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Abstract. Recent studies have revealed genetic similarities between Tethyan ophiolites and oceanic ‘proto-arc’ sequences 

formed above nascent subduction zones. The Semail ophiolite (Oman–U.A.E.) in particular can be viewed as an analogue for 

this proto-arc crust. Though proto-arc magmatism and the mechanisms of subduction-initiation are of great interest, insight is 

difficult to gain from drilling and limited surface outcrops in submarine fore-arcs. In contrast, the Semail ophiolite, in which 

the 3–5 km thick upper-crustal succession is exposed in an oblique cross-section, presents an opportunity to assess the 15 

architecture and volumes of different volcanic rocks that form during the protoarc stage. To determine the distribution of the 

volcanic rocks and to aid exploration for the volcanogenic massive sulphide (VMS) deposits that they host, we have re-mapped 

the volcanic units of the Semail ophiolite by integrating new field observations, geochemical analyses and geophysical 

interpretations with pre-existing geological maps. By linking the major element compositions of the volcanic units to rock 

magnetic properties, we were able to use aeromagnetic data to infer the extension of each outcropping unit below sedimentary 20 

cover, resulting in in a new map showing 2100 km2 of upper-crustal bedrock.  

Whereas earlier maps distinguished two main volcanostratigraphic units, we have distinguished four, recording the 

progression from early spreading-axis basalts (Geotimes) through to axial to off-axial depleted basalts (Lasail), to post-axial 

tholeiites (Tholeiitic Alley) and finally boninites (Boninitic Alley). Geotimes (‘Phase 1’) axial dykes and lavas make up ~55 

vol% of the Semail upper crust, whereas post-axial ('Phase 2') lavas constitute the remaining ~45 vol% and ubiquitously cover 25 

the underlying axial crust. The Semail boninites occur as discontinuous accumulations up to 2 km thick at the top of the 

sequence and constitute ~15 vol% of the upper crust. The new map provides a basis for targeted exploration of the gold-bearing 

VMS deposits hosted by these boninites. The thickest boninite accumulations occur in the Fizh block, where magma ascent 

occurred along crustal-scale faults that are connected to shear zones in the underlying mantle rocks, which in turn are associated 

with economic chromitite deposits. Locating major boninite feeder zones may thus be an indirect means to explore for 30 

chromitites in the underlying mantle.  
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1. Introduction 

A growing body of geochemical and geochronological evidence indicates that the crustal sequences of many Tethyan 

ophiolites—including the Oman–U.A.E. (Semail) example—formed in response to upper-plate extension during the initiation 

of lower-plate subduction (Belgrano and Diamond, 2019; Dilek et al., 2007; Dilek and Furnes, 2009; Guilmette et al., 2018; 

Ishikawa et al., 2002; MacLeod et al., 2013; Metcalf and Shervais, 2008; Rollinson, 2009; Rollinson and Adetunji, 2015; 5 

Shafaii Moghadam et al., 2013). These findings have led to reinterpretation of many ophiolites as counterparts to difficult-to-

access records of subduction initiation preserved in submarine fore-arcs and rear-arc basement (Stern et al., 2012; Stern and 

Bloomer, 1992; Whattam and Stern, 2011). The significance of the Semail ophiolite as a ‘proto-arc’ analogue has recently 

been highlighted by tectonic modelling and metamorphic geochronological studies, indicating that the Semail outcrops may 

constitute a rare example of proto-arc crust produced by the tectonically-induced mode of subduction initiation, rather than by 10 

spontaneous gravitational collapse (Duretz et al., 2016; Guilmette et al., 2018; Stern and Gerya, 2017).  

Though apparently dissimilar in their modes of onset, both the mid-Cretaceous Tethyan and Eocene West Pacific 

subduction initiation events appear to have formed vast swathes of proto-arc crust thousands of km along strike and hundreds 

of km wide, all within a few million years (Fig. 1; Arculus et al., 2015; Hickey-Vargas et al., 2018; Ishizuka et al., 2011; 

Meffre et al., 2012; Moghadam et al., 2010; Reagan et al., 2019; Shafaii Moghadam et al., 2013). As a potential remnant of 15 

this crust, the Semail ophiolite, exposed over ~20,000 km2, presents an excellent opportunity to assess the bulk composition 

and lateral continuity of these swathes and their underlying mantle. 

Differential uplift and erosion of the Semail ophiolite has exposed a 300 km long strip of volcanic rocks that dip 20–50˚ 

east along the north-eastern margin of the Oman mountains (Fig. 1). This simple structure, the excellent exposure, and the 

wealth of previous petrogenetic studies means that the distribution and approximate volume of rocks produced by each volcanic 20 

episode should be evident in map view.  

Four regionally-extensive, mappable volcanic units have been recognised in the Semail ophiolite (Geotimes, Lasail, Alley 

and Boninitic Alley), with an increasingly-pronounced subduction influence recorded by each successively erupted unit 

(Alabaster et al., 1982; Belgrano and Diamond, 2019; Gilgen et al., 2014; Ishikawa et al., 2002; Kusano et al., 2012, 2014, 

2017). However, as previous regional mapping was carried out prior to the recognition of boninites, and the Lasail unit was 25 

either lumped in with Geotimes (e.g., BME, 1987a, 1987b; Umino et al., 1990), or Alley (e.g., BRGM, 1993a), these existing 

regional maps distinguish only two units: the early (V1) and late (V2) extrusives. Updating the geological maps of the northern 

ophiolite to the four-unit volcanostratigraphy is the aim of the present study. 

This update is necessary to incorporate the findings of numerous detailed investigations of isolated volcanic sections (e.g., 

Einaudi et al., 2003; Godard et al., 2006; Kusano et al., 2014, 2012). Variations in volcanostratigraphy can then be used to test 30 

previously proposed along-strike variations in subduction-zone influence (e.g., Goodenough et al., 2010; Python et al., 2008) 

and hydrothermal processes (Alabaster et al., 1982; Gilgen et al., 2016; MacLeod and Rothery, 1992), as well as the overall 

significance of the ‘Phase 2’ magmatic overprint, which is debated (de Graaff et al., 2019). Furthermore, a map differentiating 
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the ophiolite’s boninites facilitates exploration for the gold-bearing volcanogenic massive sulphide (VMS) ore deposits hosted 

by these lavas (Gilgen et al., 2014). Finally, a map perspective of the Semail upper crust provides an areally extensive and 

well-studied comparison to drilled sections from the Izu-Bonin-Mariana (IBM) proto-arc basement (Belgrano and Diamond, 

2019; Ishikawa et al., 2002; MacLeod et al., 2013; Pearce et al., 1992; Reagan et al., 2013, 2017; Shervais et al., 2018; Stern 

et al., 2012). 5 

In the following we review the previous work on the Semail volcanic units and document the combined field, geochemical 

and aeromagnetic approach used to distinguish them during mapping. We then present a new map of the northern Semail 

volcanics, displaying both outcrop and sediment-covered bedrock occurrences, split for the first time into the major basal, arc-

like, and boninitic volcanic groups. This will serve as a renewed basis for volcanological studies and for ore exploration in the 

Semail ophiolite. 10 

Figure 1. Map of the Semail ophiolite structural blocks simplified after Nicolas et al., (2000), with the additional differentiation of the 
structurally-separate Western and Eastern Fizh blocks, showing the area mapped in this study. Inset: Map of Tethyan ophiolites adapted after 
Dilek et al., (2007) with U-Pb zircon ages of initial accretion indicated for the Albian–Turonian ophiolite chain of 1Troodos, 2Kizildag, 
3Nain, 4Deshir, and 5Semail after Shafaii Moghadam et al., (2013) and references therein.   

1.1. Approach 15 

Improvement of the excellent pre-existing regional maps required a multidisciplinary approach, which is summarised below: 
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1) Previously published geological maps and 91 locations of geochemically analysed samples were georeferenced, digitised, 

and a correspondence was established between their volcanostratigraphies and that employed here (Table 1).  

 

2) Field mapping was conducted between 2014 and 2019 by teams of 2–4 geologists during 6 field campaigns each of one 

month duration. We collected 187 new lava samples at strategic locations and analysed their elemental compositions. This 5 

allowed us to assign each sample to a volcanostratigraphic unit by comparison with compositional fields defined by previously-

published, stratigraphically-confirmed analyses. These assignments in turn allowed the field discrimination criteria for the lava 

units to be iteratively refined during each campaign. 

 

3) The bulk magnetic and magnetic–mineralogical properties of a subset of samples from each unit were analysed to aid 10 

interpretation of the regional aeromagnetic survey of the volcanic sequence (Isles and Witham, 1993). This interpretation 

allowed us to infer which volcanostratigraphic units are buried beneath the supra-ophiolitic sedimentary cover.  

 

4) We integrated these datasets into a geological map covering ~950 km2 of exposed upper-ophiolitic crust and showing a 

further ~1200 km2 of buried volcanic bedrock.  15 

1.2. Nomenclature of volcanostratigraphic units 

Different nomenclatures for the volcanostratigraphy have been employed by different research groups (Table 1). We use the 

names assigned by the seminal studies of the volcanic sequence (Alabaster et al., 1980, 1982), i.e., Geotimes, Lasail and Alley, 

with the addition of Boninitic Alley from Gilgen et al. (2014). As well as being easy to distinguish, these names carry no 

connotations of chronological order, and hence they remain practical when mapping intercalated sequences. For clarity in the 20 

present article, when referring to previous work we append to our names the term used in the cited study (e.g. Geotimes/LV1). 

Notwithstanding these differences in nomenclature and some disagreement regarding petrogenetic groupings, these unit 

divisions are clearly defined by field observations and are widely accepted (Alabaster et al., 1982; Gilgen et al., 2014; Godard 

et al., 2006; Kusano et al., 2017; MacLeod et al., 2013; Umino et al., 1990).  

1.3. Geology and petrogenesis of the Semail upper crustal units 25 

The upper crust of the Semail ophiolite consists of a continuous sheeted dyke complex (SDC) 1–1.5 km thick which is 

conformably overlain by a 1–3 km thick sequence of extrusives. Though the Semail magmatic history can be broadly split into 

two magmatic phases (Phase 1 and 2; Goodenough et al., 2014), geochemical indicators of subduction-zone input gradually 

increase upwards through the volcanic stratigraphy. (A’Shaikh et al., 2005; Alabaster et al., 1982; Belgrano and Diamond, 

2019; Ernewein et al., 1988; Godard et al., 2003; Kusano et al., 2012, 2014, 2017; Lippard et al., 1986; Umino et al., 1990). 30 

This progression is manifested by the more-or-less sequential eruption of four regionally-distributed and mappable volcanic 

units (Fig. 2): 
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Table 1. Comparison of different naming schemes for the Semail volcanostratigraphy and the approximate equivalent rock types in the Izu-
Bonin-Mariana (IBM) protoarc record (Hickey-Vargas et al., 2018; Shervais et al., 2018).  

Figure 2. Semail ophiolite volcanostratigraphy with capping pelagic sediments (Suhaylah Fm.) and Sheeted Dyke Complex (SDC), revised 
according to field observations in this study after Alabaster et al., (1982), Gilgen et al., (2014) and Belgrano and Diamond (2019). 5 
Approximate stratigraphic thicknesses are indicated.  
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1) Geotimes: This unit comprises basal basalts and basaltic andesites produced during the axial spreading stage of ophiolite 

formation (Phase 1). The Geotimes lavas were fed and contemporaneously emplaced with the comagmatic SDC predominantly 

between 96.5 Ma and 95.5 Ma (Alabaster et al., 1982; Rioux et al., 2013; Umino et al., 1990). The petrogenetic affinity of 

Geotimes is disputed between mid-ocean ridge basalts (MORB), back-arc basin basalts and forearc basalts (Alabaster et al., 

1982; Ernewein et al., 1988; Godard et al., 2006; Kusano et al., 2012; MacLeod et al., 2013). In comparison to MORB, the 5 

geochemical composition of Geotimes is marked by negative Nb-Ta anomalies and by major-element fractionation trends 

indicative of elevated water contents (Alabaster et al., 1982; MacLeod et al., 2013). However, in comparison to the supra-

subduction zone axial extrusives of the Troodos ophiolite and IBM forearc, Geotimes lavas are less-depleted and have higher 

Ti/V ratios (Gilgen et al., 2014; Osozawa et al., 2012; Reagan et al., 2010). Pre-axial episodes of melt extraction deduced for 

both the Troodos and IBM examples, but so far not for the Semail ophiolite, may be an explanation for this discrepancy 10 

(Belgrano and Diamond, 2019; Shervais et al., 2018; Woelki et al., 2018).  

 

2) Lasail: This is dominantly a primitive basaltic unit intercalated with, but mostly overlying, the Geotimes unit. It occurs as 

discontinuous off-axis accumulations (Alabaster et al., 1982; Belgrano and Diamond, 2019; Kusano et al., 2012). The basal 

intercalations with Geotimes demonstrate a clear stratigraphic association between Lasail and Geotimes/V1 (Belgrano and 15 

Diamond, 2019; Kusano et al., 2012; Umino et al., 1990). However, Lasail is closer to Alley/V2 in terms of incompatible trace 

element depletion (Alabaster et al., 1982; Belgrano and Diamond, 2019; Ernewein et al., 1988; Gilgen et al., 2014). This 

mismatch has led to varying interpretations as to whether the Lasail unit belongs to Phase 1 or 2. Lasail’s rare-earth element 

depletion can be modelled by elevated (~30 wt.%) partial melting of the same depleted-MORB mantle source that produced 

Geotimes (Godard et al., 2006). Such high-degree melting fits with the distinctly primitive composition of the Lasail lavas. 20 

However, Lasail’s elevated Th/Nb ratios indicate that this melting was assisted by additions of a high-temperature subduction 

fluid (Alabaster et al., 1982; Belgrano and Diamond, 2019; Gilgen et al., 2014; Godard et al., 2006; Pearce, 2008; Shervais, 

1982). Thus, high-degree melting of a supra-subduction MORB-mantle source, triggered by localised infiltration of a slab-

derived fluid, succinctly explains Lasail's geochemical features as well as its differences with respect to the overlying Alley 

lavas (Belgrano and Diamond, 2019). In the IBM forearc, for comparison, primitive forearc basalts potentially comparable to 25 

the Lasail unit also directly overlie the axial volcanics in drill hole U1440B (Shervais et al., 2018).  

