Tempo-spatial variation of the late Mesozoic volcanism in Southeast China testing the western Paleo-Pacific Plate subduction models

Authors’ Note: Following Referee #1, the implication of tectonic is over-interpreted. Then we deleted the relevant phrase within title.

Xianghui Li¹,² * Yongxiang Li¹ Jingyu Wang¹ Chaokai Zhang¹ Yin Wang³ Ling Liu³

¹State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023 China. Email: leeschhui@126.com

²State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology, Chengdu 610059, China

³East China Mineral Exploration and Development Bureau, Nanjing 210007, China
ABSTRACT

The magmatism (including volcanism) in East Asia (China) could provide key clues and age
constrains for the subduction and dynamical process westward subduction of the Paleo-Pacific plate
(PPP) played a governing role in tectonic evolution of East Asia. Although lots of absolute isotope
ages of extrusive rocks have been published in the 1980s-2000s, large uncertainties and big errors
prevent the magmatism in SE China from being well understood. Various PPP subduction models have
been proposed, the subduction age and dynamical process of the PPP remain controversial. In this
study, we investigate the zircon geochronology of extrusive rocks and tempo-spatial variations of the
late Mesozoic volcanism in Southeast (SE) China. We reported zircon U-Pb ages of new 48 extrusive
rock samples in the Shi-Hang tectonic zone. Together with the published data in recent decades, ages
of ~300 rock samples from ~40 lithostratigraphic units were compiled, potentially documenting a
relatively complete history and spatial distribution of the late Mesozoic volcanism in Southeast SE
China. The results show that the extrusive rocks spanned ~95 Myr (177-82 Ma), but dominantly ~70
Myr (160-90 Ma), within which two main the volcanism in the early Early Cretaceous (age
populations of 145-125 Ma) was the most intensive and widespread eruption and 105-95 Ma. We
propose that these ages represent the intervals of the Yanshanian volcanism in Southeast SE China
and the western subduction of the PPP, within which two intensive volcanic eruptional pulses
happened. Spatially, the age geographic pattern of extrusive rocks shows that both the oldest and
youngest age clusters occur in coastal magmatic arc (eastern Zhejiang the CZ and Fujian), and the
younger most intensive and widespread age group (145-125 Ma) occurs in the SHTB back arc /
riifting basin (eastern Jiangxi, middle Zhejiang, and northern Guangdong), indicating implying that
the late Mesozoic volcanism migrated northwestly from the coast to the inland prior to ~145 Ma and
subsequently retreated southeastly back to the coast. This volcanic migration pattern is interpreted
to result may imply that the Paleo-Pacific plate subducted northwestward and the roll-back
subduction did not begin until the Aptian (~125 Ma) of the mid-Cretaceous from a northwestward
subduction followed by a southeastward rollback or retreat of the PPP.

Authors’ Note: Some introductions on tectonic implications were deleted following the suggestion by Referee #1.

Keywords: geochronology; tempo-spatial variation; volcanism; late Mesozoic; Southeast China; Paleo-Pacific Plate
1. Introduction

It is generally believed that an Andean-type active continental margin had been developed during the late Mesozoic in eastern Eurasia along which the Paleo-Pacific plate (PPP) subducted beneath the East Asia (e.g., Taylor and Hayes, 1983; Faure and Natal’in, 1992; Charvet et al., 1994; Zhou and Li, 2000; Chen et al., 2005; Liu et al., 2017; Li SZ et al., 2019a). The subduction has exerted profound impacts in Southeast (SE) China (e.g., Taylor and Hayes, 1983; Zhou and Li, 2000; Li CL et al., 2014; Li JH et al., 2014; Jiang YH et al., 2015; Liu et al., 2016;) and many other parts of East Asia (e.g., Stepashko, 2006; Wu et al., 2007; Choi and Lee, 2011; Zhang et al., 2011; Sun et al., 2013; 2015; Dong et al., 2016; Liu et al., 2017), as indicated by the pervasive crustal deformation associated with the Yanshanian orogeny (e.g., Lapierre et al., 1997; Li, 2000; Zhou and Li, 2000) and the widespread magmatism (e.g., Zhou et al., 2006; Sun et al., 2007). Obviously, the study of the magmatism would help to constrain the process of the PPP subduction.

While the overall tectonic setting of the western Pacific in the late Mesozoic is generally accepted, details such as the direction and angle of the PPP subduction remain controversial (e.g., Zhou and Li, 2000; Li and Li, 2007; Sun et al., 2007; Wang et al., 2011; Liu et al., 2012, 2014, 2016; Zheng et al., 2017; Jia et al., 2018). Several tectonic models have been put forward to explain the subduction process or geodynamics. (summary see Jiang et al., 2015; Li et al., 2018). Typical models are: normal subduction (e.g., Lapierre et al. 1997), shallow subduction (e.g., Zhou and Li 2000; Jiang et al. 2009), flat-slab subduction (Li and Li 2007), and subduction initiation in the Permian (e.g., Li and Li 2007 Li et al., 2006; Knittel et al., 2010; Li et al., 2012a, 2012b), Middle Jurassic (e.g., Zhou and Li 2000; Li et al., 2007; Jiang et al. 2009), and Early Cretaceous (e.g., Chen et al. 2008; Liu et al., 2012, 2014). These models were postulated mostly based on the early sparse (bulk K-Ar, Ar-Ar, Rb-Sr) dating data and / or from local and a limited number of samples in each individual article.

Authors’ Note: Following Referee #1, the implication of tectonic is over-interpreted. We deleted this paragraph on the introduction of the Paleo-Pacific plate subduction in the revised version.

One way to test the relevant models is to investigate the spatial and temporal variations of the
widespread volcanism during the late Mesozoic in SE China. This effort is facilitated by the existing abundant chronological, geochemical, and isotopic data of magmatic rocks from SE China. For the late Mesozoic volcanism in SE China, as a response to the PPP subduction, has long attracted attention, and lots of dating work has been carried out. However, different time intervals and various episodes / cycles / periods of the volcanism have been proposed (e.g., Li et al., 1989; Feng et al., 1993; Zhang, 1997; Guo et al., 2012; Li CL et al., 2014; Liu et al., 2012, 2014, 2016; Jiang SH et al., 2015; Ji et al., 2018; Zhang et al., 2018; Yang et al., 2018; Zhang et al., 2019). The issue can be attributed to: 1) However, these different views published ages were generally based on separate and often limited datasets that were commonly from only several to a dozen of samples from a local region such as a mining field, or a province, or at most from a relatively wide area of two neighboring provinces; 2) age data were obtained using different methods, by which, the Rb-Sr, K-Ar, and Ar-Ar dating of bulk-dominated samples yielded ages with large uncertainties and big errors in the 1980s-1990s; 3) refined zircon U-Pb ages of the volcanism have not been analyzed for the whole SE China.

It is essential to obtain spatially more comprehensive datasets from different parts of SE China and also temporally more expanded datasets from sedimentary basin archives that can document the relatively complete volcanic history to achieve a holistic understanding of the late Mesozoic volcanism and geodynamics in SE China.

In this study, we investigate the geochronology of extrusive rocks in the middle and northern Shi-Hang tectonic belt (SHTB. e.g., Gilder et al., 1996; Jiang et al., 2011; Yang et al., 2012). The SHTB contains thick sedimentary strata, which are interbedded with extrusive rocks, and thus has the advantage of providing a more complete stratigraphic archive that preserves more complete and recognizable volcanic events. We also compile the published zircon U-Pb isotope geochronological data of extrusive rocks from the entire SE China. Obviously, ages of the extrusive rocks can constrain the geochronology of the initiation, evolution, and termination of the late Mesozoic
volcanism in SE China, i.e., can also help date and better understand the slab subduction between the Asian continent and the PPP in East Asia (e.g., Gilder et al., 1991, 1996). Specifically, we analyze the temporal evolution and the geographical distribution of the late Mesozoic volcanism, which can indirectly help date and better understand the slab subduction between the eastern Asian continent and the western PPP in East Asia (e.g., Gilder et al., 1991, 1996) whereby the dynamics and process of the PPP subduction can be examined.

