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Abstract. In the geosciences, recent attention has been paid to the influence of uncertainty on expert decision making. When

making decisions under conditions of uncertainty, people tend to employ heuristics (rules of thumb) based on experience, re-

lying on their prior knowledge and beliefs to intuitively guide choice. Over 50 years of decision making research in cognitive

psychology demonstrates that heuristics can lead to less-than-optimal decisions, collectively referred to as biases. For example,

the availability bias occurs when people make judgments based on what is most dominant or accessible in memory; a geosci-5

entist who has spent the past several months studying strike-slip faults will have this terrain most readily available in her mind

when interpreting new seismic data. Given the important social and commercial implications of many geoscience decisions,

there is a need to develop effective interventions for removing or mitigating decision bias.

In this paper, we outline the key insights from decision making research about how to reduce bias and review the literature

on debiasing strategies. First, we define an optimal decision, since improving decision making requires having a standard to10

work towards. Next, we discuss the cognitive mechanisms underlying decision biases and describe three biases that have been

shown to influence geoscientists’ decision making (availability bias, framing bias, anchoring bias). Finally, we review existing

debiasing strategies that have applicability in the geosciences, with special attention given to those strategies that make use

of information technology and artificial intelligence (AI). We present two case studies illustrating different applications of

intelligent systems for the debiasing of geoscientific decision making, where debiased decision making is an emergent property15

of the coordinated and integrated processing of human-AI collaborative teams.

Copyright statement. TEXT

“Evidently, if the investigator is to succeed in the discovery of veritable explanations of phenomena, he must be fertile in

the invention of hypotheses and ingenious in the application of tests. The practical questions for the teacher are, whether it is

possible by training to improve the guessing faculty, and if so, how it is to be done. To answer these, we must give attention20

to the nature of the scientific guess considered as a mental process. Like other mental processes, the framing of hypotheses is

usually unconscious, but by attention it can be brought into consciousness and analyzed.” – Gilbert (1886)

1



1 Introduction

When G.K. Gilbert wrote about the development of a “guessing faculty” in “The Inculcation of Scientific Method by Example”

(1886), he was one of the first to highlight the value of understanding how geoscientists resolve epistemic uncertainty during

judgment and decision making. Epistemic uncertainty refers to knowledge that an individual, in principle, could have, but

does not, i.e., limited information of the environment or system of study. Although epistemic uncertainty is a feature of all5

sciences, in the geosciences it is the standard rather than the special case (Bárdossy and Fodor, 2001; Frodeman, 1995).

Geoscientists must frequently make decisions where data are incomplete, e.g. where isolation of processes can be difficult

because multiple processes have cumulatively transformed the rocks, and where direct observation (much less experimental

control) is impossible due to the large time spans of geologic processes, which leaves evidence lost or buried beneath the

Earth’s surface.10

To understand the influence of uncertainty on decision making in the geosciences, and what the human mind adds to the

problem of inducing rules from incomplete cases, recent research has followed Gilbert’s advice and studied geologic uncer-

tainty as a mental process through the lens of cognitive science. In this work, particular attention has been paid to ways that

humans constrain judgment and decision making through the use of heuristics, i.e., rules of thumb. Heuristics are efficient and

offer satisfactory solutions for most decisions, but they can sometimes yield less-than-optimal choices, collectively referred to15

as human decision biases. Geoscience scholars have begun to characterize the influence of such biases in geologic decision

making (Alcalde et al., 2017a, b; Barclay et al., 2011; Bond et al., 2007; Polson and Curtis, 2010; Rowbotham et al., 2010;

Taylor et al., 1997). For example, the interpretation of synthetic seismic images has been shown to be vulnerable to availabil-

ity bias, which occurs when people make judgments based on what is most dominant or accessible in memory; participants’

interpretations were positively related to their primary field of expertise in tectonic settings, i.e., an individual who indicated20

thrust tectonics as their primary field (and had this setting most accessible in memory) was more likely to interpret the image

as thrust faults than an individual with a different expertise (Bond et al., 2007).

Characterizing the impact of decision biases such as the availability bias is important and more work is needed to determine

the range of biases influencing geoscientists and their prevalence in geologic decision making. However, given the potential

costs of biased decisions, there is a still greater need to develop effective interventions for removing or mitigating bias. In the25

words of Gilbert (opening quote), to determine “whether it is possible by training to improve the guessing faculty, and if so,

how it is to be done.” The development of debiasing techniques is especially important for geologic decisions that have social

and commercial implications (e.g., hazard prediction, resource extraction, waste storage, water supply), but could also benefit

the underpinning workflows involved in more commonplace decisions (e.g., navigation, mapping) and result in improved field

practice. The cognitive literature on judgment and decision making offers valuable insights into how susceptibility to decision30

bias can be reduced and thus how geologic decision making under uncertainty might be improved. In this paper, we outline

the key insights from judgment and decision making research about how to reduce bias and review the literature on debiasing

strategies. In doing so, we seek to highlight the most promising avenues for future research on debiasing geologic decision

making.
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The paper is organized as follows. First, we briefly discuss how to define an optimal decision, since “improving” geologic

decision making necessitates having a clear standard to work towards. Next, we describe the origins of decision biases using

a dual-process distinction that has been supported by a wealth of research in cognitive science (for review, see Evans and

Stanovich, 2013). Dual-process theories of decision making posit the existence of two unique sets of processes, a set of intuitive

and largely automatic processes and a set of deliberative and more effortful processes. We explain how dual-process theories can5

account for three specific decision biases, the availability bias, framing bias, and anchoring bias. We focus on these three biases

because their influence has been well-documented in the geoscience literature. Finally, we analyze existing debiasing strategies

that have applicability in the geosciences. We categorize existing strategies based on whether they debias by modifying the

decision maker (i.e., provide knowledge or tools that must be self-employed to debias), or debias by modifying the environment

(i.e., change settings or the information available in the environment where decisions occur to debias). Special attention is given10

to debiasing strategies that make use of information technology and artificial intelligence (AI) when modifying the decision

maker or environment. We believe that these technologies offer the opportunity to overcome some of the cognitive constraints

that result in biased strategies and thus hold the greatest promise of successful application in the geosciences.

2 Optimal decision making

What does it mean to choose optimally during scientific decision making? The scientific decision process is complex and dy-15

namic, and “optimality” may be defined at various levels, from selection of measurement tool and sampling site, to calculation

of individual parameters, to interpretation (single or multi-scenario). The position we take in this article is that normative deci-

sion models offer a reasonable benchmark for assessing optimal choice in geoscience decisions at all levels. Normative models

are based in economic theory and describe how people should make decisions: People should strive to maximize the expected

utility of a decision, the probability that an act will lead to an outcome that is preferable to all alternatives (the principle of20

dominance). Also, people should be internally consistent in their decision making, meaning they should assign the same utility

to decision alternatives regardless of minor changes in context, such as the description and order of alternatives or the presence

or absence of other alternatives (the principle of invariance).

Unfortunately, what people should do is not always what they actually do. Numerous behavioral decision studies have

demonstrated that how people make decisions in the real world can systematically violate normative models (for review, see25

Gilovich et al., 2002; Kahneman, 2011). These systematic departures from optimal choice are referred to as biases, and they

arise (as described in the Introduction) from reliance on heuristics during decision making. For example, framing equivalent

decision outcomes as positive (e.g., 60 percent chance to win) or negative (e.g., 40 percent chance to lose) has been shown

to systematically alter risk preference, a violation of the invariance principle. This framing bias can drive individuals to make

decisions that fail to maximize expected value (e.g., preference for a certain gain over a gamble with a probabilistically higher30

value), a violation of the dominance principle.

While it is clear from past research that people do not always make decisions as they should, there is good reason to believe

that people have the capacity to improve decision making to the normative standard. This is evidenced by the observations that
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(1) when people actively reflect on normative principles they are likely to endorse them, even if they have violated those norms

in the past, and (2) some people already adhere to normative principles in their decision making, and these individuals often

have higher analytic skills (are more reflective and engaged) than those who are vulnerable to bias (for review, see Stanovich

and West, 2000). Thus, in the current article we will not focus on the question of whether geoscientists can make optimal

choices (we assume this is possible), instead we will address the question of how to effectively move geoscientists decision5

making towards a normative standard (Sect. 4, Debiasing strategies). However, first we review in more detail the cognitive

mechanisms by which biases arise.

3 Origins of decision biases

In the opening quote, Gilbert is astute in his observation that the mental processes through which decision makers handle

uncertainty are frequently outside the focus of their attention. Converging evidence from psychology and neuroscience suggests10

there are two distinct sets of processes driving judgment and decision making (for review, see Evans and Stanovich, 2013).