 

3) Tholeiitic Alley: This is part of the original ‘Alley’ volcanic group formalised by Smewing et al. (1977) and Alabaster et al. 

(1982). The group includes tholeiite-series lavas that we differentiate here from their boninitic counterparts. The Tholeiitic 

Alley unit spans a fractionation series from basalt through to rhyolite, and it is generally accepted as belonging to Phase 2 of 30 

the Semail magmatic history (Alabaster et al., 1982; Gilgen et al., 2014; Kusano et al., 2014, 2017; Umino et al., 1990). The 

moderate incompatible-element depletion and fluid-mobile element enrichment of Tholeiitic Alley/LV2 lavas and glasses are 

interpreted as the result of flux melting of the axial mantle source residue by a slab-derived hydrous fluid (Alabaster et al., 

1982; Kusano et al., 2014, 2017). Geochemically, Tholeiitic Alley is the closest Semail equivalent to the Troodos basal (axial) 
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group and IBM forearc basalts (Osozawa et al., 2012; Reagan et al., 2010). However, the source depletion in these other 

examples apparently occurred during much earlier melting events, unrelated to the main axial melt extraction (Hickey-Vargas 

et al., 2018; Shervais et al., 2018; Woelki et al., 2018). 

 

4) Boninitic Alley: High-Ca boninitic lavas were first discovered at the top of the stratigraphy in the Wadi Jizi area (Ishikawa 5 

et al., 2002). Kusano et al. (2014) then showed that boninites occur as a ~140 m thick package (termed UV2) overlying and 

intercalated with Tholeiitic Alley/LV2 lavas in Wadi Bidi (Hilti block). Regional sampling by Gilgen et al. (2014) and Kusano 

et al. (2017) further indicated that boninites occur at numerous locations throughout the northern ophiolite. However, the 

volume and continuity of the boninites was unknown prior to this study. While Boninitic and Tholeiitic Alley have previously 

been grouped on the basis of their appearance and stratigraphic intercalations, their source composition and geochemical 10 

fractionation trends are clearly distinct from one another (Gilgen et al., 2014; Kusano et al., 2014), thereby justifying their 

definition as distinct volcanostratigraphic units. Boninitic Alley is depleted in incompatible elements and enriched in fluid-

mobile elements similarly to the Bonin forearc boninites (Ishikawa et al., 2002; Kusano et al., 2014). 

Other locally-distributed volcanic units were also described by Alabaster et al., (1982). The Clinopyroxene-phyric unit 

occurs locally around Wadi Jizi, and is compositionally intermediate between Tholeiitic and Boninitic Alley (Gilgen et al., 15 

2014). Owing to its small extent and intermediate nature, we have not included it in our map. The mildly alkaline, obduction-

related Salahi volcanics (V3; Alabaster et al., 1982) have so far been documented only in the Wadi Salahi area (Hilti block), 

where their extent is well-defined and where they are separated from the underlying Alley group volcanics by either an eroded 

base or by several metres of pelagic sediments (BME, 1987b; Kusano et al., 2014; Umino, 2012). Our map displays the 

previously known extent of Salahi without modification. 20 

1.4. Previous works and scope of new map 

1.4.1. Previous geological maps 

The first regional-scale geological map of the Oman ophiolite with a differentiated Lower and Upper extrusive sequence was 

compiled by Lippard et al. (1986) at a scale of 1:250,000. This work was expanded upon by the 1:50,000 and 1:100,000 maps 

produced by Japanese and French teams together with the Ministry of Petroleum and Minerals (BME, 1987c, 1987b, 1987a, 25 

BRGM, 1986b, 1986a, 1993a, 1993b). This collection covers our entire mapping area and is referred to hereafter as the 

‘regional map set'. The regional map set displays the distribution of an essentially two-unit, lower and an upper extrusive 

stratigraphy (Semail Extrusive 1 and 2 respectively), with the addition of the Salahi unit (Semail Extrusive 3) as well as dyke-

cut and felsic subunits. 

The map presented in this study primarily builds on this regional map set. In addition, numerous local maps have since 30 

been published together with articles and reports on the extrusives. In particular, the detailed field maps around VMS prospects 
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published by JICA (2002, 2000) follow a similar stratigraphic scheme to the one used in the present study, and those maps 

provided useful constraints for our map in the Sarami, Haylayn and Yanqul areas. 

The outcrop outlines on the existing regional map set are commonly offset from their true geodetic positions by 50–100 m. 

To remedy this, we retraced the outcrop outlines of the sheeted dyke complex and extrusives using 1 m resolution OrbView-3 

satellite images made available by the United States Geological Survey through the Earth Explorer platform. We verified that 5 

the registration accuracy of these images is within 20 m by comparison with GPS positions recorded at outcrops and road 

intersections.  

1.4.2. Aeromagnetic map 

In addition to the above geological maps, we used the Batinah aeromagnetic survey performed in 1992 by World Geoscience 

Cooperation (Isles and Witham, 1993) and made available by the Oman Public Authority for Mining, Muscat. The survey was 10 

flown with a line spacing of 200 m at a mean terrain clearance of 80 m. This corresponds to an approximate resolution of 80 

m, where magnetic bodies that are less than 80 m wide or that are separated by less than 80 m will be detected, but not 

necessarily resolved (Flint et al., 1999). The acquired data were processed by reduction-to-pole (RTP) transformation prior to 

distribution, but details of this transformation are unfortunately unavailable. Such RTP transformations are performed to 

compute the anomalies that would be generated by the same source bodies in a vertically-orientated magnetic field, thus better 15 

situating anomalies over their sources and facilitating geological interpretation (Blakely, 1995; Clark, 2014).  

1.4.3. Scope of new map 

The present study focuses exclusively on the volcanics of the northern ophiolite, the majority of which outcrop within the 

mapping area (Fig. 1). As our mapping was conducted on GPS-guided digital tablets and the coverage of pre-existing map 

information was variable, the detail achieved in our map varies somewhat over the mapping area and cannot be defined by a 20 

traditional scale. In the northern blocks, the detail of mapping is approximately equivalent to the 1:50,000 scale regional base 

maps (e.g., BME, 1987). However, in the Sarami and Haylayn blocks the coarser scale of the base maps (1:100,000; BGRM, 

1986b, 1986a) is inherited to some extent, but improved to approximately 1:50,000 equivalence in areas where we focussed 

our field mapping, and it was generally improved by re-digitisation with modern satellite imagery. Use of the digital map file 

provided in the supplement to this article allows a wide range of scales to be displayed.  25 

To provide geological context below the volcanic sequence, the sheeted dyke complex (SDC) and upper crustal intrusions 

(above the base of the SDC) were traced from the regional map set and where necessary their outlines were adapted to match 

new observations and satellite imagery. Below the SDC, the lower crustal units were grouped and simplified based on the 

regional map set, as was the mantle section. Selected dyke swarms and umbers at the unit contacts are newly drawn or 

reproduced on our map, but we have omitted many other small-scale umbers, dykes, veins and geographical features on the 30 

regional map set. Accordingly, we recommend using the new map in tandem with the existing maps.  
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The top of the volcanic sequence in our new map corresponds to either the true stratigraphic top, which is conformably 

overlain by pelagic sediments of the Suhaylah formation (Robertson and Woodcock, 1983), or to an eroded surface that is 

overlain by post-Suhaylah sediments, or to a faulted contact with overthrust sheets of the Batinah complex (Woodcock and 

Robertson, 1982). To mark the top of the volcanic sequence where it crops out, we adapted the outlines of the Suhaylah 

formation and the volcanic conglomerates of the Zabyat formation (Robertson and Woodcock, 1983) from the regional map 5 

set. All other supra-ophiolitic sediments (e.g. olistostrome, gravels) that appear on previous maps are undifferentiated in our 

map. 

Where permitted by the aeromagnetic survey, we inferred the occurrence of the upper crustal ophiolitic units, together with 

the volcaniclastic Zabyat formation, under all other post-volcanic sedimentary cover (Suhaylah sediments, olistostrome, 

gravels). The areas of the map showing such inferences are to be viewed as a best-estimate of the identity of the bedrock units 10 

at the upper surface of the Semail igneous sequence. No attempt was made to infer the presence of volcanic units beneath 

surficial fault traces. 

2. Analytical Methods 

Major element compositions of whole-rock samples were determined by X-ray fluorescence (XRF) at ETH Zurich using the 

same method as Gilgen et al. (2016, 2014). Electron microprobe (EMP) analyses were conducted on a JeolTM JXA-8200 EMP 15 

at the University of Bern using the same standardisation described in Belgrano & Diamond (2019). The major element 

compositions of volcanic glass samples were determined by EMP with a beam voltage of 15 kV, a beam current of 10 nA, and 

a beam diameter of 10 µm. This low current density (0.13 nA/µm2) was chosen to minimize Na loss during measurement 

(Morgan and London, 2005), and current across the specimen was monitored as stable during measurement, indicating minimal 

diffusion of Na occurred. The compositions of igneous clinopyroxenes were determined by EMP with a beam voltage of 20 20 

kV, a beam current of 15 nA, and a beam diameter of 3 µm. 

Trace-element analyses were conducted on a subset of samples from each unit using the pressed-powder-pellet laser-

ablation inductively-coupled plasma spectrometry (PPP-LA-ICP-MS) method described by Peters and Pettke (2016). This was 

performed using a GeoLas-Pro 193 nm ArF Excimer™ laser system in combination with an ELAN DRC-e™ quadrupole mass 

spectrometer at the University of Bern, with USGS basalt glass GSD-1G as the primary calibration standard (reference values 25 

from Jochum et al., 2005). All major elements were also analysed, allowing the anhydrous trace-element composition to be 

calculated by closure to 100 wt.% oxides and trace elements. Accuracy was monitored through measurements of basalt standard 

BRP-1 (Cotta and Enzweiler, 2008) and highly-depleted komatiite standard OKUM (Kane et al., 2007) prepared using an 

identical method to the samples. 

Bulk magnetic susceptibility was determined by two methods: a handheld ExploraniumTM KT-5 kappameter and a desktop 30 

MagnonTM kappameter at the Institute for Rock Magnetism (IRM), University of Minnesota. The KT-5 measurements were 

made on flat-sawn hand sample surfaces. The MagnonTM measurements were made on 25 mm diameter rock cores 20–30 mm 
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in length. The comparability of the two methods is indicated by a good correlation (1:0.97, R2 = 0.97) between measurements 

of the same samples (Fig. S1). Natural remanent magnetization (NRM) was determined on the same rock cores on a 2G 

Enterprises 760 RF TM SQUID superconducting rock magnetometer at the IRM. 

High-temperature magnetic susceptibility was measured on rock powders (0.2–0.5 g) in air with an AGICO KappaBridgeTM 

Magnetic KLY-2 susceptometer operating at a frequency of 920 Hz from room temperature to 700˚C and back to room 5 

temperature in steps of ~3 ˚C. Initial attempts in an argon atmosphere resulted in significant artificial magnetite production 

during the experiment. Low-temperature measurements were conducted on 0.2–0.5 g rock chips using a Quantum Designs 

Magnetic Properties Measurement System (MPMS) including saturation magnetization as a function of temperature (field 2.5 

T), field-cooled (FC) and zero-field-cooled (ZFC) remanences, and temperature cycling of a room temperature isothermal 

remanent magnetization (RT-IRM) down to 20 K and back to room temperature.  10 

3. Field descriptions  

The field characteristics of the Semail volcanic units were recently reviewed by Gilgen et al., (2014). Here we summarise and 

expand on the key field features which aid in unit discrimination, adding our own observations of potentially misleading 

exceptions and complicating features.  

3.1. Geotimes 15 

The Geotimes unit is typically made up of monotonous sequences of basaltic to basaltic-andesitic pillow lavas (Fig. 3A) and 

occasional columnar-jointed massive flows up to 20 m thick and pillow breccias. Pillowed outcrops weather to hematitic-red 

to dark brownish-grey colours and tend to be more topographically prominent than the other volcanic units. Magnetism, as 

tested with a small field magnet, is generally strong for Geotimes lavas. Geotimes pillows are usually weakly vesicular and 

aphyric. Where present, vesicles are mostly filled with the greenschist-facies minerals chlorite, epidote or quartz. Exceptions 20 

to this typical appearance include occasional pore-filling sub-greenschist alteration mineralogy (e.g. celadonite and zeolite) in 

the area a few km south of Wadi Fizh (sample TB3-11F), and in the up-faulted block northeast of the Lasail mine (e.g. TB3-

07A2). Geotimes lavas in the Aswad block also commonly feature millimetric, subequant phenocrysts of relatively fresh 

plagioclase. Evolved, andesitic Geotimes lavas are uncommon and they tend to form large, rusty brown, flat pillows and lobate 

flows.   25 

3.2. Lasail 

Lasail lavas typically consist of small, bun-shaped pillows and pahoehoe flows, often with more irregular shapes than is typical 

for Geotimes or Tholeiitic Alley (Fig 3B). These pillows may be interspersed with occasional massive flows up to 10 m thick. 

Pillowed outcrops are typically pale pastel-green to light grey in colour. Lasail lavas are either weakly or non-magnetic when 

tested with a small field magnet. White variolites a few mm across tend to concentrate in the pillow rims. Lasail pillows are 30 
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usually only weakly vesicular, with chlorite, epidote and quartz fillings. Slightly more evolved Lasail lavas and those 

transitional with Geotimes may take on a darker appearance similar to Geotimes (e.g. Wadis Fizh and Ashar; Belgrano & 

Diamond, 2019; Kusano et al., 2012). In this case, field discrimination is challenging. Andesitic to dacitic members of the 

Lasail unit appear to be limited to the Wadi Jizi area (Alabaster et al., 1982). However, our observations in the area indicate 

that these evolved lavas always overlie the Lasail basalts, and the associated dyke sheets and plutonic complex cut the overlying 5 

Tholeiitic Alley lavas. The evolved ‘Lasail’-affinity lavas and sheets around Wadi Jizi are therefore probably related to Alley-

stage volcanism, consistent with other large areas of evolved lavas elsewhere in the ophiolite.  