Authors’ Note: Following Referee #1, we changed the main purpose of the paper.

2. Geological setting

The South China Block comprises the Yangtze Block and Cathaysia Block. The Yangtze Block has an Archean to Proterozoic basement, whereas the Cathaysia Block has a Proterozoic basement. Yangtze and Cathaysia blocks amalgamated during the early Neoproterozoic Orogeny (e.g., Zhao and Cawood, 1999; Wang et al., 2006; Zheng et al. and Zhang, 2007; Li et al., 2009), forming the Jiangnan orogen. A cover sequence of marine strata from the late Neoproterozoic to the Paleozoic was accumulated on the united South China Block that subsequently underwent the Caledonian orogeny (or the Guangxi movement) in the early Paleozoic (e.g., Guo et al., 1989; Qiu et al., 2000; Charvet et al., 2010) and the Indosinian orogeny in the early Mesozoic (e.g., Carter et al., 2001; Lepvrier et al., 2004).

The major Jiangshan-Shaoxing suture zone separating the Yangtze and Cathaysia blocks (e.g., Jiang et al., 2011; Yang et al., 2012) had been reactivated during the Indosinian and Yanshanian movements (e.g., Wang et al., 2013). During the late Mesozoic Yanshanian, the Andean-type convergent margin was developed along the SE China following the subduction of the PPP (e.g., Taylor and Hayes, 1983; Faure and Natal’in, 1992; Charvet et al., 1994; Zhou and Li, 2000; Chen et al., 2005; Liu et al., 2017; Li SZ et al., 2019). A series of NE-striking back-arc basins associated with widespread and large-scale magmatism were produced (e.g., Zhou and Li, 2000; Li and Li, 2007; Liu
et al., 2014, 2016; Xie et al., 2017; Yang et al., 2017). Since the deposition in these basins was concomitant with volcanism, it is fairly common that the sedimentary successions are interbedded with volcanic rocks. On the basis of the abundance of volcanic rocks in the strata, these basins can be grouped into three types (Fig. 1): volcanic (-dominated), volcanic-sedimentary, and sedimentary (e.g., Chen et al., 2005; Shu et al., 2009). These three types of basins are roughly separated by two NE-striking fault zones: the Jiangshan-Shaoxing fault zone and the Zhenghe-Dapu fault zone (Fig. 1). The volcanic basins occur SE to the Zhenghe-Dapu fault zone and were formed on the magmatic arc (Lapierre et al., 1997) along the coastline, i.e., the Coastal zone (CZ). The volcanic-sedimentary basins occur in the SHTB confined between the two fault zones, and volcanic rocks are typically interbedded and / or intercalated with sedimentary strata, which had been constructed in the back arc / rifting basin (e.g., Gilder et al., 1991; Jiang et al., 2009; 2011). Nevertheless, the late Mesozoic volcanic rocks are almost absent east to the Yujiang-Yudu fault zone in sedimentary basins and western SHTB basins (Fig. 1).

Authors’ Note: Following Referee #2, we added some references in the above paragraph.

The large-scale magmatism is evidenced by the occurrence of granitic plutons in both the SHTB and the CZ stretching over 1000 km along the coastal SE China. These granitic plutons intruded into the Precambrian basement and the overlying Paleozoic strata during the Middle Jurassic—Early Cretaceous (e.g., Jiang et al., 2011; Yang et al., 2012). The intrusions mainly occur as A-type and / or I-type granitic rocks, and together with huge volcanic rocks, strongly support the model of the western subduction of the PPP (e.g., Zhao et al., 2016; Jiang et al., 2011; Yang et al., 2012; Xie et al., 2017; Yang et al., 2017).

3. Material and methods

A total of 48 extrusive rock samples were collected from about 20 lithostratigraphic formations (supplementary data Table RD1) in 11 basins / regions within the main SHTB to obtain new zircon
U-Pb isotope ages (L1-L10 in Fig. 1; supplementary data Figs. RD1-RD3 and Table RD1). The extrusive rock specimens are volcanic and pyroclastic rocks that are interbedded and intercalated with the sedimentary strata, in which sampling horizons and associated lithologies are marked in the supplementary data figures RD4-RD12. These samples were collected from volcanic layers in the main type sections of typical basins in SE China (supplementary data Fig. RD4-RD12). In general, 3-4 rock samples were taken at lower/base, middle and upper/top part when a lithostratigraphic unit has multiple volcanic horizons or a volcanic layer is over 100-200 m thick (see supplementary data Table RD1). The locations of these samples were determined with a GPS device and are marked on the geological maps (supplementary data Figs. RD1-RD3 and Table RD1).

Zircon grains were separated using the conventional heavy liquid and magnetic techniques. Single zircon grains were handpicked and mounted on adhesive tapes, embedded in epoxy resin, and then polished to about half to one-third of their thickness and photographed in both reflected and transmitted light. Cathodoluminescence (CL) images were taken at the State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, to examine the internal structures of single zircon grains before U-Pb isotope analysis.

LA-ICP-MS, U-Th-Pb analyses of single zircon grains were performed on a Nd of YAG 213 laser ablation system (Agilent 7500a, New Wave Research, U.S.A.) coupled with VG PQ Excell ICP-MS, which is housed in the State Key Laboratory for Mineral Deposits Research, Nanjing University. General ablation time is ca. 60 s and the ablation pit diameter is at 25-35 μm. The ablation repetition rate is 5 Hz with the incident pulse energy of about 10~20 J/cm². Calibrations of mass fractionation were made using the index sample GEMOC/GJ (608 Ma). In each experiment, a total of 11 to 21 zircon grains were measured, among which 8 to 18 grains yield concordant age data. Prior to each experiment, the standard GJ-1 and Mud Tank samples were measured. Other measurements follow the methods described by Jackson et al. (2004). Analyses of Mud Tank sample yielded a weighted $^{206}\text{Pb}/^{238}\text{U}$ age of 726±10 Ma~737±5 Ma (2σ), which is in good agreement with
the recommended value (TIMS age = 732±5 Ma, Black and Gulson, 1978).

Data reduction, isotope ratio, age calculation, and Pb correction were conducted with the GLITTER software using Zircon 91500 as an external standard. Data processing and plotting were executed with the Isoplot 3.23 programs (Ludwig, 2001). The uncertainties of age results are quoted at 1σ confidence level, whereas errors for weighted mean ages are quoted at 2σ.

It is worth noting that those aged samples of mafic dykes, basalts and gabbros were not herein compiled for the analysis of volcanic temporal-spatial variation in SE China. This is because: 1) among the magmatic rocks, gabbros and basalts are rare, and diorites and andesites are even less common in South China (Zhou and Li, 2000), leading to a weak significance in statistic of the volcanic samples; 2) those published ages of the dykes, basalts and gabbros were mainly measured using different (Ar-Ar, K-Ar, Rb-Sr) isotopic methods (e.g., Li, et al., 1989; Chen et al., 2008b; Wang et al., 2008; Meng et al., 2012), likely causing chaos of real ages; 3) it is difficult to obtain a good isotopic age for mafic rocks, and particularly, the bulk (basalt) samples ages by K-Ar, Ar-Ar, and Rb-Sr are ~ 10-20 Ma younger than those by zircon U-Pb isotopes (Li et al., 2019b); and 4) some basalts predominantly are of the Indosinian orogeny age, instead of the Yanshanian orogeny.