One set of processes is intuitive and places minimal demand on cognitive resources because it does not require controlled

attention. The other set is deliberative and places greater demand on cognitive resources, but also enables uniquely human

abilities such as mental simulation and cognitive decoupling during hypothetical thinking, i.e., the ability to prevent real

world representations from becoming confused with representations of imaginary situations. In the judgement and decision15

making literature these sets of processes are typically referred to as Type 1 and Type 2 processes, respectively; however, for

the purposes of this paper we will simply refer to them as intuitive and deliberative. Both sets of processes serve important

functions when making decisions under uncertainty. Generally, intuitive processes are believed to be prompted rapidly and

with minimal effort, providing default responses that serve as heuristics. When the heuristic responses are inappropriate and do

not align with set goals, deliberative processes intervene and engage available resources for slower, more reflective reasoning20

(Evans and Stanovich, 2013; Kahneman and Frederick, 2002).

The interaction between intuitive and deliberative processes can be likened to that of a reporter and an editor in a newspaper

room1. Reporters (i.e., intuitive processes) interpret the world and produce the bulk of the written work (i.e., decision making).

It is the job of the editor (i.e., deliberative processes) to endorse the work of reporters, edit the work, or stop it altogether.

Unfortunately, editors are often overburdened, and so stories that should be edited or stopped (because they are in some way25

flawed or objectionable) are instead endorsed. Similarly, deliberative processing is often overworked because it is restricted

by the limited capacity of available cognitive resources – and so heuristic responses that are ill-suited for the current decision

environment can be mistakenly endorsed by deliberative processes.

It is important to note that, on most occasions, heuristic responses do lead to good decisions. Intuitive processing draws from

our knowledge of the world, our experiences, and the skills we possess – it is what allows us to move quickly and efficiently30

through our environment, making decisions with relatively little effort. To truly appreciate the value of intuitive processing,

11. The reporter-editor analogy, to our knowledge, was first introduced by Daniel Kahneman in 2013 during an interview with Morgan Housel for The

Motley Fool, a multimedia financial advisement company.
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consider how your behavior in the last hour would have changed if you had to deliberately think about every choice: you would

have had to deliberate about the best form for sitting down and standing up, the amount of time spent in each position, where

to put your pen, which way to position your coffee cup, the best web browser to use, and so on. Viewed in this light, we should

all be thankful for the intuitive processes that allow us to make decisions quickly and effortlessly.

Yet, while intuitive processing is generally effective, there are some situations in which the heuristic responses generated5

by intuitive processes are inappropriate and fail to meet desired goals. In such circumstances, we need intervention from

deliberative processes to behave optimally. Decision making is vulnerable to bias when (1) deliberative processes do not

interrupt and override faulty heuristic responses, or (2) when the content of deliberative processing is itself flawed. Because

deliberative processing is constrained by the capacity of available cognitive resources, in situations where resources are already

limited (e.g., high mental effort tasks, fatigue, sleep deprivation) decision makers will be more likely to rely on heuristic10

responses, thus making them particularly susceptible to bias in such situations. Also, in general, humans act as cognitive

misers (Böckenholt, 2012; Stanovich, 2009), meaning even when cognitive resources are available for deliberative processing

we tend to rely on less effortful intuitive processes. Thus, broadly speaking, decision making may be debiased by changing the

environment, or through training change the decision maker, so default heuristic responses lead to good decisions, or so the

application of deliberative processing is supported under conditions where it is otherwise unlikely to be applied (Milkman et15

al., 2009).

There are three decision biases that have been shown to influence geologic decision making: the availability bias, the framing

bias, and the anchoring bias. All three are driven by faulty heuristic responses, which should be overridden by deliberative

processes but are not. A form of anchoring bias can also be driven by flawed deliberative processing, which wis discussed.

These three biases by no means exhaust the full range of biases that could be influencing geologic decision making under20

uncertainty, but they are, at present, the best-documented in the geosciences literature. For a more complete list of biases and

their potential influence on geologic decision making see Baddeley et al. (2004); Bond (2015); Rowbotham et al. (2010).

3.1 Availability bias

This bias is driven by an availability heuristic (intuitive process), which is a tendency to make decisions based on what is

most dominant or accessible in memory. To illustrate, consider the following: do air pollutants have a higher concentration25

outdoors or indoors? When asked to make this judgment you likely recalled (automatically and without effort) news stories

related to outdoor air pollutants; maybe you visualized billowing smoke, car exhaust, or a smoggy city skyline. The ease with

which examples of outdoor air pollution were drawn to mind probably led you to conclude that air pollution is more highly

concentrated outdoors versus indoors. If so, you have just fallen prey to the availability bias. In fact, of those air quality studies

examining both indoor and outdoor environments, over two-thirds have found higher pollutant concentrations inside (Chen and30

Zhao, 2011).

The availability heuristic can lead to bias because it substitutes one question (the size or frequency of a category or event)

for another (the accessibility of the category or event in memory). When the ease with which something is drawn to mind is not

reflective of the true size or frequency, bias occurs. There are many factors besides frequency that can make it easy to come up
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with instances in memory. For example, the recency with which something has occurred (e.g., flying is perceived as more risky

or dangerous immediately following a plane crash.), whether it holds personal significance (e.g., people have better attention

and memory for the household tasks they complete, causing them to underestimate the contributions of their living partner),

and how salient or dramatic it is (e.g., shark attacks get lots of media attention so people tend to exaggerate their frequency).

Note, then, that if a event (a) did not occur recently, (b) does not apply to you, or (c) is banal, it will lead to an impression that5

the event is rare (even if it is not).

In the geoscience literature, evidence of the availability bias during data interpretation has been documented in both experts

(Bond et al., 2007) and students (Alcalde et al., 2017b). Bond et al. (2007) found that experts’ interpretations of seismic images

were related to their primary field of expertise in tectonic settings, specifically, the most dominant tectonic setting in memory

was the one selected. Likewise, Alcalde et al. (2017b) found that geology students were more likely to interpret a fault in a10

seismic image as normal-planar as this fault type and geometry are over-represented in teaching materials, particularly those the

students had encountered. After students were exposed to a greater range of fault models through a two-week training course,

the range of fault interpretation type and geometry increased. The potential value of such education programs for reducing

vulnerability to decision bias is discussed in Box 1, “Can better decision making be taught?”

3.2 Framing bias15

Framing bias occurs when people respond differently to objectively equivalent judgments based on how potential outcomes are

described, or framed. It is generally believed to be the result of an initial affective reaction, or affect heuristic (intuitive process),

that makes certain gains particularly attractive and certain losses particularly aversive (Kahneman and Frederick, 2007). In a

now classic example of framing bias, Tversky and Kahneman (1981) showed that when disease outbreak intervention programs

were framed in terms of lives saved (i.e., 200 out of 600 people will be saved OR 1/3 probability 600 people will be saved, 2/320

probability 0 people will be saved) participants preferred the sure option over the risky option, but when the same programs

were framed in terms of lives lost participants preferred the risky option over the sure option2. This research had a huge

impact in the fields of psychology and economics (as of 2018 it has been cited over 17,600 times) because it illustrated that

human preference can be the product of problem description, and not actual substance. Subsequent research has shown that

frame-driven changes in risk preference are robust, occurring across a variety of populations and domains, including experts in25

medicine (McNeil et al., 1982), law (Garcia-Retamero and Dhami, 2013), finance (Fagley and Miller, 1997), and geoscience

(Barclay et al., 2011; Taylor et al., 1997).

Early evidence of framing bias in geologic hazard risk assessment was found by Taylor et al. (1997), across two experi-

ments. In experiment 1, participants of varying levels of expertise (high school student, undergraduate student, professional

geoscientist) were asked to make decisions regarding hazardous waste storage, flood protection, and volcano monitoring. These30

problems were presented in a format similar to the disease outbreak problem by Tversky and Kahneman (1981): for the waste

storage problem, the positive frame described the probability of safe storage and the negative frame described the probability of

2This example represents only one manifestation of framing bias, referred to as “risky choice framing”. For a complete typology of framing effects see

Levin et al. (1998).
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an accidental spill; for the flood protection problem, the positive frame described the probability the protection would succeed

and the negative frame described the probability it would fail; and for the volcano monitoring problem, the positive frame

described the probability the volcano would remain dormant and the negative frame described the probability of an eruption.

Across all scenarios, participants demonstrated evidence of frame-driven changes in risk preference. Importantly, professional

geoscientists were just as vulnerable to bias as students, suggesting that even experts (who regularly make decisions that impact5

public safety) can be swayed by superficial choice descriptions.

