred on

January 17, 1994 at 4:31 UTC. The earthquake shook the San Fernando Valley, which is 31 km northwest of Los Angeles, near

the community of Northridge. This earthquake is the largest recorded in the Los Angeles metropolitan area in the last century.25

The depth of the hypocenter was 18 ± 1 km. The seismic moment, Mw, was estimated at 1.58 ·1023 N·m, with a stress drop of

27 MPa (Thio and Kanamori, 1996).
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The mainshock occurred due to the rupture of a previously unrecognized blind reverse fault with a moderate southward

dip (Savage and Svarc, 2010; U.S.G.S., 1994). The Northridge mainshock occurred at a fault belonging partly to a large fault

system in the Transverse ranges. This fault system is under compression in the NNW direction related to the "big bend" of the

San Andreas fault (Norris and Webb, 1990; Hauksson et al., 1995). The Northridge earthquake was followed by a sequence

of aftershocks, between the 17th of January and the 30th of September 1999, including 8 aftershocks of magnitude Mw ≥ 55

and 48 of 4≤Mw ≤ 5. We computed the statistical parameters of the aftershocks using the data recorded by the Southern

California Seismic Network. We consider the aftershock time period from the mainshock (January 17, 1994 at 4:31 UTC) until

one year afterwards (January 17, 1995). In space, we consider events that occur in a square area of 0.6 ◦ x 0.6◦ taking as center

the mainshock epicenter 1 (Turcotte, 1997). We also assumed that the faulting area is the same independently of the model

domain size Ω. However, the number of cells modify the size of each cell, resulting in 0.077 km2, 0.043 km2, and 0.027 km2,10

for Nx = [180,240,300] cells respectively.

In Table 3 we show the statistical parameters for the Northridge sequence computed for different threshold magnitudes

from Mmin = 1.5 to Mmin = 3.5. These values will be used as a reference to determine the sets of FBM parameters that best

reproduce the Northridge statistics. Fig. 3 show the fitting of GR law, MO law, and Hurst exponents (H∆ ,Hτ and HMag),

for different minimum magnitude Mmin >1.5, >2.0, >2.5, >3.0, >3.5. We note that Wiemer and Wyss (2000) calculated the15

minimum magnitude of completeness in the Los Angeles area as Mc ≈ 1.5.

5 Results

We divide the results and their analysis in three domains:

– Space: fractal capacity dimension, D0, for the epicentral distribution of synthetic earthquakes, and Hurst exponent for

epicentral distance between consecutive synthetic earthquakes, H(∆).20

– Magnitude: b-value, maximum avalanche size maxS(NA), mean Magnitude and maximum Magnitude.

– Time: Inter-event times H(τ) and MO parameters (p,c,K).

5.1 Parametric analysis over the synthetic series

5.1.1 Fractal dimensions of synthetic catalogs

The first analysis is related to the fractal capacity dimension, D0. We observe (Fig. 4) that as N increases D0 becomes more25

sensitive to P because the larger the epicentral area, the more abundant and scattered are the events, and the effect of P over

the simulated events increases. The effect of an increase in P is a reduction of D0. On the other hand, as P tends to zero, the

events are more scattered because randomness in the initial load causes sparsity in the event distribution. Moreover, πfrac does

not seem to have a large impact in D0 across our experimental range. We also find that for P ≤ 0.16 and πfrac > 0.9 (for all N

values) our FBM simulations yield a D0 compatible with that computed for the Northridge series with a Mmin ≈ 2 (Table 3).30
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5.1.2 b-value, mean and maximum magnitude of synthetic catalogs

The b-value is clearly influenced by all three parameters (N , P and πfrac). For example, small N tends to produce similar

b-values independently of P . On the other hand, as N increases, the b-value is more sensitive to P . The different b-values

as a function of N might be due to two possible causes: 1) the number of events included in the statistical fit and 2) the

size of the avalanches, S(NA). In Fig. 6 (a) we observe that as P increases the maximum magnitude also increases, also5

modifying the frequency-magnitude distribution and the b-value. As an example, Fig. 7 shows the frequency-magnitude for