4. Results

4.1 Uncertainty of zircon U-Pb ages

It is necessary to first evaluate the uncertainty of the new age results and other cited age data. The uncertainty depends on three aspects, i.e. origin of zircon, precision, and accuracy (Schoene et al., 2013).

For the origin, all zircons used in this work were microscopically evaluated with CL to ensure that laser ablation positions of zircons are away from the nucleus, cracks, and inclusions. CL images manifest the growth rings. In the concordant 636 zircons of this work, 20 grains (3.1%) are 0.1-1.0 in Th/U ratio, 615 (96.7%) are 1.0-10.0 (Table 1). Th/U ratios of 3539 zircons can be available in the
age data from published references. Together with published data and this work, 1766 zircon grains
(42.3%) are 0.1-1.0 in Th/U ratio, 2394 grains (57.3%) are 1.0-10.0, 14 grains (0.3%) are > 10.0, and
only one is less than 0.1 (Table 1). CL images and Th/U ratios of this work combined the collected
data demonstrate that predominant (>99.9%), if not all, zircons are magmatic origin.

Precision and accuracy uncertainties produced during LA-ICP-MS zircon U-Pb dating have been
more and more concerned (e.g., Klötzli et al., 2009; Solari et al., 2010; Li et al., 2015) and come
from multiple sources, including the isotopic ratio measurements, the fractionation factor calculation
using an external standard, the common lead correction, the external standards, and the data
reduction (Li et al., 2015). According to the suggested ~4% (2σ) of precision and accuracy (Li et al.,
2015), we used the ~2% and ~2-4% (1σ) to evaluate uncertainties of extrusive rock ages.

A total of 48 rock samples were respectively weighed in mean from 636 concordant zircon U-Pb
ages in this work (supplementary data Table RD1 and RD2). In the samples, 46 (95.8%) have a <3
million years (Myr) error in 1σ, in which 36 (75%) samples have <2 Myr error in 1σ; 41 samples
(85.4%) have <2.0% (error / age) deviation, and 7 (14.6%) have 2-4% deviation (Table 1). Similar
percentages of sample error and age deviation are comparative with those single zircons analyzed in
this work (Table 1).

For zircons from the published data, the literature often provides CL images of zircons showing
quite similar nature in source and error. For the zircon U-Pb ages from the previous studies, we
carefully examine the experiments described in the literature, re-analyze the concordant ages, and
eliminate those that are not concordant and / or greater than ~5% in age deviation (error / age) as
well as ages with distinct inheritance, which were not discarded by the original authors. This
scrutinizing procedure allows us to identify reliable U-Pb age data from 188 volcanic rock samples
from the SHTB and from 103 volcanic rock samples from the CZ (supplementary data Table RD2
and RD3). Then, results show that in the combined 291 samples, 246 samples (85.5% = 246/291) are
<2 Myr in 1σ error of age and 39 (13.4 %) are 2-4 Myr; and 264 samples (90.7%) are <2.0% age
deviation and 25 (8.6%) are 2-4 Myr deviation in age (Table 1). Closely, total concordant single
zircons 4639 are similar in percentages of 1σ error and age deviation with the weighed-mean age
samples (Table 1).

The above relatively low errors in 1σ and deviation of age indicate that samples of both this and
previous work have highly proportional age results (> ~95%) with fine precision.

Systematic biases often dominate uncertainty in comparisons between dating methods and
between laboratories (Schoene et al., 2013). For measurements of our zircon samples, the internal
systematic 2σ error is less than 3%, which has been verified by reproductive measurements of Mud
Tank sample (see Section 3). These systematic biases were mostly met for those zircons from the
references. Therefore, small internal systematic 2σ errors allow our zircon date results to be a
moderate accuracy in geochronological application.

The internal systematic conditions are same for weighted mean dates of individual samples from
both this and previous work (ref. and comp. to supplementary data Table RD1-RD3). Compiled
zircons are predominantly single dates generally within less than 2 Myr in 1σ errors (<3% biases) for
the Late Jurassic – Early Cretaceous volcanic rocks. The dates are to great degree consistent with the
biostratigraphy of pollens-spores, plants, ostracods, and conchostracans in the volcanic-sedimentary
basins, SHTB (e.g., Chen and Shen, 1982; Sha, 1990; Jiang et al., 1993; Chen, 2000).

In summary, the zircon origin and the age precision and accuracy indicate the sample
weighed-mean ages have relatively low uncertainty and they are eligible for investigating the
eruption geochronology of extrusive rocks in SE China.

4.2 U-Pb age spectra of extrusive rocks

Spot analyzing results of this work show that 48 samples have a wide range of (concordant
$^{206}\text{Pb} / ^{238}\text{U}$) weighed-mean ages from 162 Ma to 92 Ma (green histogram, Fig. 2a), in which four age
populations, ~162-150 Ma, ~144-112 Ma, ~112-102 Ma, and ~102-92 Ma, can be observed, from
which, in these populations, two peaks of weighted mean ages are inconspicuously regressed as 133.3 ± 1.5 Ma and 97.2 ± 1.1 Ma, respectively (Fig. 2a). In addition, 636 concordant single zircons from the samples show similar wide age range (166 Ma to 92 Ma) with four age populations and three age peaks (Fig. 2a. 135.87 ± 0.42 Ma, 124.71 ± 0.35 Ma, and 98.91 ± 0.57 Ma).

Combining our new results with the published age data from the main SHTB (e.g., Wu et al., 2011a, b; Wu and Wu, 2013; Liu et al., 2012, 2014, 2016; Li CL et al., 2014; Li JH et al., 2014; Ma et al., 2016; Wang et al., 2016; Shu et al., 2017. Locations M1-M22, Table RD1 and Fig. 1) yields a similar age pattern (Fig. 2b). A total of 188 rock samples show that the weighed-mean age range from 177 Ma to 92 Ma with four main populations ~162-144 Ma, ~144-128 Ma, ~128-104 Ma, and 104-92 Ma and two distinct age peaks 136.11 ± 0.38 Ma and inconspicuous age peak 100.0 ± 1.0 Ma (Fig. 2b). Also, a total of 2593 single zircons from the SHTB show the concordant 206Pb/238U ages ranging from 180 Ma to 92 Ma with four age populations and two age peaks 132.07 ± 0.17 Ma and weak peak 101.26 ± 0.23 Ma (Fig. 2b).

The published data of 103 rock samples from the CZ (for Locations N1-N21, see Fig. 1 and supplementary data Table RD1 and RD3. Chen et al., 2008; Li et al., 2009; Guo et al., 2012; Li CL et al., 2014; Liu et al., 2012, 2016; Zhang et al., 2018) show a wide weighed-mean ages ranging from 174 Ma to 82 Ma, five main age populations of ~174-150 Ma, ~150-126 Ma, ~126-102 Ma, ~102-92 Ma, and ~92-82 Ma, and two three remarkable age peaks of 143.15 ± 0.82 Ma, 130.96 ± 0.87 Ma, and 98.13 ± 0.55 Ma (Fig. 2c), similar to those from the SHTB (comp. Fig. 2b and 2c). The 4942 single zircons from the 103 samples also display the same range of concordant 206Pb/238U ages (Fig. 2c; supplementary data Table RD3) with similar five main age populations (~180-146 Ma, ~146-126 Ma, ~126-102 Ma, ~102-94 Ma, and ~94.76 Ma) and two prominent age peaks (131.04 ± 0.32 Ma and 99.08 ± 0.32 Ma. Fig. 2c).