In experiment 2 (Taylor et al., 1997), high school student participants completed a variation of the volcano monitoring

problem in which they played the role of a volcanologist who must interpret incoming information from three instruments to

make ongoing decisions about how many people to evacuate from the area surrounding a volcano. Readings from the three

instruments were correlated with probabilities of volcanic activity that were positively framed (i.e., dormant) or negatively10

framed (i.e., eruption). Participants completed either a paper-pencil version or a computerized version of the task. Again,

participants demonstrated frame-driven changes in risk preference, but only in the paper-pencil version; in the computerized

version, participants were resistant to framing bias. In a follow-up study by Barclay et al. (2011), the same computerized

volcano monitoring problem was used but instrument readings were either presented in text format (as in experiment 2; Taylor

et al. (1997)) or in a novel graphical format. Barclay et al. (2011) reported similar findings of resistance to framing in the15

text version, but found that presenting instrument readings graphically produced frame-driven changes in risk preference. That

presentation mode (paper-pencil, computer) and presentation format (graphical, text-based) have an influence on vulnerability

to framing bias demonstrates the complexity of characterizing cognitive biases and the need for evidence informed practices,

which we discuss further in Sect. 4, Debiasing strategies.

3.3 Anchoring bias20

Anchoring is the result of focusing on the first available value or estimate for an unknown quantity before making a judgment or

decision about that quantity. The initial value “anchors” subsequent judgments, so decisions stay close to the value considered.

Bias occurs when the anchor is incorrect or arbitrary. Unfortunately, even when decision makers are fully aware that the anchor

is a meaningless value, it still has a strong influence on their choice. For example, a study by Englich et al. (2006), asked expert

judges to make a hypothetical prison sentence for a shoplifter (in months) after rolling a loaded die that only landed on three or25

nine. Those judges who rolled a nine gave an average sentence of eight months, while those who rolled a three gave an average

sentence of five months.

In science, anchors come in the form of initial hypotheses or interpretations. Vulnerability to bias can make scientists reluc-

tant to accept alternative explanations, even in the face of disconfirming evidence. Ultimately, this can disrupt the evolution of

knowledge. In the geosciences, for example, Rankey and Mitchell (2003) demonstrated that experts only made minor changes30

to their initial interpretations of 3D seismic data after being given additional quality information that could aid interpretation.

One expert (who did not change his interpretation at all) noted, “I did . . . not want to change any of my picks based on the

additional well data - looks like I had it nailed.”
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A particular form of anchoring bias is called herding (Baddeley, 2015). Herding is group-driven behavior in which members’

judgments are anchored to those of influential group members. This can be especially detrimental in science because evidence

that conflicts with established consensus or opinion can be sidelined, and if the conflicting findings are successfully published,

the authors risk being ostracized or punished. There are well-known historical examples: Galileo Galilei was convicted of

heresy by the Catholic church for supporting the Copernican theory that the earth and planets revolve around the sun (Lindberg,5

2003); Alfred Wegener’s championing of plate tectonics theory was ignored, mocked, and deemed pseudoscience by his peers

for over 40 years (Vine, 1977).

Empirical evidence of herding in the geosciences was first demonstrated by Phillips (1999) who showed that experts’ prob-

ability distributions of corrosion rates for nuclear waste storage containers differed depending on whether they were elicited

independently or in groups. Experts made different prior assumptions resulting in probability distributions that were initially10

radically different. Inter-expert discussion resulted in some convergence of probability distributions but was also accompanied

by an increase in the variance of each independent distribution, i.e., experts increased the spread of their initial distributions to

encompass the spread of the consensus distribution. In a similar study, Polson and Curtis (2010) showed that experts’ estimated

probability distributions for the presence of a fault were vulnerable to herding; the group of experts moved towards a single

member’s opinion, such that the consensus distribution was primarily a reflection of the views of one individual.15

As mentioned in Sect. 3, Origins of decision biases, anchoring is typically driven by a faulty heuristic response, which should

be overridden by deliberative processing, but is not. When given an anchor, intuitive processes immediately construct a world

where the anchor is true by activating compatible memories. This, in turn, primes decision makers to notice information that

is consistent with the anchor and ignore or discount information this is inconsistent. In the Rankey and Mitchell (2003) study,

the participant who “had it nailed” was demonstrating an anchoring bias driven by faulty intuitive processing; the participant20

was primed to interpret new data as consistent with his initial hypothesis and ignore disconfirming data.

Alternatively, anchoring can be driven by flawed deliberative processing, which occurs when decision makers fail to ade-

quately adjust from the anchor. We know this is a failure of deliberative processing because people are more prone to insufficient

adjustment when their mental resources are depleted, e.g., when their attention is loaded or when consuming alcohol (Epley and

Gilovich, 2006). Research shows people tend to only adjust estimates to the first plausible value and are generally unwilling to25

search for more accurate estimates (Epley and Gilovich, 2006). This may explain why participants in the Phillips (1999) study,

when given the opportunity to adjust their initial probability distributions following group discussion, primarily increased their

distribution range to encompass the spread of the consensus distribution. The participants made the simplest adjustment that

was still a plausible reflection of the true distribution.

4 Debiasing strategies30

Cognitive research on heuristics and biases, beginning in the 1970s and continuing today, has demonstrated the pervasive and

robust influence of an ever-increasing list of decision biases. In comparison, our understanding of how to debias decision mak-

ing is limited. This is in part due to the relatively unappealing nature of debiasing research; “it is more newsworthy to show
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that something is broken than to show how to fix it” (Larrick, 2004). It is also likely that researchers have been dissuaded from

pursuing debiasing research because early studies found biases were generally robust in the face of commonsense corrective

measures, including providing feedback or incentives (Camerer and Hogarth, 1999; Fischhoff, 1982), holding people account-

able for their decisions (Lerner and Tetlock, 1999), and offering warnings about the possibility of bias (Fischhoff, 1982). While

there is a strong need for additional research on debiasing, a number of successful strategies have been discovered (for review,5

see Larrick, 2004; Milkman et al., 2009; Soll et al., 2016). These existing strategies can be categorized into one of two ap-

proaches: (1) debiasing by modifying the decision maker or (2) debiasing by modifying the environment (Soll et al., 2016). In

the remaining section we consider the pros and cons of the two approaches and discuss how each can be best used in geoscience

education and industry to minimize bias.

4.1 Modifying the decision maker10

Debiasing strategies that modify the decision maker provide knowledge and tools that must be self-employed to overcome bias.

This includes cognitive strategies to shift perception of a problem (i.e, consider the opposite), the use of computational models

to assist judgment, and education on statistical rules and normative principles (see Box 1). All of the above are likely familiar to

geoscience scholars, though perhaps not framed as decision aids. In fact, it can be argued that the cognitive debiasing strategy

of “consider the opposite” has been a feature of geoscience for over a century. In his 1890 publication “The Method of Multiple15

Working Hypotheses”, T.C. Chamberlin advocates that geoscientists should generate multiple plausible alternatives to explain

the occurence of geologic phenomena (essentially a “consider the opposite” strategy). Chamberlin is clear in stating the value

of this method in guarding against bias:

“The effort is to bring up into view every rational explanation of new phenomena, and to develop every tenable hypothesis

respecting their cause and history. The investigator thus becomes the parent of a family of hypotheses: and, by his parental20

relation to all, he is forbidden to fasten his affections unduly upon any one. In the nature of the case, the danger that springs

from affection is counteracted. . . Having thus neutralized the partialities of his emotional nature, he proceeds with a certain

natural and enforced erectness of mental attitude to the investigation.”

Cognitive research has supported Chamberlin’s assertions that generating multiple alternatives to a decision problem can be

an effective debiasing strategy, particularly when bias is driven by a tendency to rely on small and unrepresentative samples of25

information, as with anchoring bias (e.g., Mussweiler et al., 2000), overconfidence (e.g., Koriat et al., 1980), and hindsight bias

(e.g., Sanna and Schwarz, 2006). In modern geoscience practice, as noted by Bond (2015), the method of multiple working

hypotheses is not consistent with the culture of science in which advocacy for a single model is rewarded. However, there is

recognition of the value of promoting a workflow that increases consideration of permissible interpretations in the geosciences

(Bond et al., 2008; Macrae et al., 2016), as well as other sciences faced with complexity and high uncertainty (Elliot and Brook,30

2007). While geoscience educators recognize the centrality of the principle of multiple working hypotheses to geoscience

practice there is, to our knowledge, no accepted pedagogy for supporting practice in the skill.

