
Simon Oldfield 

 

Throughout the manuscript the term decision-making is used in various ways. There may be 

benefit in clarifying the type of judgement (is it primarily subject to aleatory or epistemic 

uncertainty) and the sensitivity of the final outcome to that decision. This may allow clearer 

suggestion of which biases / debiasing strategies are most significant for that case. Furthermore 

this may add weight to your overall argument, identifying (in-line with past work) that higher 

impact (more summative) decisions, may be more vulnerable to significant impacts of human 

bias (Begg, Welsh, & Bratvold, 2014). 

● In this paper we use the term decision making broadly, to refer to any selection of an 

action/belief among alternative possibilities. Also, as discussed in the first paragraph, we 

are primarily focused on epistemic uncertainty. However, aleatory variability may still 

play a role in decision making since judgments (i.e., assessments of probability of an 

event) and predictions (i.e., judgments about uncertain states) are inputs for decision 

making. Ultimately, we feel that providing this level of nuance (in the definition of 

decision making) to the reader is unnecessary and may even confuse our message. 

● No changes to manuscript 

 

The case studies are well-written and demonstrative of discussed principles. The description of 

the geological issue could be shortened, while discussion of the psycho- logical perspective and 

suitability of a particular approach to address the identified psychological issues raised should 

be enhanced. 

● To address reviewer comments about the case studies, we have shortened the geologic 

descriptions (removing sub-discipline jargon) and improved the connection between the 

case study section and the preceding bias review section. Details of these changes are 

reviewed in comments below. 

 

Throughout the manuscript there are a number of comments regarding implementation of IT and 

AI solutions. These comments should be justified with expansion on the specific aspect of 

human bias or decision-making uncertainty that is being addressed, linking the comments back 

to the theme of the manuscript. Without this justification, the comments are slightly redundant 

and detract from the overall message. 

● We mention IT/AI solutions for debiasing early in the paper to foreshadow our two case 

studies, which demonstrate the potential value of IT/AI for decision making. However, we 

agree that some mentions of IT/AI are repetitive and (without the justification that comes 

later in section 4.2) do not benefit our overall message. 

● We removed one repetitive reference to IT/AI in the Introduction (P2, L35), so IT/AI 

solutions to debiasing are only mentioned once in the final paragraph (P3, L11). We 

removed another reference to IT/AI at the start of the debiasing section (P9, L7). IT/AI 

solutions are not mentioned again until just prior to the introduction of the case studies, 

where we describe why IT/AI solutions have great debiasing potential (P16, L20).  

 

P. 1; ln. 1-16: Suggest the abstract should be broken into paragraphs, though perhaps this is a 

formatting error within the manuscript submission process (?). 



● This is not a formatting error. We prefer the presentation of the abstract as a single 

paragraph because the paper is primarily offering an approach to thinking about the 

human component of decision making, and not a more traditional research report with 

distinct methods and findings. 

● No changes to manuscript 

 

P. 2; ln.11: Repetition of preservation / exposure issues from ln. 8-9. 

● Agreed that this is repetitive. The sentence has been modified to remove the repetition. 

● “e.g. where isolation of processes can be difficult because multiple processes have 

cumulatively transformed the rocks, and where direct observation (much less 

experimental control) is impossible due to the large time spans of geologic processes, 

which leaves evidence lost or buried beneath the Earth’s surface” 

 

P.3 ln. 7: Are there any further comments to be made on biases that have not already been 

considered in the geological literature? Is there value in future work on these themes? 

● We believe there is value in establishing what biases (in addition to framing, anchoring, 

and availability) may be impacting geologic decision making, although it is not the goal of 

the present manuscript. We make this point on P2, L24: “Characterizing the impact of 

decision biases such as the availability bias is important and more work is needed to 

determine the range of biases influencing geoscientists and their prevalence in geologic 

decision making.” We also refer to reviews of biases, so readers know where to go to get 

more information on P5, L19: “These three biases by no means exhaust the full range of 

biases that could be influencing geologic decision making under uncertainty, but they are, 

at present, the best-documented in the geosciences literature. For a more complete list of 

biases and their potential influence on geologic decision making see Baddeley, Curtis, & 

Wood (2004), Bond (2015), and Rowbotham et al. (2010).” 

● No changes to manuscript 

 

P. 3; ln. 18: May benefit from clarification of how ‘maximising the utility of a decision’ relates to a 

problem where your aim is to best characterise a system, rather than maximise or minimise an 

individual parameter such as volume or cost. 

● To address this comment (and the following one, and P4 L3 below), we included text 

clarifying that “optimality” can be defined in scientific decisions occurring at multiple 

levels, and normative models are a benchmark for assessing optimality across levels. 

● P3, L16: “What does it mean to choose optimally during scientific decision making? The 

scientific decision process is complex and dynamic, and “optimality” may be defined at 

various levels, from selection of measurement tool and sampling site, to calculation of 

individual parameters, to interpretation (single or multi-scenario). The position we take in 

this article is that normative decision models offer a reasonable benchmark for assessing 

optimal choice in geoscience decisions at all levels.”  
 

P. 3; ln. 14: It may be useful to define decision-making and discriminate between decisions at 

different levels, i.e. calculation of individual parameters versus overall interpretations, 



throughout the manuscript. In the latter elements this would enable more seamless reference 

back to earlier points of discussion. 

● To address this comment, we included text clarifying that “optimality” can be defined in 

scientific decisions occurring at multiple levels, and normative models are a benchmark 

for assessing optimality across levels. 

● P3, L16: “What does it mean to choose optimally during scientific decision making? The 

scientific decision process is complex and dynamic, and “optimality” may be defined at 

various levels, from selection of measurement tool and sampling site, to calculation of 

individual parameters, to interpretation (single or multi-scenario). The position we take in 

this article is that normative decision models offer a reasonable benchmark for assessing 

optimal choice in geoscience decisions at all levels.” 

 

P. 3; ln. 15: Normative decision models. Though the current examples are clear for a non-

specialist reader, may benefit from direct relationship of these principles to a geoscience 

problem featuring a sparse and irregularly sampled time series (less common with the normal 

economic and financial examples). 

● The purpose of section 2 is to give some history on how optimality has been traditionally 

considered (in economic/financial domains). We relate this traditional view of optimality 

to the domain of geoscience in sections 3.1 through 3.3 when we discuss specific biases 

(availability, framing, anchoring). 

● No changes to manuscript 

 

P. 4; ln. 3: Completely agree with the direction of your argument here, however it remains 

ambiguous, geoscientists can make optimal choices, however it may be worth noting that an 

optimal choice may be consideration of multi-scenario interpretations (common in the 

hydrocarbons industry). 

● To address this comment, we included text clarifying that “optimality” can be defined in 

scientific decisions occurring at multiple levels, and normative models are a benchmark 

for assessing optimality across levels. 

● P3, L16: “What does it mean to choose optimally during scientific decision making? The 

scientific decision process is complex and dynamic, and “optimality” may be defined at 

various levels, from selection of measurement tool and sampling site, to calculation of 

individual parameters, to interpretation (single or multi-scenario). The position we take in 

this article is that normative decision models offer a reasonable benchmark for assessing 

optimal choice in geoscience decisions at all levels.” 

 

P. 5; ln. 18: Perhaps this line could be framed as a description of what is to follow, rather than a 

continued description of the intuitive and deliberative causes. 

● The aim of this section is to describe the mechanism of decision biases, which involves 

the interaction of intuitive and deliberative processes. We believe it is important to 

highlight here how the three biases to be discussed arise from these processes. We 

cleaned up the text to make it more readable. 

● “All three are driven by faulty heuristic responses, which should be overridden by 

deliberative processes but are not. A form of anchoring bias can also be driven by flawed 

deliberative processing, which is discussed.” 



 

P. 7; ln. 4: Arguably, students may have an advantage in some of these settings as they may 

have more recently experienced a broader range of geological settings and applications. 

● This would certainly be likely to aid them with availability bias (which arises because of 

reliance on salient cases from memory), but would have less of an impact on framing 

bias (which arises from emotional reactions to positive/negatives). Although it is not a 

question we address in this paper, it is interesting to consider how level of domain 

expertise influences decision making, i.e., in what situations is expertise a help versus a 

hindrance?  

● No changes to manuscript 

 

P. 8; ln. 10: Great to see this highlighted, however are the experts addressing epistemic or 

aleatory uncertainty in this exercise? The prediction of the range of variability could indicate that 

this would be an aleatory uncertainty, unless guided by an underlying epistemic uncertainty in 

the interpreted mechanism of corrosion. 

● Phillips (1999) assesses epistemic uncertainty, probability distributions were obtained 

from experts who considered an uncertain quantity relevant to risk analysis of a 

proposed nuclear waste facility. 

● No changes to manuscript 

 

P. 9; ln. 28: Multi-scenario modelling is common in some sub-disciplines, making the general 

application of this statement to the whole discipline of geology inaccurate. 

● In our understanding, multi-scenario modeling is a form of computational modeling. We 

view computational modeling as distinct from Chamberlin’s method of multiple working 

hypotheses, which describes the process of contrasting mental models. We discuss the 

value of computational models in the paragraphs following. 

● No changes to manuscript 

 

P. 11; ln. 34: Which models are referred to here (i.e. mental, geological, risk-models)? 

● Here we refer to computational models. Clarification added. 

● “there is concern amongst geoscience scholars that decision makers are not using 

computational models as often as expected, or correctly” 

 

P11; ln. 13-16: Personal opinion: This highlights the importance of sensitivity analysis, adding a 

sensitivity analysis to the end of any workflow providing immediate feedback to the practitioner 

(/learner). 

● We agree! 

● No changes to manuscript 

 

P.12; ln. 20: Much of the uncertainty training available to industry focuses on un- derstanding 

probability and raises awareness of bias in this context. In reality this is normally coupled with 

training in a structured workflow, potentially negating the implications of Fischoff’s description 

despite its broader relevance. 



● It is encouraging to know that workflows are incorporated in training. We included a 

sentence describing this common practice. 

● “Trainings on using structured workflows, as are common in geoscience industry, is one 

existing method of incorporating choice architecture techniques in education.” 

 

P. 12; ln. 22: Depending on the location of this box, a definition of choice architecture and 

nudging may be required. 

● Noted. For the proposed layout we anticipate that that will not be necessary. 

● No changes to manuscript 

 

P. 12; ln. 30: The description of choice architecture should be clarified with a more concise 

description. 

● Agreed this needs to be more concise. We edited the paragraph intro to improve clarity. 

● “Debiasing techniques that modify the environment alter the settings where decisions 

occur. The environment can be modified to make it a better fit for the strategy people 

naturally apply (e.g., status-quo bias pushes people to stick with a default response option 

over selecting a new option, so making the default a desirable outcome will maximize 

decision making). The environment can also be modified to “nudge” people towards the 

optimal choice strategy (e.g., prompts to induce reflection and deliberation)  This 

environment modification approach to debiasing is sometimes referred to as choice 

architecture, making the individual or entity responsible for organizing the environment 

in which people make decisions the choice architect (Thaler & Sunstein, 2009).” 

 

P. 13; ln. 7: Suggested that this paragraph be broken up. 

● Agreed this paragraph needed to be broken up.  

● A new paragraph was started with “The advantage of debiasing techniques that modify 

the environment, over those that modify the decision maker, is that it is the choice 

architect and not the decision maker who is accountable for debiasing (unless, of course, 

the architect and the decision maker are the same person)..” 

 

P. 13; ln. 20: A comment or citation with regards to standardisation of workflows in petroleum 

engineering would be well placed here. 

● Our understanding is that the standardization of workflows in petroleum geology and 

engineering was designed to ease comparison between researcher reports within the 

same company, and not to aid researcher decision making (our focus here). Therefore, 

we don’t think a reference here is appropriate. 

● No changes to manuscript 

 

P. 14; ln. 35: Check for the plurality of data. 

● Noted.  

● Changed from “data is” to “data are” 

 

P. 14; ln. 37: Could a steeper line also indicate a simpler problem? 



● Absolutely – and our definition of an “ideal” case is really just the case of a simple 

scientific problem. In other words, simpler scientific problems should be solved more 

efficiently than complex problems. 

● No changes to manuscript 

 

P. 16; ln. 9-11: On expert elicitation, it may be useful provide examples of how statistical 

approaches could be used to guide appropriate filtering and averaging of expert opinions (e.g. 

Aspinall, 2010). 

● We reference the importance of appropriate filtering/averaging in the next paragraph 

when we state, “ For example, research on expert elicitation practices in the geosciences 

has shown that erroneous predictions about geologic events are made when using 

subjective methods for selecting experts (Shanteau, Weiss, Thomas, & Pounds, 2002), 

and when judgments are not aggregated appropriately (Lorenz, Rauhut, Schweitzer, & 

Helbing, 2011; Randle et al., 2019). ” We feel a more thorough discussion of aggregating 

methods is beyond the scope of this paper. 

● No changes to manuscript 

 

P. 17; ln. 6: Considering this section; the principle advantage to this approach seems to be the 

reduction in cognitive load on the geoscientist during acquisition freeing up time for field location 

interpretation and potentially making a more uniform/complete dataset. Reading this section, I 

felt the psychological advantage was slightly dis- jointed compared to the psychological 

challenges (including bias) discussed earlier in the manuscript. A sentence framing the issue in 

line with the intuitive / deliberative thinking (P. 4; ln. 15) may provide a route to achieving this? 