3.3. Tholeiitic Alley 

The Tholeiitic Alley unit is composed of mixed sequences of basaltic to andesitic pillow lavas (Fig. 3C) interspersed with 

occasional andesite–dacite columnar-jointed massive flows. These sequences are locally intercalated with meter-scale lenses 10 

of hyaloclastite breccias which occasionally preserve fragments of volcanic glass in a palagonitised matrix (Kusano et al., 

2017). Basaltic to andesitic Tholeiitic Alley lavas are typically strongly attracted to small field magnets. Tholeiitic Alley 

pillows often have ~1–10 mm diameter, dark-grey spherules spaced evenly throughout their cross-sections (Fig. 3C). The 

alteration mineralogy is dominantly of zeolite and pumpellyite-prehnite facies, however, minor chlorite can commonly be 

observed in thin-section (Alabaster and Pearce, 1985; Pflumio, 1991). Celadonite alteration pervading the rock matrix is 15 

common, especially in massive flows, and contrasts with the rare, mainly pore-filling celadonite found in the Geotimes unit. 

Irregularly shaped fingers, pods and tabular zones of greenish-yellow pumpellyite alteration (Pflumio, 1991) are common in 

both Tholeiitic and Boninitic Alley, but rare in Geotimes (where epidotisation dominates; Gilgen et al., 2016). Pillow flows 

are typically pervasively vesicular, ranging from millimetric vesicles in pillows (Fig. 3C) to fist-sized cavities in the tops of 

larger andesite flows. These vesicles are commonly filled by quartz, chalcedony, celadonite, zeolite and late calcite, giving 20 

outcrops a characteristic white-spotted appearance. Primitive Tholeiitic Alley lavas take on a pale greyish-green appearance, 

which may have been confused with Lasail lavas around the Lasail mine in the past (as shown by Gilgen et al., 2014). In this 

case, Tholeiitic Alley can be distinguished by its spotted, dark grey spherules (and by its clinopyroxene compositions; Gilgen 

et al., 2014). Thick accumulations of andesitic to dacitic Alley lavas are common in the Haylayn block as well as in the Wadi 

Jizi area west of the Lasail mine. Where continuous enough to form mappable units, we differentiate these as Felsic Alley: a 25 

sub-unit of Tholeiitic Alley. These lavas are generally composed of purplish-brown, columnar-jointed andesite to dacite 

massive flows and local rhyolite flows with relict pods of unaltered obsidian (Alabaster et al., 1982).  

3.4. Boninitic Alley  

Boninite lavas in the Semail ophiolite are composed of mixed sequences of pillow, pahoehoe, and massive flows with local 

accumulations of hyaloclastite breccias up to tens of meters thick. The pillows are of various sizes and shapes even in the same 30 

outcrop, and they fit snugly together, indicating that they formed from low viscosity lavas (Fig. 3D). Thick (~150 m) sequences 

of blocky breccias interspersed with boninite flows and calcareous sediments locally top the sequence in the Wadi Jizi area 
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sampled by Ishikawa et al., (2002) and along the section between Wadi Hayl and Wadi Bani Umar (Fizh block). The Semail 

boninites commonly have abundant macroscopic olivine phenocrysts or their pseudomorphs preserved in their flow rims. They 

also tend to be highly vesicular (Fig 3E), even with micro- or macroscopically foamy textures, though weakly vesicular 

examples also exist (Fig. 3D). Boninitic Alley lavas are typically only weakly attracted to small field magnets where they are 

darker and fresher. Depending on their thickness and thus burial depth, which ranges from 0–2 km, the metamorphic grade 5 

and secondary alteration mineralogy of Boninitic Alley varies between greenschist-, prehnite–pumpellyite and brownstone-

facies (i.e., clay-rich; Alabaster and Pearce, 1985). The outcrop appearance of the boninites strongly depends on this alteration 

grade, with brownstone altered boninites generally being indistinguishable from Tholeiitic Alley equivalents, weathering to a 

mixture of dull greys, browns and greens from different clays (e.g. Wadi Jizi, Wadi Bidi). At prehnite-pumpellyite facies, the 

boninites take on a light-brown colour (Fig. 3D). In areas of thicker boninite accumulations (e.g. Rajmi), greenschist-facies 10 

alteration generally transforms the boninites to pale green, reflecting abundant chlorite and albite, similarly to Lasail (Fig. 3E). 

A key difference to Lasail is that these pale boninites generally have highly spheroidal volcanic textures (Fig. 3F) with 

abundant white or grey spherules which increase in size and coalesce towards the pillow cores, presumably related to fluid 

saturation during solidification (Ballhaus et al., 2015). Excellent exposures of all of these alteration grades can be found along 

newly opened roadcuts along the Batinah Expressway between Liwa and Hatta. 15 

3.5. Late dyke swarms and sills 

Swarms of ‘V2’ dykes cutting the axial volcanic strata are described in several places throughout the ophiolite in the regional 

map set. These swarms grade from spaced sets of dykes to late, fully-sheeted complexes. In the Wadi Rajmi–Safwa area (Fizh 

block), boninite dyke swarms feed thick accumulations of boninite lavas (Ishikawa et al., 2002). In the Yanqul area, late 

sheeted dyke swarms confirmed as Tholeiitic Alley by geochemistry (samples TB3-25H, TB4-20L) are several hundred meters 20 

wide and run parallel to thick accumulations of blocky Tholeiitic Alley breccias and their associated normal faults.  

Late sills locally make up significant proportions of the upper crust. In the East Fizh block, numerous columnar-jointed 

Tholeiitic Alley sills (confirmed by samples TB2-43C, 44D) up to 20 m thick intrude the Lasail lavas. Their character as sills 

rather than massive flows is indicated by their planar basal contacts, their symmetric upper and lower chilled margins, and 

their apophyses locally injecting the surrounding Lasail pillows.  25 

3.6. Non-ophiolite features 

Triassic volcanics of the Haybi complex crop out in the same area as Semail lavas in the Wadi Hawasinah and Harimah areas 

(Sarami, Haylayn blocks), where they are thrust on top of the ophiolite as part of the Batinah complex or exposed in tectonic 

windows (BRGM, 1986a, 1986b; Searle et al., 1980). Many of the Haybi tholeiites are pillowed and have comparable 

geochemistry to Geotimes lavas, whereas celadonite-altered alkali Haybi volcanics can resemble altered Alley lavas (Searle et 30 

al., 1980). Nevertheless, occurrences of the Haybi volcanics can generally be recognised because they are seldom continuous  
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Figure 3. Field photographs of typical outcrops of the mapped volcanic units, with UTM 40N location coordinates. Hammer for scale is 50 
cm long. (a) Geotimes greenschist-facies spilitic pillow flows: Wadi Jizi type locality (438288 mE, 2685876 mN). (b) Lasail greenschist-
facies spilitic pillow and pahoehoe flows showing abundant chlorite (Chl): Wadi Lasail (440680 mE, 2683521 mN). (c) Tholeiitic Alley 
zeolite/pumpellyite-facies spilitic pillow flows and hyaloclastite breccia in roadcut (light streak in centre-pillow is a blasting artefact). Note 
sea-green celadonite (Cel) alteration in interpillow and breccia, yellowish-beige pumpellyite alteration around pillow rim, abundant zeolite-5 
filled vesicles and dark grey spots (spherules) throughout pillow (sample TB4-17J): Suhaylah section, blasted roadcut around electricity 
pylon (434460 mE, 2683370 mN). (d) Boninitic Alley greenschist-facies pillow lavas with three pillow triple-junctions marked by dashed 
lines. Note pale chlorite-albite alteration with chlorite–epidote replacing olivine in pillow rims and large epidote-filled vesicles (Ep) in pillow 
centre: Wadi Zab’in (approx. 436040 mE, 2714170 mN). (e) Boninitic Alley pillow lavas with weak pumpellyite–clay altered groundmass 
and zeolite altered (Zeo) interpillows (sample TB2-45B; 448940 mE, 2712935 mN). (f) Boninitic Alley pillow lava showing 10 
globular/spherulitic texture typical of Alley (particularly Boninitic Alley): Wadi Bidi (455370 mE, 2667380 mN).  

(a)

(c)

(e) (f)

Geotimes Lasail

Tholeiitic Alley Boninitic Alley

Cel 

Chl 

Chl 

Ep

Boninitic Alley

Breccia 

Zeo 

(d)

(b)

Boninitic Alley

Solid Earth Discuss., https://doi.org/10.5194/se-2019-69
Manuscript under review for journal Solid Earth
Discussion started: 18 April 2019
c© Author(s) 2019. CC BY 4.0 License.



14 
 

 

for more than a few hundred meters outside of the Hawasina window, they are always tectonically juxtaposed against the 

Semail volcanics, and they are often intercalated with limestones and cherts (Searle et al., 1980).  

Quartz–hematite veins (labelled Q′ on the regional map set) often with magnetised hematite and distinctively chloritised 

alteration haloes up to tens of meters wide frequently cut the extrusives throughout the mapping area. BRGM (1993a) suggested 5 

these veins are associated with the Phase 2 intrusives. In fact, these veins cross-cut the entire crustal sequence from the layered 

gabbros to the Boninitic Alley lavas (e.g. Aswad, Fizh blocks) with the same vein texture, mineralogy and chloritic alteration 

haloes. Any syn-magmatic veins emplaced throughout the vertical extent of the in-situ oceanic crust should show changes in 

texture and mineralogy as a function of their emplacement depth. Given the uniformity of these veins with depth, we conclude 

that they were emplaced after significant cooling of the ophiolite and probably following the warping of the ophiolite into its 10 

current anticlinal structure, i.e. during or after obduction and following the Phase 2 magmatic stage. Other, possibly-related, 

quartz–carbonate veins of similar dimensions but with indurated carbonation haloes are common as topographically prominent 

lineaments in the easternmost outcrops of the Aswad block. Similar carbonate veins form listvenites where they intersect 

ultramafic intrusions near Wadi Shaffan (Haylayn block; BGRM, 1986b).  

4. Geochemical assignment of samples 15 

4.1. Samples 

Samples were collected throughout the mapping area for magnetic characterisation and to provide reference points for 

mapping. These samples were mostly collected from spilitic, pillowed lavas which were visually representative of the area, as 

well as occasional massive flows and volcanic glasses. Possible sills and dykes were avoided, except where deliberately 

sampled to determine the unit affiliation of such features (these samples are differentiated in our Figures).  20 

Previously published analyses from useful locations (Gilgen et al., 2014, 2016; Kusano et al., 2017) were also considered 

and are differentiated as squares in our Figures. Though our interpretations mostly agree with these studies, we suggest a 

revised assignment for a minority of samples, which are asterisked in our Figures and listed in supplementary Table S2. 

MacLeod et al., (2013) also documented the major-element compositions of numerous V1 samples. With only major elements 

available for confirmation, we restricted this dataset to samples with >1 wt% TiO2 and >0.1 wt% P2O5 (the approximate lower 25 

limits of other reliably assigned basaltic Geotimes lavas).  

4.2. Approach to identify units 

Classical trace-element diagrams for the determination of tectonic setting serve as useful unit discriminants in Oman (Alabaster 

et al., 1982; Ernewein et al., 1988; Gilgen et al., 2014; Kusano et al., 2014, 2017). However, these diagrams are intended for 

characterising entire suites of lavas (Pearce, 2014), for which interpretation is relatively resistant to the presence of outliers. 30 

Multiple diagrams based on independent principles are therefore required to best characterise individual samples. 
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Alabaster et al., (1982), Umino et al., (1990) and later Gilgen et al. (2014, 2016) developed a geochemical workflow for 

identifying spilitised Semail lavas and dykes of unknown affiliation by comparing their immobile element and relict 

clinopyroxene compositions to those of lavas reliably assigned to a unit on the basis of field relationships. We firstly updated 

these geochemical discrimination fields to include new stratigraphically-assigned datasets from sections along Wadi Shaffan 

(Geotimes; Einaudi et al., 2003), Wadi Fizh (Geotimes/less-depleted LV1 and MV1 and Lasail/UV1; Kusano et al., 2012) and 5 

Wadi Bidi (Tholeiitic Alley/LV2 and Boninitic Alley/UV2; Kusano et al., 2014). We then compared our samples to these 

fields and the differentiation trends that define them. If a sample fell outside of the pre-defined fields or within an overlapping 

area in one plot, its position along trends in other plots was taken into consideration along with any field-based constraints to 

best assign it to a unit. The pre-defined fields were then expanded to include the independantly-assigned sample, producing a 

new set of slightly larger discriminatory fields. The possible assignments of samples indicated by each diagram are summarised 10 

in the supplementary Table S1. 