P = [0,0.08,0.16,0.24,0.32,0.38], πfrac = 0.9, πfrac = 0.65, and N = 300. We observe that as P increases the productivity

of intermediate size events decreases, and the maximum magnitude increases. Large P values imply that the probability to

find cells with large loads clustered in the middle increases (Monterrubio-Velasco et al., 2017). So in this condition it is more

likely to generate larger earthquakes. This behavior is similar to that observed in the characteristic earthquake distribution10

(Wesnousky, 1994). In the case of finer grids, if we consider an initial random load distribution P = 0, we can observe that b

approaches when πfrac > 0.90. This last observation is important to justify the influence of fractures in the b-value since it is

closer to the theoretical value when the contrast in "non-conservative" properties is significant. From Fig. 5, we observe that

the best range of b-values, similar to that obtained for Northridge sequence is for P < 0.16,πfrac > 0.90, and N ≥ 240.

From Fig. 6 (b) we observe that the mean magnitude is independent of πfrac and to a lesser extent of P . It is worth pointing15

out that the b-values are similar to those shown in Table 3 when Mmin ≈ 2 or 2.5. Fig. 6 (b) shows that, in our model, an

aftershock with a magnitude such as that of the Northridge largest aftershock magnitude (MW = 5.9) is obtained for a non-

unique combination of parameters. When P > 0.08 and πfrac > 0.7 this magnitude is overestimated.

5.1.3 Hurst exponent of synthetic catalogs

Figs. 8 (a) and (b) show the results of the Hurst exponent for inter-event distanceH(∆) and inter-event timeH(τ) (Eq. A6). The20

re-scaled range analysis of the ∆(r) series reveals their independence on N and πfrac but shows a slightly higher dependence

with P . In general as P increases H(∆) also increases. As P decreases H(∆)→ 0.5 implying that the system tends to a

random behavior of the inter-event epicentral distribution. However H(∆) always remains similar to the values of Table 3 for

P ≈ 0. Gkarlaouni et al. (2017) showed that the seismicity in the Corinth rift (Greece) corresponded to H(∆)→ 0.5 as the

threshold magnitude decreased.25

The analysis ofH(τ) reveals in general values> 0.5 which implies a persistence in the dynamic system of inter-event times,

i.e. the behavior of future inter-event time can be extrapolated from previous behavior. As P increases the persistence of H(τ)

also increases, which may be related with the MO trend (discussed below). The influence of πfrac over H(τ) is not clear,

however the number of events decreases when we take a larger cutoff magnitude and this fact could affect the re-scaled range

statistics.30
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5.1.4 MO parameters in synthetic catalogs

The MO empirical law requires careful analysis in our FBM implementation. First of all, we must take into account that we

are using dimensionless time (see eq. 3). Our cumulative time, Tj is computed using Eq. 6. For example, considering the input

values of P = 0.08, πfrac = 0.90, Nx = 180, if we include all simulated events (minor events and aftershocks) together, (e.g.

Figure 9 (a), we get a satisfactory MO fit with p=1.1, c=1.5, K = 11991.3, and rms= 675.0. But if we use only the time5

occurrence of the simulated aftershocks (S(NA)), the parameters depart from the expected trend (e.g., Fig. 9 b), obtaining p=

1.9, c=4.9,K = 1571.9, and rms =10.8. Two regions are distinguished in Fig. 9 (b) where we can see that the density of events

in the blue region is much larger than in the green. Therefore the MO fit is deviated adjusting for events in the blue region. It

is known that real aftershocks do not always follow a single MO decay trend (Utsu and Ogata, 1995). Moreno et al. (2001)

developed an alternative model to understand this phenomenon called Leading and Cascades (LA-CAS) events. This model10

proposes a separation of earthquakes in two groups: One that strictly follows the MO hypothesis (called Leading aftershocks,

LA) and those called Cascades which are the events that occur between two consecutive LAs. Note that to obey the MO

relation, the inter-event times must increase monotonically. LA events satisfies this assumption. Monterrubio et al. (2015)

tested the LA−CAS algorithm to study the temporal behavior of three real aftershock sequences. The MO fit of Figure 9

resembles the behavior found in Monterrubio et al. (2015). After segregating the events in LA and CAS, we obtain a better fit15

to the MO relation for the LA series (Fig. 10, LA: p= 0.9, c= 0.1, K = 5.1, rms = 1.2). The full results of the MO relations

are shown in Figs. 11 (a) and (b).