● We have improved the connection between the case study section and the preceding 

bias review section by explicitly detailing how automated flights can address 

susceptibility to anchoring bias in field decisions about where to fly. The title of case 

study 1 was changed to: “Optimizing field data collection with UAVs to minimize 

anchoring bias”. We have also removed many extra details about UAVs not directly 

pertinent to the case study. Most of the changes were to the first three paragraphs 

● “In this case study, we describe how automated UAV navigation could be used to nudge 

geoscientists to be more efficient when making decisions regarding reconnaissance and 

mapping and mitigate against anchoring bias. The advent of better mobile robot platforms 

has allowed for the deployment of robots by ground, sea, and air to collect field data at a 

high spatial and temporal resolution. Here, we focus on the use of aerial robots (semi-

autonomous or autonomous UAVs) for data collection, but the conclusions we draw are 

likely applicable to other mobile robot platforms (i.e., underwater autonomous vehicles, 

ground robots).  

● Currently, the majority of geoscience research with UAVs is non-autonomous, i.e., user-

controlled. Efforts have been made to automate interpretation of geological data from 

UAV imagery or 3D reconstruction with some success (Thiele et al., 2017; Vasuki, 

Holden, Kovesi, & Micklethwaite, 2014; Vasuki, Holden, Kovesi, & Micklethwaite, 

2017), and the application of image analysis and machine learning techniques continue to 



be developed (Zhang, Wang, Li, & Han, 2018). In reconnaissance and geologic mapping, 

the decision of where to go and how to fly there is made by the expert – either the expert 

fly’s the UAV and makes navigation decisions in-situ or they pre-set a flight path for the 

UAV to follow semi-autonomously (cf. Koparan et al., 2018; Ore, Elbaum, Burgin, & 

Detweiler, 2015). However, a UAV that is capable of attending to measurements in real 

time and reacting to local features of measurement data could navigate autonomously to 

collect observations where they are most needed. Such autonomous workflows should 

increase the efficiency of data collection, and could be designed to mitigate against 

potential biases. Here, we consider how an automated UAV navigation nudge could 

reduce the tendency to anchor field exploration based on existing models and hypotheses  

● In our hypothetical example, a UAV surveys a large bedding surface with the aim of 

identifying fracture orientations. The bedding surface exposure is large, but split into 

difficult to access exposure, e.g., due to cliff-sections or vegetation (see Column A, 

Figure 4). A birds-eye view afforded by the UAV improves the ability to observe 

fractures, which would otherwise require time-costly on-foot reconnaissance to different 

outcrops of the bedding surface. Note that in our hypothetical example we assume that 

fracture information is obtained only when the flight path crosses fractures (e.g., Column 

B, blue flight path), thereby representing a high level reconnaissance rather than a flight 

path in which overlapping imagery is collected. When the UAV flight path is user-

controlled, the decision of where and how to fly is unlikely to be optimal: users could be 

distracted by irrelevant information in UAV view, and are likely biased towards 

exploring certain features and ignoring others (see Andrews et al., 2019). For example 

fractures may only be sampled where fracture data is dense, or in an orientation that 

maximizes sample size but not the range in orientation (see Watkins, Bond, Healy, & 

Butler, 2015), or when it fits with a hypothesis (e.g. tensional fractures parallel to the 

axial trace of a fold). These strategies are all informed by expectations, leaving the 

geoscientist vulnerable to anchoring her sampling behavior to align with initial 

interpretations and hypotheses. This anchoring bias is visualized in Column B (blue flight 

path), where the user detects two unique fracture orientations (a, b) on the first exposure 

visited, but then spends needless time (T1 to T2) at exposure that offers no new 

information, before finally visiting exposure that features the previously identified 

orientations (a, b) and a novel N-S fracture orientation. This novel orientation is not 

detected in the user’s flight path – the accompanying certainty plot in Column B shows 

that time spent at uninformative exposure (T1 to T2) results in increased certainty that all 

orientations have been sampled, when in fact they have not (i.e., the threshold of 

confidence is reached before sampling the N-S orientation). This is reflected in the rose 

diagrams in Column B, which show the orientation of fractures and the relative number 

of fractures sampled in each orientation; even at time T3 the three fracture sets (as shown 

in the rose diagram in Column A) are not represented.” 

 

P. 19; ln. 16: Could the sub-titles of the case studies be altered slightly to indicate their 



psychological significance. e.g. Case study 2: Automation as a tool to allow more deliberative 

thinking. Case study 2: A nudge to verify fault interpretation.  

● We agree that changing the titles to better reflect their psychological significance was 

needed. 

● Case study 1 was changed to: “Optimizing field data collection with UAVs to minimize 

anchoring bias.”, and Case study 2 was changed to: “Fault interpretations in 3D seismic 

image data to minimize availability bias.” 

 

P. 19; ln. 21: The analysis/interpretation of seismic volumes is inherently 3D, even if 

visualisation is in 2D. Methods such as 3D geobody extraction, geometric attribute analysis or 

horizon extractions are commonly employed and 3D in both analysis and visualisation. 

Description of the geological technique could potentially be summarised, allowing further 

discussion of the psychological challenges to be addressed. 

● We have improved the connection between the case study section and the preceding 

bias review section by explicitly detailing how seismic interpretation aids (built into 

software) can address susceptibility to availability bias during interpretation. The title of 

case study 2 was changed to: “Fault interpretations in 3D seismic image data to 

minimize availability bias”. We also removed details about the technique of automated 

horizon tracking (including the accompanying Figure 5) which are not directly pertinent to 

the case study. Most of the changes were to the first three paragraphs 

● “In this case study, we consider how software interpretations of seismic image data, and 

the information derived from them, could be used to nudge geoscientists to consider 

alternative models and minimize availability bias. Understanding of the geometries of 

sub-surface geology is dominated by interpretations of seismic image data, and these 

interpretations serve a critical role in important tasks like resource exploration and 

geohazard assessment. 3D seismic image volumes are analyzed as sequences of 2D 

slices. Manual interpretation involves visually analyzing a 2D image, identifying 

important patterns (e.g., faulted horizons, salt domes, gas chimneys) and labeling those 

patterns with distinct marks or colors; then, keeping this information in mind while 

generating expectations about the contents of the next 2D image. Given the magnitude 

and complexity of this task, there has been a strong and continued interest in developing 

semi-autonomous and autonomous digital tools to make seismic interpretation more 

efficient and accurate (e.g., Araya-Polo et al., 2017; Di, 2018; Farrokhnia, Kahoo, & 

Soleimani, 2018).  

● Here, we consider how 3D information could be used with digital nudge technology to 

inform fault interpretations in a 3D seismic image volume. Simple normal fault patterns 

show a bull’s-eye pattern of greatest displacement in the center of an isolated fault, 

decreasing towards the fault-tip (see Image A, Figure 6). Consider interpreting 2D 

seismic image lines across the fault starting at in-line A (Image A) and working towards 

in-line F: with each subsequent line the displacement of horizons across the fault should 

increase and then decrease, although this pattern will not be known until the 

interpretation is completed. Holding this information on displacements for individual 



faults between in-line interpretations in complicated seismic image data (e.g. with 

multiple faults per seismic section, Image B, Figure 6) is incredibly challenging even for 

the well-practiced expert. We imagine a digital nudge that alerts users to discrepancies in 

fault displacement patterns, and prompts consideration of alternative fault patterns, 

thereby relieving some of the cognitive burden of 3D interpretation from the expert and 

guarding them against availability bias by encouraging consideration of models beyond 

what is most readily accessible to the mind.  

● In our hypothetical example, a geoscientist analyzes a 3D seismic volume, interpreting in 

a series of 2D in-line images faults and horizon off-sets. As subsequent in-lines (A-F) are 

interpreted, fault displacement patterns are co-visualized, so inconsistencies from normal 

fault displacement can be clearly seen. Fault 1 (Image B) conforms to a simple fault-

displacement pattern (see Fault 1 displacement-distance plot). Fault 2 appears to conform 

to a similar pattern until in-line D when the interpreted displacement decreases; on 

interpretation of in-line E, the displacement on Fault 2 increases again, further 

highlighting the displacement anomaly on in-line D. Reduced displacement in itself does 

not highlight an issue, but consideration of the displacement-distance plot for Fault 1 

suggests that if the interpreted displacement for Fault 2 is correct then the two faults are 

behaving differently. In our imagined digital tool, this discrepancy in displacement 

between nearby faults would be flagged for further consideration by the user, and 

potential alternative models could be highlighted. You can see the hypothetical 

conclusion certainty plots for the interpreter for the two faults (Fault 1 = green line, Fault 

2 = pale blue line) during the interpretation process. Note the decrease in certainty of the 

interpreter for Fault 2, as they interpret in-lines D and E, in comparison to the increasing 

certainty for Fault 1 as consecutive interpreted in-lines conform to a simple normal fault 

displacement pattern. At in-line E the co-visualized displacement-distance plot nudges 

the interpreter to consider a new interpretation for Fault 2 at in-line D. Certainty in this 

new interpretation (displayed as dark blue dashed line on certainty plot), now increases as 

subsequent in-line interpretations conform to expected displacements.” 

 

P. 20; ln 19: Nice example of using nudges to influence workflow decision. Again, de- scription 

of the geological technique could potentially be summarised, allowing further discussion of the 

psychological challenges to be addressed. 

● See previous comment about case study 2. 

 

 

Florian Wellmann 

 

The second part of the manuscript is then focused on two case studies on the combination of 

"AI" with human interpretations in order to improve decision making. In this part, I have some 

problems in following the argumentation of the authors. I understand that any help with reducing 

cognitive overloading ("busy editor") can potentially help. But especially in the first case, I do not 

quite see how an automated sampling strategy can help here. For sure, an optimised sampling 



is interesting in itself - but how does this address the three forms of bias presented above, as 

opposed to a pure random sampling or the commonly used regular flight paths (option "C" in 

Fig. 4)? The only added benefit I see (maybe because this is a simplified example) is the 

reduced time of sampling. Even more: couldn’t one also argue that any form of "AI" is prone to 

introducing additional bias, as it is based on an underlying algorithm that may also be biased? 

Also, you argue in line 13 (pg. 19) that the expert (user) should retain the ability to interact and 

adjust the flight path - but wouldn’t this then again be prone to the biases described before? 

● We have improved the connection between the case study section and the preceding 

bias review section by explicitly detailing how automated flights can address 

susceptibility to anchoring bias in field decisions about where to fly. The title of case 

study 1 was changed to: “Optimizing field data collection with UAVs to minimize 

anchoring bias”. We have also removed many extra details about UAVs not directly 

pertinent to the case study. Most of the changes were to the first three paragraphs 

● Regarding AI introducing additional bias – Yes, this is possible, dangers and necessary 

precautions (i.e., explainability) are discussed in the conclusion. 

● Regarding the user retaining autonomy to make biased decisions – this is a classic 

principle of the choice architecture approach, i.e., freedom of choice must never be 

encroached upon. As we state in section 4.2, “It is the role of the choice architect…to 

influence people’s decision making such that their well-being (and the well-being of 

others) is maximized, without restricting the freedom to choose. Importantly, there is no 

such thing as neutral choice architecture; the way the environment is setup will guide 

decision making, regardless of whether the setup was intentional on the part of the 

architect, e.g., descriptions of risk will be framed in terms of gains or losses, a wise 

architect chooses the framing that will maximize well-being.”  

 

The aspect of fault interpretations in seismic data, explained in case study 2, is more obvious to 

me - although here the question could also be how much bias is in the initial choice of a fault 

displacement model (which can be based on physical principles, but the potential interactions 

can also quickly become very complex when considering fault networks, relay structures, etc.). 

But here, the point of flagging potential areas of problems is an interesting aspect of "digital 

nudging" (if I understand it correctly), and similar to the example from Polson and Curtis (2010) 

and the "bias warning" point in the expert decision-making process. 

● We have improved the connection between the case study section and the preceding 

bias review section by explicitly detailing how seismic interpretation aids (built into 

software) can address susceptibility to availability bias during interpretation. The title of 

case study 2 was changed to: “Fault interpretations in 3D seismic image data to 

minimize availability bias”. We also removed details about the technique of automated 

horizon tracking (including the accompanying Figure 5) which are not directly pertinent to 

the case study. Most of the changes were to the first three paragraphs 

 

 

Anonymous Referee 

 

Section 4 did not convince me. I still followed the arguments in Sections 4.1 and 4.2, describing 



why it is more successful to work on changing the environment, rather than teaching the 

decision maker new skills. But I found it hard to truly understand how the two case studies in 

Section 4.2 truly connect with the biases outlined in the earlier sessions. In particular, Case 2, 

which focuses on sub-surface geology had so many details related to sub-surface geology that I 

found it generally hard to follow. Both cases seemed to be examples that show that one should 

provide the user with as much useful information and software support as possible. Obviously, 

it’s always useful to provide as much reliable, comprehensive information as possible to a 

decision maker, and such information will improve the decision process, and the software 

should be as transparent as possible. What am I missing here? Maybe the new point is that the 

biases are to be detected and software is to be designed specifically to overcome these specific 

biases. Is that the key point? But how do you identify all these holes and biases? How do you 

design software to fill these holes? How do you make sure the software solution is reliable in all 

cases and does not "nudge" the expert into the wrong correction? 

● To address reviewer comments about the case studies, we have shortened the geologic 

descriptions (removing sub-discipline jargon) and improved the connection between the 

case study section and the preceding bias review section. Details of these changes are 

discussed in comments below. 

● Regarding the identification of biases by AI – this is something we cover in the 

conclusion when discussing nudge design and the importance of “explainability”. 

 

In terms of style, the first 3 sections are a pleasure to read, but include some repetitions, e.g., 

many statements are made in Section 1 and then repeated in more detail in later sections. So I 

suggest to look for redundant statements and shorten those sections a bit.  

● Redundancies were checked for and removed, specifically repetitious references to IT/AI 

solutions to debiasing. 