The debiasing strategy of applying computational models is a more recent fixture of geoscience, and its increased promi-

nence is at least partially owed to the increased availability of user-friendly modeling software. In sustainability and resource
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management research in particular, many modeling and simulation software tools have been created to aid judgment ((for re-

view, see Argent, 2004; Argent and Houghton, 2001; Rizzoli and Young, 1997). Computational models systematize the weights

placed on various decision inputs (in lieu of relying on expert experience), enabling better forecasting of outcomes. In situa-

tions where expert experience is critical to predicting outcomes, that experience can become a decision input in the model. Past

research has shown that such computational models outperform expert judgment in a variety of domains (Dawes et al., 1989),5

and even the simplest linear models that equally weight all relevant decision inputs (not taking into account historical data on

inputs) can outperform expert judgments (Dawes and Corrigan, 1974). In the geosciences, recent research investigating the

impact of model use on human judgment about resource management found that management outcomes were superior when

student participants relied on models rather than their own experience (Holden and Ellner, 2016). Also, model use has been

shown to improve sustainability policy decisions – in a role play simulation, model users evidenced better outcomes (e.g., low10

change in temperature, high access to electricity, and high global economy) than participants who did not use models (Czaika

and Selin, 2017).

For decision makers to use computational models or employ cognitive techniques like “consider the opposite” successfully

requires (at minimum) that deliberative processing resources be available for suspending and correcting decisions. These de-

biasing strategies operate by supporting the application of deliberative processing under conditions where it is likely to not be15

applied, encouraging decision makers to shift themselves from intuitive to deliberative processing. For example, when decision

makers “consider the opposite” it encourages deliberative analysis and suspends reliance on intuitions that distort the represen-

tation of information (e.g., intuition to rely on what is most dominant or accessible in memory). Recall from Sect. 3, Origins

of decision biases, that we have a limited capacity of deliberative resources to draw from, i.e., our “editor” can be overworked.

Therefore, these debiasing strategies will have a low probability of success in situations where deliberative processing resources20

are reduced (e.g., high mental effort tasks, states of fatigue or sleep deprivation). Also, individual differences in thinking style

and quantitative ability (i.e., numeracy) impact the effectiveness of deliberative processing debiasing strategies; people who

are reflective and have high numeracy are more likely to suspend heuristic responses and invoke deliberative resources to do

necessary additional thinking (Frederick, 2005). However, even under ideal conditions, where deliberative resources are not

constrained and the decision maker is prone to reflective thinking, there is no guarantee of debiasing success – and herein lies25

the problem with self-employed debiasing strategies, they may require too much of the decision maker. Successful implemen-

tation requires that the decision maker be able to recognize the need to apply a strategy, have the motivation and the required

deliberative resources to do so, select the appropriate strategy and apply it correctly. A mistake or failure at any step of this

process could result in (at best) continued vulnerability to decision bias or (at worse) an increase in bias.

Consider, for example, the application of computational models in sustainability and resource management research. Al-30

though there are many modeling and simulation software tools available for forecasting climate outcomes (for review, see

Argent, 2004; Argent and Houghton, 2001; Rizzoli and Young, 1997), there is concern amongst geoscience scholars that deci-

sion makers are not using computational models as often as expected, or correctly (see also Box 1 for discussion of concerns

about the level of quantitative education in the geosciences). Both Edwards et al. (2010) and Oxley et al. (2004) found poor

receptivity to and “low uptake” of modeling software tools amongst targeted end users within EU funded research projects.35
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The authors of these studies argue that low uptake resulted from bad communication between tool developers and end users.

Thus, despite computational models being available for use in forecasting climate outcomes, some experts are not sufficiently

motivated to apply them or are unconfident in their ability to select the appropriate model and apply it correctly, instead relying

on their experience and intuition as a substitute for formal analysis.

Determining methods for facilitating the adoption of self-employed debiasing strategies is a critical issue for debiasing5

research both generally and in the geosciences. Some of the reluctance to use computational models in the geosciences can be

solved by improving the design and user-interface of modeling and simulation software. To this end, McIntosh and colleagues

have outlined design principles (McIntosh et al., 2005) and best practices (McIntosh et al., 2008) for the development of

computer-based models, with the goal of improving the usefulness and usability of modeling tools in the geosciences. However,

even with improved tool design, decision makers may continue to resist using computational models and other self-employed10

debiasing strategies. In the words of debiasing researcher Richard Larrick 2004:

“[Decision makers] do not want to be told that they have been ‘doing it wrong’ for all these years. They do not want to

relinquish control over a decision process. And, perhaps most importantly, they fail to understand the benefits of many debiasing

techniques relative to their own abilities, not just because they are overconfident, but because the techniques themselves are

alien and complex, and the benefits are noisy, delayed, or small.”15

In sum, self-employed debiasing strategies carry a high risk of being used inappropriately by decision makers (i.e., used

incorrectly or not at all), and for this reason we believe that such strategies alone do not offer the most promise for successful

application in the geosciences. Instead, we advocate that debiasing strategies (including “consider the opposite” and using

computational models) be supported by modifying the decision environment such that (1) people are “nudged” towards the

optimal choice strategy or (2) the environment becomes a good fit for the strategy people naturally apply, thereby relieving20

decision makers of the impetus for debiasing.

4.1.1 Box 1. Can better decision making be taught?

There is good evidence that decision making can be improved by teaching people statistical rules and normative principles.

Research in this area examines the influence of teaching across formal higher education, disciplinary-specific training, single

courses, and brief laboratory sessions. For example, Doctoral-level scientists, with extensive statistical training, are better than25

psychology graduate students, with two to three courses in statistics, at applying statistical rules to avoid drawing inferences

from small samples – but graduate students do better than undergraduate students with only one statistics course (Fong et

al., 1986). Also, economics professors are more likely than biology and humanities professors to use normative principles

in everyday decision making, such as ignoring a sunk cost by leaving a mediocre play early in the performance (Larrick et

al., 1993), and college students can be taught how to apply normative principles in laboratory sessions lasting less than an30

hour (Larrick et al., 1990). From this research we infer that better decision making in the geosciences can also be taught by a

substantive statistics curriculum.

Although modern geoscience researchers have embraced statistical methods, and quantitative skills are fundamental to the

evaluation and investigation of geologic processes, there is not a strong history of statistics curriculum in undergraduate and
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graduate geoscience courses (Manduca et al., 2008). However, in the past 20 years there has been increased interest in iden-

tifying quantitative skills that students need to succeed in the field and developing strategies for teaching those skills; see

Kempler and Gross (2018) for a recent example. As a result, statistical training is now a more common feature of geoscience

education. In future research, it would be interesting to know if education on statistical rules in the geosciences mitigates some

biases (e.g., sunk costs), and how any improvements in decision making compare to those achieved through similar statistical5

education in other sciences. Also, it would be worthwhile to determine the reliability and duration of decision improvement

following statistics education: do geoscientists with statistical education always avoid drawing inferences from small samples,

or just occasionally, and how long after education has concluded do improvements endure?

Beyond education on statistical rules and normative principles, in some fields it is common that students receive additional

decision-focused curriculum. For example, in fields such as business and medicine, where there has been longer recognition of10

the influence of decision bias, students are taught how experts resolve uncertainty in decision making, and the biases that occur

when experts rely on heuristics that are not well suited to the choice environment. To our knowledge, most of this decision-

focused curriculum is descriptive, that is, it teaches facts about biases (including a taxonomy of biases) and how they distort

reasoning, but does not address strategies for overcoming bias. To date, the effectiveness of courses with decision curriculum

aimed at reducing vulnerability to bias is unknown.15

We feel that geoscience education and industry would benefit from the adoption of similar decision-focused curriculum,

since being aware of the existence and possibility of decision bias is the first necessary step to reducing vulnerability. Already

uncertainty training has been incorporated into many major oil company training portfolios and is offered by training consul-

tants to the geoscience industry. Yet, past research would suggest that simply being aware of the possibility of bias is not enough

to reduce susceptibility by any substantial margin (Fischhoff, 1982). A potentially worthwhile addition, then, to decision cur-20

riculums in geoscience and other fields would be education on choice architecture and “nudging” (see Sect. 4.2, Modifying

the environment), i.e., teaching students how to structure and engage with their environment to promote good judgment and

decision making. This would include instruction on how and why biases occur and debiasing strategies to mitigate them, but

also practice with choice infrastructure creation so decision makers are not required to self-employ strategies to rise above their

ingrained and subtle biases. Trainings on using structured workflows, as are common in geoscience industry, is one existing25

method of incorporating choice architecture techniques in education. How best to teach decision-focused curriculum and what

kind of content, guidance, and practice to offer is an important question for future education research (for discussion on the

possible virtues of “nudge” education, see Beaulac and Kenyon (2014); for discussion of how to achieve such institutional

education changes see Henderson et al. (2015).