4.3. Geochemical results 

The Semail volcanostratigraphy records a progressive depletion in incompatible elements during the ophiolite’s formation 

(Fig. 4A, B; Alabaster et al., 1982; Ernewein et al., 1988; Kusano et al., 2017, 2014). Incompatible-element concentrations are 

also sensitive to magmatic fractionation and consequently they tend to overlap with their under- and overlying units (Fig. 4).  15 

Figure 4. Incompatible-element patterns normalised to N-MORB (Gale et al., 2013) for a subset of our samples. (a) Geotimes, transitional 
Geotimes–Lasail, Lasail, and depleted-Lasail patterns (this study). (b) Tholeiitic and Boninitic Alley patterns in comparison to the Geotimes 
and Lasail ranges (this study) and low- and high-silica boninite glass compositions from (Kusano et al., 2017). (c) Lasail, Tholeiitic and 
Boninitic Alley compositions in comparison to V2 type I and II groups of Godard et al., (2003).  
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Figure 5. Geochemical unit-discrimination diagrams (anhydrous compositions). Circles: this study. Squares: published analyses re-examined 
as unknowns (asterisked if re-assigned; Gilgen et al., 2016, 2014; Kusano et al., 2017). (a) Whole-rock Ti–Zr after Alabaster et al. (1982). 
(b) Whole-rock V–Ti and Ti/V ratios (grey lines) after Shervais (1982). (c) Whole-rock Cr–Y after Pearce (1980). (d) Zr–Zr/Y after Alabaster 
et al. (1982). (e) Clinopyroxene median Mg# (= molar Mg / Mg + Fe) vs. Ti (atoms per formula unit) for a subset of samples. (f) 
Clinopyroxene lower and upper Mg# quintile medians with corresponding Ti for the same dataset as in (e). Dashed lines in (a)–(d): previous 5 
whole-rock unit fields based on stratigraphically-defined data for Geotimes (Alabaster et al., 1982; Belgrano and Diamond, 2019; Einaudi 
et al., 2003; Godard et al., 2006; Kusano et al., 2012), Lasail (Alabaster et al., 1982; Belgrano and Diamond, 2019; Godard et al., 2006; 
Kusano et al., 2012), Tholeiitic Alley (Alabaster et al., 1982; Kusano et al., 2014), and Boninitic Alley (Ishikawa et al., 2002; Kusano et al., 
2014). Dashed lines in (e) and (f): Previous clinopyroxene fields (Alabaster et al., 1982; Belgrano and Diamond, 2019; Gilgen et al., 2014; 
Kusano et al., 2012). Coloured fields: this study. Comparative West Pacific boninite analyses from N. Tonga Trench/N. Lau basin (Falloon 10 
et al., 2007; Falloon and Crawford, 1991), Izu-Bonin forearc (IODP 786B; Murton et al., 1992), and Bonin forearc (IODP U1440, U1441; 
Shervais et al., 2019). 
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Comparisons of compatible elements (Cr), or somewhat-compatible elements (e.g. Ti, V) with incompatible elements (Zr, 

Y) allow individual samples to be classified as potentially evolved or primitive members of each unit (Fig. 5). Firstly, the Zr–

Ti diagram (Fig. 5A; Alabaster et al., 1982; Pearce et al., 1981) allows for the assessment of magmatic magnetite fractionation. 

Magnetite fractionation must be ruled out before applying the V–Ti discriminant diagram (Fig. 5B; Shervais, 1982). 5 

Compositions falling beneath the main positive correlation trend in Fig. 5A testify to magnetite fractionation, and therefore 

they are assigned to felsic sub-units and excluded from Fig. 5B. The Zr–Ti diagram also shows whether such evolved lavas 

belong to the Tholeiitic Alley or Geotimes suites, as Ti fractionation occurs at lower Zr for Tholeiitic Alley relative to Geotimes 

(Alabaster et al., 1982; Pearce et al., 1981). Figure 5A further provides a simple discrimination of many of the Geotimes and 

Boninitic Alley samples on the basis of the absolute concentrations of their incompatible elements.  10 

The V–Ti diagram (Fig. 5B) is particularly effective at discriminating units within the Semail extrusive suite and within 

ophiolites in general (Gilgen et al., 2014, 2016; Pearce, 2014; Shervais, 1982). This discrimination is partly based on the redox-

sensitive compatibility of V relative to Ti in the mantle source: source oxidation decreases V compatibility and thus increases 

V/Ti ratios in its partial melts (Mallmann and O’Neill, 2009; Shervais, 1982). This combines with increasing V/Ti at higher 

partial melt degrees and Ti-depletion upwards through the Semail extrusive sequence to trace an anti-clockwise progression 15 

in Fig. 5B from Geotimes through to Boninitic Alley, with each unit falling along radiating V/Ti trends. Apart from the 

aforementioned issue with magnetite fraction (affected samples have been screened out with Fig. 5A), V appears to be slightly 

mobile during epidosite and pumpellyite alteration (e.g. Gilgen et al., 2016). Consequently, the occasional samples affected 

by incipient alteration of these types have been excluded from Fig. 5B.  

The Cr–Y diagram (Fig. 5C; Pearce, 1980) allows incompatible-element depletion (monitored by Y concentration) to be 20 

considered as a function of magmatic differentiation (monitored by Cr depletion). Accordingly, it is particularly useful in 

distinguishing primitive Geotimes from Lasail samples which fall in the overlapping area of Fig. 5B. For these samples, the 

incompatible element depletion that is diagnostic of Lasail (Alabaster et al., 1982; Godard et al., 2006; Kusano et al., 2012) 

allows for mostly unambiguous sample assignment to either a Lasail or Geotimes fractionation path at respectively lower or 

higher Y for a given Cr content (Fig. 5C). As chromium is rapidly depleted during differentiation of wet melts (Pearce, 1980), 25 

its concentration lies below the XRF-detection limit (~4 µg/g) for much of our sample set. These samples are not plotted in 

Fig. 5C and therefore the Alley and Geotimes fields in fact extend to lower Cr and higher Y contents than those indicated by 

the coloured fields. 

Following our addition of many recent analyses, the unit fields of Alabaster et al., (1982) and (Gilgen et al., 2014) now 

mostly overlap in the Zr/Y–Zr diagram. The exceptions are for particularly-depleted Boninitic Alley lavas and particularly-30 

evolved Geotimes lavas (Fig. 5D). Boninitic Alley, as well as Boninites from the West Pacific, also have characteristically 

steeper trends than the tholeiite-series units in this diagram.  
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4.4. Geochemical discrimination of Lasail from Alley 

The expanded dataset of analyses now available for the Semail volcanics show that the Lasail and Alley units cannot be 

straightforwardly discriminated at the regional scale based on whole-rock geochemistry alone. In Fig 5A–D, for example, the 

fields for Lasail and Alley overlap to a large extent. Godard et al. (2003) speculated that their units V2-I and V2-II may be 

equivalent to Lasail and Alley, respectively, and they distinguished them based on their contrasting incompatible-element 5 

patterns and related ratios. However, the differences between the two units are not apparent when the data of Kusano et al. 

(2014, 2012) are plotted in the Godard et al. (2003) diagrams (Belgrano and Diamond, 2019). In fact, V2-I and V2-II rather 

correspond to the Tholeiitic and Boninitic Alley units, respectively, as suggested by the along-strike continuity of V2-I 

described by Godard et al. (2003) and the spoon-shaped rare-earth element patterns of V2-II pointed out by Kusano et al. 

(2014). 10 

The only reliable way to geochemically discriminate Lasail and Tholeiitic Alley identified thus far is through their divergent 

clinopyroxene compositions (Fig. 5; Alabaster et al., 1982; Belgrano and Diamond, 2019; Gilgen et al., 2016, 2014). 

Fortunately, the outcrop appearance and stratigraphic associations of these two units are typically distinct from one another, 

so they could generally be discriminated during this study by combining field observations with whole-rock XRF composition. 

In other cases, clinopyroxene analyses were necessary for assignment. In Fig. 4E, the median Mg# and Ti compositions from 15 

each sample are plotted relative to the previously-published fields (Alabaster et al., 1982; Belgrano and Diamond, 2019; Gilgen 

et al., 2014, 2016). Compositional zonation and intra-sample variation is also useful for discriminating between units whose 

medians fall in overlapping zones, with steep trends of dispersion at high Mg# being diagnostic of Lasail lavas (Gilgen et al., 

2016). To show this in a reproducible and representative way, we plot the median of the upper and lower quintiles of Mg# 

with their corresponding Ti values for the totality of EMP measurements on each sample and join them with a line. Core-to-20 

rim zonation is indicated by an arrow where these trends were clear and consistent.  

4.5. Interpretation of transitional compositions 

The rather large fields of the four main volcanic units in Fig. 5 reflect the true range of compositions within each unit, as these 

fields encompass samples taken from clearly stratigraphically-defined positions. However, where samples with intermediate 

geochemistry coincide with an intermediate stratigraphic position, i.e., where they outcrop between two clearly identifiable 25 

units, these samples are probably transitional. Such lavas are important as they demonstrate temporal overlaps between eruptive 

episodes. Transitional lavas between Geotimes and Lasail have been widely reported (A’Shaikh et al., 2005; Alabaster et al., 

1982; Belgrano and Diamond, 2019; Kusano et al., 2012). A subset of our samples is also geochemically and stratigraphically 

intermediate between Geotimes and Lasail and thus assigned to a Transitional Geotimes–Lasail group. Similarly, samples with 

geochemistry intermediate between Tholeiitic and Boninitic Alley occasionally occur at the top of Tholeiitic Alley and in areas 30 

where both Tholeiitic Alley and Boninitic Alley are present, as also reported by Kusano et al., (2014). We assign these 

intermediate samples to a ‘Transitional Alley’ group. Transitional lavas between Geotimes and Alley have so far not been 
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described. However, the lowermost Tholeiitic Alley lavas overlying Lasail and Geotimes in the northern Fizh block 

consistently have slightly lower V/Ti than typical Alley as well as less-depleted incompatible element patterns in Fig. 4 (e.g. 

samples YV15-21, TB2-41A, TB2-46A). Though marginally assigned to the Tholeiitic Alley unit on the basis of the literature 

fields, these lavas appear to represent an intermediate stage between Geotimes and Alley and can be traced in the RTP 

geomagnetic map into the footwall of the Mandoos VMS deposit. 5 

4.6. Interpretation of Depleted Lasail compositions 

Certain rare lavas exhibit Lasail-like clinopyroxene compositions but have highly-depleted, boninitic whole-rock 

compositions. These compositions are comparable to Boninitic Alley, but they have somewhat deeper negative Nb–Ta 

anomalies and they lack any spoon-shaped light rare-earth element enrichment (Fig. 4A). Gilgen et al., (2016) sampled similar 

lavas and their dyke equivalents (pillow lava sample RAM010 was remeasured with ICP-MS for this study), assigning them 10 

to Lasail on the basis of their clinopyroxene compositions. Belgrano and Diamond (2019) also reported similar lavas within a 

lens of ‘Axial Lasail’ lavas intercalated within Geotimes near Wadi Hawarim. In our Figures, these samples are distinguished 

from normal Lasail as ‘Depleted Lasail’. The known occurrences of these lavas are underlain by the Lasail unit, but the 

overlying stratigraphy is somewhat ambiguous, as the main occurrence of depleted-Lasail just south of the Mandoos VMS 

deposit (Fizh block) is truncated above by faulting. It is therefore permissible that they represent a transitional unit between 15 

Lasail and Boninitic Alley. However, the observation of these lavas within the axial sequence (Belgrano and Diamond, 2019) 

indicates that they may also precede the less-depleted Tholeiitic Alley sequence. Depleted Lasail lavas thus marks a departure 

from the otherwise consistent trend of depletion upwards through the volcanic stratigraphy. Further work is required to 

understand the significance of these early, depleted lavas. In the interim, the newly collected Depleted Lasail lavas are 

differentiated in our Figures and are not incorporated into the expanded geochemical fields for the Lasail unit. 20 

4.7. How boninitic is the ‘Boninitic Alley’ unit? 

Boninites are clearly defined by IUGS (Le Bas, 2000) as volcanic rocks with whole-rock SiO2 > 52 wt%, MgO > 8 wt% and 

TiO2 < 0.5 wt %. However, the definition of boninite-series lavas is less clear. Initial definitions referred to lava suites deriving 

from boninitic parental melts (Crawford et al., 1989), though this has been slightly expanded to include low-Si compositional 

series which pass through, but do not necessarily originate within, the IUGS fields (Fig. 6; Pearce and Robinson, 2010; Reagan 25 

et al., 2017). In any case, these definitions should only be applied to fresh rock compositions. To test whether the Semail 

Boninitic Alley unit is really ‘boninitic’, we consider the major element compositions of unaltered Boninitic Alley/UV2 

volcanic glasses reported by Kusano et al. (2017), which fall along the same immobile-element trends as the Boninitic Alley 

spilites in Fig. 5. In addition, the major element compositions of several volcanic glasses collected during this study are plotted 

for assignment into the boninite series or tholeiitic basalt–andesite–dacite–rhyolite (BADR) fields. 30 

Many of the Semail Boninitic Alley/UV2 glasses are boninites sensu stricto (Fig. 6). The suite of glasses, however, appears 

to derive from a parental melt with lower SiO2 content than the IUGS MgO–SiO2 boninite field (Fig. 6A), but within the low-

Solid Earth Discuss., https://doi.org/10.5194/se-2019-69
Manuscript under review for journal Solid Earth
Discussion started: 18 April 2019
c© Author(s) 2019. CC BY 4.0 License.



20 
 

SiO2 boninite fields of Pearce and Robinson (2010) and Reagan et al. (2017). The MgO–SiO2 trends of Boninitic and Tholeiitic 

Alley are similar and the compositional differences between the units are rather defined by incompatible-element depletion 

(including TiO2; Figs. 4B, 6B), V/Ti ratios and high Cr in the boninites (Figs. 4, 6B). Spilitised samples assigned to Boninitic 

Alley via Fig. 5 are also plotted for comparison in Fig. 6. Though these altered compositions should be treated with caution, 

the majority plot along similar trends to the fresh glasses, suggesting that the higher MgO content is not simply due to  5 

Figure 6. Boninite classification diagrams based on anhydrous, whole-rock major element concentrations. Filled circles: volcanic glasses 
(this study). Inverted triangles: volcanic glasses (Kusano et al., 2017). Unfilled circles: Boninitic Alley spilites (this study). Unfilled squares: 
Boninitic Alley spilites (Gilgen et al., 2014). Grey IUGS fields after Le Bas (2000) and boninite series vs. BADR divisions: solid black lines 
(Pearce and Robinson, 2010) and dashed extensions (Reagan et al., 2017). Comparative West Pacific boninite analyses from same sources 
as Fig. 5.  10 
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spilitization. The Boninitic Alley series may therefore extend to more magnesian compositions than those recorded by the 

glasses (e.g. to ~17 wt% MgO), comparable with the IBM boninites.  