 

For Section 4 my main suggestions would be to 1) work hard on clarity in the case studies of 

how exactly they connect to the biases discussed earlier; 2) spell out the way forward, i.e. how 

could the lessons learned here be generalized to other applications. In fact, I might even 

suggest to drastically shorten + de-emphasize the case studies to be only 1-2 paragraphs each, 

and maybe moving the rest to an appendix, then to focus on the main message of the paper in 

terms of fighting general biases and how to do that instead. I don’t know, however, whether the 

remaining material warrants publication in this venue. 

● To address reviewer comments about the case studies, we have shortened the geologic 

descriptions (removing sub-discipline jargon) and improved the connection between the 

case study section and the preceding bias review section. 

● For case study 1, we have improved the connection to the preceding bias review section 

by explicitly detailing how automated flights can address susceptibility to anchoring bias 

in field decisions about where to fly. The title of case study 1 was changed to: 

“Optimizing field data collection with UAVs to minimize anchoring bias”. We have also 

removed many extra details about UAVs not directly pertinent to the case study. Most of 

the changes were to the first three paragraphs 

● For case study 2, we have improved the connection to preceding bias review section by 

explicitly detailing how seismic interpretation aids (built into software) can address 



susceptibility to availability bias during interpretation. The title of case study 2 was 

changed to: “Fault interpretations in 3D seismic image data to minimize availability bias”. 

We also removed details about the technique of automated horizon tracking (including 

the accompanying Figure 5) which are not directly pertinent to the case study. Most of 

the changes were to the first three paragraphs 

 

P. 5, Line 16-17: Mentions the three types of biases for the 3rd time. Too much repetition.  

● This is only the second time the bias types are mentioned (besides the abstract). We 

feel the repetition in this instance is warranted. 

● No changes to manuscript 

 

P. 5, Line 30. There’s something missing here. "Over ??? have found ... "  

● Formatting error, missing “⅔” 

● Changed to “two-thirds” 

 

P. 11. There is a Section 4.1.1, but no 4.1.2. P. 14,  

● We intend section 4.1.1 to be included as an appendix or be contained within some box 

that distinguishes it from the main text. 

● No changes to manuscript 

 

Line 24. "of of" 

● Noted. 

● Changed to “of” 
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Abstract 

In the geosciences, recent attention has been paid to the influence of uncertainty on expert 

decision making.  When making decisions under conditions of uncertainty, people tend to 

employ heuristics (rules of thumb) based on experience, relying on their prior knowledge and 

beliefs to intuitively guide choice. Over 50 years of decision making research in cognitive 

psychology demonstrates that heuristics can lead to less-than-optimal decisions, collectively 

referred to as biases. For example, the availability bias occurs when people make judgments 

based on what is most dominant or accessible in memory; a geoscientist who has spent the past 

several months studying strike-slip faults will have this terrain most readily available in her mind 

when interpreting new seismic data. Given the important social and commercial implications of 

many geoscience decisions, there is a need to develop effective interventions for removing or 

mitigating decision bias. In this paper, we outline the key insights from decision making research 

about how to reduce bias and review the literature on debiasing strategies. First, we define an 

optimal decision, since improving decision making requires having a standard to work towards. 

Next, we discuss the cognitive mechanisms underlying decision biases and describe three biases 

that have been shown to influence geoscientists’ decision making (availability bias, framing bias, 

anchoring bias). Finally, we review existing debiasing strategies that have applicability in the 

geosciences, with special attention given to those strategies that make use of information 

technology and artificial intelligence (AI). We present two case studies illustrating different 

applications of intelligent systems for the debiasing of geoscientific decision making, where 

debiased decision making is an emergent property of the coordinated and integrated processing 

of human-AI collaborative teams. 

 

“Evidently, if the investigator is to succeed in the discovery of veritable explanations of 

phenomena, he must be fertile in the invention of hypotheses and ingenious in the application of 

tests. The practical questions for the teacher are, whether it is possible by training to improve the 

guessing faculty, and if so, how it is to be done. To answer these, we must give attention to the 

nature of the scientific guess considered as a mental process. Like other mental processes, the 

framing of hypotheses is usually unconscious, but by attention it can be brought into 

consciousness and analyzed.”  
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– G.K. Gilbert (1886) 

 

1. Introduction 
When G.K. Gilbert wrote about the development of a “guessing faculty” in “The 

Inculcation of Scientific Method by Example” (1886), he was one of the first to highlight the 

value of understanding how geoscientists resolve epistemic uncertainty during judgment and 

decision making. Epistemic uncertainty refers to knowledge that an individual, in principle, 

could have, but does not, i.e., limited information of the environment or system of study. 

Although epistemic uncertainty is a feature of all sciences, in the geosciences it is the standard 

rather than the special case (Bárdossy & Fodor, 2001; Frodeman, 1995). Geoscientists must 

frequently make decisions where data are incomplete, e.g. where the rock record is incomplete 

due to limited exposure or erosion, where isolation of processes can be difficult because multiple 

processes have cumulatively transformed the rocks, and where direct observation (much less 

experimental control) is impossible due to the large time spans of geologic processes, which 

leaves evidence lost or buried beneath the Earth’s surface. 

To understand the influence of uncertainty on decision making in the geosciences, and 

what the human mind adds to the problem of inducing rules from incomplete cases, recent 

research has followed Gilbert’s advice and studied geologic uncertainty as a mental process 

through the lens of cognitive science. In this work, particular attention has been paid to ways that 

humans constrain judgment and decision making through the use of heuristics, i.e., rules of 

thumb. Heuristics are efficient and offer satisfactory solutions for most decisions, but they can 

sometimes yield less-than-optimal choices, collectively referred to as human decision biases. 

Geoscience scholars have begun to characterize the influence of such biases in geologic decision 

making (Alcalde, Bond & Randle, 2017a; Alcalde et al., 2017b; Barclay, Renshaw, Taylor, & 

Bilge, 2011; Bond, Gibbs, Shipton, & Jones, 2007; Polson & Curtis, 2010; Rowbotham, Kane, & 

Bentley, 2010; Taylor, Renshaw, & Jensen, 1997). For example, the interpretation of synthetic 

seismic images has been shown to be vulnerable to availability bias, which occurs when people 

make judgments based on what is most dominant or accessible in memory; participants’ 

interpretations were positively related to their primary field of expertise in tectonic settings, i.e., 

an individual who indicated thrust tectonics as their primary field (and had this setting most 

accessible in memory) was more likely to interpret the image as thrust faults than an individual 

with a different expertise (Bond et al., 2007).  

Characterizing the impact of decision biases such as the availability bias is important and 

more work is needed to determine the range of biases influencing geoscientists and their 

prevalence in geologic decision making. However, given the potential costs of biased decisions, 

there is a still greater need to develop effective interventions for removing or mitigating bias. In 

the words of Gilbert (opening quote), to determine “whether it is possible by training to improve 

the guessing faculty, and if so, how it is to be done.” The development of debiasing techniques is 

especially important for geologic decisions that have social and commercial implications (e.g., 

hazard prediction, resource extraction, waste storage, water supply), but could also benefit the 

underpinning workflows involved in more commonplace decisions (e.g., navigation, mapping) 

and result in improved field practice. The cognitive literature on judgment and decision making 

offers valuable insights into how susceptibility to decision bias can be reduced and thus how 

geologic decision making under uncertainty might be improved. In this paper, we outline the key 

insights from judgment and decision making research about how to reduce bias and review the 

literature on debiasing strategies. In doing so, we seek to highlight the most promising avenues 
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for future research on debiasing geologic decision making in the context of evolving 

technological advancements in geoscience practice and education.  

The paper is organized as follows. First, we briefly discuss how to define an optimal 

decision, since “improving” geologic decision making necessitates having a clear standard to 

work towards. Next, we describe the origins of decision biases using a dual-process distinction 

that has been supported by a wealth of research in cognitive science (for review, see Evans & 

Stanovich, 2013). Dual-process theories of decision making posit the existence of two unique 

sets of processes, a set of intuitive and largely automatic processes and a set of deliberative and 

more effortful processes. We explain how dual-process theories can account for three specific 

decision biases, the availability bias, framing bias, and anchoring bias. We focus on these three 

biases because their influence has been well-documented in the geoscience literature. Finally, we 

analyze existing debiasing strategies that have applicability in the geosciences. We categorize 

existing strategies based on whether they debias by modifying the decision maker (i.e., provide 

knowledge or tools that must be self-employed to debias), or debias by modifying the 

environment (i.e., change settings or the information available in the environment where 

decisions occur to debias). Special attention is given to debiasing strategies that make use of 

information technology and artificial intelligence (AI) when modifying the decision maker or 

environment. We believe that these technologies offer the opportunity to overcome some of the 

cognitive constraints that result in biased strategies and thus hold the greatest promise of 

successful application in the geosciences.  

 

2. Optimal Decision Making 

 What does it mean to choose optimally during scientific decision making? The scientific 

decision process is complex and dynamic, and “optimality” may be defined at various levels, 

from selection of measurement tool and sampling site, to calculation of individual parameters, to 

interpretation (single or multi-scenario). The position we take in this article is that normative 

decision models offer a reasonable benchmark for assessing optimal choice, and could be applied 

in a  in geoscience decisions at all levels context. Normative models are based in economic 

theory and describe how people should make decisions.: People should strive to maximize the 

expected utility of a decision, the probability that an act will lead to an outcome that is preferable 

to all alternatives (the principle of dominance). Also, people should be internally consistent in 

their decision making, meaning they should assign the same utility to decision alternatives 

regardless of minor changes in context, such as the description and order of alternatives, or the 

presence or absence of other alternatives (the principle of invariance).  

Unfortunately, what people should do is not always what they actually do. Numerous 

behavioral decision studies have demonstrated that how people make decisions in the real world 

can systematically violate normative models (for review, see Gilovich, Griffin, & Kahneman, 

2002; Kahneman, 2011). These systematic departures from optimal choice are referred to as 

biases, and they arise (as described in the Introduction) from reliance on heuristics during 

decision making. For example, framing equivalent decision outcomes as positive (e.g., 60% 

chance to win) or negative (e.g., 40% chance to lose) has been shown to systematically alter risk 

preference, a violation of the invariance principle. This framing bias can drive individuals to 

make decisions that fail to maximize expected value (e.g., preference for a certain gain over a 

gamble with a probabilistically higher value), a violation of the dominance principle. 

 While it is clear from past research that people do not always make decisions as they 

should, there is good reason to believe that people have the capacity to improve decision making 
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to the normative standard. This is evidenced by the observations that (1) when people actively 

reflect on normative principles they are likely to endorse them, even if they have violated those 

norms in the past, and (2) some people already adhere to normative principles in their decision 

making, and these individuals often have higher analytic skills (are more reflective and engaged) 

than those who are vulnerable to bias (for review, see Stanovich & West, 2000). Thus, in the 

current article we will not focus on the question of whether geoscientists can make optimal 

choices (we assume this is possible), instead we will address the question of how to effectively 

move geoscientists decision making towards a normative standard (section 4, Debiasing 

Strategies and Interventions). However, first we review in more detail the cognitive mechanisms 

by which biases arise. 

 

3. Origins of Decision Biases 

In the opening quote, Gilbert is astute in his observation that the mental processes 

through which decision makers handle uncertainty are frequently outside the focus of their 

attention. Converging evidence from psychology and neuroscience suggests there are two 

distinct sets of processes driving judgment and decision making (for review, see Evans & 

Stanovich, 2013). One set of processes is intuitive and places minimal demand on cognitive 

resources because it does not require controlled attention. The other set is deliberative and places 

greater demand on cognitive resources, but also enables uniquely human abilities such as mental 

simulation and cognitive decoupling during hypothetical thinking, i.e., the ability to prevent real 

world representations from becoming confused with representations of imaginary situations. In 

the judgement and decision making literature these sets of processes are typically referred to as 

Type 1 and Type 2 processes, respectively; however, for the purposes of this paper we will 

simply refer to them as intuitive and deliberative. Both sets of processes serve important 

functions when making decisions under uncertainty. Generally, intuitive processes are believed 

to be prompted rapidly and with minimal effort, providing default responses that serve as 

heuristics. When the heuristic responses are inappropriate and do not align with set goals, 

deliberative processes intervene and engage available resources for slower, more reflective 

reasoning (Evans & Stanovich, 2013; Kahneman & Frederick, 2002).  

The interaction between intuitive and deliberative processes can be likened to that of a 

reporter and an editor in a newspaper room1. Reporters (i.e., intuitive processes) interpret the 

world and produce the bulk of the written work (i.e., decision making). It is the job of the editor 

(i.e., deliberative processes) to endorse the work of reporters, edit the work, or stop it altogether. 

Unfortunately, editors are often overburdened, and so stories that should be edited or stopped 

(because they are in some way flawed or objectionable) are instead endorsed. Similarly, 

deliberative processing is often overworked because it is restricted by the limited capacity of 

available cognitive resources – and so heuristic responses that are ill-suited for the current 

decision environment can be mistakenly endorsed by deliberative processes.  