Further combined and optimized age data of 291 extrusive rock samples of over 40 lithostratigraphic units in both SHTB and CZ illustrate that sample weighed-mean ages mainly vary
between 177 Ma and 82 Ma, which can be classified as five populations: ~178-145 Ma, ~145-125 Ma, ~125-105 Ma, and ~95-82 Ma (Fig. 3). Of the populations’ ages, two peaks are at 133 ± 0.465 Ma (93-75 samples, 138-130 Ma, MSWD = 32.23) and 98.19 ± 0.47 Ma (25 samples, 100-96 Ma, MSWD = 1.14), respectively. The compilation of age data from all the 4639 concordant single zircons shows that the 206\(^{\text{Pb}}/238\(^{\text{U}}\) ages range between ~180 Ma and ~76 Ma with five populations of ~180-145 Ma, ~145-125 Ma, ~125-105 Ma, ~105-95 Ma, and ~95-76 Ma and two age peaks at 132.90 ± 0.14 Ma and 99.86 ± 0.19 Ma (Fig. 3).

Authors’ Note: Following Referee #1, ages of extrusive rocks were separated as discrete populations. We deleted the relevant statements on age population in section 4.2.

5. Discussion
5.1 Temporal evolution of volcanism

The late Mesozoic extrusive rocks are widespread in SE China and their dating has been conducted extensively. In early times, they have been roughly dated as the (Late) Jurassic and (to the Late) Cretaceous by the confinement of interbedded / intercalated terrestrial fossil-bearing sedimentary strata, and the ages are quite crude. Later on, Rb-Sr, K-Ar, and Ar-Ar dating of bulk-dominated samples yielded ages of ~150-65 Ma with large age uncertainties in the 1980s-1990s (e.g., Hu et al., 1982; Li et al., 1989; Feng et a., 1993; Zhang, 1997), much younger than the earlier rough estimates, and ~10-20 Myr younger than the zircon U-Pb isotope ages on average (Li et al., 2019b).

In the recent decade, though zircon U-Pb age data of the igneous rocks have been reported, rock samples in individual references were taken from separate locations resulting in different age interpretations of volcanic eruption in SE China, and a relative concurrent viewpoint has not been reached. Multiple volcanic age durations are available at different locations or regions, such as 145-129 Ma, 143-98 Ma, and 140-118 Ma in eastern and northwestern Zhejiang (Liu et al., 2014), 140-88 Ma and 136-129 Ma in southeastern (Liu et al., 2012) and central Zhejiang (Li JH et al., 2014).
2014), 168-95 Ma in northeastern Guangdong and southeastern Fujian (Guo et al., 2012), 162-130 Ma from two locations in Fujian (Li et al., 2009), 160-99 Ma from northern Fujian (Liu et al., 2016), and 112-99 Ma from Zijingshan Mineral Field of Fujian (Jiang et al., 2013, 2015). Obviously, these ages are incomplete and intermittent, and cannot individually reveal the age of volcanism in the entire SE China.

To investigate the geochronology of extrusive rocks, we conducted zircon U-Pb age analysis in the SHTB and combined the published data from both SHTB and CZ. Then relatively high precise and representative dating results are obtained in entire SE China: the combined and optimized ages from 291 rock samples (4639 concordant zircons) range from ~177 Ma to ~82 Ma (mainly 160-90 Ma).

As we know, the U-Pb isotope ages of zircons represent the cease time of the crystalline zircon formation when volcanic eruption, therefore, we propose that the age range above is an eligible representation for the duration of volcanism in SE China. That means, the volcanism could have initiated at the late Toarcian (~177 Ma) of the late Early Jurassic and terminated at the early Campanian (~82 Ma) of the Late Cretaceous, and it has a ~95 Myr duration, which shows little discrepancy with those of the single zircon ages (Fig. 3). On the other hand, the volcanism occurred chiefly during the interval of the Late Jurassic-Early Late Cretaceous (160-90 Ma = 70 Myr) when only several samples with ages of pre-160 Ma and post-90 Ma are disregarded (e.g., Chen et al., 2007; Guo et al., 2012; Liu et al., 2012). When one considers the relationship of the magmatism to the Yanshanian originationed by the PPP subduction (details see section 5.3), the above age range and duration (~177-82 Ma) are also suggested to probably represent the westward subduction-time of the PPP during the Yanshanian orogeny in East and SE Asia.

Then the temporal evolution scenario of the volcanism in SE China can be summarized as (Fig. 3): 1) during the latest Early Jurassic (late Toarcian) - Latest Late Jurassic (~177-145 Ma), the volcanism was sporadic; 2) the early Early Cretaceous (Berriasian-Barremian, ~145-125 Ma)
volcanic eruption was the most intensive; 3) and the volcanism became fading during the main mid-Cretaceous (Aptian-Turonian, ~125-92 Ma); 4) the volcanism almost ceased since then (~92-82 Ma). The most extensively volcanic eruption episode (145-25 Ma) seems to correspond to the period of rapid increase in the magmatic flux of both the Mid-ocean ridge and Large Igneous Provinces (Coffin & Eldholm, 1994) during the late Late Jurassic—early Early Cretaceous (Fig. 4) although the relationship between them remains unclear.

It is noted that among the compiled single zircon U-Pb ages of extrusive rocks, the oldest one is from the Maonong Formation (Fm) in the Songyang Basin in southwestern Zhejiang. The weighted mean age is 177.4 ± 1.0 Ma for the sample MN01 (location M14. Liu et al., 2012). In addition, a weighted mean age of 180 ± 4 Ma from the same horizon (Chen et al., 2007) has also been reported despite that the error is relatively large, up to 6-8 Myr.

Similarly, variable youngest ages of volcanic rocks are reported. The weighted mean age of 82.5 ± 1.0 Ma of the sample ZJ23 (location N2. Chen et al., 2008) from the Taozu section of eastern Zhejiang could be the youngest age. One zircon grain from the section is dated at 74 ± 0.6 Ma and five zircon grains yield concordant ages of 76 ± 0.6 Ma from the same sample (Table RD3. Chen et al., 2008), suggesting that it is possible the termination of volcanism was ~5 Myr younger than 82.5 Ma.

Two hiatuses volcanism at 128-122 Ma and 120-110 Ma were recently proposed in eastern Zhejiang (Liu et al., 2012), and volcanic reticence of 130-115 Ma was reported in northeastern Guangdong and southeastern Fujian (Guo et al., 2012. N17, N19, N20 in figure 1). Similar silence / inactiveness of volcanism seems happened in other parts of SE China. However, this volcanic silence is a gloss, and it would not have happened when we see all the late Mesozoic volcanism in SE China.

Authors’ Note: In the above paragraph, a discussion on volcanic silence interval was added to
complement the viewpoints for the temporal evolution of the volcanism in SE China.

5.2 Spatial pattern of volcanism

Though it is well-known that the late Mesozoic magmatic rocks are widespread in SE China, the previous volcanic distributions are to some degree out of date as those ages contain large errors with low preciseness and accuracy by bulk isotope dating (e.g., Li et al., 1989; Wang et al., 2000; Zhou and Li, 2000; Chen et al., 2008b) and detailed age distribution patterns by precise age constraints have not been outlined yet. To delineate the spatial variation and migration process of the late Mesozoic volcanism in SE China that are refined by the zircon U-Pb geochronology, we sketched two-three age distribution maps of extrusive rocks showing by the initial, peak, and terminal ages of volcanism (Figs. 5a, 5b, and 5c-and-6).