4.2 Modifying the environment30

Debiasing techniques that modify the environment alter the settings where decisions occur. The environment can be modified

to make it a better fit for the strategy people naturally apply (e.g., status-quo bias pushes people to stick with a default re-

sponse option over selecting a new option, so making the default a desirable outcome will maximize decision making). The

environment can also be modified to “nudge” people towards the optimal choice strategy (e.g., prompts to induce reflection and
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deliberation). The environment modification approach to debiasing is sometimes referred to as choice architecture, making the

individual or entity responsible for organizing the environment in which people make decisions the choice architect (Thaler and

Sunstein, 2008). It is the role of the choice architect, as put forward by Thaler and Sunstein (2008) in their popular press book

“Nudge”, to influence people’s decision making such that their well-being (and the well-being of others) is maximized, without

restricting the freedom to choose. Importantly, there is no such thing as neutral choice architecture; the way the environment is5

setup will guide decision making, regardless of whether the setup was intentional on the part of the architect, e.g., descriptions

of risk will be framed in terms of gains or losses, a wise architect chooses the framing that will maximize well-being.

The advantage of debiasing techniques that modify the environment, over those that modify the decision maker, is that it

is the choice architect and not the decision maker who is accountable for debiasing (unless, of course, the architect and the

decision maker are the same person). Conscious choice architecture is a naturally deliberative process – potential mechanisms10

of bias must be considered and used to design nudges, user responses to these nudges must also be considered, including

factors unrelated to the nudge that may influence responses. Therefore, techniques that modify the environment tend to be more

successful in reducing vulnerability to bias and improving decision making, and this has been evidenced in varied domains,

e.g., improving rates of organ donation (Johnson and Goldstein, 2003), increasing employee’s retirement savings (Madrian and

Shea, 2001), and encouraging healthier eating habits (Downs et al., 2009).15

Choice architecture debiasing techniques have been adopted in the sciences in the form of imposed workflow practices and

structured expert elicitation exercises. The latter may be more familiar to geoscientists given there is a long history of using

cumulative expert judgments in geologic research when data are insufficient (e.g., Cooke and McDonald, 1986; Hemming et

al., 2018; Wood and Curtis, 2004). Expert elicitation research demonstrates that structured methods can be employed to enforce

consideration of group ideas and opinions, such that the vulnerability to overconfidence and other biases is reduced (Wood and20

Curtis, 2004; Polson and Curtis, 2010). The use of imposed workflows, in comparison, is a newer feature of scientific practice.

In the social and life sciences, a research reproducibility crisis has led many academic gatekeepers to advocate for the use

of workflows such as study preregistration (i.e., a description of study methods, materials, and analyses published prior to

data collection) and open sharing of data and study materials. In geoscience research, use of workflows is also increasingly

encouraged. For example, Gil et al. (2016) propose that the “Geoscience Paper of the Future” should make data and software25

reusable and explicitly describe higher-level computational workflows.

One way the value of choice architecture debiasing in the sciences manifests is through improved efficiency and effective-

ness of an ongoing decision process – how many data points are enough to reach a conclusion about my interpretation(s) and

how confident am I in that conclusion? This decision process can be visualized by plotting the relationship between conclu-

sion certainty and data; where data is generally defined as the quality and quantity of information known. Notably, in most30

sciences, amount of data (as defined above) is directly proportional to time, resources, and funds. As data accumulates, con-

clusion certainty increases until some threshold of confidence is reached, at which point the scientific decision maker makes

a conclusion about her interpretation(s). We define this threshold of confidence as a geologists individual perception of being

“certain enough” in their interpretation, and hence the threshold can differ dramatically between individuals (what seems cer-

tain to one will not seem certain to all) and be shaped by research context (what counts as “certain enough” in one research35
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field will not count in all research fields). In the ideal case, where data are homogeneous, collected in an unbiased manner, and

consistent with a theory, there is a positive linear relationship between data and conclusion certainty, with greater slopes indi-

cating greater decision efficiency, i.e., faster ascension to the decision makers threshold of confidence (see Fig. 1). However, as

every researcher knows, this ideal case is rare. More often, as data accumulates, researchers experience upward and downward

shifts in conclusion certainty. Decision biases can impact how confidence shifts with incoming data, and where the threshold5

of confidence is set.

Consider the following study by Macrae et al. (2016) on geologic workflows as an example. Macrae et al. (2016) gave

geoscientists a 2D seismic reflection image and asked them to provide an interpretation within a limited time frame. Half the

geoscientist participants were asked to undertake a specific workflow in which they received instruction to explicitly consider

geological evolution through writing or drawing (a choice architecture debiasing technique), and the other half received no10

workflow. The results from Macrae et al. (2016) reveal that geoscientists nudged to consider geological evolution had higher

quality interpretations than those who received no nudge. Because real seismic data was used, the correct interpretation was

unknown, but interpretations were deemed high quality if they were consistent with the interpretations of at least one of

five leading experts. Some participants may have been overconfident in their interpretation (as suggested by Macrae et al.

(2016)), which implies that their threshold of confidence was lower thus increasing the likelihood of accepting an erroneous15

interpretation. The workflow nudge could have mitigated overconfidence by testing the interpretation (during or after creation)

to determine whether the final interpreted geometry could evolve in a geologically reasonable manner. Figure 2 shows the

decision process of two hypothetical individuals, Participant 1 and Participant 2. For those interpretations in which the evolution

was not feasible (Participant 1, Interpretation A), the workflow nudge would force the participant to consider modifications

(1B), or alternative interpretations (1C), thereby reducing overconfidence. For those interpretations in which the evolution was20

reasonable, certainty in interpretation would likely increase to the threshold of confidence (Participant 2, Interpretation A).

We can also use the data-certainty plot to visualize how the choice architecture practice of expert elicitation influences

decision making and vulnerability to herding (anchoring) in the aforementioned study by Polson and Curtis (2010). Polson and

Curtis (2010) asked four expert geoscientists to assess the probability that a fault existed. Figure 3 shows the decision process

of the four participants. Note that the x-axis of Fig. 3 is represented as time rather than data, as previously stated we view the25

quality or quantity of known information (data) as related to time and in this example time is the more coherent descriptor. After

making their initial assessment, participants were alerted to common biases in expert judgment and allowed to modify their

assessment. If as a result of the warning the participant felt they had made a mistake or their initial probability was somewhat

biased, they could have modified their interpretation (Participant 1 and 3) or experienced a reduction in certainty (Participant

4). Alternatively, if the participant perceived their initial analysis to be free of bias – either because it truly was, or because30

the warning was not sufficient for resolving bias – then they would likely stick with their initial probability distribution and

potentially experience an increase in conclusion certainty (Participant 2). Following the bias warning and any changes to the

initial interpretation, experts shared their probability distributions and explained their reasoning to the group, then were asked

to reach a group consensus.
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Figure 1. The relationship between data and conclusion certainty in the scientific decision making process. In the ideal case, increasing

data are accompanied by increasing certainty, with slopes greater than or equal to one indicating an efficient decision process. In reality,

increasing data are more often accompanied by upward and downward shifts in certainty. A scientific conclusion is reached once a decision

maker reaches their personal subjective threshold of confidence and feels “certain enough” in their interpretation.

Figure 2. The influence of a geologic workflow nudge on conclusion certainty in a study by Macrae et al. (2016). Participant 1 and 2

both experience shifting uncertainty in their initial interpretations as data are accumulated prior to the nudge onset. After being nudged to

consider the geological evolution of their interpretations, Participant 2 finds a geologically reasonable evolution for his or her interpretation,

certainty in the interpretation increases to their threshold of confidence and a conclusion is made. Participant 1 cannot construct a geologically

reasonable evolution of their initial interpretation, prompting consideration of modifications (1B) or alternative interpretations (1C).
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The results from Polson and Curtis (2010) showed that the consensus interpretation did not reflect the opinions of all par-

ticipants in the group, instead the group moved towards one expert’s opinion (Participant 1), herding around and anchoring

to it (see grey zone, Fig. 3). Thus, although the bias warning may have been an effective debiasing strategy for the individual

probabilities at the start of the elicitation, the experimental evidence suggests that it had minimal impact later in the elicitation

process when coming to the group consensus. As discussed in Sect. 4.1. Modifying the decision maker, there are many reasons5

why a simple warning may be ineffective for debiasing – it requires that the interpreter be able to recognize his or her own bias

and have the motivation and available cognitive resources to apply a strategy to combat bias – and in group situations where

socially constructed hierarchies exist, bias warnings may be particularly ineffective. A potentially better debiasing strategy in

this instance would have been to weight experts opinions and present this information in the form of a digital nudge; e.g., this is

what the consensus probability distribution would be if a mean of the experts was calculated and it does not accommodate the10

range of individual expert opinions. Expert elicitations focusing on geological problems (e.g., Polson and Curtis, 2010; Randle

et al., 2019) show that much of their value is in better understanding decision making workflows, and where uncertainties and

bias arise, which can be used to inform nudge design.