It is important to note that, on most occasions, heuristic responses do lead to good 

decisions. Intuitive processing draws from our knowledge of the world, our experiences, and the 

skills we possess – it is what allows us to move quickly and efficiently through our environment, 

making decisions with relatively little effort. To truly appreciate the value of intuitive 

processing, consider how your behavior in the last hour would have changed if you had to 

deliberately think about every choice: you would have had to deliberate about the best form for 

                                                           
1 The reporter-editor analogy, to our knowledge, was first introduced by Daniel Kahneman in 2013 during an 

interview with Morgan Housel for The Motley Fool, a multimedia financial advisement company.  
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sitting down and standing up, the amount of time spent in each position, where to put your pen, 

which way to position your coffee cup, the best web browser to use, and so on. Viewed in this 

light, we should all be thankful for the intuitive processes that allow us to make decisions 

quickly and effortlessly. 
Yet, while intuitive processing is generally effective, there are some situations in which 

the heuristic responses generated by intuitive processes are inappropriate and fail to meet desired 

goals. In such circumstances, we need intervention from deliberative processes to behave 

optimally. Decision making is vulnerable to bias when (1) deliberative processes do not interrupt 

and override faulty heuristic responses, or (2) when the content of deliberative processing is 

itself flawed. Because deliberative processing is constrained by the capacity of available 

cognitive resources, in situations where resources are already limited (e.g., high mental effort 

tasks, fatigue, sleep deprivation) decision makers will be more likely to rely on heuristic 

responses, thus making them particularly susceptible to bias in such situations. Also, in general, 

humans act as cognitive misers (Böckenholt, 2012; Stanovich, 2009), meaning even when 

cognitive resources are available for deliberative processing, we tend to rely on less effortful 

intuitive processes. Thus, broadly speaking, decision making may be debiased by changing the 

environment, or through training change the decision maker, so default heuristic responses lead 

to good decisions, or so the application of deliberative processing is supported under conditions 

where it is otherwise unlikely to be applied (Milkman, Chugh, & Bazerman, 2009).  

There are three decision biases that have been shown to influence geologic decision 

making: the availability bias, the framing bias, and the anchoring bias. All three are driven by 

faulty heuristic responses, which should be overridden by deliberative processes but are not. A 

form of anchoring bias can also be driven by flawed deliberative processing, which is discussed 

we will discuss after reviewing the intuitive processing causes. These three biases by no means 

exhaust the full range of biases that could be influencing geologic decision making under 

uncertainty, but they are, at present, the best-documented in the geosciences literature. For a 

more complete list of biases and their potential influence on geologic decision making see 

Baddeley, Curtis, & Wood (2004), Bond (2015), and Rowbotham et al. (2010).  

 

3.1. Availability bias 

 This bias is driven by an availability heuristic (intuitive process), which is a tendency to 

make decisions based on what is most dominant or accessible in memory. To illustrate, consider 

the following: do air pollutants have a higher concentration outdoors or indoors? When asked to 

make this judgment you likely recalled (automatically and without effort) news stories related to 

outdoor air pollutants; maybe you visualized billowing smoke, car exhaust, or a smoggy city 

skyline. The ease with which examples of outdoor air pollution were drawn to mind probably led 

you to conclude that air pollution is more highly concentrated outdoors versus indoors. If so, you 

have just fallen prey to the availability bias. In fact, of those air quality studies examining both 

indoor and outdoor environments, over two-thirds ⅔ have found higher pollutant concentrations 

inside (Chen & Zhao, 2011). 

 The availability heuristic can lead to bias because it substitutes one question (the size or 

frequency of a category or event) for another (the accessibility of the category or event in 

memory). When the ease with which something is drawn to mind is not reflective of the true size 

or frequency, bias occurs. There are many factors besides frequency that can make it easy to 

come up with instances in memory. For example, the recency with which something has 

occurred (e.g., flying is perceived as more risky or dangerous immediately following a plane 
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crash.), whether it holds personal significance (e.g., people have better attention and memory for 

the household tasks they complete, causing them to underestimate the contributions of their 

living partner), and how salient or dramatic it is (e.g., shark attacks get lots of media attention so 

people tend to exaggerate their frequency). Note, then, that if a event (a) did not occur recently, 

(b) does not apply to you, or (c) is banal, it will lead to an impression that the event is rare (even 

if it is not).  

 In the geoscience literature, evidence of the availability bias during data interpretation 

has been documented in both experts (Bond et al., 2007) and students (Alcalde et al., 2017b). 

Bond et al. (2007) found that experts’ interpretations of seismic images were related to their 

primary field of expertise in tectonic settings, specifically, the most dominant tectonic setting in 

memory was the one selected. Likewise, Alcalde et al. (2017b) found that geology students were 

more likely to interpret a fault in a seismic image as normal-planar as this fault type and 

geometry are over-represented in teaching materials, particularly those the students had 

encountered. After students were exposed to a greater range of fault models through a two-week 

training course, the range of fault interpretation type and geometry increased. The potential value 

of such education programs for reducing vulnerability to decision bias is discussed in Box 1, 

“Can better decision making be taught?”. 

 

3.2. Framing bias 

 Framing bias occurs when people respond differently to objectively equivalent judgments 

based on how potential outcomes are described, or framed. It is generally believed to be the 

result of an initial affective reaction, or affect heuristic (intuitive process), that makes certain 

gains particularly attractive and certain losses particularly aversive (Kahneman & Frederick, 

2007; but cf. Gonzalez, Dana, Koshino, & Just, 2005). In a now classic example of framing bias, 

Tversky and Kahneman (1981) showed that when disease outbreak intervention programs were 

framed in terms of lives saved (i.e., 200 out of 600 people will be saved OR 1/3 probability 600 

people will be saved, 2/3 probability 0 people will be saved) participants preferred the sure 

option over the risky option, but when the same programs were framed in terms of lives lost 

participants preferred the risky option over the sure option2. This research had a huge impact in 

the fields of psychology and economics (as of 2018 it has been cited over 17,600 times) because 

it illustrated that human preference can be the product of problem description, and not actual 

substance. Subsequent research has shown that frame-driven changes in risk preference are 

robust, occurring across a variety of populations and domains, including experts in medicine 

(McNeil, Pauker, Sox, & Tversky, 1982), law (Garcia-Retamero & Dhami, 2013), finance 

(Fagley & Miller, 1997), and geoscience (Barclay et al., 2011; Taylor et al., 1997). 

Early evidence of framing bias in geologic hazard risk assessment was found by Taylor et 

al. (1997) across two experiments. In experiment 1, participants of varying levels of expertise 

(high school student, undergraduate student, professional geoscientist) were asked to make 

decisions regarding hazardous waste storage, flood protection, and volcano monitoring. These 

problems were presented in a format similar to the disease outbreak problem by Tversky and 

Kahneman (1981): for the waste storage problem, the positive frame described the probability of 

safe storage and the negative frame described the probability of an accidental spill; for the flood 

protection problem, the positive frame described the probability the protection would succeed 

and the negative frame described the probability it would fail; and for the volcano monitoring 

                                                           
2 This example represents only one manifestation of framing bias, referred to as “risky choice framing”. For a 

complete typology of framing effects see Levin, Schneider, and Gaeth (1998). 
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problem, the positive frame described the probability the volcano would remain dormant and the 

negative frame described the probability of an eruption. Across all scenarios, participants 

demonstrated evidence of frame-driven changes in risk preference. Importantly, professional 

geoscientists were just as vulnerable to bias as students, suggesting that even experts (who 

regularly make decisions that impact public safety) can be swayed by superficial choice 

descriptions. 

In experiment 2 (Taylor et al., 1997), high school student participants completed a 

variation of the volcano monitoring problem in which they played the role of a volcanologist 

who must interpret incoming information from three instruments to make ongoing decisions 

about how many people to evacuate from the area surrounding a volcano. Readings from the 

three instruments were correlated with probabilities of volcanic activity that were positively 

framed (i.e., dormant) or negatively framed (i.e., eruption). Participants completed either a 

paper-pencil version or a computerized version of the task. Again, participants demonstrated 

frame-driven changes in risk preference, but only in the paper-pencil version; in the 

computerized version, participants were resistant to framing bias. In a follow-up study by 

Barclay et al. (2011), the same computerized volcano monitoring problem was used but 

instrument readings were either presented in text format (as in experiment 2; Taylor et al., 1997) 

or in a novel graphical format. Barclay et al. (2011) reported similar findings of resistance to 

framing in the text version, but found that presenting instrument readings graphically produced 

frame-driven changes in risk preference. That presentation mode (paper-pencil, computer) and 

presentation format (graphical, text-based) have an influence on vulnerability to framing bias 

demonstrates the complexity of characterizing cognitive biases and the need for evidence 

informed practices, which we discuss further in section 4, Debiasing Strategies and 

Interventions. 

 

3.3. Anchoring bias 

Anchoring is the result of focusing on the first available value or estimate for an 

unknown quantity before making a judgment or decision about that quantity. The initial value 

“anchors” subsequent judgments, so decisions stay close to the value considered. Bias occurs 

when the anchor is incorrect or arbitrary. Unfortunately, even when decision makers are fully 

aware that the anchor is a meaningless value, it still has a strong influence on their choice. For 

example, a study by Englich, Mussweiler and Strack (2006) asked expert judges to make a 

hypothetical prison sentence for a shoplifter (in months) after rolling a loaded die that only 

landed on three or nine. Those judges who rolled a nine gave an average sentence of eight 

months, while those who rolled a three gave an average sentence of five months.  

In science, anchors come in the form of initial hypotheses or interpretations. 

Vulnerability to bias can make scientists reluctant to accept alternative explanations, even in the 

face of disconfirming evidence. Ultimately, this can disrupt the evolution of knowledge. In the 

geosciences, for example, Rankey and Mitchell (2003) demonstrated that experts only made 

minor changes to their initial interpretations of 3D seismic data after being given additional 

quality information that could aid interpretation. One expert (who did not change his 

interpretation at all) noted, “I did … not want to change any of my picks based on the additional 

well data - looks like I had it nailed.” 

A particular form of anchoring bias is called herding (Baddeley, 2015). Herding is group-

driven behavior in which members’ judgments are anchored to those of influential group 

members. This can be especially detrimental in science because evidence that conflicts with 
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established consensus or opinion can be sidelined, and if the conflicting findings are successfully 

published, the authors risk being ostracized or punished. There are well-known historical 

examples: Galileo Galilei was convicted of heresy by the Catholic church for supporting the 

Copernican theory that the earth and planets revolve around the sun (Lindberg, 2003); Alfred 

Wegener’s championing of plate tectonics theory was ignored, mocked, and deemed 

pseudoscience by his peers for over 40 years (Vine, 1977). 

 Empirical evidence of herding in the geosciences was first demonstrated by Phillips 

(1999) who showed that experts’ probability distributions of corrosion rates for nuclear waste 

storage containers differed depending on whether they were elicited independently or in groups. 

Experts made different prior assumptions resulting in probability distributions that were initially 

radically different. Inter-expert discussion resulted in some convergence of probability 

distributions but was also accompanied by an increase in the variance of each independent 

distribution, i.e., experts increased the spread of their initial distributions to encompass the 

spread of the consensus distribution. In a similar study, Polson and Curtis (2010) showed that 

experts’ estimated probability distributions for the presence of a fault were vulnerable to herding; 

the group of experts moved towards a single member’s opinion, such that the consensus 

distribution was primarily a reflection of the views of one individual. 

 As mentioned in section 3, Origins of Decision Biases, anchoring is typically driven by a 

faulty heuristic response, which should be overridden by deliberative processing, but is not. 

When given an anchor, intuitive processes immediately construct a world where the anchor is 

true by activating compatible memories. This, in turn, primes decision makers to notice 

information that is consistent with the anchor and ignore or discount information this is 

inconsistent. In the Rankey and Mitchell (2003) study, the participant who “had it nailed” was 

demonstrating an anchoring bias driven by faulty intuitive processing; the participant was primed 

to interpret new data as consistent with his initial hypothesis and ignore disconfirming data.  

Alternatively, anchoring can be driven by flawed deliberative processing, which occurs 

when decision makers fail to adequately adjust from the anchor. We know this is a failure of 

deliberative processing because people are more prone to insufficient adjustment when their 

mental resources are depleted, e.g., when their attention is loaded or when consuming alcohol 

(Epley & Gilovich, 2006). Research shows people tend to only adjust estimates to the first 

plausible value and are generally unwilling to search for more accurate estimates (Epley & 

Gilovich, 2006). This may explain why participants in the Phillips (1999) study, when given the 

opportunity to adjust their initial probability distributions following group discussion, primarily 

increased their distribution range to encompass the spread of the consensus distribution. The 

participants made the simplest adjustment that was still a plausible reflection of the true 

distribution. 

 

4. Debiasing Strategies 

Cognitive research on heuristics and biases, beginning in the 1970s and continuing today, 

has demonstrated the pervasive and robust influence of an ever-increasing list of decision biases. 

In comparison, our understanding of how to debias decision making is limited. This is in part due 

to the relatively unappealing nature of debiasing research; “it is more newsworthy to show that 

something is broken than to show how to fix it” (Larrick, 2004). It is also likely that researchers 

have been dissuaded from pursuing debiasing research because early studies found biases were 

generally robust in the face of commonsense corrective measures, including providing feedback 

or incentives (Camerer & Hogarth, 1999; Fischoff, 1982), holding people accountable for their 
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decisions (Lerner & Tetlock, 1999), and offering warnings about the possibility of bias (Fischoff, 

1982). While there is a strong need for additional research on debiasing, a number of successful 

strategies have been discovered (for review, see Larrick, 2004; Milkman, Chugh, & Bazerman, 

2009; Soll, Milkman, & Payne, 2016). These existing strategies can be categorized into one of 

two approaches: (1) debiasing by modifying the decision maker or (2) debiasing by modifying 

the environment (cf. Soll et al., 2016). In the remaining section we consider the pros and cons of 

the two approaches and discuss how each can be best used in geoscience education and industry 

to minimize bias. We focus our discussion on debiasing strategies that make use of technology 

when modifying both the decision maker and environment. Access to technology has already 

transformed decision making in geoscience and other scientific fields, and continued 

advancements in technology have the potential to further aid decision making under uncertainty. 