The trace element patterns of Boninitic Alley (as classified by Fig. 5) also have highly-depleted incompatible element 

trends in Fig. 4B. Of these, seven tend towards monotonic, compatibility-controlled depletion with negative Nb–Ta and 5 

positive Th anomalies. The remaining sample (TB2-42A, Wadi Zab’in, Fizh block) has a classic boninite ‘spoon’-shaped 

MORB-normalised pattern enriched in Th, Nb, Ta and light rare earth elements. A similar range in compositions was noted by 

Kusano et al. (2017), who subdivided Boninitic Alley/UV2 into ‘low’- and ‘high-Si’ groups with monotonically-depleted and 

spoon-shaped MORB-normalised patterns, respectively (Fig. 4B). These differences were explained by the addition of 

sediment melts to the ‘high-Si’ group, supported by attendant shifts in Nd and Hf isotopic compositions (Kusano et al., 2017).  10 

Taken together, the compositional similarities between the Boninitic Alley glasses, spilites and the West Pacific boninites 

in Figs. 4–6 indicate a boninite-series protolith for the Boninitic Alley spilites and demonstrate the effectiveness of the 

immobile-element fields in Fig. 5 for discriminating altered boninites.  

5. Interpretation of the aeromagnetic survey 

Aeromagnetic interpretation is greatly clarified by understanding the magnetic petrology of the surveyed units (Clark, 1997). 15 

To aid interpretation of the Batinah aeromagnetic map (Isles and Witham, 1993), we measured the magnetic susceptibility (K), 

and natural remanent magnetization (NRM) intensity of samples assigned to a specific volcanic unit by either a clear 

stratigraphic situation or by geochemical criteria. To identify the origin and establish the potential reliability of these magnetic 

properties, we further determined the magnetic mineralogy of a subset of these samples.  

5.1. Bulk magnetic property results 20 

Aeromagnetic anomalies (represented here by the Batinah RTP map) are principally caused by differences in magnetization 

between adjacent rock bodies. These differences are controlled by the different magnetic susceptibilities, i.e. induced 

magnetization, of the rocks, as well as by differences in NRM (Blakely, 1995; Clark, 1997, 2014). A basic assumption of the 

RTP transformation carried out on the Batinah survey is that source magnetization is parallel to the local geomagnetic field, 

which may not be the case for rock bodies with strong remanent magnetism (Blakely, 1995; Clark, 2014). The Koenigsberger 25 

ratio (Q) of remanent to induced magnetization is therefore a useful parameter for assessing the potential for artefacts or 

‘remanence effects’ in the RTP map data used in this study (Clark, 1997). For rock bodies with Q << 1, induced magnetization 

dominates. Thus, in the absence of anisotropy of susceptibility, RTP processing accurately centres anomalies over their 

geographic sources. For bodies with Q >> 1, magnetism is dominated by remanence. In this case, and if the NRM direction is 

different from the field direction, remanence effects may be introduced into the RTP map, leading to inaccurate estimates of 30 

the magnetization and geographic location of anomalies (Clark, 1997, 2014).  
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Figure 7. Statistical summary of bulk magnetic measurements of hand specimens of the Semail volcanic units carried out for this study. 
Bold lines: medians. Coloured boxes: interquartile ranges. Whiskers: minimum–maximum. Felsic subunits are grouped with parent units. 
Numbers in coloured boxes show number of samples analysed. (a) Magnetic susceptibility (both Magnon and KT-5 measurements grouped). 
(b) Natural remanent magnetism (NRM), unoriented samples. (c) Koenigsberger ratios (Q) of remanent to induced magnetization, calculated 
for each sample with unoriented NRM, a density of 2.67 g/cm3 (mean for Geotimes spillites; Einaudi et al., 2003) and the local geomagnetic 5 
field for 1992 (42,900 nT; Thébault et al., 2015). 

 

Figure 8. Magnetic susceptibility vs. whole rock Mg# (= molar Mg/(Mg + Fetotal)) for the four main Semail volcanic units. Circles and 
diamonds: this study. Squares: Geotimes/V1 samples from Einaudi et al. (2003). Outlying analyses: fresh boninite TB3-01A; highly 
carbonated Geotimes TB3-20I (LOI = 16 wt%) from vicinity of late carbonate vein; high-Si Transitional Alley TB3-15C (70 wt% SiO2) and 10 
Tholeiitic Alley TB2-34 (84 wt% SiO2).  
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Figure 7 shows that Geotimes and Tholeiitic Alley lavas have generally higher susceptibilities and remanences than Lasail 

and Boninitic Alley lavas. Further, Q is on average greater than one for all units, with Boninitic Alley having the largest spread 

in values. Although averaging NRM and Q on a unit basis is properly achieved by incorporating the vector directions of these 

properties in oriented samples (Clark, 2014), the ranges of our unoriented sample set give a sound indication of the potential 

for remanence effects in each unit (Fig. 7).  5 

Comparison of these results with the chemical and mineralogical compositions of the lavas allows the origin of the magnetic 

properties to be identified (primary vs. secondary). This in turn permits assessment of the reliability of the aeromagnetic data 

as an aid in geological mapping. The magnetic properties of volcanic rocks are principally controlled by the partitioning of Fe 

between strongly magnetic (ferromagnetic) oxide phases and weakly magnetic (paramagnetic) silicate phases (Clark, 1997). 

Therefore, it is instructive to compare measured magnetic susceptibilities with the whole-rock proportion of Mg relative to Fe 10 

(expressed as Mg# = molar Mg / (Mg + Fetotal)). Figure 8 shows this comparison, including the measurements of Geotimes 

lavas from Wadi Shaffan by Einaudi et al. (2003), which we have recalculated to mass-normalised susceptibility using the 

reported densities. 

Between Mg# values of 45 and 80 (Fig. 8), which are typical of Geotimes and Tholeiitic Alley, susceptibility increases 

along a scattered array with decreasing Mg#. Above Mg# ~80, the primitive lavas of the Lasail and Boninitic Alley units 15 

mostly have susceptibilities close to zero. One particularly fresh, high Mg# boninite (TB3-01A) has low but significant 

susceptibility, continuing along the extension of the Geotimes–Alley trend. From this array we can infer that, for the Semail 

spilites, Fe is primarily incorporated into paramagnetic silicates in rocks with Mg# > 80, whereas in rocks with Mg# between 

45 and 80 or in fresh lavas, Fe is significantly incorporated into ferromagnetic oxides. 

At Mg# < 45 magnetic susceptibility is scattered towards lower values. This could be due to magmatic fractionation of 20 

titanomagnetite from evolved magmas (e.g. high-Si outliers in Fig. 8). However, apart from these two extreme samples, there 

is no clear link between low magnetic susceptibility and the felsic units shown to have fractionated magnetite in Fig. 5A. An 

alternative explanation is that for many of these low Mg# samples (e.g. from Einaudi et al., 2003), relatively intense 

hydrothermal alteration (e.g. incipient epidotisation) has either leached Mg or sequestered the available Fe into paramagnetic 

silicates or weakly magnetic oxides (e.g. epidote, hematite). Intense calcite alteration around late carbonate veins also appears 25 

to result in destruction of the magnetic minerals (TB3-15C; Fig. 8).  

5.2. Magnetic mineralogical results 

As shown above, the Semail lavas mostly display increasing magnetic susceptibility with decreasing Mg#, as would be 

expected for fresh lava suites (e.g., Vogt and Johnson, 1973), even though the rocks are pervasively hydrothermally altered. 

The ferromagnetic mineralogy of our samples elucidates how these apparently primary magnetic characteristics could have 30 

persisted through spilite alteration. This mineralogy was determined by high-temperature susceptibility (KT) and low-

temperature magnetic experiments, for which four representative examples are given in Fig. 9. Plots for each sample, 

grouped by unit and mineralogical interpretation, are shown in supplementary Figs. S1.2–9.  
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Figure 9A shows a simple KT curve with magnetic unblocking upon heating corresponding with a dK/dT minimum at 493 

˚C. This unblocking temperature (Tub), is typical of titanomagnetite, with Ti-substitution depressing Tub from stoichiometric 

magnetite’s Curie temperature of 580 ˚C (Dunlop and Özdemir, 1997). The weak K upon cooling indicates that this 

titanomagnetite was oxidised to weakly magnetic (Ti-) hematite above 600 ˚C during the experiment. The curve in Fig. 9B is 

similar, except unblocking occurs rapidly at a Tub of ~574 ˚C, almost equivalent to the Curie temperature of stoichiometric 5 

magnetite.  

The KT curves in Figures 9C and D are more complex, with an increase in K upon heating from room temperature to ~350 

˚C punctuated with a step at 130–40 ˚C. In Fig. 9C, this is followed by a drop in K at around 409 ˚C, but the majority of 

magnetization persists until unblocking at ~576 ˚C. The initial increase in K from room temperature in Figs. 9C and D is a 

common feature of maghemite and has been explained as the thermally-prompted relaxation of lattice stresses at the contact 10 

between maghemite rims and magnetite cores ('maghemite bump'; Kontny and Grothaus, 2017; Liu et al., 2004; Velzen and 

Zijderveld, 1992). Maghemite (γ-Fe2O3) is a typical oxidation product of magnetite which retains the cubic spinel structure 

and much of the magnetism of its precursor magnetite (Clark, 1997). We interpret the marked drops in K at 300–450 ˚C (Figs. 

9C, D) as the structural inversion of maghemite to hematite during heating (Dunlop and Özdemir, 1997).  

The low-temperature magnetic behaviour of these samples supports our high-T interpretations (Fig. 9E–H). The absence 15 

of a Verwey transition at ~120 K for TB3-01A (Fig 9E) is consistent with Ti-substitution in magnetite (Moskowitz et al., 

1998). Contrastingly, a marked Verwey transition occurs at ~110 K in TB2-33C (Fig. 9F), supporting the interpretation of 

stoichiometric magnetite from Fig. 9B. For TB3-25E, a weak Verwey transition is detectable (Fig. 9G). This is consistent with 

the mixture of magnetite and maghemite deduced from the high-T data, as the Verwey transition is supressed by partial 

oxidation of magnetite and is absent in maghemite (Dunlop and Özdemir, 1997). For KT curves featuring drops in K at ~330 20 

˚C, similar to that in Fig. 9D, which we attribute to maghemite inversion, the presence of monoclinic pyrrhotite (with TCurie = 

320 ˚C), is difficult to rule out. However, upon cooling through ~30–35 K, monoclinic pyrrhotite should undergo a 

characteristic ‘Besnus’ transition leading to a loss of remanence (Dunlop and Özdemir, 1997; Rochette et al., 1990). Such a 

transition was not detected for any of the Semail lavas, which strongly supports the interpretation that maghemite is present in 

samples like TB3-07C (Figs. 9D, H).  25 

A summary of ferromagnetic mineral occurrences deduced from the high and low-T data (excluding weakly-magnetic 

hematite) is given for the entire sample set (n = 38) in Fig. 9I. Multiple ferromagnetic phases often occur within a single sample 

(e.g. Fig. 9C). Titanomagnetite (e.g. Figs. 9A, E) occurs in 37% of our samples but is particularly prevalent in Tholeiitic Alley 

(55%), in agreement with Perrin et al. (1994). The good positive correlation with Zr in Fig. 5A (prior to magnetite fractionation) 

shows that Ti is rather immobile during spilitization. These titanomagnetites therefore appear to be primary magmatic phases. 30 

Almost stoichiometric magnetite, as evidenced by Tub = 570–580 ˚C (e.g., Figs. 9B, F), is present in 30–60% of samples from 

each unit. This magnetite could either be interpreted as hydrothermal, or as the Ti-poor phase of magmatic titanomagnetites  
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which have unmixed during cooling (Dunlop and Özdemir, 1997). Maghemite ‘bumps’ and inversions comparable to those 

in Fig. 9D occur in 47% of the total sample set and in 86% of Geotimes samples. Given the often significant proportion of 

magnetism lost during these inversions, we conclude, in agreement with Perrin et al., (1994), that maghemite is a prevalent 

carrier of magnetism in the Semail lavas, and in particular in the Geotimes unit.   

Figure 9. Magnetic mineralogy of the Semail volcanics. (a)–(d): High-temperature magnetic susceptibility (K) of four representative 5 
samples, with the first derivative of the heating curve (temperatures marked at dK/dT minima/maxima). (a): Titanomagnetite in relatively 
fresh Boninitic Alley (TB3-01A). (b): Magnetite in Tholeiitic Alley (TB2-33C). (c): A mixture of maghemite and magnetite in Geotimes 
(TB3-25E). (d): Maghemite in Geotimes (TB3-07C). (e–h): Low-temperature FC and ZFC remanences and RT-IRM during cooling and 
warming of the same samples as in (a)–(d). Asterisked ‘transition’ in (e) possibly caused by unintentional movement of the sample. (i): 
Frequency of ferromagnetic mineral occurrences (excluding weakly magnetic hematite) deduced from high- and low-T experiments for the 10 
entire sample set (n = 40) and within each unit (nGeotimes = 14; nLasail = 6; nThol. Alley = 9; nBon. Alley = 11).  
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5.3. Implications for aeromagnetic interpretation  

Figure 7 demonstrates that, typically, highly magnetised areas in the aeromagnetic map should correlate with the occurrence 

of Geotimes and Tholeiitic Alley lavas, whereas weakly magnetic zones should correlate with Lasail and Boninitic Alley. 

Figure 8 demonstrates that this correlation is connected to the characteristically high Mg# of Lasail and Boninitic Alley in 

comparison to Geotimes and Tholeiitic Alley. As these differences are also clearly visible on a unit basis (Fig. 8), the high 5 

Mg# of Lasail and Boninitic Alley must be inherited from their protoliths, as supported by these unit’s high Cr, abundant 

olivine (phenocrysts or pseudomorphs; Kusano et al., 2014, 2012), and magnesian clinopyroxene compositions. The mixed, 

variably-oxidised ferromagnetic mineralogy of the Semail lavas may explain much of the scatter in Fig. 8. However, though 

this scatter exists for each unit (Fig. 7), at the spatial resolution of the aeromagnetic survey (~80 m), the average character of 

each unit is more likely to be represented. The common occurrence of relict titanomagnetite in Alley, as well as oxidised, but 10 

nevertheless magnetic maghemite in Geotimes (Fig. 9), provides a mineralogical explanation for how these primary properties 

could have been partly preserved through spilite alteration. These conclusions agree with the qualitative differences observed 

with field magnets (described in Sect. 3), and they attest to the usefulness of the relationships shown in Fig. 7 for aeromagnetic 

mapping.  