The MO parametric results provide information of the temporal behavior in the simulated series. We observe that P < 0.08

implies p and c values close to the expected Norhtridge values (see Table 3). However, the number of events after segregating

LA and CAS decreases, so the value of K is much lower than expected. These results indicate that series with an initial load20

configuration organized with a probability P > 0.08 depart from a typical MO behavior. This occurs because the aftershock

series produced with larger initial organization probabilities (P > 0.08) tend to generate temporal series with very short elapsed

times (Eq. 3), and larger avalanche clusters, which does not follow a typical MO distribution. The closest behavior to the

observed MO parameters of Northridge (Table 3) occur for P ≤ 0.08 and πfrac > 0.7.

5.2 Trigger and shadow regions25

The load-transfer value π(x,y) is highly relevant to reproduce temporal, magnitude, and spatial patterns of real series (Mon-

terrubio et al., 2015). Considering this fact, we are also interested in studying the implication of this value in the aftershock

productivity, in particular for off-fault regions. To test the productivity as a function of πbkg, two extreme values are considered

for πbkg = 0.25 and πfrac = 0.65. In Fig. 12 we observed that activity in background (non faulting) cells largely decreases for

small πbkg values. This occurs because for low π values the probability to produce an event with larger ruptured area decreases30

(Fig. 13). The results suggests that variations in πbkg for different regions of the domain can lead to producing shadow and

triggered regions, giving a scenario closer to a real case (King et al., 1994; ?; Hainzl et al., 2014). However, in this study,
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our first attempt is more focused on the parametric implications of the fault regions included in the model. We expect that the

integration of triggered and shadow regions will be plausible in future implementations to improve the results.

5.3 Results Summary: Synthetic catalogs

Lastly, we estimated the error between the real and synthetic statistical values using a measure similar to the euclidean distance

rE−Mmin. However, in our case rE−Mmin is referred to a normalized parametric space because the different units in the5

parameters, and it is defined as:

rE−Mmin =

√√√√
9∑

i=1

[
(ps[i]− psMmin[i])

ps[i]

]2

, (7)

where,

ps= [D0,<Mw >,b− value,Mmax,Mmin,H(∆),H(τ),p,c]

is the vector that contains the values of the series generated with a given set of input parameters P,πfrac, and N . Simi-10

larly, the vector psM contains the values for the Northridge series considering four different minimum magnitudes Mmin =

[1.5,2.0,2.5,3.0] (Table 3). We computed rE−Mmin for the 162 combinations of P,πfrac, and N , each one with 3 realizations.

In Table 4 we show the minimum of rE−Mmin for Mmin = [1.5,2.0,2.5,3.0]. The minimum euclidean distance occurs when

we consider the NOR series with Mmin = 2.0. It is worth mentioning that the minimum magnitude of the synthetic aftershocks

considered in this work is also ≈ 2.0. The results show that the most appropriate set of parameters to model this data series is15

P = 0, πfrac = 0.90 using N = 300 cells.

Fig. 14 shows the euclidean distance between the sequence generated by NOR using the set of parameters obtained with

Mmin = 2.0 and its real values.

In Fig. 15 we show an example of a spatial distribution of events and its related GR relation (Fig. 16), using the set P = 0,

πfrac = 0.95 and N = 300. As shown in Fig. 15, the largest aftershocks have its epicenter on fault’s cells (M > 3.5). The20

epicenters are depicted with a blue star. This scatter plot also shows that the smallest events usually occur spread out. The

relation of the magnitude and the cumulative number of events, generated in this example, shows a GR fit with a similar

b-value to that the computed in Table 3.

6 Discussion

The main goal of this study was to integrate prior knowledge of the spatial geometry of faults in the implementation of the FBM25

algorithm, improving the model previously proposed in Monterrubio-Velasco et al. (2017). The main advantage of the present

model is the reduced number of equations to be solved in comparison with deterministic models for similar purposes, and the

low number of parameters used to describe the model dynamics (πfrac,πbkg,ρ,P and NT ). To validate our model we used

as an example the geometry of the Northridge fault system and the statistics of the aftershocks. Note that this model version
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describes the relaxation process after a mainshock. Therefore we do not discuss or simulate neither mainshock nor foreshocks.