 

4.1. Modifying the decision maker 

 Debiasing strategies that modify the decision maker provide knowledge and tools that 

must be self-employed to overcome bias. This includes cognitive strategies to shift perception of 

a problem (i.e, consider the opposite), the use of computational models to assist judgment, and 

education on statistical rules and normative principles (see Box 1). All of the above are likely 

familiar to geoscience scholars, though perhaps not framed as decision aids. In fact, it can be 

argued that the cognitive debiasing strategy of “consider the opposite” has been a feature of 

geoscience for over a century. In his 1890 publication “The Method of Multiple Working 

Hypotheses”, T.C. Chamberlin advocates that geoscientists should generate multiple plausible 

alternatives to explain the occurence of geologic phenomena (essentially a “consider the 

opposite” strategy). Chamberlin is clear in stating the value of this method in guarding against 

bias:  

 

“The effort is to bring up into view every rational explanation of new phenomena, and to 

develop every tenable hypothesis respecting their cause and history. The investigator thus 

becomes the parent of a family of hypotheses: and, by his parental relation to all, he is 

forbidden to fasten his affections unduly upon any one. In the nature of the case, the 

danger that springs from affection is counteracted… Having thus neutralized the 

partialities of his emotional nature, he proceeds with a certain natural and enforced 

erectness of mental attitude to the investigation.”  

 

Cognitive research has supported Chamberlin’s assertions that generating multiple alternatives to 

a decision problem can be an effective debiasing strategy, particularly when bias is driven by a 

tendency to rely on small and unrepresentative samples of information, as with anchoring bias 

(e.g., Mussweiler, Strack, & Pfeiffer, 2000), overconfidence (e.g., Koriat, Lichtenstein, & 

Fischhoff, 1980), and hindsight bias (e.g., Sanna & Schwarz, 2006). In modern geoscience 

practice, as noted by Bond (2015), the method of multiple working hypotheses is not consistent 

with the culture of science in which advocacy for a single model is rewarded. However, there is 

recognition of the value of promoting a workflow that increases consideration of permissible 

interpretations in the geosciences (Bond, Shipton, Gibbs, & Jones, 2008; Macrae, Bond, Shipton, 

& Lunn, 2016), as well as other sciences faced with complexity and high uncertainty (Elliot & 

Brook, 2007). While geoscience educators recognize the centrality of the principle of multiple 

working hypotheses to geoscience practice there is, to our knowledge, no accepted pedagogy for 

supporting practice in the skill.  
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The debiasing strategy of applying computational models is a more recent fixture of 

geoscience, and its increased prominence is at least partially owed to the increased availability of 

user-friendly modeling software. In sustainability and resource management research in 

particular, many modeling and simulation software tools have been created to aid judgment (for 

review see Argent, 2004; Argent & Houghton, 2001; Rizzoli & Young, 1997). Computational 

models systematize the weights placed on various decision inputs (in lieu of relying on expert 

experience), enabling better forecasting of outcomes. In situations where expert experience is 

critical to predicting outcomes, that experience can become a decision input in the model. Past 

research has shown that such computational models outperform expert judgment in a variety of 

domains (Dawes, Faust, & Meehl, 1989), and even the simplest linear models that equally weight 

all relevant decision inputs (not taking into account historical data on inputs) can outperform 

expert judgments (Dawes & Corrigan, 1974). In the geosciences, recent research investigating 

the impact of model use on human judgment about resource management found that 

management outcomes were superior when student participants relied on models rather than their 

own experience (Holden & Ellner, 2016). Also, model use has been shown to improve 

sustainability policy decisions – in a role play simulation, model users evidenced better outcomes 

(e.g., low change in temperature, high access to electricity, and high global economy) than 

participants who did not use models (Czaika & Selin, 2017). 

For decision makers to use computational models or employ cognitive techniques like 

“consider the opposite” successfully requires (at minimum) that deliberative processing 

resources be available for suspending and correcting decisions. These debiasing strategies 

operate by supporting the application of deliberative processing under conditions where it is 

likely to not be applied, encouraging decision makers to shift themselves from intuitive to 

deliberative processing. For example, when decision makers “consider the opposite” it 

encourages deliberative analysis and suspends reliance on intuitions that distort the 

representation of information (e.g., intuition to rely on what is most dominant or accessible in 

memory). Recall from section 3, Origins of Decision Biases, that we have a limited capacity of 

deliberative resources to draw from, i.e., our “editor” can be overworked. Therefore, these 

debiasing strategies will have a low probability of success in situations where deliberative 

processing resources are reduced (e.g., high mental effort tasks, states of fatigue or sleep 

deprivation). Also, individual differences in thinking style and quantitative ability (i.e., 

numeracy) impact the effectiveness of deliberative processing debiasing strategies; people who 

are reflective and have high numeracy are more likely to suspend heuristic responses and invoke 

deliberative resources to do necessary additional thinking (Frederick, 2005). However, even 

under ideal conditions, where deliberative resources are not constrained and the decision maker 

is prone to reflective thinking, there is no guarantee of debiasing success – and herein lies the 

problem with self-employed debiasing strategies, they may require too much of the decision 

maker. Successful implementation requires that the decision maker be able to recognize the need 

to apply a strategy, have the motivation and the required deliberative resources to do so, select 

the appropriate strategy and apply it correctly. A mistake or failure at any step of this process 

could result in (at best) continued vulnerability to decision bias or (at worse) an increase in bias.  

Consider, for example, the application of computational models in sustainability and 

resource management research. Although there are many modeling and simulation software tools 

available for forecasting climate outcomes (for review see Argent, 2004; Argent & Houghton, 

2001; Rizzoli & Young, 1997), there is concern amongst geoscience scholars that decision 

makers are not using computational models as often as expected, or correctly (see also Box 1 for 



11 

discussion of concerns about the level of quantitative education in the geosciences). Both 

Edwards, Morris, and Tabbush (2010) and Oxley, McIntosh, Winder, Mulligan, and Engelen 

(2003) found poor receptivity to and “low uptake” of modeling software tools amongst targeted 

end users within EU funded research projects. The authors of these studies argue that low uptake 

resulted from bad communication between tool developers and end users. Thus, despite 

computational models being available for use in forecasting climate outcomes, some experts are 

not sufficiently motivated to apply them or are unconfident in their ability to select the 

appropriate model and apply it correctly, instead relying on their experience and intuition as a 

substitute for formal analysis.  

Determining methods for facilitating the adoption of self-employed debiasing strategies is 

a critical issue for debiasing research both generally and in the geosciences. Some of the 

reluctance to use computational models in the geosciences can be solved by improving the 

design and user-interface of modeling and simulation software. To this end, McIntosh and 

colleagues have outlined design principles (McIntosh, Jeffrey, Lemon, & Winder, 2005) and best 

practices (McIntosh et al., 2008) for the development of computer-based models, with the goal of 

improving the usefulness and usability of modeling tools in the geosciences. However, even with 

improved tool design, decision makers may continue to resist using computational models and 

other self-employed debiasing strategies. In the words of debiasing researcher Richard Larrick 

(2004): 

 

“[Decision makers] do not want to be told that they have been ‘doing it wrong’ for all 

these years. They do not want to relinquish control over a decision process. And, perhaps 

most importantly, they fail to understand the benefits of many debiasing techniques 

relative to their own abilities, not just because they are overconfident, but because the 

techniques themselves are alien and complex, and the benefits are noisy, delayed, or 

small.” 

 

In sum, self-employed debiasing strategies carry a high risk of being used inappropriately by 

decision makers (i.e., used incorrectly or not at all), and for this reason we believe that such 

strategies alone do not offer the most promise for successful application in the geosciences. 

Instead, we advocate that debiasing strategies (including “consider the opposite” and using 

computational models) be supported by modifying the decision environment such that (1) people 

are “nudged” towards the optimal choice strategy or (2) the environment becomes a good fit for 

the strategy people naturally apply, thereby relieving decision makers of the impetus for 

debiasing. 

 

Box 1. Can better decision making be taught? 

 

There is good evidence that decision making can be improved by teaching people statistical 

rules and normative principles. Research in this area examines the influence of teaching across 

formal higher education, disciplinary-specific training, single courses, and brief laboratory 

sessions. For example, Doctoral-level scientists, with extensive statistical training, are better 

than psychology graduate students, with two to three courses in statistics, at applying statistical 

rules to avoid drawing inferences from small samples – but graduate students do better than 

undergraduate students with only one statistics course (Fong, Krantz, & Nisbett, 1986). Also, 

economics professors are more likely than biology and humanities professors to use normative 
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principles in everyday decision making, such as ignoring a sunk cost by leaving a mediocre 

play early in the performance (Larrick, Nisbett, & Morgan, 1993), and college students can be 

taught how to apply normative principles in laboratory sessions lasting less than an hour 

(Larrick, Morgan, & Nisbett, 1990). From this research we infer that better decision making in 

the geosciences can also be taught by a substantive statistics curriculum. 

 

Although modern geoscience researchers have embraced statistical methods, and quantitative 

skills are fundamental to the evaluation and investigation of geologic processes, there is not a 

strong history of statistics curriculum in undergraduate and graduate geoscience courses 

(Manduca et al., 2008). However, in the past 20 years there has been increased interest in 

identifying quantitative skills that students need to succeed in the field and developing 

strategies for teaching those skills; see Kempler and Gross (2018) and Pennington, Ebert-

Uphoff, Freed, Martin, and Pierce (in press) for recent examples. As a result, statistical training 

is now a more common feature of geoscience education. In future research, it would be 

interesting to know if education on statistical rules in the geosciences mitigates some biases 

(e.g., sunk costs), and how any improvements in decision making compare to those achieved 

through similar statistical education in other sciences. Also, it would be worthwhile to 

determine the reliability and duration of decision improvement following statistics education: 

do geoscientists with statistical education always avoid drawing inferences from small 

samples, or just occasionally, and how long after education has concluded do improvements 

endure?  

 

Beyond education on statistical rules and normative principles, in some fields it is common 

that students receive additional decision-focused curriculum. For example, in fields such as 

business and medicine, where there has been longer recognition of the influence of decision 

bias, students are taught how experts resolve uncertainty in decision making, and the biases 

that occur when experts rely on heuristics that are not well suited to the choice environment. 

To our knowledge, most of this decision-focused curriculum is descriptive, that is, it teaches 

facts about biases (including a taxonomy of biases) and how they distort reasoning, but does 

not address strategies for overcoming bias. To date, the effectiveness of courses with decision 

curriculum aimed at reducing vulnerability to bias is unknown.  

 

We feel that geoscience education and industry would benefit from the adoption of similar 

decision-focused curriculum, since being aware of the existence and possibility of decision 

bias is the first necessary step to reducing vulnerability. Already uncertainty training has been 

incorporated into many major oil company training portfolios and is offered by training 

consultants to the geoscience industry. Yet, past research would suggest that simply being 

aware of the possibility of bias is not enough to reduce susceptibility by any substantial margin 

(Fischoff, 1982). A potentially worthwhile addition, then, to decision curriculums in 

geoscience and other fields would be education on choice architecture and “nudging” (see 

section 4.2, modifying the environment), i.e., teaching students how to structure and engage 

with their environment to promote good judgment and decision making. This would include 

instruction on how and why biases occur and debiasing strategies to mitigate them, but also 

practice with choice infrastructure creation so decision makers are not required to self-employ 

strategies to rise above their ingrained and subtle biases. Trainings on using structured 

workflows, as are common in geoscience industry, is one existing method of incorporating 
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choice architecture techniques in education. How best to teach decision-focused curriculum 

these courses and what kind of content, guidance, and practice to offer is an important question 

for future education research (for discussion on the possible virtues of “nudge” education, see 

Beaulac & Kenyon, 2014; for discussion of how to achieve such institutional education 

changes see Henderson et al., 2015). 

 

4.2. Modifying the environment 
 As stated above, dDebiasing techniques that modify the environment alter the settings 

where decisions occur.  – The environment can be modified to make it this can “nudge” people 

towards the optimal choice strategy (e.g., prompts to induce reflection and deliberation), or make 

the environment a better fit for the strategy people naturally apply (e.g., status-quo bias pushes 

people to stick with a default response option over selecting a new option, so making the default 

a desirable outcome will maximize decision making). The environment can also be modified to 

“nudge” people towards the optimal choice strategy (e.g., prompts to induce reflection and 

deliberation).  Theis environment modification approach to debiasing is sometimes referred to as 

choice architecture, making the individual or entity responsible for organizing the environment 

in which people make decisions the choice architect (Thaler & Sunstein, 2009). It is the role of 

the choice architect, as put forward by Thaler and Sunstein (2009) in their popular press book 

“Nudge”, to influence people’s decision making such that their well-being (and the well-being of 

others) is maximized, without restricting the freedom to choose. Importantly, there is no such 

thing as neutral choice architecture; the way the environment is setup will guide decision 

making, regardless of whether the setup was intentional on the part of the architect, e.g., 

descriptions of risk will be framed in terms of gains or losses, a wise architect chooses the 

framing that will maximize well-being. 

The advantage of debiasing techniques that modify the environment, over those that 

modify the decision maker, is that it is the choice architect and not the decision maker who is 

accountable for debiasing (unless, of course, the architect and the decision maker are the same 

person). Conscious choice architecture is a naturally deliberative process – potential mechanisms 

of bias must be considered and used to design nudges, user responses to these nudges must also 

be considered, including factors unrelated to the nudge that may influence responses. Therefore, 

techniques that modify the environment tend to be more successful in reducing vulnerability to 

bias and improving decision making, and this has been evidenced in varied domains, e.g., 

improving rates of organ donation (Johnson & Goldstein, 2004), increasing employee’s 

retirement savings (Madrian & Shea, 2001), and encouraging healthier eating habits (Downs, 

Loewenstein, & Wisdom, 2009). 