However, Königsberger ratios greater than unity for the Semail extrusives (Fig. 7) indicate the potential for significant 15 

remanence effects on the RTP data (Clark, 1997; Flint et al., 1999). As the ophiolite was formed during a period of normal 

geomagnetic polarity (Perrin et al., 1994), the extrusive sequence should not be complicated by naturally opposing primary 

remanence directions. This is supported by measurements from the northern extrusives, whose characteristic remanence 

directions can be reconciled with each other by tectonic rotations of < 90˚ (Perrin et al., 1994, 2000). Nevertheless, these minor 

block rotations, as well as any syn-volcanic tilting or later remanence resetting during obduction and rotation (Feinberg et al., 20 

1999; Morris et al., 2016) could all lead to inconsistent RTP anomalies. We accordingly acknowledge the limitations of the 

RTP map for remote mapping. To mitigate the influence of remanence effects on our interpretation, each structural block was 

considered separately in terms of the RTP character of each unit, and precedence was given to field-based constraints. In this 

fashion, aeromagnetic inferences could be made between reference points and under cover on a case-by-case basis. 

5.4. Observed reduced-to-pole anomalies  25 

The alternation between strongly and weakly magnetic units upwards through the Semail volcanostratigraphy suggests that 

uniformly dipping extrusive sections should be straightforward to interpret in aeromagnetic data. Good examples of this exist 

along the east-dipping Fizh and Hilti blocks. Nevertheless, over the mapping area, a variety of RTP anomaly characters are 

observed for each volcanic unit (Fig. 10) 

The Geotimes unit typically corresponds to relatively positive but patchy RTP anomalies. This inconsistency makes 30 

Geotimes challenging to infer in many areas. Fortunately, Geotimes is usually well-exposed at the surface and accurately 

delineated by the existing regional map set. A number of factors may explain this patchiness. Firstly, Geotimes has generally  
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Figure 10. Reduced-to-pole (RTP) magnetic anomalies for the Batinah coast and Yanqul area (Isles and Witham, 1993), marked with the 
extent of our inferred extrusives, the potentially magnetic Batinah complex, our interpretations of apparently structurally-controlled, re- or 
de-magnetised features, and possible repetitions or extensions of ophiolite blocks visible in the RTP map.  
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undergone higher grade spilitic alteration than the overlying units (Alabaster and Pearce, 1985), and it is locally altered to 

weakly-magnetic epidosite (Gilgen et al., 2016). Intercalated lenses of the weakly-magnetic Lasail unit within Geotimes are 

also occasionally present, and can explain some of the patchiness around wadis Hatta, Ashar, Fizh (Fizh block) and Ghuzayn 

(Alabaster et al., 1982; Belgrano and Diamond, 2019; Kusano et al., 2012; Umino et al., 1990). Commonly, however, patches 

of weak RTP magnetism apparently wholly confined to the Geotimes unit do not correspond to weakly magnetic or 5 

anomalously altered lavas as confirmed in the field (e.g. along the Hilti block). This strongly suggests that remanence effects, 

as permitted by Königsberger ratios above unity (Fig. 7C), locally have a significant influence on the aeromagnetic anomalies 

related to the Geotimes unit.  

Exposures of Lasail lavas greater than ~100 m wide (comparable to the spatial resolution of the aeromagnetic survey) 

consistently coincide with relatively weak RTP anomalies. The consistency of the Lasail unit’s weak RTP anomalies is 10 

presumably due to the unit’s consistently weaker magnetism compared to other units (Fig. 7A, B).  

Tholeiitic Alley typically corresponds to consistent, stratiform positive anomalies which are straightforward to interpret 

and to trace between reference points. There are some areas of Tholeiitic Alley lavas which correspond to weak RTP 

magnetism, but this is typically where Tholeiitic Alley is anomalously thin (e.g. Aswad block) or cut by major faults (e.g. 

Haylayn block). 15 

Although the measured magnetism of the Boninitic Alley unit is rather weak (Fig. 7A, B), it has an inconsistent RTP 

character. This can possibly be attributed to its highly variable grade of hydrothermal alteration. In the prominent 

accumulations of boninites in the Aswad, Rajmi and Daris areas, the sampled boninites are mostly altered to greenschist-facies 

and are weakly magnetic (Fig. 3D, 7). Contrastingly, a relatively fresh sample (TB3-01A; Fig. 9A) from the Eastern Fizh block 

retains significant magnetic susceptibility as well as its primary titanomagnetite (Fig. 9A). This sample, and presumably other 20 

fresh boninites, correspond to an NNW–SSE oriented positive RTP anomaly ~30 km along-strike, which is confirmed as 

boninitic by sampling further to the north. This inconsistency makes the inference of boninites from aeromagnetic data alone 

challenging, and accordingly, we have confirmed all the mapped boninite accumulations by field observations or sampling.  

5.4.1. Tectonic features in the aeromagnetic map 

Inferences under cover at the top of the section in the Sarami and Haylayn blocks are complicated by the discontinuous 25 

presence of magnetic Triassic volcanics tectonically emplaced over this part of the ophiolite as part of the Batinah complex 

(BRGM, 1986b; Woodcock and Robertson, 1982). Given the shallow dip of the top of ophiolite in this area (Shelton, 1990), 

the magnetic anomalies situated over the Batinah complex volcanics could also be influenced by the underlying Semail 

volcanics. Where exposed, the faulted contact between the ophiolite and the Batinah complex is readily picked in the field and 

is well-defined by the regional maps (BRGM, 1986a, 1986b). However, northeast of this contact, or where it disappears under 30 

cover, there is some uncertainty in interpretation. To avoid confusion, in Fig. 10 we have delineated our bedrock interpretation 

of the overthrust Batinah complex, and we have not attempted to interpret the ophiolite beneath the faulted contact.  
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 A positive gravity anomaly suggests that a repeated ophiolite block exists underneath the Batinah plane to the 

northeast of the Sarami block (Shelton, 1990). Isolated outcrops of serpentinite and listvenite around the anomaly may be the 

surface expressions of this block, or may simply be large olistoliths (BRGM, 1986b). This repeated block is well-resolved as 

a slightly-arcuate, positive RTP anomaly 30–40 km long and 5–8 km wide in Fig. 10. The intensity and dimensions of the 

magnetic anomaly resemble those of the east-dipping Alley sequences in the Hilti and East Fizh blocks, however, with limited 5 

outcrop available for confirmation, it is also feasible that the geophysical anomaly corresponds to a sheet of serpentinised, 

magnetite-bearing peridotite. There are also N–S oriented, positive magnetic anomalies east of the Aswad and Fizh blocks 

which appear to be the northern and southern continuations of the repeated East Fizh block. These anomalies are outlined in 

Fig. 10, however they are not as well resolved as the Sarami anomaly in either the gravity or magnetic surveys.  

The aeromagnetic map also reveals strips and patches of weak and even slightly negative RTP anomalies up to kilometres 10 

wide coinciding with major fault zones (Fig. 10). Where both sides of the fault consist of volcanics (e.g. Wadi Bargah, Wadi 

Shaffan, Wadi Hawqayn; Fig. 10) these anomalies must be explained by de- or re-magnetization around the fault planes. The 

approximate spatial extents of these tectonically-controlled weak aeromagnetic anomalies are marked in Fig. 10. The slightly 

negative RTP values within many of these anomalies cannot be achieved purely by magnetic mineral destruction. Rather, they 

imply that a secondary magnetic remanence that is not parallel to the geomagnetic field has been imparted to the surrounding 15 

volcanics. Fluid-related remagnetization of the lower crustal and mantle sections of the ophiolite during obduction and rotation 

has previously been documented throughout the ophiolite (Feinberg et al., 1999; Morris et al., 2016; Usui and Yamazaki, 

2010). The structurally-controlled remagnetization outlined in Fig. 10 indicates that the fluids responsible for resetting 

magnetism deeper in the section may have locally transgressed into the upper crust. Field evidence for this hydrothermal 

resetting is compelling, as the idiomorphic hematite in the obduction-related quartz–hematite veins (Q') is often strongly 20 

magnetic (described in Sect. 3.6). As pure hematite is only very weakly magnetic, this magnetism presumably results from 

pseudomorhpic replacement of hematite by magnetite (mushketovisation) which post-dates the emplacement of the quartz–

hematite veins.  

6. Map construction and presentation 

Previously published volcanostratigraphic sections and geological maps from 21 publications were used as a basis for mapping 25 

the Semail volcanic units. The suite of 187 lava samples that we assigned to volcanostratigraphic units by geochemistry were 

combined with 89 previously published sample locations to provide reference points for our mapping. To illustrate the 

confidence in which the various areas are mapped, Fig. 11 shows the locations of these previous maps, the 276 lava samples, 

7 dyke or sill samples, and also the sites where we mapped the units using GPS-equipped digital tablets.  

Our sampling and observation density is highest in the north of the mapping area. This is partly due to the wider, more 30 

tectonically complex sequence in the north, but also due to the availability of samples and observations collected during parallel 

projects in this area. Between these sampling points, the certainty of our unit identifications depends on the field and  
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Figure 11. Datasets used to construct the final map. Blue circles: field observations, this study. Reference samples include triangles: volcanic 
glasses (this study); diamonds: dykes and sills (this study); squares: lava and volcanic glass samples from Gilgen et al. (2016, 2014), Kusano 
et al. (2017) and MacLeod et al. (2013). Numbered outlines: coverage of previously published maps used to support our mapping: (1) BRGM 
(1993b), (2) BRGM (1993a), (3) BME (1987a), (4) BME (1987c), (5) BME (1987b), (6) BGRM (1986b), (7) (BGRM (1986a) and local 
maps: (8) Reuber (1988), (9) Kusano et al. (2012), (10) Umino et al. (2003), (11) Haymon et al. (1989), (12) A’Shaikh et al. (2005), (13) 5 
Alabaster et al. (1980) (14) Robertson and Woodcock (1983), (15) Alabaster and Pearce (1985), (16) Ernewein et al. (1988), (17) JICA 
(2000), (18) Umino (2012), (19) Kusano et al. (2014), (20) JICA (2002), and (21) Reuber et al. (1991).  
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Figure 12. New map of volcanic units in the Semail ophiolite (this study). Strong colours: upper crustal units in outcrop. Pale conjugate 
colours: upper crustal units inferred as bedrock underlying sedimentary cover. Lower crustal and mantle rocks (copied and simplified from 
the regional map set) are shown for context. See Section 1.4 for changes versus previous maps and details on bedrock inferences under 
sediments. The georeferenced, multi-layer version of this figure together with the mapping inputs in Figure 11 is provided in the 
supplementary Geospatial PDF.  5 
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aeromagnetic characteristics of the units, on the local structural complexity, and on the coverage by previous maps. For 

example, our fewer reference samples in the southern blocks are somewhat offset by the excellent coverage of the JICA (2002, 

2000) maps in those areas. 

As Geotimes is mostly well defined in the regional map set and typically readily recognizable in the field, this unit is 

delineated with high confidence in our map. Similarly, the generally consistent field appearance, stratigraphic position and 5 

magnetic character of the Lasail unit allowed for relatively unambiguous mapping on the surface and inference of its presence 

below cover. 

Collectively, the Alley group lavas were relatively straightforward to delineate on the basis of the unit’s distinctive field 

characteristics and generally positive RTP anomalies. Where boninites are thickly accumulated and altered to pale, greenschist-

facies spilites at their basal contact with Tholeiitic Alley (e.g. Aswad, Fizh, Daris), this contact is easy to follow in the field 10 

and in satellite imagery. However, where Boninitic Alley occurs as a thin cap of the sequence (e.g. Hilti, Sarami blocks), it 

often proved difficult to distinguish from Tholeiitic Alley without geochemical analysis and careful field observations. It is 

therefore possible that further occurrences of Boninitic Alley may be present as thin cappings in addition to the mapped layers. 

Consequently, areas where boninites are suspected, but are untested by sampling, are marked on the map as ‘Undifferentiated 

Alley’ (Tholeiitic or Boninitic). 15 

Tabular intrusions along faults as well as epidosite-cemented fault-breccias were taken as evidence for ‘syn-magmatic’ 

deformation, similarly to Reuber (1988). Unlike chlorite, epidote is not part of the overprinting Q' quartz–hematite vein 

assemblage, and pervasive epidote alteration in the upper crust occurred mostly during Tholeiitic Alley-phase magmatism 

(Gilgen et al., 2016). 

The complete map of the volcanic units is presented in Fig. 12. For detailed use, the reader is referred to the Geospatial 20 

PDF provided in the supplement to this article. The Geospatial PDF format allows the georeferenced input and final map layers 

to be viewed in Adobe AcrobatTM and directly imported into common geospatial software.  