Firstly, we identified the initial ages of extrusive rocks. The initial age is defined as the earliest age of volcanic eruption in a location, a basin, and / or a region marked as capital letters L, M and N with numbers in figure 1. Three age boundaries ~163 Ma, ~145 Ma, and ~125 Ma are chosen to divide the initial ages into four intervals: 180-177-163 Ma, 163-145 Ma, 145-125 Ma, and <125 (~7694) Ma, which are somewhat different from the classification of volcanic pulses in section 5.1. Actually, the three age boundaries ordinarily and clearly corresponding to those of the epochs of the Middle and Late Jurassic, the Late Jurassic and early and late Early Cretaceous, and the early and mid-Cretaceous, respectively. We used the boundary age 163-177 Ma as the earliest a separate boundary within the first period of the volcanism because it could represents the initiation time of the first Yanshanian orogenic episode in East and SE Asia China and the corresponding stratal boundary is marked by an unconformity (e.g., Yu et al., 2003; Shu et al., 2009). The boundary between the Upper Jurassic and the Lower Cretaceous is also represented by a widely observed unconformity (e.g., Yu et al., 2003; Shu et al., 2009) and the intensification of volcanism in SE China (Fig. 3). As there are fewer samples with ages of < 125 Ma and the age boundary at ~125 Ma marks the rapid waning of volcanism (Fig. 3), we designed combined the three periods-interval 125-105-94 Ma,
105-95 Ma, and <95 Ma of volcanism as the latest one initial age recognition.

Then, isolines ages are drown by the boundary age 163 Ma, 145 Ma, and 125 Ma, separately. Interpolation ages are used to confine the zones when there are no exact ages same as the boundary age occur in the map. Plotting the initial ages in the geographical map shows four zones of initial volcanism in SE China (Fig. 5a). Zone 1 (Middle Jurassic, 177-163 Ma) marks areas where initial volcanic eruption locally occurs in the northernmost corner of Guangdong and neighboring southern corner of Fujian and as well as northeastern corner of Fujian in the CZ and at one location of southwestern Zhejiang (M14, Songyang, Liu et al., 2012) in SHTB. Zone 2 (Late Jurassic, 163-145 Ma) delineates areas where initial volcanic eruption occurs around Zone 1 in southern and northeastern Fujian in the CZ, and half extends into the SHTB (Fig. 5) with a much larger scope in southern Fujian than Zone 1. Zone 3 (early Early Cretaceous, 145-125 Ma) defines regions where initial volcanic eruption chiefly and largely extends in the SHTB in SE China, and mostly bounded in west of the volcanic area, extending along the eastern Jiangxi, northwestern Fujian, and western middle Zhejiang (Fig. 5a). Zone 4 (late Early Cretaceous, 125-90-94 Ma) locally occupies eastern Zhejiang and limited southeastern Fujian in the middle eastern CZ (Fig. 5) (south of Fuzhou). Same zones can be also recognized in the map made from the single zircon U-Pb ages (comp. the supplementary data Fig. RD13), supporting the zonations of the sample weighed-mean ages.

Secondly, the peak eruption age of extrusive rocks can be identified, which is defined as the main age of extensively volcanic eruption in a location, a basin, and / or a region marked with L, M and N with numbers in figure 1. Here we use 145 Ma, 125 Ma, and 100 Ma as three boundary ages to differentiate the most extensive volcanism in SE China. This is because the main ages are much younger than 145 Ma and few samples show ages younger than 100 Ma, for which the main age isolines are more readily made. Similarly, the corresponding age intervals confined by the boundary ages pertain to the epochs of the Late Jurassic, the early and late Early Cretaceous, and early Late Cretaceous, respectively.
Isolines of boundary ages are delineated by 145 Ma, 125 Ma, and 100 Ma and completed with interpolation ages when no exact ages in the transition zone. Four zones of peak volcanism are then shown in the geographical map, SE China (Fig. 5b). Zone 1 (Late Jurassic, 163-145 Ma) is the area where most intensively volcanic eruption occurred in southeastern and northeastern Fujian and locally at a place in southwestern Zhejiang (Fig. 5b). Zone 2 (early Early Cretaceous, 145-125 Ma) largely extends along the eastern Jiangxi, middle Zhejiang, northwestern Fujian, and northeastern Guangdong (Fig. 5b) and indicates widespread volcanism in SE China. Zone 3 (late Early Cretaceous, 125-100 Ma) occurs as a band in middle Zhejiang, southern Fujian, and northeastern Guangdong. Zone 4 (early Late Cretaceous, 100-76 Ma) locally distributes along Zone 3.

Thirdly, five populations of 145-135 Ma, 135-125 Ma, 125-115 Ma, 115-95 Ma, and <95 Ma are designed with a 10 Myr interval. We use the for the terminal eruption age of extrusive rocks to represent the termination time of the last volcanism in SE China, which are slightly different from the initial ages (comp. Figs. 5 and 6), which is . The age interval scheme is helpful to distinguish the terminal volcanic distribution in SE China. The age boundaries and intervals are the same as the peak eruption. It is noted that only one age is older. This is because the main population ages are totally much younger than 145 Ma in northeastern corner of Fujian and lots of few samples are younger than 95-100 Ma, for which the main population isolines are more readily made.

Similarly, isolines ages are drawn with the confinement of boundary age 135-145 Ma, 125 Ma, and 115-100 Ma, and 95 Ma, age isolines are drawn separately, and interpolation method is used to confine the zones when there are no exact ages in the map. The isolines in the geographical map also show five age zones offer the terminal volcanism are recognized in the geographical map by the age isolines in SE China (Fig. 65c). Zone 1 (>145-135 Ma) sparsely occurs in the southern and northeastern corner of Fujian, due similar to only those one location of the terminal age of the initial age distribution. Zone 2 (135-145-125 Ma) mainly occurs in eastern Jiangxi.
and, western SHTB while partly surrounds the Zone 1 banded boundary of northern Fujian; Zone 3 (125-105-100 Ma) largely distributes in the boundary region of eastern Jiangxi and western Fujian and in middle and southwestern Zhejiang in the SHTB. Zone 4 (105-100-95-83 Ma) widely appears in regions of the southern-middle Fujian, middle eastern Zhejiang in the eastern SHTB and CZ, and northern Guangdong. Zone 5 (<95 Ma) sporadically displays in the eastern Fujian, eastern Zhejiang, and northern Guangdong in the CZ. Similar zonations can be classified in the map sketched by the single zircon U-Pb ages (supplementary data Fig. RD14), verifying the zones of the sample weighed-mean ages in SE China.

Zonations of both initial, peak, and terminal volcanism indicate a distinct pattern of volcanic extrusion in SE China (Figs. 5 and 6): the oldest ages in the central SE China, the younger intensive age clusters in the SHTB western SE China, and the youngest ones in eastern SE China again the CZ. Detailed distributional patterns can be observed: 1) the earliest appearance and earliest disappearance of extrusive rocks dominantly occur in southeastern and northeastern Fujian, where the magmatic arc was located (e.g., Lapierre et al., 1997) in the CZ; 2) the most widespread distribution of 145-125 Ma extrusive rocks are the most intensive volcanism age as 145-125 Ma in eastern Jiangxi, western-mid Zhejiang, and western Fujian-northern Guangdong, in which a back-arc / rifting basin was developed (e.g., Gilder et al., 1991; Jiang et al., 2009; 2011) in the SHTB; 3) the latest appearance and latest disappearance mainly occur in eastern Zhejiang, and eastern Fujian in the CZ, and northern Guangdong.

With the observation of volcanism, two distributional patterns manifest: 1) the migration of the volcanism was from the northwestward to the southeastward, implying that the PPP could have been subducted northwestly during the late Mesozoic time; 2) the first appearance (initial volcanism) area and is the first disappearance (terminal volcanism) region are the same region, suggesting that a roll-back subduction of the PPP happened after ~125 Ma.