In particular, we explored the power laws’ exponents D0, b,H,p parameters in relation to the model parameters (Section A1).

Other models have been proposed to describe with simplified mechanism the statistics of earthquakes, such as the "Two

Fractal Overlap Model" (Bhattacharya et al., 2009) or the "Olami, Feder and Christesen (OFC)" model (Olami et al., 1992).

In particular, the OFC model has a very similar algorithmic behavior to our proposed model (Kawamura et al., 2012). But our5

model yields similar results with fewer input parameters and it is simpler to implement.

As a statistical modelling tool, we need a parametric analysis to properly fit observational data. In our study we have searched

the range of values that generate synthetic series capable of reproducing the statistical relations of real aftershock series. In

particular, we explored three (πfrac,P and N ) of the five free parameters, to quantify their leading role in the model. We point

out that πbkg and ρ are assumed as constants following results in Monterrubio et al. (2015) and Monterrubio-Velasco et al.10

(2017). In agreement with Monterrubio-Velasco et al., monterrubio2015aftershock, we also confirm that the transferred load

value π is the most critical parameter in order to reproduce temporal, magnitude, and spatial patterns of real series. Our results

also suggest that variations in π for different regions of the domain might generate shadow regions (King et al., 1994; Stein,

1999; Hainzl et al., 2014). The initial load configuration, controlled by P , results determinant to describe the final statistical

features in the model. In particular, the results indicate that P and πfrac are inversely proportional. As we increase πfrac, a small15

value of P is required to reproduce aftershocks statistics. If the fault geometry is not considered in the model (πbkg = πfrac),

the particular range of 0.60< π < 0.70 found in (Monterrubio-Velasco et al., 2017) is required to captures statistical patterns.

However, an optimization of the parametric search using classification machine learning techniques can be very useful in this

stochastic model. Considering the example of Northridge our results suggest that the best combination which approach to real

cases depends on the minimum magnitude. The usefulness of this stochastic model is its capability to generate a large number20

of scenarios with statistical properties similar to real cases, with low computational cost and a low number of free parameters.

7 Conclusions

We present a model which fulfills statistical properties of aftershock series incorporating fault system geometry. We choose

statistical relations which describe the aftershocks’ behavior in space, magnitude and time. By means of a parametric study we

have found the range of values that generate synthetic series capable of reproducing the statistical relations of real aftershock25

events. In particular, we have used the Northridge fault system geometry and aftershock sequence as a study case. We conclude

that the initial load configuration (quantified by parameter P ), which specifies the randomness in the background load· distri-

bution, and the ratio of transferred load for a faulting cell πfrac are the key parameters that control the earthquake’s statistical

patterns in FBM simulated events. Moreover, these parameters are complementary, i.e. in absence of fault geometry informa-

tion (πfrac = πback), values in the range 0.08< P < 0.32 ensure statistical compatibility with real aftershocks. In particular, for30

πfrac = π andN = 180 we recover the results obtained previously without fault information (Monterrubio-Velasco et al., 2017).

On the other hand, when fault geometry is available, as in the case of the Northridge fault system, the results obtained in this

work show that, in order to reproduce statistical characteristics of the real sequence, larger πfrac values (0.85< πfrac < 0.95)
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and very low values of P (0.0< P ≤ 0.08) are needed. This implies the important corollary that a very small departure from

an initial random load configuration is required to initiate a rupture sequence which conforms to observed statistical properties

such as the Gutenberg-Richter Law, Omori Law and fractal dimension. In summary, the proposed model is a useful tool to

model aftershock scenarios by means of its inherent statistical patterns in time, space, and magnitude. Moreover, the model

circumvents the high complexity related with the derivation of deterministic models of earthquake rupture phenomena. We also5

conclude that, although the FBM algorithm is quite simple, the model is powerful enough to provide simulated data statistically

consistent with real scenarios. Our model can be an alternative to the study of the complex behavior of earthquakes. Future

work will focus on optimization of the parametric search using machine learning techniques and extensions towards a 3D FBM

version.