7. Discussion of newly mapped features 

7.1. Tectonic omissions of Geotimes in the Haylayn block 

The Geotimes unit is present above the SDC throughout most of the ophiolite (Fig. 12). However, in the Haylayn block (in the 25 

region of Wadi Wadiyah), Geotimes occurs only discontinuously and the volcanic section is almost invariably bounded above 

and below by faulting. These faults correspond to strip-like negative anomalies in the RTP map (Fig. 13). Along these faults, 

Tholeiitic Alley lavas are commonly juxtaposed against the SDC, and Geotimes is either absent or is only a few hundred 

meters thick, as previously noted by Lippard et al. (1986). Rather than viewing the contact between Alley and the SDC as 

conformable, as previously mapped (BRGM, 1986a; Juteau et al., 1988), we attribute the missing Geotimes lavas in the 30 

Haylayn block to faulting (Fig. 13). This conclusion is supported by the negative RTP anomalies along this contact as well as 

our observation, ~500 m to the north of Wadi Wadiyah, of a fault zone several meters wide hosting a Q' quartz–hematite vein 
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marked by sub-horizontal slickensides. This zone occurs within the weak RTP anomaly and between outcrops of the SDC and 

Tholeiitic Alley (confirmed by sampling; Fig. 13). The tectonically-disturbed character of the contact between the SDC and 

the volcanics in the adjacent Sarami block is also demonstrated by a major fault zone several meters wide at the base of 

Geotimes in Wadi Shaffan (Einaudi et al., 2003). The presence of such faults precludes simple comparisons between the 

southern and northern blocks based on volcanostratigraphy. 5 

 
Figure. 13. Mapping example: tectonic omissions of Geotimes in the Haylayn block near the boninite-hosted Daris-3A VMS deposit. (a) 
Distribution of volcanic units according to the pre-existing regional geological map (BRGM, 1986a). (b) RTP aeromagnetic survey (Isles 
and Witham, 1993) with inferred bedrock contacts and faults (this study). (c) Revised map (this study) with sample location symbols as in 
Fig. 11. Coordinate grid: UTM 40 N in km. 10 

7.2. Proportions of the upper-crustal units 

Early descriptions of the Semail volcanic stratigraphy showed Geotimes with a relatively consistent thickness of 1–1.75 km, 

overlain by Lasail or Alley sequences ~0.75 km in thickness (Alabaster et al., 1982). In the Fizh block, Reuber (1988) 

contrastingly indicated that the ‘V2’ lavas could attain thicknesses of up to 1.5 km, whereas Geotimes can be as thin as 0.5 

km. Our mapping indicates that complete, tectonically undisturbed volcanic sections between the SDC and the post-Alley 15 

Suhaylah formation are rare. The stratigraphic columns in Figure 12 are constructed from dip measurements along some of 

these complete sections (sections B, D, E) and along other instructive sections. These new sections are more consistent with 

Reuber (1988), indicating that Geotimes can be as thin as 0.3 km, whereas Tholeiitic Alley is up to 1 km thick, and Boninitic 

Alley locally up to 2 km thick.  

In addition to these stratigraphies, the inferred areas of buried bedrock in our map permit realistic estimates to made of the 20 

areal proportions the different upper crustal units. Uniformly dipping but otherwise tectonically undisturbed sections yield the 

closest approximations of volumetric proportions from these areal proportions. For this reason, the tectonically imbricated 

volcanics on the western side of the ophiolite are excluded from the areal calculations in Table 2. The north-eastern side of the 

northern ophiolite (i.e., the Batinah Coast), dips relatively consistently to the east. From this strip we calculated the bedrock 

areas of each upper crustal unit within the mapping area (Table 2). Due to tectonic complications in the Aswad, East Fizh, 25 

Harami, and Haylayn blocks, however, we additionally calculated these areas based on the relatively intact upper-crustal 
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exposures along the West Fizh block (Wadi Fayd to Wadi Kabiyat) and Hilti block (Wadi Bargah to Wadi Ahin). These Fizh 

and Hilti areal proportions are the most representative available for the pre-obduction state of the Semail crust (Table 2). 

 

  Batinah coast  Fizh & Hilti blocks  Summary 

Unit 
Bedrock 

area (km2) 

Vol% of 

upper crust 

Vol% of 

volcanics 
 

Bedrock 

area (km2) 

Vol% of 

upper 

crust 

Vol% of 

volcanics 
 Rock types 

Vol% of 

upper-crust                

(Fizh & Hilti) 

Boninitic Alley 186 9 16  50 15 24  Boninite-series 15 

Undifferentiated Alley 99 4.9 8.6  2 0.6 1.0  
Post- and off-

axis volcanics 
29 Tholeiitic Alley 416 21 36  82 24 40  

Lasail 76 3.7 6.6  14 4.1 6.8  

Geotimes 374 18 32  58 17 28  Phase 1 axial 

lavas and dykes 
54 

SDC 708 35 –  124 37 –  

Upper-crustal intrusions 170 8.4 –  9.0 2.7 –    
Total volcanic rocks 1151 57   206 61     
Total upper crust 2029    339      
 

Table 2. Areal extents and inferred volumetric proportions of each Semail volcanic unit based on the bedrock map in Fig. 12 for both 
the Batinah Coast and the structurally-intact western Fizh and Hilti blocks. Vol% assumed equivalent to area%. Proportions are given both 5 
as fractions of the volcanics, and of the upper crust (including the SDC). 

Interestingly, the Batinah Coast and Fizh–Hilti spatial subsets are relatively consistent with each other. In both cases, our 

inferred bedrock maps indicate that Tholeiitic Alley is the most areally-extensive volcanic unit. If the SDC, which is largely 

comagmatic with Geotimes (Miyashita et al., 2003; Pearce et al., 1981), is grouped with the upper-crustal intrusions to make 

up an upper-crustal total, the proportion of axial upper crust (SDC + Geotimes; Phase 1) is ~54 vol%, whereas Phase 2 off- or 10 

post-axial lavas constitute ~44 vol%. In the Fizh–Hilti subset, 24 vol% of the volcanics or 15 vol% of the upper crust is made 

up of boninite-series lavas.  

These considerable volumes of Phase 2 lavas imply that their generation must have depleted vast volumes of mantle 

following the axial-spreading stage (Geotimes) melt extraction. Such extensive Phase 2 melting has previously been inferred 

in the Fizh mantle section (Arai et al., 2006). Plutonic evidence for Phase 2 magmatism has also been documented throughout 15 

the ophiolite (Adachi and Miyashita, 2003; Goodenough et al., 2010; de Graaff et al., 2019; Haase et al., 2016; Juteau et al., 

1988; Rollinson, 2009; Tsuchiya et al., 2013; Yamasaki et al., 2006). The volumetric significance of this late plutonism is 

poorly constrained, though Phase 2 intrusives apparently constitute about half of the crustal exposures in the U.A.E. portion 

of the ophiolite (Goodenough et al., 2010, 2014), which is comparable to the proportions of Phase 1 to Phase 2 lavas 

documented here. 20 

The unit proportions documented in Table 2 are the first estimates of the composition of proto-arc upper crust based on a 

large mapped area (2059 km2). The proportion of boninites in Oman is comparable to the exposures of boninitic upper crust 

estimated for the southern Mariana forearc by submarine surveying (20–30 area%; Reagan et al., 2013).  
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Although the unit proportions documented in the present study are representative for a significant length along the paleo-

spreading axis (over ~150 km), any large-scale variations perpendicular to this axis, are difficult to estimate from the 30–60 

km wide Semail ophiolite. The comparable geochemistry and volcanostratigraphy between the NW (Batinah coast) and SW 

(Yanqul) flanks of the ophiolite, which are separated by ~30 km perpendicular to the spreading axis, suggests continuity of 

unit proportions at this scale. However, flat-lying ophiolites (e.g. Mirdita), the IBM arc basement and the recently recognised 5 

Matthew and Hunter protoarc show significant variations in upper-crustal architecture with distance from the trench (Dilek et 

al., 2008; Hickey-Vargas et al., 2018; Patriat et al., 2019). The upper crustal unit proportions documented herein are therefore 

not necessarily representative of an entire proto-arc crustal swath, but rather represent the best estimate currently available.   

7.3. Along-ophiolite differences in subduction-zone influence 

It has previously been proposed that a gradient of subduction-zone influence on magma generation existed from SE to NW 10 

along the Semail ophiolite. This proposal is based on Cr contents in mantle spinel (Python et al., 2008), extensive Alley-stage 

plutonism in the U.A.E. (Goodenough et al., 2010), and an apparent paucity of Lasail/Alley volcanics in the southern ophiolite 

blocks. The existence of this gradient has since been challenged by the apparently uniform hydrous influence on axial 

magmatism (MacLeod et al., 2013), the identification of numerous Phase 2 intrusions in the southern ophiolite blocks (de 

Graaff et al., 2019; Haase et al., 2016), structural arguments for outcrop bias in the U.A.E. (Ambrose and Searle, 2018), and 15 

by the synchronous ages for prograde metamorphism in the southern and northern metamorphic soles (Guilmette et al., 2018).  

Owing to the tectonic omissions of Geotimes in the Sarami and Haylayn blocks, our new map is somewhat equivocal 

on the issue of ophiolite-scale variations in subduction influence. However, it is at least clear that subduction-influenced Lasail 

and Alley volcanism occurred over the length of the mapping area. In fact, some of the ophiolite’s thickest accumulations of 

Felsic- and Boninitic Alley lavas occur in the Haylayn and Wuqbah blocks (Figs. 12, 13), indicating that, at least during Phase 20 

2 magmatism, subduction-influenced volcanism was comparably significant throughout the mapping area.  

7.4. Lateral continuity of the Alley unit 

On the basis of the Suhaylah Village section, it has long been held that Geotimes locally tops the volcanic sequence, being 

directly overlain by Suhaylah Formation sediments, and therefore that the Alley strata are discontinuous (Fleet and Robertson, 

1980; Lippard et al., 1986). However, the presence of Geotimes at the top of this section was apparently not confirmed by 25 

geochemical analyses. Our field observations (the photo in Fig. 3C is from Suhaylah), whole-rock analyses and clinopyroxene 

analyses (samples TB4-17J, SP18-A8, SP18-A9) reveal that the uppermost ~300 m of the Suhaylah section are composed of 

Tholeiitic Alley pillow basalts and andesitic massive flows.  

A similar locality with Geotimes topping the section was indicated in upper Wadi Ahin (map by BME, 1987b). However, 

our sampling (TB4-23A) and field observations show that Boninitic Alley lavas are present there, and that they are actually 30 

faulted against, rather than overlain by, sediments on both sides of the wadi. Additional occurrences of Suhaylah sediments 

directly overlying Geotimes had been mapped between Wadi Hayl and Wadi Kabiyat, ~6 km north of Suhaylah in the Fizh 
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block (BME, 1987c). Our field observations, as well as those of Robertson and Woodcock (1983), rather indicate that this 

sequence is disrupted by normal faulting, which has removed much of the section. Our sampling further shows that the 

uppermost unit along this section is Boninitic Alley (samples LD10-1461, LD10-1464). No other examples of Suhaylah 

sediments directly overlying Geotimes are indicated in the regional map set or were found during the present study. We thus 

conclude that Alley/V2-stage lavas are continuously present throughout the northern ophiolite. 5 

7.5. Lasail basaltic ‘seamounts’ 

The discrete accumulations of Lasail lavas that overlie Geotimes have previously been likened to off-axis ‘seamounts’, 

regularly spaced and associated with VMS deposits (Alabaster et al., 1982; Lippard et al., 1986; Pearce et al., 1981). Prior to 

this study, these accumulations had not been mapped out in detail. The newly mapped Lasail accumulations are generally less 

than a few hundred metres thick, less than a kilometre wide and are irregularly distributed at intervals of 10–20 km wherever 10 

the top of the Geotimes unit is well exposed. These findings thus support the seamount interpretation, but their frequency is 

slightly higher, and their volumetric significance slightly lower, than originally suggested by Alabaster et al. (1982).  

Thick Lasail accumulations occur in the region of proposed spreading-axis segment boundaries, e.g. Wadi Hatta to Rajmi, 

and Ghuzayn, as noted by Alabaster et al. (1982) and MacLeod and Rothery (1992), but the unit’s distribution is not limited 

to these positions. Lasail also occurs within the middle of intact structural blocks (e.g. Salahi area). Moreover, as also shown 15 

by Gilgen et al. (2014), there are no clear associations between these seamounts and VMS deposits.  
 

Figure. 14. Mapping example: part of a Lasail basaltic accumulation in the northern Fizh block near the Tholeiitic Alley-hosted Mandoos 
VMS deposit (Gilgen et al., 2014). (a) Distribution of volcanic units according to the pre-existing regional geological map (BRGM, 1993b). 
(b) RTP aeromagnetic survey (Isles and Witham, 1993) with inferred bedrock contacts and faults (this study). (c) Revised map (this study) 20 
with sample location symbols as in Fig. 11. Coordinate grid: UTM 40 N in km.  

tA

L

Gt uA

tA

L

Gt

Gt

tA

Gt uA

tA

L

LGt

Gt

SE1/V1

Gabbro
Tonalite

Wehrlite
Gu
We

Td

Td

SD

SE1

SE2

SEA2

Gabbro
Ultramafic

Tonalite

434 436

27
28

27
30

1 km

N
438

Mandoos 
deposit

1 km

N434
(a) (b) (c)

436

27
28

27
30

27
32

438

1 km

N
434 436 438

27
28

27
30

bb

Tholeiitic Alley
Felsic Alley
Undifferentiated Alley 

tA
fA
uA

SEA2 (felsic) 
SE2/V2

Fault 

SE2

Undifferentiated sediments 

SDC

Fault 
Inferred contact 

Thrust fault

SDCSD SE1 SD
U
G
T

SD

GeotimesGt

Lasail
Depleted Lasail

L
dL

fA

T
G

U
58

65

27
32

27
32

Mandoos 
deposit

Mandoos 
deposit

0 0.5 1 2
RTP magnetic anomaly (µT)

Solid Earth Discuss., https://doi.org/10.5194/se-2019-69
Manuscript under review for journal Solid Earth
Discussion started: 18 April 2019
c© Author(s) 2019. CC BY 4.0 License.



37 
 

The most significant of the Lasail accumulations occurs between Wadis Ashar and Rajmi, (Fig. 12) and does in fact 

coincide with a proposed area of axial segmentation (MacLeod and Rothery, 1992; Reuber, 1988; Smewing, 1980). With a 

maximum thickness of ~ 1 km and a continuous base ~15 km along strike (Figs. 12, 14), the weakly magnetic Lasail lavas are 

well distinguished from the strongly magnetic overlying Alley lavas in the aeromagnetic survey, as confirmed by sampling 

and field observations (Fig. 14). Isolated occurrences of Lasail volcanism began synchronously with earliest Geotimes 5 

eruptions in this area (Alabaster et al., 1982; Belgrano and Diamond, 2019) and the Geotimes unit itself is abnormally thin, 

being only a few hundred meters thick (Section A in Fig. 12), suggesting short-lived Geotimes volcanism in this region. 