It is surprising that the zone 1 and / or 2 of both initial and terminal volcanism look like
thermal-dome patterns (Fig. 5 and 6) by exhumation and exposure that may be related to the regional magmatic intrusion, likely misleading the migration of volcanism. However, the distribution pattern is not dome-controlled because: 1) The data are derived from extrusive rocks, instead of intrusive rocks; 2) it is impossible that a crater is over 200-300 km wide in diameter; 3) lots of agglomerates representing craters were observed in a variety of strata at locations / basins out of Zone 1. For instance, these agglomerates are widespread in basins of western Zhejiang (L1~L4; M9~M14), eastern Jiangxi (L5~L7; M16~M18b), and western Fujian (L8~L10, M19~M22).

Authors’ Note: The below section 5.3 on tectonic implication was completely deleted following the suggestion by Referee #1.

5.3 Implication for the PPP Subduction

It is accepted that the late Mesozoic (Yanshanian) magmatism was caused by the subduction of the western PPP even though the subduction geodynamics, direction, and angle remain controversial (e.g., Li and Li, 2007; Sun et al., 2007; Liu et al., 2012, 2014, 2016; Duan et al., 2017; Jia et al., 2018) since the early propositions (e.g., Jahn, 1974; Lapierre et al., 1997; Zhou and Li, 2000). In the subduction model, the magmatism was often attributed to the mantle-crust interaction, that is, the geodynamic environment has been commonly regarded as an active continental margin related to the subduction of the PPP under Eurasia (e.g., Engebretson et al., 1985; Maruyama and Seno, 1986; Faure and Natal’in, 1992; Zhou and Li, 2000; Honza and Fujioka, 2004) and / or Northeast Asia (e.g., Stepushko, 2006; Wu et al., 2007; Choi and Lee, 2011; Zhang et al., 2011; Sun et al., 2013, 2015; Dong et al., 2016; Liu et al., 2017) as well as SE-China (e.g., Faure et al., 1996; Chen and Jahn, 1998; Zhou and Li, 2000; Chen et al., 2005; Li et al., 2009; Liu et al., 2012, 2014, 2016; Jiang et al., 2013, 2015; Li CL et al., 2014; Li JH et al., 2014; Duan et al., 2017; Hong et al., 2018; Jia et al., 2018; Zhang et al., 2018). Accordingly, the subduction angle (rollback hypothesis) and / or polarity change are the crucial reference to geodynamics.

There are at least six main models put forward to explain the subduction direction and angles. 1)
In an early model, a so-called normal subduction of the PPP happened in the late Mesozoic by felsic arc magmatism and continental olivine tholeiites (Lapierre et al., 1997). 2) PPP westward subducted under the Andesite-type active margin in SE China since the Permian (e.g., Li et al., 2006; Knittel et al., 2010; Li et al., 2012; Li et al., 2012). 3) The dip angle of the PPP subduction slab increased (low-to-median angle) since the beginning of the Early Cretaceous, resulting in oceanward migration of the magmatic zone to the coastal area (Zhou and Li, 2000). 4) A long-lasting, persistent northwestward subduction between ~250 Ma and ~190 Ma with a subsequent retreat between ~180 Ma and ~155 Ma was proposed to explain the development of a broad (~1300-km-wide) intracontinental orogen in South China (Li and Li, 2007). 5) The southwestward then northwestward subducted in the late Mesozoic (180–125 Ma) (e.g., Sun et al., 2007); 6) The shallow subduction and slab rollback took place during the Middle-Late Jurassic and late Early Cretaceous (e.g., Jiang et al., 2009, 2015; He and Xu, 2012; Liu et al., 2014, 2016; Yang et al., 2018; Zhang et al., 2019).

However, these models were mostly based on two situations. One is that the authors mostly employed the dating and geochemical data from unpublished and local reports in the 1980s-1990s, which were mainly measured from (non-zircon) bulk samples using methods and techniques of Ar-Ar, Rb-Sr, and Sm-Nd and others with less precision and accuracy. By the state of art at the time, those data could have led to the misunderstanding of the model. Another situation is that well-dated materials were mainly derived from a local mining field, a region, a province, or at most a boundary area of two or three provinces. These two situations of imprecise ages and local material could have resulted in incompleteness even mistaking on the PPP subduction process.

To examine the models of the PPP subduction directions and angles, we combined our new zircon U-Pb dating works with lots of published ages and tried to analyze the tempo-spatial variation of the late Mesozoic volcanism in SE China, which may shed new light on the PPP subduction. It is worth noting that the association of the late Mesozoic volcanism in SE China with the western PPP subduction has been demonstrated by numerous geochronological and geochemical studies of both
intrusive and extrusive rocks from variable locations (e.g., Yu et al., 2006; Jiang et al., 2011; Guo et al., 2012; Yang et al., 2012; Liu et al., 2012, 2014, 2016; Jiang et al., 2015; Li WX et al., 2017; Shu et al., 2017; Ji et al., 2018; Jia et al., 2018; Zhang et al., 2018). The age data of this study and those compiled from previous work were derived from similar / same basins and / or locations (refer to Fig. 1 and supplementary data Table RD1), indicating the combined data have the same tectonic meaning. That means the extrusive rock samples for age analysis used in this paper are eligible for the linkage of the PPP subduction.

As shown in sections 5.1 and 5.2, zonations of both initial and terminal volcanism can be made by age distribution of the late Mesozoic extrusive rocks, indicating a migration process of volcanic extrusion in SE China. We proposed a volcanic process that took place in the following sequence (Figs. 5, 6, and 7). Firstly, the volcanism occurred in northeastern Fujian and southern Fujian (Zone 1) of the CZ. It is noteworthy that a few zircon U-Pb isotope ages (interval ~195-180 Ma) of the Early Jurassic from southernmost Jiangxi were recently published (e.g., Cen et al., 2016). These ages belong to the late episode of the Indosinian orogeny. It likely indicates that Zone 1 can reach southernmost Jiangxi if its relevance to the Yanshanian movement is verified. Secondly, the magmatic extrusion happened in eastern Jiangxi and southwestern Fujian (Zone 2) in the main SHTB. Then it appeared in northern Fujian and middle Zhejiang (Zone 3) in the SHTB. Finally, the volcanic eruption had been transferred and emerged in eastern Zhejiang and at limited locations in southeastern Fujian (Zone 4-5) in the CZ. The zonation and process of the volcanic extrusion suggest that the volcanism first advanced northwestward and then retreated southeastward during the late Mesozoic. The southeastward retreat of volcanism is also indicated by the change of the main interval of intense volcanic extrusions, that is, the first interval (~145-125 Ma) of intensive volcanism mainly occurred in eastern Jiangxi, western Fujian, and middle Zhejiang, indicating a broad volcanism at the time; and the second one (105-95 Ma) mainly appeared in Tiantai area of eastern Zhejiang and Fuqing-Dehua (southwest to Fuzhou) area of eastern Fujian (Figs. 5 and 6),
illustrating a constricted volcanism at last.