As the above examples illustrate, the potential for choice architecture to aid decision making in geoscience and other sci-

entific fields is significant. Yet, choice architecture debiasing is not infallible to human error. For example, research on expert15

elicitation practices in the geosciences has shown that erroneous predictions about geologic events are made when using sub-

jective methods for selecting experts (Shanteau et al., 2002), and when judgments are not aggregated appropriately (Lorenz et

al., 2011; Randle et al., 2019). Also, it is worth noting that Macrae et al. (2016) found over 80 percent of participants in the no-

workflow group reported that they had considered geological evolution of their interpretation – these individuals thought they

were using a normative workflow, but did not apply it effectively, either because their deliberative processing resources were20

overburdened from the demands of the interpretation task (“busy editor”) or because of a general tendency towards cognitive

miserliness (“lazy editor”). We believe recent innovations in AI and information technology offer the opportunity to overcome

the cognitive constraints that lead to both biased choice and trouble in effectively self-employing debiasing strategies. Specifi-

cally, we advocate for coordinated and integrated decision making in humans and intelligent systems, where debiased decisions

are an emergent property of the human-AI collaborative team. This approach has been referred to as “captology” standing for25

“computers as persuasive technology” (Fogg, 2003), and, more recently, “digital nudging” (Mirsch et al., 2017; Weinmann et

al., 2016).

This paper is not the first to call attention to the utility of intelligent systems for geoscientific research. Use of intelligent

technologies in geoscience research is increasingly common, e.g., mobile robotic platforms (Qian et al., 2017) and machine

learning algorithms (Karpatne et al., 2018), and recent articles in GSA Today (Spino, 2019) and Communications of the ACM30

(Gil et al., 2018) both outline promising opportunities for intelligent systems to address research challenges in the geosciences.

Most of this existing work implicitly takes the view that humans and intelligent systems have separate but complementary

functions in geologic decision making, Shipley and Tikoff (e.g., 2018). Here we present a different view, namely, that geologic

decision making can be enhanced when humans and intelligent systems work in collaboration, with a shared understanding

of the task goal, relevant contextual features, and existing scientific knowledge. To illustrate the value of this digital nudging35
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approach in geoscience research, we discuss two case studies that represent different applications of intelligent systems for the

geosciences that are presently in practice: the first case study addresses the use of unmanned aerial vehicles (UAVs or “drones”)

to collect new field data, and the second addresses the use of software for geologic interpretation of seismic image data. For each

case study, we describe how the intelligent system is currently being used to aid geologic research, and how this application of

technology has improved, or could improve, upon pre-technological research methods. Then, we describe how digital nudging5

can be incorporated into intelligent systems and illustrate the scientific value of nudging using the data-conclusion certainty

plot (similar to Fig. 2 and 3 above).

4.2.1 Case Study 1 - Optimizing field data collection with UAVs to minimize anchoring bias

In this case study, we describe how automated unmanned aerial vehicles (UAV) navigation could be used to nudge geoscientists

to be more efficient when making decisions regarding reconnaissance and mapping, and mitigate against anchoring bias. The10

advent of better mobile robot platforms has allowed for the deployment of robots by ground, sea, and air to collect field data at

a high spatial and temporal resolution. Here, we focus on the use of aerial robots (semi-autonomous or autonomous UAVs) for

data collection, but the conclusions we draw are likely applicable to other mobile robot platforms (i.e., underwater autonomous

vehicles, ground robots).

Currently, the majority of geoscience research with UAVs is non-autonomous, i.e., user-controlled. Efforts have been made15

to automate interpretation of geological data from UAV imagery or 3D reconstruction with some success (Thiele et al., 2017;

Vasuki et al., 2014, 2017), and the application of image analysis and machine learning techniques continue to be developed

(Zhang et al., 2018). In reconnaissance and geologic mapping, the decision of where to go and how to fly there is made by

the expert – either the expert fly’s the UAV and makes navigation decisions in-situ or they pre-set a flight path for the UAV

to follow semi-autonomously Koparan et al. (e.g., 2018); Ore et al. (e.g., 2015). However, a UAV that is capable of attending20

to measurements in real time and reacting to local features of measurement data could navigate autonomously to collect

observations where they are most needed. Such autonomous workflows should increase the efficiency of data collection, and

could be designed to mitigate against potential biases. Here, we consider how an automated UAV navigation nudge could

reduce the tendency to anchor field exploration based on existing models and hypotheses.

In our hypothetical example, a UAV surveys a large bedding surface with the aim of identifying fractures to define the25

orientations of fracture sets. The bedding surface exposure is large, but split into difficult to access exposure, e.g., due to cliff-

sections or vegetation (see Column A, Fig. 4). A birds-eye view afforded by the UAV improves the ability to observe fractures,

which would otherwise require time-costly on-foot reconnaissance to different outcrops of the bedding surface. Note that in our

hypothetical example we assume that fracture information is obtained only when the flight path crosses fractures (e.g., Column

B, blue flight path), thereby representing a high level reconnaissance rather than a flight path in which overlapping imagery30

is collected. When the UAV flight path is user-controlled, the decision of where and how to fly is unlikely to be optimal:

users could be distracted by irrelevant information in UAV view, and are likely biased towards exploring certain features and

ignoring others Andrews et al. (e.g., 2019). For example fractures may only be sampled where fracture data are dense, or in

an orientation that maximizes sample size but not the range in orientation Watkins et al. (e.g., 2015), or when it fits with a
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hypothesis (e.g., tensional fractures parallel to the axial trace of a fold). These strategies are all informed by expectations,

leaving the geoscientist vulnerable to anchoring her sampling behavior to align with initial interpretations and hypotheses.

This anchoring bias is visualized in Column B (blue flight path), where the user detects two unique fracture orientations

(a, b) on the first exposure visited, and then spends the remaining flight looking at fractures in the same orientation rather

than searching for new orientations. As a result, a novel N-S fracture orientation is not detected in the user’s flight path – the5

accompanying certainty plot in Column B shows that time spent at uninformative exposure (T1 to T2) results in increased

certainty that all orientations have been sampled, when in fact they have not (i.e., the threshold of confidence is reached before

sampling the N-S orientation). This is reflected in the rose diagrams in Column B, which show the orientation of fractures

and the relative number of fractures sampled in each orientation; even at time T3 the three fracture sets (as shown in the rose

diagram in Column A) are not represented.10

Column C on Fig. 4 shows a UAV flight (purple) that is semi-automated to follow a pre-set path. For this hypothetical

example, a reasonable pre-set flight path (and the one we assume most experts would take) would be to scan forward and

backward across the area of interest, akin to a lawn-mower. With this approach, the appearance is that no areas will be missed,

the area is equally covered and there is no risk of re-sampling, but the flight path will not be optimal to collect the data of interest

– time will be wasted scanning areas that have little data value, and the linear N-S oriented path will preferentially sample E-W15

oriented fractures (biasing the dataset). On the certainty plot in Column C this is visualized as long delays between detection of

unique fracture orientations (a, b, c), resulting in a step-like pattern – dramatic decreases in certainty when a new orientation is

observed during navigation, followed by periods of slowly increasing certainty as information is observed that is consistent with

previous features, or irrelevant (green bars representing time over woodland). In this instance the user’s threshold of certainty

is reached after a longer time period than in the user driven scenario (Column B), but the full range of fracture orientations is20

determined (see rose diagrams, Column C).