Appendix A: Appendix A10

A1 Statistical and fractal relations

A1.1 Fractal dimension

Fractured systems, including lithospheric faults, are scale invariant in a large scale range being characterized by the power law

(Turcotte, 1997; Mandelbrot, 1989). The fractal dimension is an important parameter used to characterize fracture patterns in

heterogeneous materials (Hirata and Imoto, 1991). In seismicity, it provides a quantitative measure of the spatial clustering15

of epicenters and hypocenters (Roy and Ram, 2006). There are many fractal dimension definitions and descriptions used to

characterize a dynamical system, for example the capacity dimension, Dc, (Nanjo et al., 1998; Legrand et al., 2004), the

information dimension DI , or the correlation dimension, DG (Grassberger and Procaccia, 1983). For the purpose of our study,

we will use only the capacity dimension, Dc

The generalized fractal dimension Dq is used to compute different fractal dimensions (Eneva, 1994).20

Dq = lim
r→0

logCq(r)
log(r)

, (A1)

where

Cq(r) =





1
N

N∑

i=1


 1
N − 1

∑

j 6=i
H(r− || xi−xj ||)



q−1




1
q−1

, (A2)

with q is a positive or negative real number, N the number of samples, || xi−xj || the inter-event distance for consecutive

events, H the Heaviside step function and r a threshold distance value to evaluate H. With this method we compute the25

probability of a pair of points in the system being closer than the threshold r. Eq. A2 has the property that D(q=0) =Dc,

D(q=1) =DI andD(q=2) =DG (Barriere and Turcotte, 1994) assumed that a fractal spatial distribution of earthquakes implies
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a fractal distribution of faults. Turcotte turcotte1997fractals showed that the capacity dimension of epicentral and hypocentral

distributions yield a power law (or fractal) with D0 ≈ 1.6 and D0 ≈ 2.5, respectively.

A1.2 Re-scaled range analysis and Hurst exponent

The rescaled range (R/S) analysis, and more specifically the Hurst exponent H (Hurst, 1965) offers a criterion for evaluating

the predictability of a complex dynamic system (Feder, 1988; Goltz, 1997). TheR/S analysis can be interpreted as a method to5

measure the long-range correlation in time series. Some applications of this fractal technique in different fields of geophysics

and geology are given in Korvin (1992) and Turcotte (1997). R/S analysis on earthquake sequences was first implemented by

Lomnitz (1994), and applied to an analysis of the seismicity of the South Iberian Peninsula (Lana et al., 2005), the Corinth rift

and Mygdonia graben in Greece (Gkarlaouni et al., 2017) or aftershocks in Southern California (Monterrubio-Velasco, 2013).

BeingX ∈ (X1,X2, ...,Xn) a set of observations in a time series, the mean,m, of the series is computed and a mean adjusted10

series is created, following

Yt =Xt−m, (A3)

for t= 1, ...,n. Then a cumulative deviate series Z can be computed as

Zt =
t∑

i=1

Yi , (A4)

Then R/S is the ratio between the range Rt and standard deviation St, where the range is computed as15

Rt = max(Z1,Z2, ...,Zt)−min(Z1,Z2, ...,Zt) , (A5)

and St is the standard deviation of Z1, ...,Zt. Hurst used the following power-law relationship to determine the predictability

of time series (Hurst, 1965)

log(Rt/St) = C +H · log(t) , (A6)

whereH = 0.5 indicates randomness in the series, i.e. the samples are not correlated with one another.H > 0.5, indicates some20

degree of predictability, or temporal persistence in the system. Lastly, 0<H < 0.5 indicates antipersistence, i.e. an increasing

(decreasing) trend in the past implies a decreasing (increasing) trend in the future (Correig et al., 1997).
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A1.3 Gutenberg-Richter law

The Gutenberg-Richter (GR, sometimes referred to as Gutenberg-Richter Ishimoto-Ida) law is considered one of the major

manifestations of self-organized criticality in a natural system. It has been observed that, earthquake magnitude distributions

fit a GR power law (Gutenberg and Richter, 1942)

log10N(≥M) = a− bM , (A7)5

where N(≥M) is the cumulative number of events with magnitude greater or equal than M . The slope b describes the ratio

between small and large magnitude events and is usually in the range 0.65< b < 1.05 (Evernden, 1970; Ozturk, 2012) whereas

a is proportional to the earthquake productivity (i.e. the seismicity rate).