By the detailed characterization of the temporal and spatial variations of the late Mesozoic volcanism from the much more comprehensive data of geochronology in SE China, we refined and put forward a different single model of the subduction dynamics in western Pacific (Fig. 7). Based on the migration pattern of volcanism (Fig. 5, 6, and 7), we propose that the PPP subducted northwestward during the Middle-Late Jurassic (178-145 Ma, Fig. 7a) and the subduction slab then rolled back or retreated southeastward during the main Early Cretaceous (145-95 Ma, Fig. 7b and 7c). These would have led to the subsequent southeastward retreat of volcanism (Fig. 5) and to the extension of back-arc by lithosphere foundering (Fig. 7b and 7c). The transfer in the migration direction of volcanism from the northwestward to the southeastward may have occurred at ~145 Ma as evidenced by the great increase in the early Early Cretaceous age population (145-125 Ma) (Fig. 3), implying that the rollback of the PPP may have led to the Early Cretaceous lithospheric extension (e.g., Li, 2000; Chen et al., 2008; Guo et al., 2012; Meng et al., 2012; Shu et al., 2017) and/or the reactivation of the older NE-striking faults (e.g., Wang et al., 2013) in SE China (Fig. 7b and 7c). Indeed, the rollback of the PPP has been proposed previously with the timing ranging from ~190 Ma (e.g., Jiang YH et al., 2015; Cen et al., 2016) to ~90 Ma (e.g., Zhao et al., 2016). But the dominant age interval for the initiation of the PPP rollback was ascribed to the 145-130 Ma (e.g., Li LM et al., 2009; Yang et al., 2012; Li PJ et al., 2013; Li CL et al., 2014; Su et al., 2014; Li et al., 2017; Yang et al., 2018). Combined with the widespread unconformity in SE China (e.g., Yu et al., 2003; Shu et al., 2009), our results from the extrusive rocks indicate that ~145 Ma represents the initiation timing for the rollback of the PPP subduction. Since the beginning of the Late Cretaceous (~95 Ma / 105 Ma), the frontier of the PPP may be broken off and a new normal subduction was either re-established or ceased (Fig. 7d). This alternation could have resulted in the fading of the magmatism and caused an unconformity between the gravelly mollase Danxia Supergroup and the underlying Lishui Supergroup in S China (Li et al., 2019b).
6. Conclusions

We analyzed weighed mean ages of 48 extrusive rock samples (total of 636 concordant single zircons) from ~20 lithostratigraphic units at 11 localities in the SHTB. Published ages of 243 rock samples (total of concordant 3662–4003 zircons) from ~40 lithostratigraphic units in SE China are compiled and re-examined. Based on a total of refined 291 sample ages (4639 concordant zircon U-Pb ages) from this study and the published literatures, we propose that the late Mesozoic volcanism in SE China initiated at ~177 Ma (late Toarcian of the late Early Jurassic) and terminated at ~82 Ma (early Campanian of the Late Cretaceous), spanning an ~95 Myr interval (mainly ~70 Myr = 160-90 Ma), during which two peak age populations at ~145-125 Ma (the early Early Cretaceous) volcanism and ~105–95 Ma (the early Late Cretaceous) are interpreted to indicate the two pulses of the most intensive and widespread magmatic volcanism eruption. As the volcanism had been associated with the subduction in western Pacific, we suggest that these age range and span may represent the time of the Yanshanian magmatism subduction of the western PPP in East and Southeast Asia in SE China.

Isolines of initial, peak, and terminal volcanic ages are drawn to outline the geographic distribution of extrusive rocks in SE China. The volcanic extrusion age spatial change of the late Mesozoic volcanism is used to explore the linkage between the volcanism and PPP subduction. Shows a distinct pattern of the late Mesozoic volcanism volcanic extrusion ages in SE China is found: both the oldest and youngest ages in eastern (the CZ coastal) Zhejiang and Fujian (magmatic arc), and the most intensive and widespread younger ages in eastern Jiangxi, middle Zhejiang and northern Guangdong (back arc / rifting basin), hundreds of kilometers away from the coast line one in the SHTB. The geographical distribution patterns of the volcanic eruption ages indicates reveal a migration process of magmatic extrusion in SE China and implies that a migration scenario of the volcanic extrusion can delineate as: the first zone of volcanism occurred in northeastern subduction of the Paleo-Pacific plate happened and a possible roll-back subduction did not begin.
until the Aptian (~125 Ma) of the mid-Cretaceous Fujian and southern Fujian in the CZ, the second
zone moved northwestward to the eastern Jiangxi, western Fujian and western Zhejiang in the
western SHTB; then, the third zone retreated southeastward to the northwestern Fujian and the
middle eastern Zhejiang in the SHTB; Finally, the last zone migrated to the eastern Zhejiang and the
middle eastern Fujian in the CZ.

The tempo-spatial variations of the late Mesozoic extrusive migration indicate that the
volcanism first advanced northwestward and then retreated southeastward in SE China. This implies
that the PPP probably subducted northwestward during the Middle-Late Jurassic (177-145 Ma) and
the subduction slab then rolled back or retreated southeastward during the main Early Cretaceous
(145-95 Ma), leading to the subsequent southeastward retreat of volcanism. This change in the
migration direction of volcanism from the northwestward to the southeastward happened at ~145 Ma,
i.e., beginning of the Cretaceous, probably responsible for the Early Cretaceous lithospheric
extension behind the magmatic arc in South China.

Authors’ Note: Some conclusions on tectonic implications were deleted following the suggestion by Referee #1.

Acknowledgments

We thank Ke Cao, Sijing Liang, Yannan Ji, Sihe Wang for participating the field investigation.
We are grateful to the reviewers (xxxxxxxx) for their helpful comments and constructive suggestions.
This research was supported by National Key R & D Plan (Grant 2017YFC06014005), Natural
Science Foundation of China (NSFC) projects 41372106 and 41672097, and National Basic
Research Program of China (973 Project) 2012CB822003.

Authors’ Note: Some references were deleted as the topic changes.

References cited

Black, L. P., and Gulson, B. L.: The age of the Mud Tank carbonatite, Strangways Range, Northern

Chen, W. F., Chen, P. R., Xu, X. S., and Zhang, M.: Geochemical characteristics of Cretaceous basaltic rocks in South China and constraints on Pacific Plate subduction, Sci. China (Series D),

Hong, D., Niu, Y. L., Xiao, Y. Y., Sun, P., Kong, J. J., Guo, P. Y., Shao, F. L., Wang, X. H., Duan, M.,
Xue, Q. Q., Gong, H. M., Chen, S.: Origin of the Jurassic-Cretaceous intraplate granitoids in
Honza, E., and Fujioka, K.: Formation of arcs and backarc basins inferred from the tectonic
Jackson, S. E., Pearson, N. J., Griffin, W. L., and Belousova, E. A.: The application of laser
ablation-inductively coupled plasma–mass spectrometry to in situ U/Pb zircon geochronology,
Jahn, B. M.: Mesozoic thermal events in southeast China, Nature, 248, 480-483,
doi:10.1038/248480a0, 1974.
Ji, W. B., Lin, W., Faure, M., Chen, Y., Chu, Y., Xu, Z. H.: Origin of the Late Jurassic to Early
Cretaceous peraluminous granitoids in the northeastern Hunan province (middle Yangtze
region), South China: Geodynamic implications for the Paleo-Pacific subduction, J. Asian Earth
Jia, L. H., Mao, J. W., Liu, P., and Li, Y.: Petrogenesis of the late Early Cretaceous granodiorite—
Quartz–diorite from eastern Guangdong, SE China: Implications for tectono-magmatic
Jiang, S. H., Bagas, L., and Liang, Q. L.: New insights into the petrogenesis of volcanic rocks in the
the Zijinshan porphyry-epithermal Cu-Au-Mo-Ag ore system, SW Fujian Province, China:
constrains from the geochronology and geochemistry of the igneous rocks, Ore Geol. Rev., 53,
Jiang, W. S., Zhen, J. S., Li, L. T., and Xu, K. D.: Study of the Cretaceous in Zhejiang, China,
of Early Cretaceous S- and A-type granites in the northwest of the Gan-Hang rift, SE China,
Lithos, 121, 55-73, 2011.
Jiang, Y.H., Jiang, S.Y., Dai, B.Z., Liao, S.Y., Zhao, K.D., and Ling, H.F., 2009, Middle to Late
Jurassic felsic and mafic magmatism in southern Hunan Province, Southeast China:
implications for a continental arc to rifting: Lithos, vol. 107, p. 185-204.