The most efficient solution is for the UAV to move autonomously to areas with high data value by attending and reacting

to measurement data in real time, e.g., skipping areas that are poorly exposed or homogenous, slowing and flying multiple

angles in areas that have a high frequency of important features (as defined by the user). This is visualized in Column D (red

flight path), where the UAV detects the first fracture orientation (a) and then recommends the user update the flight path to25

move orthogonal to the orientation to ensure it is representative and to optimize continued sampling. When a new orientation

is detected (b) the UAV recommends updating the flight path again to optimize collection of both orientations (i.e., horizontal

flight path). In the updated horizontal flight path, the UAV moves efficiently over exposure that features already detected

orientations (a, b), which leads to quicker detection of new orientations (c). The rose diagrams in Column D show that by

time T2 all three fracture sets have been identified. In fact by time T3 fractures oriented NE-SW are being oversampled; the30

same fracture is crossed more than once by the UAV flight path, not an issue here as we are only interested in constraining

the orientations of fractures, but would need to be taken into consideration if the user wanted both orientation and relative

intensity. The accompanying certainty plot in Column D shows that this autonomous flight path results in a more efficient

scientific decision making process, i.e., strong positive relationship between conclusion certainty and time and quick ascension

to threshold of confidence.35
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The goal of the reconnaissance UAV mapping was to detect all fracture orientations and determine the optimal location

for sampling heterogeneous orientations. A UAV that possesses some representation of this goal can use multiple fracture

orientation angles to rapidly calculate a flight path that will optimize continued sampling to confirm a fracture set or allow for

more rapid detection of new orientations. This type of calculation is a task in which a computer is likely to excel relative to the

human mind, since it will not be anchored to existing fracture models or the dominant fracture set. By offloading the task of5

navigation geometry to a UAV, the human expert free’s up their cognitive resources for more important and difficult tasks, such

as the real-time interpretation of surface features from UAV imagery. Were the goal of UAV reconnaissance to collect data on

fracture length, orientation and intensity, the programming of the UAV and the human interaction would be different. In this

manner, we view the robot and human as a collaborative team, where better decision making is a property of the coordination

of both agents and a mutual understanding of the task goal and each other’s strengths and weaknesses (Shipley and Tikoff,10

2018). For example, critical to the success of our example would be for experts to understand how autonomous flight paths are

being calculated and the conditions in which they will optimize data collection; an expert not privy to this information may

mistrust well calibrated path suggestions or over-trust path suggestions that are inconsistent with their goals. Also critical to

the success of our example is that experts retain the ability to ignore autonomous path recommendations if their expertise leads

them to favor an alternative path. One of the challenges in geosciences, and perhaps all sciences, is that AI systems focus only15

on the constrained problem, and (unlike humans) are not open to the frisson of exploring other questions en-route to the answer.

Therefore, it is important that AI systems do not restrict users’ autonomy to override recommendations, thereby barring the

exploration of ideas through too narrow data collection or via inbuilt biases to automated-data collection.

4.2.2 Case Study 2 - Fault interpretations in 3D seismic image data to minimize availability bias

In this case study, we consider how software interpretations of seismic image data, and the information derived from them,20

could be used to consider alternative models and minimize availability bias. Understanding of the geometries of sub-surface

geology is dominated by interpretations of seismic image data, and these interpretations serve a critical role in important tasks

like resource exploration and geohazard assessment. 3D seismic image volumes are analyzed as sequences of 2D slices. Manual

interpretation involves visually analyzing a 2D image, identifying important patterns (e.g., faulted horizons, salt domes, gas

chimneys) and labeling those patterns with distinct marks or colors; then, keeping this information in mind while generating25

expectations about the contents of the next 2D image. Given the magnitude and complexity of this task, there has been a

strong and continued interest in developing semi-autonomous and autonomous digital tools to make seismic interpretation

more efficient and accurate (Araya-Polo et al., 2017; Di, 2018; Farrokhnia et al., 2018).

Here, we consider how 3D information could be used with digital nudge technology to inform fault interpretations in a 3D

seismic image volume. Simple normal fault patterns show a bull’s-eye pattern of greatest displacement in the center of an30

isolated fault, decreasing towards the fault-tip (see Image A, Fig. 5). Consider interpreting 2D seismic image lines across the

fault starting at in-line A (Image A) and working towards in-line F: with each subsequent line the displacement of horizons

across the fault should increase and then decrease, although this pattern will not be known until the interpretation is completed.

Holding this information on displacements for individual faults between in-line interpretations in complicated seismic image
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data (e.g. with multiple faults per seismic section, Image B, Fig. 5) is incredibly challenging even for the well-practiced expert.

We imagine a digital nudge that alerts users to discrepancies in fault displacement patterns, and prompts consideration of

alternative fault patterns, thereby relieving some of the cognitive burden of 3D interpretation from the expert and guarding

them against availability bias by encouraging consideration of models beyond what is most readily accessible to the mind.

In our hypothetical example, a geoscientist analyzes a 3D seismic volume, interpreting in a series of 2D in-line images5

faults and horizon off-sets. As subsequent in-lines (A-F) are interpreted, fault displacement patterns are co-visualized, so in-

consistencies from normal fault displacement can be clearly seen. Fault 1 (Image B) conforms to a simple fault-displacement

pattern (see Fault 1 displacement-distance plot). Fault 2 appears to conform to a similar pattern until in-line D when the inter-

preted displacement decreases; on interpretation of in-line E, the displacement on Fault 2 increases again, further highlighting

the displacement anomaly on in-line D. Reduced displacement in itself does not highlight an issue, but consideration of the10

displacement-distance plot for Fault 1 suggests that if the interpreted displacement for Fault 2 is correct then the two faults are

behaving differently. In our imagined digital tool, this discrepancy in displacement between nearby faults would be flagged for

further consideration by the user, and potential alternative models could be highlighted. You can see the hypothetical conclu-

sion certainty plots for the interpreter for the two faults (Fault 1 = green line, Fault 2 = pale blue line) during the interpretation

process. Note the decrease in certainty of the interpreter for Fault 2, as they interpret in-lines D and E, in comparison to the15

increasing certainty for Fault 1 as consecutive interpreted in-lines conform to a simple normal fault displacement pattern. At

in-line E the co-visualized displacement-distance plot nudges the interpreter to consider a new interpretation for Fault 2 at in-

line D. Certainty in this new interpretation (displayed as dark blue dashed line on certainty plot), now increases as subsequent

in-line interpretations conform to expected displacements.

Our imagined digital tool builds on current auto-correlation tools in seismic interpretation software by aiding users in ex-20

trapolating information from a 2D image to a 3D representation. In this case study we show that by drawing on known fault

displacement patterns, it should be possible to design tools that flag to users potential errors in fault displacement patterns

along interpreted faults in 3D seismic data. We describe information for a single horizon displacement, but multiple horizons

could be plotted to highlight displacement changes with depth, syn-sedimentation etc. Our case study uses a simplified case,

but fault displacement inconsistencies would likely be the result of more complex fault patterns and interactions. For example25

it is possible to imagine a scenario in which both Fault 1 and Fault 2 showed significant decreases in displacement at in-line D,

which might result in a decrease in user certainty for both faults and re-interpretation as linked faults. As highlighted in a 3D

seismic interpretation of faulted sedimentary rocks by Freeman et al. (2010), fault intersections are common and add challenges

to understanding fault growth and displacement partitioning between faults; in their example, a full reinterpretation of the 3D

dataset was required after evaluation of fault displacements on the original interpretations. Therefore, a digital tool (similar30

to the one we describe) that highlights possible fault intersections and relays during interpretation, could cue researchers that

more complex reasoning is needed, so that simple dominant models – which as identified by Alcalde et al. (2017b) often

show availability effects – are tempered by consideration of more complex fault patterns and displacements. One concern, of

course, is in limiting users’ consideration to known alternative concepts, which could constrain free and flexible thought while

introducing software bias – this, and other digital nudging concerns, are discussed in more detail below.35
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5 Conclusions

Uncertainty is an inherent challenge in geological reasoning. Over 50 years of cognitive research demonstrates that, when

faced with uncertainty, people rely on intuitive heuristics that can arise rapidly and with minimal effort. While efficient and

effective in many situations, heuristics do lead to predictable biases in decision making. We reviewed three biases that have been

shown to influence geoscience experts: availability bias, framing bias, and anchoring bias. Bias can be overcome by engaging5

deliberative cognitive processing resources, which work as an “editor” to modify or override faulty heuristic-responses. This

occurs either because the decision maker employs a strategy that activates deliberative processes, or because the environment

is modified in such a way that the decision maker is “nudged” towards deliberative thinking. Because of the many barriers to

success when debiasing is self-employed (e.g., not recognizing debiasing is needing, using the incorrect debiasing strategy,

etc.), we strongly advocate adoption of the environment-modification (i.e., choice-architecture) approach. Further, we believe10

innovations in the use of information technology and AI in the geosciences can be leveraged to improve expert decision making,

i.e., digital nudging. We discussed two case studies illustrating different applications of intelligent systems for the debiasing of

geoscientific decision making. In each case study, debiased decision making was an emergent property of the coordinated and

integrated processing of human-AI collaborative teams.