 Choice architecture debiasing techniques have been adopted in the sciences in the form of 

imposed workflow practices and structured expert elicitation exercises. The latter may be more 

familiar to geoscientists given there is a long history of using cumulative expert judgments in 

geologic research when data are insufficient (e.g., Cooke & McDonald, 1986; Hemming, 

Walshe, Hanea, Fidler, & Burgman, 2018; Wood & Curtis, 2004). Expert elicitation research 

demonstrates that structured methods can be employed to enforce consideration of group ideas 

and opinions, such that the vulnerability to overconfidence and other biases is reduced (Curtis & 

Wood, 2004; Polson & Curtis, 2010). The use of imposed workflows, in comparison, is a newer 

feature of scientific practice. In the social and life sciences, a research reproducibility crisis has 

led many academic gatekeepers to advocate for the use of workflows such as study 

preregistration (i.e., a description of study methods, materials, and analyses published prior to 
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data collection) and open sharing of data and study materials. In geoscience research, use of 

workflows is also increasingly encouraged. For example, Gil et al. (2016) propose that the 

“Geoscience Paper of the Future” should make data and software reusable and explicitly describe 

higher-level computational workflows.  

 One way the value of choice architecture debiasing in the sciences manifests is through 

improved efficiency and effectiveness of an ongoing decision process – how manyuch data 

points areis enough to reach a conclusion about my interpretation(s) and how confident am I in 

that conclusion? This decision process can be visualized by plotting the relationship between 

conclusion certainty and data; where “data” is generally defined as the quality and quantity of 

information known. Notably, in most sciences, amount of data (as defined above) is directly 

proportional to time, resources, and funds. As data accumulates, conclusion certainty increases 

until some threshold of confidence is reached, at which point the scientific decision maker makes 

a conclusion about her interpretation(s). We define this threshold of confidence as a geologists 

individual perception of being “certain enough” in their interpretation, and hence the threshold 

can differ dramatically between individuals (what seems certain to one will not seem certain to 

all) and be shaped by research context (what counts as “certain enough” in one research field will 

not count in all research fields). In the ideal case, where data areis homogeneous, collected in an 

unbiased manner, and is consistent with a theory,. there is a positive linear relationship between 

data and conclusion certainty, with greater slopes indicating greater decision efficiency, i.e., 

faster ascension to the decision makers threshold of confidence (see Figure 1). However, as 

every researcher knows, this ideal case is rare. More often, as data accumulates, researchers 

experience upward and downward shifts in conclusion certainty. Decision biases can impact how 

confidence shifts with incoming data, and where the threshold of confidence is set.  

 

 

INSERT FIGURE 1 

 

Figure 1. The relationship between data and conclusion certainty in the scientific decision 

making process. In the ideal case, increasing data areis accompanied by increasing certainty, 

with slopes greater than or equal to one indicating an efficient decision process. In reality, 

increasing data areis more often accompanied by upward and downward shifts in certainty. A 

scientific conclusion is reached once a decision maker reaches their personal subjective threshold 

of confidence and feels “certain enough” in their interpretation. 

 

 

 Consider the following study by Macrae et al. (2016) on geologic workflows as an 

example. Macrae et al. (2016) gave geoscientists a 2D seismic reflection image and asked them 

to provide an interpretation within a limited time frame. Half the geoscientist participants were 

asked to undertake a specific workflow in which they received instruction to explicitly consider 

geological evolution through writing or drawing (a choice architecture debiasing technique), and 

the other half received no workflow. The results from Macrae et al. (2016) reveal that 

geoscientists nudged to consider geological evolution had higher quality interpretations than 

those who received no nudge. Because real seismic data was used, the correct interpretation was 

unknown, but interpretations were deemed high quality if they were consistent with the 

interpretations of at least one of five leading experts. Some participants may have been 

overconfident in their interpretation (as suggested by Macrae et al., 2016), which implies that 
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their threshold of confidence was lower thus increasing the likelihood of accepting an erroneous 

interpretation. The workflow nudge could have mitigated overconfidence by testing the 

interpretation (during or after creation) to determine whether the final interpreted geometry could 

evolve in a geologically reasonable manner. Figure 2 shows the decision process of two 

hypothetical individuals, Participant 1 and Participant 2. For those interpretations in which the 

evolution was not feasible (Participant 1, Interpretation A), the workflow nudge would force the 

participant to consider modifications (1B), or alternative interpretations (1C), thereby reducing 

overconfidence. For those interpretations in which the evolution was reasonable, certainty in 

interpretation would likely increase to the threshold of confidence (Participant 2, Interpretation 

A). 

 

 

INSERT FIGURE 2 

 

Figure 2. The influence of a geologic workflow nudge on conclusion certainty in a study by 

Macrae et al. (2016). Participant 1 and 2 both experience shifting uncertainty in their initial 

interpretations as data areis accumulated prior to the nudge onset. After being nudged to consider 

the geological evolution of their interpretations, Participant 2 finds a geologically reasonable 

evolution for his or her interpretation, certainty in the interpretation increases to their threshold 

of confidence and a conclusion is made. Participant 1 cannot construct a geologically reasonable 

evolution of their initial interpretation, prompting consideration of modifications (1B) or 

alternative interpretations (1C). 

 

 

 We can also use the data-certainty plot to visualize how the choice architecture practice 

of expert elicitation influences decision making and vulnerability to herding (anchoring) in the 

aforementioned study by Polson and Curtis (2010). Polson and Curtis (2010) asked four expert 

geoscientists to assess the probability that a fault existed. Figure 3 shows the decision process of 

of the four participants. Note that the x-axis of Figure 3 is represented as time rather than data, as 

previously stated we view the quality or quantity of known information (data) as related to time 

and in this example time is the more coherent descriptor. After making their initial assessment, 

participants were alerted to common biases in expert judgment and allowed to modify their 

assessment. If as a result of the warning the participant felt they had made a mistake or their 

initial probability was somewhat biased, they could have modified their interpretation 

(Participant 1 and 3) or experienced a reduction in certainty (Participant 4). Alternatively, if the 

participant perceived their initial analysis to be free of bias – either because it truly was, or 

because the warning was not sufficient for resolving bias – then they would likely stick with their 

initial probability distribution and potentially experience an increase in conclusion certainty 

(Participant 2). Following the bias warning and any changes to the initial interpretation, experts 

shared their probability distributions and explained their reasoning to the group, then were asked 

to reach a group consensus.  

The results from Polson and Curtis (2010) showed that the consensus interpretation did 

not reflect the opinions of all participants in the group, instead the group moved towards one 

expert’s opinion (Participant 1), herding around and anchoring to it (see grey zone, Figure 3). 

Thus, although the bias warning may have been an effective debiasing strategy for the individual 

probabilities at the start of the elicitation, the experimental evidence suggests that it had minimal 
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impact later in the elicitation process when coming to the group consensus. As discussed in 

section 4.1. Modifying the decision maker, there are many reasons why a simple warning may be 

ineffective for debiasing – it requires that the interpreter be able to recognize his or her own bias 

and have the motivation and available cognitive resources to apply a strategy to combat bias – 

and in group situations where socially constructed hierarchies exist, bias warnings may be 

particularly ineffective. A potentially better debiasing strategy in this instance would have been 

to weight experts opinions and present this information in the form of a digital nudge; e.g., this is 

what the consensus probability distribution would be if a mean of the experts was calculated and 

it does not accommodate the range of individual expert opinions. Expert elicitations focusing on 

geological problems (e.g. Polson and Curtis, 2010; Randle, Bond, Lark & Monaghan, 2019) 

show that much of their value is in better understanding decision making workflows, and where 

uncertainties and bias arise, which can be used to inform nudge design. 

 

 

 

INSERT FIGURE 3 

 

Figure 3. The influence of expert elicitation practices on conclusion certainty in a study by 

Polson and Curtis (2010). All participants experience shifting uncertainty in initial probabilities 

for the existence of a fault as elicitation progresses. Interpretation A, B, and C refer to each 

individual’s successive interpretation.  When exposed to information on how cognitive bias 

impacts on expert judgement, Participants 1 and 3 modify their interpretations (to 1B and 3B) 

and Participant 4 experiences a decline in conclusion certainty (4A). Participant 2, in contrast, 

becomes more certain in his or her initial interpretation following the bias warning, either 

because the interpretation was truly unbiased or because the warning was insufficient to 

recognize and resolve bias. When interpretations are shared and discussed amongst the group, 

Participants 2, 3, and 4 modify their interpretations to be in accordance with Participant 1 – 

certainty in this new interpretation (2B, 3C, 4B) increases such that a consensus assessment is 

reached. This herding bias is noted by the gray zone in the figure. 

 

 

 As the above examples illustrate, the potential for choice architecture to aid decision 

making in geoscience and other scientific fields is significant. Yet, choice architecture debiasing 

is not infallible to human error. For example, research on expert elicitation practices in the 

geosciences has shown that erroneous predictions about geologic events are made when using 

subjective methods for selecting experts (Shanteau, Weiss, Thomas, & Pounds, 2002), and when 

judgments are not aggregated appropriately (Lorenz, Rauhut, Schweitzer, & Helbing, 2011; 

Randle et al., 2019). Also, it is worth noting that Macrae et al. (2016) found over 80% of 

participants in the no-workflow group reported that they had considered geological evolution of 

their interpretation – these individuals thought they were using a normative workflow, but did not 

apply it effectively, either because their deliberative processing resources were overburdened 

from the demands of the interpretation task (“busy editor”) or because of a general tendency 

towards cognitive miserliness (“lazy editor”). We believe recent innovations in AI and 

information technology offer the opportunity to overcome the cognitive constraints that lead to 

both biased choice and trouble in effectively self-employing debiasing strategies. Specifically, 

we advocate for coordinated and integrated decision making in humans and intelligent systems, 
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where debiased decisions are an emergent property of the human-AI collaborative team. This 

approach has been referred to as “captology” standing for “computers as persuasive technology” 

(Fogg, 2003), and, more recently, “digital nudging” (Mirsch, Lehrer, & Jung, 2017; Weinmann, 

Schneider, & vom Brocke, 2016). 

 This paper is not the first to call attention to the utility of intelligent systems for 

geoscientific research. Use of intelligent technologies in geoscience research is increasingly 

common, e.g., mobile robotic platforms (Qian et al., 2017) and machine learning algorithms 

(Karpatne, Ebert-Uphoff, Ravela, Babaie, & Kumar, 2017), and recent articles in GSA Today 

(Spino, 2019) and Communications of the ACM (Gil et al., 2019) both outline promising 

opportunities for intelligent systems to address research challenges in the geosciences. Most of 

this existing work implicitly takes the view that humans and intelligent systems have separate but 

complementary functions in geologic decision making, e.g., Shipley & Tikoff (in press). Here we 

present a different view, namely, that geologic decision making can be enhanced when humans 

and intelligent systems work in collaboration, with a shared understanding of the task goal, 

relevant contextual features, and existing scientific knowledge. To illustrate the value of this 

digital nudging approach in geoscience research, we discuss two case studies that represent 

different applications of intelligent systems for the geosciences that are presently in practice: the 

first case study addresses the use of unmanned aerial vehicles (UAVs or “drones”) to collect new 

field data, and the second addresses the use of software for geologic interpretation of seismic 

image data. For each case study, we first describe how the intelligent system is currently being 

used to aid geologic research, and how this application of technology has improved, or could 

improve, upon pre-technological research methods. Then, we describe how digital nudging can 

be incorporated into intelligent systems and illustrate the scientific value of nudging using the 

data-conclusion certainty plot (similar to Figures 2 and 3 above). 

 

4.2.1. Case study 1, Optimizing field data collection with UAVs to minimizse anchoring and 

availability bias.  

In this case study, we describe how automated unmanned aerial vehicles (UAV) 

navigation could be used to nudge geoscientists to be more efficient when making decisions 

regarding reconnaissance and mapping, and mitigate against anchoring and availability biases.   

Data about the Earth system is acquired through a broad range of methods. The advent of better 

mobile robot platforms has allowed for the deployment of robots by ground, sea, and air to 

collect field data at a high spatial and temporal resolution. Here, we focus on the use of aerial 

robots (semi-autonomous or autonomous UAVs) for data collection, but the conclusions we draw 

are likely applicable to other mobile robot platforms (i.e., underwater autonomous vehicles, 

ground robots). At present, UAVs are mainly used in geoscientific research for reconnaissance 

and 2D mapping. UAVs improve the efficiency of traditional “boots on the ground” 

reconnaissance and mapping procedures by providing access to data in large or inaccessible 

areas quickly. Typically data comes in the form of high resolution 2D imagery (available with 

commercial non-autonomous UAVs), but because UAVs have the flexibility to carry different 

sensors and devices, they can be customized to collect other forms of dat.a, including 

hyperspectral images (Näsi et al., 2015), LiDAR (Wang et al., 2017), air quality measurement 

(Villa, Gonzalez, Miljievic, Ristovski, & Morawaska, 2016), and subsurface water quality 

measurements (Koparan, Koc, Privette, & Sawyer, 2018).  See Jiménez López and Mulero-

Pázmány (2019) for additional sensors and devices that can be coupled with UAVs.  
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2D imagery Once collected, UAV images can also be used to render photo-realistic virtual 

landscapes and outcrops when construct 3D virtual outcrop models combined with Structure 

from Motion photogrammetric software, which determines camera position and orientation 

automatically to recreate geometry without the need for visible ground control (although as 

orientation and scale are important factors in much geological research ground control points are 

often used). These 3D models can then be interpreted and analyzed as subsurface analogues for 

collection of feature information out of the field (for review of applications, (see Bemis et al., 

2014, Cawood, Bond, Howell, Butler, & Totake, 2017). Recent research found a virtual outcrop 

model generated with UAV based Structure from Motion more accurately represented elements 

of a complex 3D outcrop than a model generated with ground based LiDAR, due to acquisition 

occlusion (Cawood, Bond, Howell, Butler, & Totake, 2017). Thus, in addition to making field 

reconnaissance and mapping more efficient, UAVs can be used to produce large 3D digital 

datasets with up to centimetre-scale resolution that will aid future field and laboratory research. 