Zhang, G. W.: Mesozoic tectono-magmatic response in the East Asian ocean-continent

Li, W. X., Li, X. H., Wang, X. C., and Yang, D. S.: Petrogenesis of Cretaceous shoshonitic rocks in
the northern Wuyi Mountains, South China: A result of the roll-back of a flat-slab?, Lithos,

active continental margin and crustal growth of the Cathaysia Block: in situ U–Pb, Lu–Hf and O

Li, X. H., Li, Z. X., Li, W. X., Liu, Y., Yuan, C., Wei, J., and Qi, C. S.: U–Pb zircon, geochemical and
Sr–Nd–Hf isotopic constraints on age and origin of Jurassic I–A type granites from central
Guangdong, SE China: a major igneous event in response to foundering of a subducted flat-slab?

Li, X. H., Li, Z. X., Li, W. X., Wang, Y. J.: Initiation of the Indosinian Orogeny in South China:

LA-ICPMS zircon U-Pb age determination: An inter-laboratory comparison, Sci. China Earth

Li, X. H., Zhang, C. K., Li, Y. X., Wang, Y., and Liu, L.: Refined chronostratigraphy of the late
Mesozoic terrestrial strata in South China and its tectono-stratigraphic evolution, Gond. Res., 66,
143-167, 2019b.

Li, Z. X., and Li, X. H.: Formation of the 1300-km-wide intercontinental orogen and postorogenic
magmatic province in Mesozoic South China: A flat-slab subduction model, Geology, 35,

switch-off along the South China continental margin since the Permian: transition from an
Andean type to a Western Pacific type plate boundary, Tectonophysics, 532-535, 271290, 2012b.

Li, Z., Qiu, J. S., and Yang, X. M.: A review of the geochronology and geochemistry of Late
Yanshanian (Cretaceous) plutons along the Fujian coastal area of southeastern China:
Implications for magma evolution related to slab break-off and rollback in the Cretaceous,

Shu, X., Yang, S. Y., Jiang, S. Y., and Ye, M. Petrogenesis and geodynamic setting of Early Cretaceous felsic rocks in the Gan-Hang Belt, Southeast China: Constraints from

Table 1 Percentages of single zircons and rock samples in 1σ error (Myr), error/age ratio, and Th/U ratio of the late Mesozoic extrusive rocks in SE China

<table>
<thead>
<tr>
<th>Sources</th>
<th>Concordant Zircon Number</th>
<th>Rock Sample</th>
<th>1σ error</th>
<th>error/age</th>
<th>Zircon Number</th>
<th>Th/U Ratio</th>
<th>Zircon Number %</th>
</tr>
</thead>
<tbody>
<tr>
<td>This work in SHTZs</td>
<td>636</td>
<td>48</td>
<td><3</td>
<td>570</td>
<td>96</td>
<td>581</td>
<td>91.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3-5</td>
<td>63</td>
<td>9.9</td>
<td>50</td>
<td>7.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>>5</td>
<td>3</td>
<td>0.5</td>
<td>5</td>
<td>0.8</td>
</tr>
<tr>
<td>Composed in SHTZs</td>
<td>2593</td>
<td>388</td>
<td><3</td>
<td>2066</td>
<td>79.7</td>
<td>2212</td>
<td>85.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3-5</td>
<td>441</td>
<td>17.0</td>
<td>348</td>
<td>13.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>>5</td>
<td>86</td>
<td>3.3</td>
<td>33</td>
<td>1.3</td>
</tr>
<tr>
<td>Composed in SHTZ-CZ</td>
<td>4639</td>
<td>291</td>
<td><3</td>
<td>3543</td>
<td>76.4</td>
<td>3798</td>
<td>81.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3-5</td>
<td>898</td>
<td>19.4</td>
<td>769</td>
<td>16.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>>5</td>
<td>198</td>
<td>4.3</td>
<td>73</td>
<td>1.6</td>
</tr>
</tbody>
</table>

Notes: Numbers of evaluated zircon grains differ from sources in U-Pb age and Th/U ratio due to unavailability of some original data. CZ, Coastal zone.
Figure 1 Sketch geological map of South China showing tectonic and basin zonations of the upper Mesozoic and sample locations (map simplified after Shu et al., 2009). In SHTB (Shi-Hang tectonic belt), dark blue squares with white capital letter L + numbers within black rectangles mark the sampling locations of this study (supplementary data figures RD1, RD2, and RD3), and yellow squares with red capital letter M + numbers within white rectangles indicate sampling locations of previous studies (supplementary data Table RD1 and RD2). In CZ (Coastal Zone), green trapezoids with bold capital letter N + numbers are sample locations of previous studies (supplementary data Table RD1 and RD3).
Figure 2 Relative probability and histogram diagrams of concordant zircon U-Pb isotope and sample weighed–mean ages of extrusive rocks from SE China (details see in supplementary data Table RD1, RD2, and RD3). a), this study in the SHTB; b), combined this and previous studies in the SHTB; c), published data in the CZ. N = number of rock samples, n = total number of zircon grains.
Figure 3 Diagram showing U-Pb isotope age relative probability and histogram of both single zircon and individual sample weighed mean zircons from all extrusive rock samples in SE China. N = number of rock samples, n = total number of zircon grains.
Figure 4 Diagram showing age ranges of volcanism in SE China and correlations with the global Large Igneous Provinces (LIPs) and magmatic flux. a, age range of the Cretaceous LIPs (summary see Coffin & Eldholm, 1994); b, magma flux of the Cretaceous LIPs, mid-ocean ridges, and (except Tethys) global total (Coffin & Eldholm, 1994); c, age range of the volcanism with histogram and relative probability and SE China.
Figure 5 Sketch maps showing extrusive zonations of the late Mesozoic volcanism by initial ages in SE China. Four zonations Zone 1, 2, 3, and 4 are recognized in the order of the initial eruption age interval 177-163 Ma, 163-145 Ma, 145-125 Ma, and 125-90 Ma, separately. Age within white rectangles is the initial eruption time at a location or in a basin/region. Names of the faults, color squares and trapezoids refer to Fig. 1. a), zonations of initial eruption ages; b) zonations of peak eruption ages; c) zonations of terminal eruption ages.

Authors’ Note: Figure 5 was re-made.
Figure 6—Sketch map showing extrusive zonations of the late Mesozoic volcanism by terminal ages in SE China. Five zonations Zone 1, 2, 3, 4, and 5 are recognized in the order of the terminal eruption age interval >145 Ma, 145-125 Ma, 125-115 Ma, 115-95 Ma, and <95 Ma, separately. Age within white rectangles is the terminal eruption time at a location or in a basin/region. Names of the faults, color squares and trapezoids refer to Fig. 1.

Authors’ Note: Figure 6 was incorporated with Figure 5 as the new Figure 5 by the adjustment of the topic of the paper.
Figure 7—Cartoons showing models of the late Mesozoic volcanic advance–retreat and PPP subduction rollback. a) PPP normal subduction under SE China during the Middle–Late Jurassic (178–145 Ma), during which volcanism chiefly occurred in southern and northeastern Fujian, the magmatic arc (CZ). b) Rollback of the PPP frontier during the early Early Cretaceous (145–125 Ma), leading to the westward volcanism and lithosphere extension in eastern Jiangxi, western Fujian, and middle Zhejiang, back arc (SHTB). c) Rollback advance of the PPP during the late Early Cretaceous (125–95 Ma), resulting in the eastward retreat of volcanism to Fujian and eastern Zhejiang (SHTB-CZ). d) Re-established normal subduction or cease by break-off of the PPP after 95 Ma, fading the magmatism in eastern Fujian and eastern Zhejiang (CZ).

Authors’ Note: Figure 7 was deleted following the suggestion by Referee #1.