7.6. Semail boninites 

Analyses of volcanic glass demonstrate that boninites sensu stricto are present throughout the northern ophiolite (Fig. 6; 

Kusano et al., 2017). The well defined, high V/Ti and high Zr/Y fractionation trends followed by both ‘Boninitic Alley’ spilites 10 

and the boninitic glasses (Fig. 5) indicate that all of these lavas belong to the same series, which in turn derives from a 

particularly low-Si boninitic parental melt (Fig. 6). Boninitic Alley is compositionaly closer to the subduction initiation-related 

Izu-Bonin forearc boninites (Murton et al., 1992; Reagan et al., 2017; Shervais et al., 2018), than to the plume- and slab 

window-related north Tonga trench boninites (Falloon et al., 2007, 2008).  

Prior to this study, little was known about the areal extent and volcanic morphology of boninites in the ophiolite. Our 15 

mapping, though unlikely to have recorded all the minor boninite occurrences in Oman, shows that boninites occur in each 

block within the mapping area. These occurrences are discontinuous and have a highly variable stratigraphic thickness (0–2 

km; sections in Fig. 12). In the Wuqbah, Hilti and Sarami blocks, layers of Boninitic Alley only up to ~200 m thick 

discontinuously cap and locally interfinger with the uppermost Tholeiitic Alley lavas (e.g., Kusano et al., 2014). Contrastingly, 

there are boninite accumulations 1.5–2 km thick with bases 2–5 km wide in the Aswad, Fizh and Haylayn blocks (Fig. 12). 20 

7.6.1. Structurally-controlled boninitic volcanism 

The best-preserved boninite accumulations can be found between Wadi Rajmi and Wadi Zab’in in the Fizh block (Fig. 15). 

Here, three sub-parallel dyke swarms spaced at ~5 km fed a 2 km thick accumulation of Boninitic Alley lavas. Ishikawa et al. 

(2002) noted the boninitic character of these dyke swarms, which apparently show mutually intrusive relationships with 

orthopyroxene-series (gabbronorite) intrusions (Umino et al., 1990). Together with the shallowly SSE-dipping SDC along this 25 

segment, the presence of these gabbronorites has previously been linked to axial segmentation (MacLeod and Rothery, 1992; 

Reuber, 1988). In light of the newly mapped Rajmi–Zab’in boninite accumulations (the only orthopyroxene-bearing volcanic 

unit; Ishikawa et al., 2002), the possibility that some of these gabbronorites are the intrusive equivalent of the boninite lavas 

warrants consideration. 

 30 
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The mantle and lower crustal section in the Rajmi–Zab’in area (Fig. 15) is cut by numerous high-temperature, mylonitic 

shear zones (BRGM, 1993b; Smewing, 1980; Takazawa et al., 2003). Though cataclastic zones beneath the Moho and Q' 

quartz–hematite veins in the upper crust (BRGM, 1993b) indicate that many of the faults in this area experienced post- 

magmatic brittle reactivation, the high-temperature fabric and sheeted intrusions emplaced along these fault zones 

demonstrate the syn-magmatic timing of the original structures. Greater displacement of the axial sequence relative to the 5 

Alley sequence along these syn-magmatic faults further suggests that part of this upper-crustal deformation occurred after axial 

magmatism but before or during Alley-stage magmatism.  

Figure 15. Boninites capping the volcanic succession in the Wadi Rajmi and Wadi Zab’in region and their structural connection to 
previously-mapped boninite dykes, ultramafic and orthopyroxene-series intrusives (BRGM, 1993a; Umino et al., 1990; Usui and Yamazaki, 
2010), mantle shear zones (Boudier and Al-Rajhi, 2014; BRGM, 1993b; Takazawa et al., 2003), and podiform chromitites (Boudier and Al-10 
Rajhi, 2014; BRGM, 1993b; Rollinson, 2008). The boninite-hosted Safwa VMS deposit is also shown (Gilgen et al., 2014). Coordinate grid: 
UTM 40 N in km. Sample symbology as in Figure 11. Strong colours denote outcrops; pale conjugate colours denote inferred bedrock 
beneath gravels.  
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The centres of the two most prominent boninite lava outcrops at Rajmi–Zab’in are clearly fed by dykes intruding along 

these syn-magmatic faults (Fig. 15), demonstrating that boninite migration through the existing axial crust was structurally 

controlled. Moreover, the mylonitic shear zones which underlie and connect with these syn-magmatic faults indicate that 

boninitic melts were structurally channelled from the level of the mantle. In fact, the major mantle shear zone underlying the 5 

Wadi Zab’in boninites (Fig. 13) is well-studied, and records the passage of hydrous fluids and melts from the metamorphic 

sole through the entire mantle sequence (Arai et al., 2006; Kanke and Takazawa, 2014; Takazawa et al., 2003). The structurally-

controlled boninitic volcanism documented herein completes this spectacular mantle-to-seafloor section, constituting a 

complete anatomy of a protoarc magmatic system. 

Interestingly, the boninite-focusing fault zones between Wadi Rajmi and Wadi Zab’in extend directly into the mantle (Fig. 10 

15) and there they enclose a cluster of structurally-controlled podiform chromitite deposits described around Wadi Rajmi 

(Boudier and Al-Rajhi, 2014; Rollinson, 2008). Chromites within these deposits record formation from a series of melts 

evolving from arc-like (comparable to Tholeiitic Alley) to highly oxidised, boninitic compositions (Rollinson, 2008; Rollinson 

and Adetunji, 2015). The short duration permitted for boninitic volcanism (~0.5 Ma; Gilgen et al., 2016 and references therein) 

together with the close geochemical and structural association between these chromite deposits and the thick overlying boninite 15 

accumulations supports the long-held association between hydrous, boninitic melts and podiform chromitite formation 

(Ballhaus, 1998; Rollinson, 2008). The mantle sections beneath the other significant boninite accumulations (e.g., Aswad, 

Daris) may therefore be attractive areas for future chromite exploration. 

7.7. Relationships between faulting, dyke swarms, boninites, and sulphide ore deposits 

A genetic association between late dyke swarms, normal faulting, volcaniclastic breccias, boninitic volcanism and VMS 20 

deposits has previously been noted for the ‘Bowling Alley’ fault zone between Wadi Bani Umar and Wadi Kabiyat (Fizh 

block) and the nearby Aarja and Bayda VMS deposits (Gilgen et al., 2014; Haymon et al., 1989; Smewing et al., 1977). Early 

mapping viewed the fault zone as an E-facing half graben that along its southern reach swings SW into Wadi Jizi (Smewing 

et al., 1977). In contrast, our mapping reveals unusual repetition of the Geotimes unit to the east of Tholeiitic Alley, which is 

suggestive of a full graben running N–S from at least present-day Wadi Fizh to Wadi Bargah (Fig. 16). The continuation of 25 

this rift-like feature south of Wadi Jizi is marked by a strip of Boninitic Alley lavas, Felsic Alley lavas and Suhaylah sediments 

bounded to the E and W by faults, with Geotimes lavas repeated to the E of the Alley lavas. During ophiolite emplacement, 

the rift was dismembered by faulting parallel to Wadi Jizi (marked by the Zabyat conglomerates; Robertson and Woodcock, 

1983) and by NNE–SSW faulting along the western edge of the East Fizh block. Several further corridors of intrusions run 

parallel to the Bowling Alley axis, which we interpret as related to secondary rift structures (Fig. 16). Thus, the entire axis-30 

parallel rift is ~30 km long and it was the locus of VMS mineralization from the end of Geotimes (Lasail deposit) to Boninitic 

Alley volcanism (Aarja deposit; Smewing et al., 1977; Gilgen et al., 2014), indicating that extensional tectonics and vigorous 

hydrothermal activity occurred in this area throughout volcanic Phases 1 and 2.  
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Figure 16. Interpreted location of the ‘Bowling Alley’ rift, modified after Alabaster and Pearce, (1985), BME, (1987a), Robertson and 
Woodcock (1983) and Smewing et al. (1977). The rift is genetically associated with numerous VMS deposits, minor copper showings and 
areas of disseminated sulphide mineralization (Haymon et al., 1989; Smewing et al., 1977).  
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Our mapping indicates that a similar lithotectonic association exists for the boninite-hosted Rakah and Hayl al Safil VMS 

deposits in the Yanqul area (Gilgen et al., 2014). Here, Alley-stage ‘sheeted’ dyke swarms (confirmed by analysis of dyke 

samples TB3-25H and TB4-20L) run parallel and adjacent to the faults and grabens bounding the deposits, which are 

themselves filled with blocky volcaniclastics and boninitic lavas. The boninite-hosted Safwa VMS deposit is also located 

between the two major W–E striking, fault-localised boninite dyke swarms between Wadi Fayd and Wadi Zab’in (Fig. 15). 5 

The extensional tectonics associated with these late dyke swarms therefore appears to be favourable both for VMS 

mineralization, as pointed out by Smewing et al. (1977) and Haymon et al. (1989), as well as boninite extrusion, as similarly 

noted for the ‘infill’ boninites of the Troodos ophiolite (Cameron, 1985; Osozawa et al., 2012). Further work is needed to 

resolve the specific timing and genetic associations between these features.  

8. Conclusions 10 

We have presented the methodology and final product of a six-year project remapping the volcanic units in the Semail 

ophiolite. Our key conclusions can be summarised into three categories: 

 

Mapping methodology: 

• Previous regional mapping of the ophiolite relied mainly on field observations and early satellite imagery. With 15 

these methods, resolution of the various units within the ‘V2’ stage extrusives was impractical at a regional scale. 

Our study has benefitted from rapid and routine whole-rock XRF and EMP mineral analysis. These techniques 

have enabled large numbers of sample analyses to be used to identify units over several hundred km2.  

• The bulk-magnetic properties of submarine lava suites are strongly controlled by major element composition and 

can be well preserved despite overprinting by sub-seafloor spilitic alteration. It should therefore be feasible to 20 

distinguish volcanic units using aeromagnetic data in other ophiolite or greenstone-belt settings. However, strong 

remanent magnetism in submarine volcanics leads to inconsistencies in RTP data, therefore less susceptible data 

transformations should be used if possible.  

• Combining magnetic petrology and geochemistry allows aeromagnetic data to be usefully correlated with specific 

units in volcanic terranes. Our confidence in these interpretations was sufficient to map specific units beneath 25 

sedimentary cover, thereby significantly expanding our bedrock map and the prospective area for VMS deposit 

exploration. 

Volcanic features of the Semail ophiolite: 

• Of the two lava units traditionally ascribed to Phase 2 magmatism, Alley is volumetrically far more significant 

than Lasail.  30 

• Alley/Phase 2 volcanism is continuously present throughout the northern ophiolite and was volumetrically 

comparable to axial Geotimes/Phase 1 volcanism. These findings reinforce the strongly subduction-influenced 
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character of the ophiolite as a whole (e.g., de Graaff et al., 2019; Goodenough et al., 2010; Haase et al., 2016; 

MacLeod et al., 2013; Pearce et al., 1981), and caution against unconfirmed assumptions that geological features 

in the lower-crustal or mantle sequences of the ophiolite (e.g. mantle diapirs) must necessarily reflect processes 

related to an oceanic spreading axis.  

• Obduction-related remagnetization is common around major fault zones. Moreover, quartz–hematite and quartz–5 

carbonate veins with significant chloritic and carbonate alteration haloes cut the entire crustal sequence and the 

anticlinal structure that warps the ophiolite. These veins clearly post-date the ophiolite’s crust-formation stage, 

but nevertheless they are often sited in reactivated syn-magmatic faults. Care is therefore necessary when 

interpreting the significance of chloritised hydrothermal features where clear cross-cutting relationships are 

unavailable. 10 

• Previously proposed associations between the ends of spreading-ridge segments, VMS deposits, and off-axis 

Lasail seamounts (Alabaster et al., 1982) are less convincing in light of the new map. Boninite accumulations, late 

dyke swarms and extensional tectonics are rather more commonly associated with economic VMS deposits.  

 

Accretion of proto-arc crust: 15 

• Despite representing apparently differing modes of subduction initiation (Arculus et al., 2015; Guilmette et al., 

2018), the close comparability between the Semail and IBM magmatic sequences is confirmed by our new 

mapping and sampling, as well as by recently collected datasets from both settings (Belgrano and Diamond, 2019; 

MacLeod et al., 2013; Reagan et al., 2017; Shervais et al., 2018; Whattam and Stern, 2011).  

• The two most substantial axial (Geotimes) and post-axial (Tholeiitic Alley) volcanic episodes were somewhat 20 

variable in thickness but almost continuous along the length of the paleo-spreading axis within the ophiolite (~150 

km). Contrastingly, the off-axis Lasail and final boninitic episodes were discontinuous and variable in thickness. 

Overall, ~40 vol% of the Semail upper crust was accreted after the main axial stage.  

• Boninitic melts in the ophiolite were locally channelled along lithosphere-scale shear zone networks which 

apparently extend from the paleo-seafloor to the metamorphic sole. Podiform chromitite deposits formed along 25 

these same melt channels in association with the ascending protoarc basaltic and boninitic melts (Boudier and Al-

Rajhi, 2014; Rollinson, 2008), concurrently with VMS mineralization on the seafloor (Gilgen et al., 2014). A 

complete cross-section through this system is accessible in the Wadi Rajmi–Zab’in area of the Fizh block.  

 

The new map represents significant progress compared to the previous two-unit stratigraphy, and it should prove useful for 30 

further research and mineral exploration in the ophiolite. However, maps are inevitably interpretations of reality, and so the 

present contribution is provided in an editable format, with the hope that it may be updated in the future as new data become 

available.  
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9. Data Availability 

All new geochemical and rock magnetic data are available at https://doi.pangaea.de/10.1594/PANGAEA.899794. The 

complete dataset is also included in the supplement to this manuscript. The supplement also includes the complete set of 

magnetic mineralogical figures (Figs. S2–S9), tables of criteria used to assign each sample to a unit (Table S1), previously 

published sample locations used for mapping (Table S2), analyses of standard materials (Table S3–4), and a Geospatial PDF 5 

of the final volcanic map.  
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