In particular, b is one of the most useful statistical parameters for describing the size scaling properties of seismicity. For

example, Ozturk (2012) concludes that this parameter can be used to differentiate tectonic regions. Similarly, Zuniga and Wyss10

(2001) used the b-value to identify most and least likely locations of earthquakes in the Mexican subduction zone.

In the rest of the present work we apply the maximum likelihood method to estimate b (Aki, 1965)

b=
log10(e)

| 〈M〉− (Mmin−∆M/2) | , (A8)

where Mmin is the minimum magnitude of events considered in the study, ∆M is related with the precision of the recorded

magnitude, in our case we consider ∆M = 0.1. The error of b is computed as (Shi and Bolt, 1982),15

σ(b) = 2.30b2σ(〈M〉) , (A9)

where

σ(〈M〉) =
n∑

i=1

(Mi−〈M〉)2/n(n− 1) , (A10)

A1.4 Modified Omori law

The temporal behavior of aftershocks is commonly described by the modified Omori (MO) law (Omori, 1894; Utsu and Ogata,20

1995) defined as

n(t) =
K

(t+ c)p
, (A11)

where n(t) is the generation rate of aftershocks at a time t after the mainshock, whereas K, c, and p are parameters to be

determined. The p parameter controls the aftershock activity decay and is related to the physical conditions in the fault zone
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(Kisslinger, 1996; Ogata, 1999). Its value is typically p≈ 1. The constant c eliminates the uniqueness of occurrence rate at

t= 0 (Kisslinger, 1996), the productivity K is a constant that depends on the total number of aftershocks. Then the cumulative

number of aftershocks, N(t), of the earthquake count at time t since the mainshock at t= 0, can be obtained by integrating

Eq. A11 resulting in

N(t) =

t∫

0

n(s)ds=





K {ln(t+ c)− ln(c)} p= 1

K[(c+t)(1−p)−c(1−p)]
1−p p 6= 1

, (A12)5

A2 Algorithm

The main Algorithm (A2.1), for each step k, updates the rupture probability F of each cell, finding the cell boasting the largest

load and then finding whether that load exceeds the given load threshold σth. If so, rupture is initiated and an avalanche occurs

due to recurrent load transfer and rupture of neighboring cells. Whenever no cell has sufficient load to reach σth a regular, i.e.

minor, event is triggered, which ensures load transfer and hence makes more likely an avalanche, i.e. major, event in the next10

time steps. The initialization step is shown in Algorithm 2 (A2.2) and the rupture process is depicted in Algorithm 3 (A2.3).

Notice that rupture relies in a transfer-ratio weight σN for the horizontal and vertical transfer and σD for diagonal transfer,

which are further global parameters to prescribe.

A2.1 Main algorithm
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Algorithm 1 Main FBM algorithm. The processes initialize and rupture are described in Algorithms 2 and 3, respectively.

k = 0; nA = 0; T1 = 0
initialize
δ1 =

(∑
i,j σ(i, j)ρ

)−1

while k < kmax do
k = k+ 1
for (i, j) ∈ Ω do
F (i, j) = σ(i, j)ρδk

end for
(l,m) = {(i, j) ∈ Ω | σ(i, j) = max(σ)}
if σ(l,m)> σth then
nA = nA + 1
rupture(l,m)
if nA = 1 then
S(nA) = 0

else
S(nA) = S(nA) + 1

end if
t(nA) = Tk; S(nA) = 0; Ex(nA) = l; Ey(nA) =m

else
if nA 6= 0 then
NA = nA

S(NA) = S(nA)
T (NA) = t(1)
nA = 0; S(nA) = 0

end if
find (p,q) sample of F (i, j)
rupture(p,q)

end if
end while
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A2.2 Algorithm 2