Currently, the majority of geoscience research with UAVs is non-autonomous, i.e., user-

controlled. Efforts have been made to automate interpretation of geological data from UAV 

imagery or 3D reconstruction with some success (Thiele et al., 2017; Vasuki, Holden, Kovesi, & 

Micklethwaite, 2014; Vasuki, Holden, Kovesi, & Micklethwaite, 2017), and the application of 

image analysis and machine learning techniques continue to be developed (Zhang, Wang, Li, & 

Han, 2018). In reconnaissance and geologic mapping, the decision of where to go and how to fly 

there is made by the expert – either the expert fly’s the UAV and makes navigation decisions in-

situ or they pre-set a flight path for the UAV to follow semi-autonomously (cf. Koparan et al., 

Koc, Privette, & Sawyer, 2018; Ore, Elbaum, Burgin, & Detweiler, 2015). However, a UAV that 

is capable of attending to measurements in real time and reacting to local features of 

measurement data could navigate autonomously to collect observations where they are most 

needed. Such autonomous workflows should increase the efficiency of data collection, and could 

be designed to mitigate against potential human biases. Here, we consider how an automated 

UAV navigation nudge could reduce the tendency to anchor field exploration based on existing 

models and hypotheses. In this case study, we describe how automated UAV navigation can 

nudge geoscientists to be more efficient when making decisions regarding reconnaissance and 

mapping. 

 In our hypothetical example, a UAV surveys a large bedding surface with the aim 

of identifying fractures to define the orientations of fracture sets. The bedding surface exposure 

is large, but split into difficult to access exposure, e.g., due to cliff-sections or vegetation (see 

Column A, Figure 4). A birds-eye view afforded by the UAV improves the ability to observe 

fractures, which would otherwise require time-costly on-foot reconnaissance to different 

outcrops of the bedding surface. Note that in our hypothetical example we assume that fracture 

information is obtained only when the flight path crosses fractures (e.g., Column B, blue flight 

path), thereby representing a high level reconnaissance rather than a flight path in which 

overlapping imagery is collected, e.g. to create a Structure from Motion virtual model. When the 

UAV flight path is user-controlled, the decision of where and how to fly is unlikely to be 

optimal: users could be distracted by irrelevant information in UAV view, and are likely biased 

towards exploring certain features and ignoring others (see Andrews et al., 2019). For example 

fractures may only be sampled where fracture data areis dense, or in an orientation that 

maximizses sample size but not the range in orientation (see ee Andrews et al., 2019; Watkins, 

Bond, Healy, & Butler, 2015), or when itthat fits with an expected hypothesis (e.g. Ttensional 

fractures parallel to the axial trace of a fold). These strategies are all informed by expectations, 
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leaving the geoscientist vulnerable to anchoring her sampling behavior to align with initial 

interpretations and hypotheses. and the biases previously introduced: anchoring to existing 

models and hypotheses, and the availability of data and models.  

This anchoring bias is visualized in Column B (blue flight path), where the user detects 

two unique fracture orientations (a, b) on the first exposure visited, and then spends the majority 

of the remaining flight looking at fractures in the same orientation rather than searching for new 

orientations. but then spends needless time (T1 to T2) an t exposure that offers no new 

information, before finally visiting exposure that features the previously identified orientations 

(a, b) and a novel N-S fracture orientation. This As a result, a novel N-S fracture orientation is 

not detected in the user’s flight path – the accompanying certainty plot in Column B shows that 

time spent at uninformative exposure (T1 to T2) results in increased certainty that all orientations 

have been sampled, when in fact they have not (i.e., the threshold of confidence is reached before 

sampling the N-S orientation). This is reflected in the rose diagrams in Column B, which show 

the orientation of fractures and the relative number of fractures sampled in each orientation; even 

at time T3 the three fracture sets (as shown in the rose diagram in Column A) are not 

represented.  

 Column C on Figure 4 shows a UAV flight (purple) that is semi-automated to follow a 

pre-set path. For this hypothetical example, a reasonable pre-set flight path (and the one we 

assume most experts would take) would be to scan forward and backward across the area of 

interest, akin to a lawn-mower. With this approach, the appearance is that no areas will be 

missed, the area is equally covered and there is no risk of re-sampling, but the flight path will not 

be optimal to collect the data of interest – time will be wasted scanning areas that have little data 

value, and the linear N-S oriented path will preferentially sample E-W oriented fractures (biasing 

the dataset). On the certainty plot in Column C this is visualized as long delays between 

detection of unique fracture orientations (a, b, c), resulting in a step-like pattern – dramatic 

decreases in certainty when a new orientation is observed during navigation, followed by periods 

of slowly increasing certainty as information is observed that is consistent with previous features, 

or irrelevant (green bars representing time over woodland). In this instance the user’s threshold 

of certainty is reached after a longer time period than in the user driven scenario (Column B), but 

the full range of fracture orientations is determined (see rose diagrams, Column C).  

 The most efficient solution is for the UAV to move autonomously to areas with high data 

value by attending and reacting to measurement data in real time, e.g., skipping areas that are 

poorly exposed or homogenous, slowing and flying multiple angles in areas that have a high 

frequency of important features (as defined by the user). This is visualized in Column D (red 

flight path), where the UAV detects the first fracture orientation (a) and then recommends the 

user update the flight path to move orthogonal to the orientation to ensure it is representative and 

to optimize continued sampling. When a new orientation is detected (b) the UAV recommends 

updating the flight path again to optimize collection of both orientations (i.e., horizontal flight 

path). In the updated horizontal flight path, the UAV moves efficiently over exposure that 

features already detected orientations (a, b), which leads to quicker detection of new orientations 

(c). The rose diagrams in Column D show that by time T2 all three fracture sets have been 

identified. In fact by time T3 fractures oriented NE-SW are being oversampled; the same fracture 

is crossed more than once by the UAV flight path, not an issue here as we are only interested in 

constraining the number of orientations of fractures sets, but would need to be taken into 

consideration if the user wanted both orientation and relative intensity. The accompanying 

certainty plot in Column D shows that this autonomous flight path results in a more efficient 
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scientific decision making process, i.e., strong positive relationship between conclusion certainty 

and time and quick ascension to threshold of confidence.  

 

 

INSERT FIGURE 4 

 

Figure 4. Hypothetical UAV scenario where the goal is to identify fractures on a bedding 

surface. Column A shows UAV view of fractured bedding surface (with exposure separated by 

trees and cliffs) and a rose diagram of all exposed fractures. Column B shows user-controlled 

flight path (in blue) over bedding surface, rose diagrams of cumulative fracture orientation data 

at flight times (T1, T2, T3), and an evolving conclusion certainty plot as the UAV collects data. 

On the conclusion certainty plot, green bars represent flight time over woodland rather than rock 

exposure, letters a, b, and c represent when the UAV collects fracture data in a new orientation, 

and the dotted horizontal line represents the threshold of conclusion confidence. Column C 

shows similar plots for a pre-set flight path (purple), and Column D shows plots for an 

autonomous flight path (red) where the UAV attends and reacts to measurement data in real-

time.  

 

 

 We believe this case study is a useful exemplar. The goal of the reconnaissance UAV 

mapping was to detect all fracture orientations and determine the optimal location for sampling 

heterogeneous orientations. A UAV that possesses some representation of this goal can use 

multiple fracture orientation angles to rapidly calculate a flight path that will optimize continued 

sampling to confirm a fracture set or allow for more rapid detection of new orientations. – and 

Nnote that t This type of calculation is a task in which a computer is likely to excel relative to the 

human mind, since it will not be anchored to existing fracture models or the , limited by the 

availability of fracture models or the desire to maximize sample number by flying perpendicular 

to dominant fracture set.. By offloading the task of navigation geometry to a UAV, the human 

expert free’s up their cognitive resources for more important and difficult tasks, such as the real-

time interpretation of surface features from UAV imagery. Were the goal of UAV 

reconnaissance to collect data on fracture length, orientation and intensity, the programming of 

the UAV and the human interaction would be different. In this manner, we view the robot and 

human as a collaborative team, where better decision making is a property of the coordination of 

both agents and a mutual understanding of the task goal and each other’s strengths and 

weaknesses (Shipley and Tikoff, in press).). For example, critical to the success of our example 

would be for experts to understand how autonomous flight paths are being calculated and the 

conditions in which they will optimize data collection; an expert not privy to this information 

may mis-trust well calibrated path suggestions or over-trust path suggestions that are inconsistent 

with their goals. Also critical to the success of our example is that experts retain the ability to 

ignore autonomous path recommendations if their expertise leads them to favor an alternative 

path. One of the challenges in geosciences, and perhaps all sciences, is that AI systems focus 

only on the constrained problem, and (unlike humans) are not open to the frisson of exploring 

other questions en-route to the answer. Therefore, it is important that AI systems do not restrict 

users’ autonomy to override recommendations, thereby barring the exploration of ideas through 

too narrow data collection, or via inbuilt biases to automated-data collection. 
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4.2.2. Case-Study 2, Fault interpretations in 3D seismic image data to , minimizesing framing,  

availability and anchoring bias.es  

In this case study, we consider how software interpretations of seismic image data, and 

the information derived from them, could be used may be better framed during interpretation to 

nudge geoscientistsusers to consider alternative models andto minimize availability biasse 

known biases.  Understanding of the geometries of sub-surface geology is dominated by 

interpretations of seismic image data, and these interpretations serve a critical role in important 

tasks like resource exploration and geohazard assessment. 3D seismic image volumes are 

analyzed as sequences of 2D slices. Manual interpretation involves visually analyzing a 2D 

image, identifying important patterns (e.g., faulted horizons, salt domes, gas chimneys) and 

labeling those patterns with distinct marks or colors; then, keeping this information in mind 

while generating expectations about the contents of the next 2D image. Given the magnitude and 

complexity of this task, there has been a strong and continued interest in developing semi-

autonomous and autonomous digital tools to make seismic interpretation more efficient and 

accurate (e.g., Araya-Polo et al., 2017; Di, 2018; Farrokhnia, Kahoo, & Soleimani, 2018).  

For example, automated horizon tracking (“ant” or “auto-tracking) tools correlate horizon 

amplitudes to create surfaces. Where amplitude signals weaken (e.g. when noise to signal ratio is 

high) the software may make erroneous correlations resulting in “spikes”, and leave “gaps” 

where amplitude data is lost (e.g. where it is displaced across faults). In a normal workflow the 

interpreter would “tidy” the automatically generated surface checking for spikes and gaps, 

making decisions on whether each spike and gap was geologically reasonable and manually 

modifying (or not) the surface based on the decision made.  

Consider the example in Figure 5, Image A, in which the auto-correlation tool has created 

spikes in the horizon interpretation; this highlights to the interpreter potential errors, although 

this nudge has not been deliberatively coded into the software. The interpreter can edit the 

horizon based on the horizon picks above and below to create a geologically reasonable 

interpretation of horizon off-sets across the fault (Image B). Now consider Image C, here an 

erroneous interpretation has been made, the horizon off-sets across the fault are not geologically 

reasonable. Other information could be employed here to flag to the interpreter that there may be 

an error, or alterantive models maybe more or equally applicable; for example, by using horizon 

displacement information along the fault (see plot C1), although in this case the increase in 

displacement for the blue horizon may appear sharp but reasonable, i.e., maximum displacement 

near the centre of the fault as mapped. An alternative is to consider sediment thickness difference 

between the hanging wall and the footwall. See plot C2, showing changes in the orthogonal 

distance between horizons across the fault and with depth, i.e., distance along the fault from X. 

In this plot a thickness increase between the foot wall and the hanging wall is seen for the orange 

horizon. The reason for this could be syn-faulting sedimentation of the orange horizon and would 

be a flag to the interpreter to check for evidence of syn sedimentation (e.g. wedge shaped orange 

sediments in the hanging wall). C2 also shows a difference in sediment thickness between the 

foot wall and the hanging wall for the blue horizon, but this time the pattern is reversed (with a 

greater sediment thickness in the foot wall than the hanging wall) which should provide a 

significant nudge to the interpreter that something is likely wrong with the interpretation, or  it is 

a strike-slip fault or other geological model is more appropriate. These nudges to alternative 

models are designed by framing the interpretation outcome with respect to different geological 

observations and concepts. In essence it is minimising errors that may result in lack of thought or 
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geological reasoning (e.g. Frodeman, 1995, Bond 2015) and in doing so also mitigates against 

biases to available models and anchoring to simple or known concepts.at.  

 

 

INSERT FIGURE 5 

 

Figure 5. Hypothetical interpretations of horizons offset by a fault imaged in seismic data. Image 

A shows the interpretation of a (green) horizon, with “spikes” and “gaps” highlighted, as 

commonly seen in interpretations completed by auto-tracking. Image B shows the same horizon 

as in Image A, but cleaned and smoothed. On Image C, further horizon interpretations have been 

made, including identification of a fault. A point on the fault (X) is used for calculations in plots 

C1 and C2. C1 shows horizon displacement with distance along the fault from X. C2 shows 

horizon thickness along the fault, showing thickness in both the foot wall (FW) and hanging wall 

(HW) for each horizon – an example (orange horizon) of how the thickness measurements are 

made is shown on Image C. Seismic image courtesy of the Virtual Seismic Atlas 

(www.seismicatlas.org).  