Our discussion of digital nudging in the geosciences highlighted the positive attributes of this debiasing approach, chiefly,15

that it provides relief from the cognitive constraints that lead to biased choice (and difficulty in effectively self-employing

debiasing strategies), leaving the decision maker and their deliberative cognitive processing resources free to tackle other

tasks. However, we would be remiss to not also caution against the potential pitfalls of the digital nudge. First, digital nudges

can propagate existing biases (or introduce new ones) if they are poorly designed or trained using biased data. In a recent

famous case, Amazon ceased testing an AI system used to evaluate job applicants after it was revealed to be gender biased,20

consistently penalizing applicants who attended women’s colleges or whose resume contained the word “women’s” in some

other capacity (e.g., women’s book club). Similar gender and racial biases have been demonstrated in judicial (Skeem and

Lowenkamp, 2016) and medical (Challen et al., 2019) decision AI. To avoid unintended bias, choice architects must have

a well-defined goal for the nudge and a clear understanding of the decision process, including: identification of the critical

actions involved in following through with the decision, identification of constraints to the achievement of each critical action,25

determination of the amount of attention devoted to each critical action and the decision process as a whole, determination

of the amount of decision-relevant information gathered, and identification of the main heuristics and biases influencing the

decision process (see Ly et al. (2013), Appendix 2 for a suggested list of questions choice architects should ask themselves

when evaluating a decision process). Choice architects should also submit nudge designs to careful testing, paying special

attention to factors unrelated to the nudge that might influence the results.30

A second pitfall is that there is a risk of limited take up of digital nudges if they are perceived by the user as untrustworthy.

To be effective, a nudge must address the particular bias an individual is experiencing – but people can differ in the biases

they bring to a choice environment. Nudges that are viewed as inappropriate or misleading by the user may be ignored and

mistrusted. Therefore, choice architects should be thoughtful in their selection of environments (i.e., employing nudges when
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there is consistency in the type of bias observed in a specific environment), and seek to design nudges that are effective against

a range of biases. Special attention should also be paid to the relative “politeness” of nudges (Whitworth, 2005), i.e., does the

nudge respect and not preempt user choice, does the nudge avoid pestering or interrupting the user unnecessarily. Nudges that

make correct suggestions, but do so in an impolite or obtrusive manner will still be viewed as untrustworthy – we call this

the “Mr. Clippy problem” in reference to the famously derided Microsoft Office assistant that took the form of an animated5

paper clip. Early users of Office will recall that Mr. Clippy popped-up uninvited, preemptively taking control of the cursor

and demanding to help (his most famous line, “It looks like you’re writing a letter...” appeared every time the user typed

“Dear. . . ”). Worse yet, Mr. Clippy ignored continuous rejection: hide him and he would simply reappear, ignore him and he

would repeat the unsolicited advice (again and again). To avoid the Mr. Clippy problem, choice architects should consider how

best to implement nudges within existing user workflows to minimize distraction and maintain user autonomy.10

One way choice architects may increase understanding and trust of digital nudges is through being transparent in the “reason-

ing” behind why a nudge is prompted, where reasoning refers to some interpretable translation of the underlying AI algorithm

and decision inputs. This type of “explainable AI” (Miller, 2019) is critical to our vision of collaborative and coordinated

decision making in human-AI teams. Just as successful human teams are aware of the values, needs, intentions, actions, and

capabilities of all team members, so should human-AI teams be reciprocally aware – this occurs over time, through interaction,15

shared experience, and feedback, team members can jointly and iteratively refine their beliefs and expectations about each

other’s behavior. While there are challenges to achieving mutually aware human-AI teams (for review, see de Graaf and Malle,

2017), they are, in our opinion, far outweighed by the potential value in calibrating user trust in technology.

Finally, there are concerns about the ethics and morality of nudging (digital or otherwise). Some believe that nudging is

morally reprehensible because it patronizes the decision maker by assuming they are not capable of making the best choice20

for themselves (Gigerenzer, 2015). However, as discussed in this paper, there is strong scientific evidence that human decision

makers are both (a) susceptible to cognitive bias across a range of choices and (b) struggle to successfully employ debiasing

techniques to improve their judgment. We believe that if decision makers are aware of their vulnerabilities and shown the

potential value of nudging (through education or experience with polite and explainable nudges), they may be less likely to

perceive nudges as condescending or infantilizing. Another oft-cited ethical concern is that nudged individuals will become25

used to being guided away from negative consequences resulting in a diminished ability to make good choices and assume

responsibility for those choices (Bovens, 2009). Related to this, there is concern that the more use to nudging we become, the

less we will be bothered by the introduction of more controlling or coercive techniques (Rizzo and Whitman, 2009). Yet, how

decision makers respond to nudges in the long-term is an open empirical question. One possibility is that nudges have only

short-term effects, and as time goes on, the level of nudging required to retain this effect increases because decision makers30

habituate to the nudge. If this is the case, then decision makers would retain their original preference structures, meaning they

would make different choices without the aid from the nudge, placing them at risk of taking less personal responsibility for their

choices because they assume other members of society will nudge them away from anything that is bad. The alternative is that

repeated nudges induce actual preference change in the long-term; this could occur because the decision maker recognizes the

hitherto unknown benefits of the nudged choice, because their sense of identity becomes linked to the nudged choice, or because35
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the nudged choice becomes conditioned (in the Pavlovian style). Ultimately, different people will likely adapt preferences in

response to different nudges in different ways, and future research should consider both the short-term and long-term effects.

Returning to the opening quote and question posed by G. K. Gilbert, “...whether it is possible by training to improve the

guessing faculty, and if so, how it is to be done”, the answer is unequivocally yes, and we believe that digital nudging offers the

best opportunity to overcome the cognitive constraints that result in biased decisions. As described at the outset of this paper,5

we hope our review of the cognitive literature on bias and debiasing will help readers to understand the constraints to human

decision making and better-equip them with strategies for improving choice. We also hope this paper will stimulate future

research on the important topic of debiasing geologic decision making, particularly in the context of evolving advancements in

information technology and AI.
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Figure 3. The influence of expert elicitation practices on conclusion certainty in a study by Polson and Curtis (2010). All participants

experience shifting uncertainty in initial probabilities for the existence of a fault as elicitation progresses. Interpretation A, B, and C refer to

each individual’s successive interpretation. When exposed to information on how cognitive bias impacts on expert judgement, Participants

1 and 3 modify their interpretations (to 1B and 3B) and Participant 4 experiences a decline in conclusion certainty (4A). Participant 2, in

contrast, becomes more certain in his or her initial interpretation following the bias warning, either because the interpretation was truly

unbiased or because the warning was insufficient to recognize and resolve bias. When interpretations are shared and discussed amongst the

group, Participants 2, 3, and 4 modify their interpretations to be in accordance with Participant 1 – certainty in this new interpretation (2B,

3C, 4B) increases such that a consensus assessment is reached. This herding bias is noted by the gray zone in the figure.
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Figure 4. Hypothetical UAV scenario where the goal is to identify fractures on a bedding surface. Column A shows UAV view of fractured

bedding surface (with exposure separated by trees and cliffs) and a rose diagram of all exposed fractures. Column B shows user-controlled

flight path (in blue) over bedding surface, rose diagrams of cumulative fracture orientation data at flight times (T1, T2, T3), and an evolving

conclusion certainty plot as the UAV collects data. On the conclusion certainty plot, green bars represent flight time over woodland rather

than rock exposure, letters a, b, and c represent when the UAV collects fracture data in a new orientation, and the dotted horizontal line

represents the threshold of conclusion confidence. Column C shows similar plots for a pre-set flight path (purple), and Column D shows plots

for an autonomous flight path (red) where the UAV attends and reacts to measurement data in real-time.
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Figure 5. Fault displacement-distance patterns used by a hypothetical digital tool to aid in 3D interpretation of normal faults. Image A

is a graphical representation of a horizon displacement with distance along a fault. In this simple pattern for an isolated normal fault,

maximum displacement (red-green) is in the center with minimal displacement (green) at the faults tips. The fault is intersected by a series

of hypothetical seismic lines (A-F), which correspond to the points on the displacement-distance plots. Image B is a seismic image through

faulted sedimentary rocks from the Inner Moray Firth, UK (note the complex fault pattern, including fault intersections). Two faults are

highlighted on Image B, Fault 1 and Fault 2, their respective hypothetical displacement-distance plots are show for a single horizon. On the

Fault 2 plot, the red point at in-line D highlights an anomaly to the simple displacement-distance plot characteristics seen for Fault 1, and the

dark blue point at in-line D represents the user manually inserting a new interpretation. Certainty plots corresponding to Fault 1 and Fault 2

are also displayed. Seismic image courtesy of the Virtual Seismic Atlas (www.seismicatlas.org).

32