Algorithm 2 FBM initial load, where U is the uniform density function and UD its discrete (integer) counterpart

initialize
for all (i, j) ∈ Ω do
α= U(0,1)
if 0< α≤ P then
σ(i, j) = σI(i, j)

else
ri = UD(1,Nx)
rj = UD(1,Ny)
σ(ri, rj) = σI(i, j)

end if
end for

A2.3 Algorithm 3

Algorithm 3 Performs the rupture process of a single FBM cell of indexes (p,q)

rupture(p,q)
σ(p,q) = π (p,q)σ(p,q)
for (r,s) ∈ {(1,0),(0,1),(−1,0),(0,−1)} do
σ(p+ r,s+ q) = σ(p+ r,s+ q) + [σNσ(p,q)]

end for
for (r,s) ∈ {(1,1),(1,−1),(−1,1),(−1,−1)} do
σ(p+ r,s+ q) = σ(p+ r,s+ q) + [σDσ(p,q)]

end for
σ(p,q) = 0

δk =
(∑

i,j σ(i, j)
)−1

(Eq. 3)

Tk =
∑k
l=1 δl
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Figure 1. Map that includes the seismicity of magnitude larger than 2.0 during 1981-2006. Yellow star indicates the Northridge epicenter

(Mw 6.7, 1994). Red lines depicts the faults of this region considering an approximated area of 0.6º x 0.6º (Turcotte, 1997)
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Figure 2. Discrete Northridge fault system (NOR).
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Figure 8. H(∆) and H(τ) for NOR configuration
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Figure 11. (a) p, (b) c, (c) K, and (d) rms values for LA synthetic series
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(a)

(b)

Figure 12. Two examples of the epicentral spatial distribution for P = 0, πfrac = 0.95 and N = 180, (a) πbkg = 0.25, (b) πbkg = 0.65
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Figure 13. GR fit of simulated events for same values used in Fig. 12.
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Figure 14. Euclidean distance rE−Mmin computed for NOR series using Mmin = 2.0

36

Solid Earth Discuss., https://doi.org/10.5194/se-2019-65
Manuscript under review for journal Solid Earth
Discussion started: 16 April 2019
c© Author(s) 2019. CC BY 4.0 License.



Figure 15. Example of the spatial distribution of simulated events for a particular FBM realization with P = 0, πfrac = 0.95 and N = 300.

Circle areas depict the equivalent magnitude-area computed from Eq. 5. Star markers indicate the epicenter of each avalanche (simulated

earthquake).
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Figure 16. GR fit of simulated events (P = 0, πfrac = 0.95, πbkg = 0.65 and N = 300).
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Table 1. Empirical relations, interpretation and main parameters

Relation Main parameters Interpretation

Capacity Dimension (A1) D0 fractal measure of the epicentral spatial distribution

Rescaled Range (A6) H predictability of a inter-event time and inter-event distance series

Gutenberg-Richter (A7) b-value earthquake magnitude distribution

Omori-Utsu (A11) c,K,p temporal behavior of aftershocks

Table 2. Model parameters

Parameter search range or value definition

σ(x,y) random initial value U[0,1) load at each cell in (x,y) position

π(x,y) [0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95, 1.0] load transfer value

F (x,y) Eq. 2 rupture probability

P [0,0.08,0.16,0.24, 0.32, 0.38] initial order probability

NT 32400, 57600, 90000 total number of cells

ρ Eq. 1 Weibull index
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Table 3. Statistical parameters of the real catalog of Northridge aftershocks using different threshold magnitudes Mmin.

Parameter Mmin >1.5 >2.0 >2.5 >3.0 >3.5

N 5334 2412 970 373 151

D0 1.58 1.48 1.49 1.40 1.27

<Mw > 2.15 2.59 3.07 3.57 4.55

b-value 0.73 0.81 0.84 0.84 0.88

p-Omori 1.35 1.32 1.31 1.24 1.18

c-Omori 3.22 1.19 0.40 0.13 0.03

K-Omori 3485.76 976.15 256.03 63.76 17.64

H∆ 0.61 0.62 0.61 0.60 0.69

Hτ 0.92 0.90 0.83 0.81 0.76

HMag. 0.75 0.75 0.76 0.71 0.71

Table 4. minimum euclidean distance rE−Mmin (Eq. 7) using four different Mmin NOR series (Table 3)

Mmin rE−Mmin N P πfrac

1.5 0.78 240 0.16 0.6

2.0 0.63 300 0 0.95

2.5 0.88 300 0.08 0.9

3.0 1.53 300 0.16 0.7
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