 

 

Although the fault-offset errors discussed above (and shown in Figure 5) may appear 

obvious, in our experience, checks for geologically permissible interpretations are typically made 

by users after a complete interpretation has been finished rather than during the process. This can 

lead to significant efficiency costs in the re-editing of interpretations. Still, working in 2D is 

relatively simple and most errors would likely be identified quickly by experts on viewing the 

2D interpretations. In contrast, holding in mind and working with 3D information requires 

greater cognitive processing resources and is difficult to visualise and interpret even with modern 

advances in virtual reality and 3D rendering (these are some of the reasons why 3D seismic 

image data is generally interpreted in 2D). In this case study Here, we consider how 3D 

information could be used with digital nudge technology to inform fault interpretations in a 3D 

seismic image volume. Simple normal fault patterns show a bull’s-eye pattern of greatest 

displacement in the centere of an isolated fault, decreasing towards the fault-tip (see Image A, 

Figure 6, ). Consider interpreting 2D seismic image lines across the fault starting at in-line A 

(Image A) and working towards in-line F: with each subsequent line the displacement of 

horizons across the fault should increase and then decrease, although this pattern will not be 

known until the interpretation is completed. Holding this information on displacements for 

individual faults between in-line interpretations in complicated seismic image data (e.g. with 

multiple faults per seismic section, Image B, Figure 6) is incredibly challenging even for the 

well-practiced expert. Here wWe imagine a digital nudge that alerts users to discrepancies in 

fault displacement patterns, and prompts consideration of alternative fault patterns, thereby 

relieving some of the cognitive burden of 3D interpretation from the expert and guarding them 

against availability bias by encouraging consideration of models beyond what is most readily 

accessible to the mind. freeing up their cognitive resources for other tasks (e.g., identification of 

interesting, anomalous features in seismic images). 

In our hypothetical example, a geoscientist analyzes a 3D seismic volume, interpreting in 

a series of 2D in-line images faults and horizon off-sets. As subsequent in-lines (A-F) are 

interpreted, fault displacement patterns are co-visualized, so inconsistencies from normal fault 

displacement can be clearly seen. Fault 1 (Image B) conforms to a simple fault-displacement 
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pattern (see Fault 1 displacement-distance plot). Fault 2 appears to conform to a similar pattern 

until in-line D when the interpreted displacement decreases; on interpretation of in-line E, the 

displacement on Fault 2 increases again, further highlighting the displacement anomaly on in-

line D. Reduced displacement in itself does not highlight an issue, but consideration of the 

displacement-distance plot for Fault 1 suggests that if the interpreted displacement for Fault 2 is 

correct then the two faults are behaving differently. In our imagined digital tool, this discrepancy 

in displacement between nearby faults would be flagged for further consideration by the user, 

and potential alternative models could be highlighted..  You can see the hypothetical conclusion 

certainty plots for the interpreter for the two faults (Fault 1 = green line, Fault 2 = pale blue line) 

during the interpretation process. Note the decrease in certainty of the interpreter for Fault 2, as 

they interpret in-lines D and E, in comparison to the increasing certainty for Fault 1 as 

consecutive interpreted in-lines conform to a simple normal fault displacement pattern. At in-line 

E the co-visualizsed displacement-distance plot nudges the interpreter to consider a new 

interpretation for Fault 2 at in-line D. Certainty in this new interpretation (displayed as dark blue 

dashed line on certainty plot), now increases as subsequent in-line interpretations conform to 

expected displacements.  

 

 

INSERT FIGURE 6 

 

Figure 6. Fault displacement-distance patterns used by a hypothetical digital tool to aid in 3D 

interpretation of normal faults. Image A is a graphical representation of a horizon displacement 

with distance along a fault. In this simple pattern for an isolated normal fault, maximum 

displacement (red-green) is in the centere with minimal displacement (green) at the faults tips. 

The fault is intersected by a series of hypothetical seismic lines (A-F), whichthat correspond to 

the points on the displacement-distance plots. Image B is a seismic image through faulted 

sedimentary rocks from the Inner Moray Firth, UK (note the complex fault pattern, including 

fault intersections). Two faults are highlighted on Image B, Fault 1 and Fault 2, their respective 

hypothetical displacement-distance plots are show for a single horizon. On the Fault 2 plot, the 

red point at in-line D highlights an anomaly to the simple displacement-distance plot 

characteristics seen for Fault 1, and the dark blue point at in-line D represents the user manually 

inserting a new interpretation. Certainty plots corresponding to Fault 1 and Fault 2 are also 

displayed. Seismic image courtesy of the Virtual Seismic Atlas (www.seismicatlas.org).  

 

 

 Our imagined digital tool builds on current auto-correlation tools in seismic interpretation 

software by aiding users in extrapolating information from a 2D image to a 3D representation. 

Current auto-correlation tools allow unbiased quantitative constraints to be placed on horizon 

interpretations, but look at each horizon pick in isolation and do not employ geologically 

reasonable tests across the broader dataset, e.g. they do not use information from horizon 

interpretations above and below to inform their choices, instead working only on the data 

provided. In this case study we show that by drawing on known fault displacement patterns, it 

should be possible to design tools that flag to users potential errors in fault displacement patterns 

along interpreted faults in 3D seismic data. We describe information for a single horizon 

displacement, but multiple horizons could be plotted to highlight displacement changes with 

depth, syn-sedimentation etc. Our case study uses a simplified case, but fault displacement 

http://www.seismicatlas.org/


24 

inconsistencies would likely be the result of more complex fault patterns and interactions. For 

example it is possible to imagine a scenario in which both Fault 1 and Fault 2 showed significant 

decreases in displacement at in-line D, which might result in a decrease in user certainty for both 

faults and re-interpretation as linked faults. As highlighted in a 3D seismic interpretation of 

faulted sedimentary rocks by Freeman, Boult, Yielding, and Menpes (2010), fault intersections 

are common and add challenges to understanding fault growth and displacement partitioning 

between faults; in their example, a full reinterpretation of the 3D dataset was required after 

evaluation of fault displacements on the original interpretations. Therefore, a digital tool (similar 

to the one we describe) that highlights possible fault intersections and relays during 

interpretation, could cue researchers that more complex reasoning is needed, so that simple 

dominant models – which as identified by Alcalde et al. (2017b) often show availabilitynchor 

effects – are tempered by consideration of more complex fault patterns and displacements. One 

concern, of course, is in limiting users’ consideration the thought processes to known alternative 

concepts, which could may constrain free and flexible thought while introducing and programme 

in software bias – this, and other digital nudging concerns, are discussed in more detail below.  

 

5. Conclusions 

 Uncertainty is an inherent challenge in geological reasoning. Over 50 years of cognitive 

research demonstrates that, when faced with uncertainty, people rely on intuitive heuristics that 

can arise rapidly and with minimal effort. While efficient and effective in many situations, 

heuristics do lead to predictable biases in decision making. We reviewed three biases that have 

been shown to influence geoscience experts: availability bias, framing bias, and anchoring bias. 

Bias can be overcome by engaging deliberative cognitive processing resources, which work as an 

“editor” to modify or override faulty heuristic-responses. This occurs either because the decision 

maker employs a strategy that activates deliberative processes, or because the environment is 

modified in such a way that the decision maker is “nudged” towards deliberative thinking. 

Because of the many barriers to success when debiasing is self-employed (e.g., not recognizing 

debiasing is needing, using the incorrect debiasing strategy, etc.), we strongly advocate adoption 

of the environment-modification (i.e., choice-architecture) approach. Further, we believe 

innovations in the use of information technology and AI in the geosciences can be leveraged to 

improve expert decision making, i.e., digital nudging. We discussed two case studies illustrating 

different applications of intelligent systems for the debiasing of geoscientific decision making. In 

each case study, debiased decision making was an emergent property of the coordinated and 

integrated processing of human-AI collaborative teams. 

 Our discussion of digital nudging in the geosciences highlighted the positive attributes of 

this debiasing approach, chiefly, that it provides relief from the cognitive constraints that lead to 

biased choice (and difficulty in effectively self-employing debiasing strategies), leaving the 

decision maker and their deliberative cognitive processing resources free to tackle other tasks. 

However, we would be remiss to not also caution against the potential pitfalls of the digital 

nudge. First, digital nudges can propagate existing biases (or introduce new ones) if they are 

poorly designed or trained using biased data. In a recent famous case, Amazon ceased testing an 

AI system used to evaluate job applicants after it was revealed to be gender biased, consistently 

penalizing applicant’s who attended women’s colleges or whose resume contained the word 

“women’s” in some other capacity (e.g., women’s book club). Similar gender and racial biases 

have been demonstrated in judicial (Skeem & Lowenkamp, 2016) and medical (Challen et al., 

2019) decision AI. To avoid unintended bias, choice architects must have a well-defined goal for 
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the nudge and a clear understanding of the decision process, including: identification of the 

critical actions involved in following through with the decision, identification of constraints to 

the achievement of each critical action, determination of the amount of attention devoted to each 

critical action and the decision process as a whole, determination of the amount of decision-

relevant information gathered, and identification of the main heuristics and biases influencing the 

decision process (see Ly, Mažar, Zhao, & Soman, 2013, Appendix 2 for a suggested list of 

questions choice architects should ask themselves when evaluating a decision process). Choice 

architects should also submit nudge designs to careful testing, paying special attention to factors 

unrelated to the nudge that might influence the results.  

A second pitfall is that there is a risk of limited take up of digital nudges if they are 

perceived by the user as untrustworthy. To be effective, a nudge must address the particular bias 

an individual is experiencing – but people can differ in the biases they bring to a choice 

environment. Nudges that are viewed as inappropriate or misleading by the user may be ignored 

and mistrusted. Therefore, choice architects should be thoughtful in their selection of 

environments (i.e., employing nudges when there is consistency in the type of bias observed in a 

specific environment), and seek to design nudges that are effective against a range of biases. 

Special attention should also be paid to the relative “politeness” of nudges (cf. Whitworth, 2005), 

i.e., does the nudge respect and not preempt user choice, does the nudge avoid pestering or 

interrupting the user unnecessarily. Nudges that make correct suggestions, but do so in an 

impolite or obtrusive manner will still be viewed as untrustworthy – we call this the “Mr. Clippy 

problem” in reference to the famously derided Microsoft Office assistant that took the form of an 

animated paper clip. Early users of Office will recall that Mr. Clippy popped-up uninvited, 

preemptively taking control of the cursor and demanding to help (his most famous line, “It looks 

like you’re writing a letter...” appeared every time the user typed “Dear…”). Worse yet, Mr. 

Clippy ignored continuous rejection: hide him and he would simply reappear, ignore him and he 

would repeat the unsolicited advice (again and again). To avoid the Mr. Clippy problem, choice 

architects should consider how best to implement nudges within existing user workflows to 

minimize distraction and maintain user autonomy. 

One way choice architects may increase understanding and trust of digital nudges is 

through being transparent in the “reasoning” behind why a nudge is prompted, where reasoning 

refers to some interpretable translation of the underlying AI algorithm and decision inputs. This 

type of “explainable AI” (cf., Miller, 2019) is critical to our vision of collaborative and 

coordinated decision making in human-AI teams. Just as successful human teams are aware of 

the values, needs, intentions, actions, and capabilities of all team members, so should human-AI 

teams be reciprocally aware – this occurs over time, through interaction, shared experience, and 

feedback, team members can jointly and iteratively refine their beliefs and expectations about 

each other’s behavior. While there are challenges to achieving mutually aware human-AI teams 

(for review, see de Graaf & Malle, 2017), they are, in our opinion, far outweighed by the 

potential value in calibrating user trust in technology. 

 Finally, there are concerns about the ethics and morality of nudging (digital or 

otherwise). Some believe that nudging is morally reprehensible because it patronizes the decision 

maker by assuming they are not capable of making the best choice for themselves (Gigerenzer, 

2015). However, as discussed in this paper, there is strong scientific evidence that human 

decision makers are both (a) susceptible to cognitive bias across a range of choices and (b) 

struggle to successfully employ debiasing techniques to improve their judgment. We believe that 

if decision makers are aware of their vulnerabilities and shown the potential value of nudging 
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(through education or experience with polite and explainable nudges), they may be less likely to 

perceive nudges as condescending or infantilizing.  

Another oft-cited ethical concern is that nudged individuals will become used to being 

guided away from negative consequences resulting in a diminished ability to make good choices 

and assume responsibility for those choices (Bovens, 2009). Related to this, there is concern that 

the more use to nudging we become, the less we will be bothered by the introduction of more 

controlling or coercive techniques (Rizzo & Whitman, 2009). Yet, how decision makers respond 

to nudges in the long-term is an open empirical question. One possibility is that nudges have 

only short-term effects, and as time goes on, the level of nudging required to retain this effect 

increases because decision makers habituate to the nudge. If this is the case, then decision 

makers would retain their original preference structures, meaning they would make different 

choices without the aid from the nudge, placing them at risk of taking less personal responsibility 

for their choices because they assume other members of society will nudge them away from 

anything that is bad. The alternative is that repeated nudges induce actual preference change in 

the long-term; this could occur because the decision maker recognizes the hitherto unknown 

benefits of the nudged choice, because their sense of identity becomes linked to the nudged 

choice, or because the nudged choice becomes conditioned (in the Pavlovian style). Ultimately, 

different people will likely adapt preferences in response to different nudges in different ways, 

and future research should consider both the short-term and long-term effects.  

 Returning to the opening quote and question posed by G. K. Gilbert, “...whether it is 

possible by training to improve the guessing faculty, and if so, how it is to be done”, the answer 

is unequivocally yes, and we believe that digital nudging offers the best opportunity to overcome 

the cognitive constraints that result in biased decisions. As described at the outset of this paper, 

we hope our review of the cognitive literature on bias and debiasing will help readers to 

understand the constraints to human decision making and better-equip them with strategies for 

improving choice. We also hope this paper will stimulate future research on the important topic 

of debiasing geologic decision making, particularly in the context of evolving advancements in 

information technology and AI.  


