Dear Editor and reviewers,

Thank you very much for your comments and the positive assessment of our work. Your comments and suggestions have greatly improved our paper. We hope our revisions will meet with approval. The detailed responses to your comments are listed below:

Responses to Editor (Dr. Antonella Longo)

Comment 1: pag. 1, line 18 I expect that your investigation is carried out with passive seismic imagine, if so, it would be important to state that, considering the wide range of earthquakes that usually occurs in the region you are investigating.
Response 1: The seismic reflection data we use was collected during hydrocarbon exploration using an active source (i.e. an air-gun).

Comment 2: pag. 2, line 34 I think that a general reader would be interested to know the importance to give such attention to submarine eruptions. Just a quick summary of the potentiality of your study. Any implication for hazard? Just to ask.
Response 2: Because our study is focused on the 3D structure and growth of deep-water volcanoes, we have decided not to discuss, in too great a detail, the implications for hazards. By omitting this material we keep the abstract concise and to-the-point. However, we agree that briefly mentioning the potential geohazards associated with deep-water volcanoes could be of interest to the general reader. We have therefore added the following sentences (Lines 58-61) to the Introduction: “Without such information on the structure of deep-water volcanoes, we cannot assess how they grow or what hazard they may pose (e.g. tsunamis induced by flank collapse, seabed deformation and instability induced by highly explosive eruptions)”.

Comment 3: pag. 3, line 60 I am curious to know why did you choose these two volcanoes and not other ones.
Response 3: Although several volcanoes are imaged in our study area, only two of them are physically isolated (i.e. the others are physically linked because their related lava flow fields merge). We can therefore confidently separate them, calculate the volume of eruptive material contained in their edifices and flanking lava flow fields, and thus calculate the ratio between material in the volcano edifice vs. the lava flow field. To clarify this, we have added: “These two volcanoes are physically isolated and appear to have been fed by independent, sub-volcanic intrusive bodies (i.e. sills; see below); we can thus confidently characterize each individual volcano and its associated lava flows (Fig. 1b).” (Lines 66-68).

Comment 4: pag. 6, line 115-116 Could you please explain (I am not an expert on
the subject) the words Bin spacing is 25 m”. Furthermore, why the interval of interest of frequencies is 0-400 ms two-way time (twt) of ~40 Hz?

Response 4: Bin is a square and comprises two inlines and two croslines in the 3D seismic reflection data. Here, ‘Bin spacing is 25 m’ means the inline and crosline are 25 m, respectively. To clarify this, we have changed this sentence to: “The inline and crosline spacing are 25 m, respectively” (Line 122).

The frequency of the seismic data is lies within a frequency band ranging from a few Hz to a few hundreds of Hz. The dominant frequency is the maximum frequency encountered in a frequency spectrum. The dominant (and peak) frequency typically decrease downwards from the seabed due to attentuation. Therefore, different depths are characterized by different dominant frequency spectrums (and dominant and peak frequencies). In this study, the dominant frequency in the interval of interest (i.e. 0–400 ms two-way time (twt)) is ~40 Hz.

Comment 5: Table 1 Unit of measure should be written as in Table 2.

Response 5: We have revised the units of Table 1 to be the same as those in Table 2.

Comment 6: Table 2 How do you justify the computation of diameter from the area assuming it is a circle?

Response 6: The boundaries of lava flow apron are irregular and thus we cannot directly measure its diameter. In this study, we directly measured the lengths of the apron’s irregular boundaries and calculated an approximate diameter by assuming it was a circle. We think this was the best estimate for estimating the crude diameter of an apron with irregular boundaries.

Comment 7: Fig. 2 (b) In caption D/T, DT, RHOB, and RC are mentioned but not indicated in Fig. 2(b).

Response 7: We have added these to Fig. 2a (Lines 704-705).

Comment 8: pag. 8, line 175 For a better understanding, I would replace the ‘-’ with a ‘:’, the same for the other Seismic Facies.

Response 8: We have revised this, in addition to those in Lines 181, 184 and 187.

Comment 9: pag. 10, line 206 Put the deg on 15: 15.0° ±3.6°.

Response: We have revised this in the text (Line 213).

Comment 10: pag. 11, line 226 Is it possible to assign an error to the ~14 km² area?

Response 10: It is difficult to assign a precise error to this area estimation because we do not know how much eruptive material is thinner than the vertical resolution of the seismic data, and thus lies outside of the high-amplitude area used to define the lava flow apron. We used ‘~’ to represent the uncertainty here.

Comment 11: pag. 11, line 234 As for pag. 10, line 206.

Response 11: We have revised this in the text (Line 241).
Comment 12: pag. 11, line 239 Every measurement has an error, or is ~, why the 9.2 km long lava flow channel has been defined without uncertainty?
Response 12: The lava flow channel extend beyond the area imaged by the seismic reflection data, and thus is at least 9.2 km long. To clarify this, we have changed this sentence to: “V2 lacks a lava apron, instead being directly flanked by relatively straight, >9.2 km long lava flow channels extending beyond the seismic survey boundary on its south-eastern side (C4-C7) (Fig. 5a)" (Lines 245-247).

Comment 13: pag. 11, line 241 As for pag. 10, line 206.
Response 13: We have revised all of these in the text.

Comment 14: pag. 16, line 337 How is lava viscosity of 9-38 Pa computed?
Response 14: 9-38 Pa is an estimate of bulk fluid viscosity in the center of the lava flow calculated using the Giordano et al. (2008) melt viscosity model and an approximated MORB melt composition. This calculation assumes that the melt has equilibrium solubility of H2O at a pressure pertaining to the eruption depth of 2 km (20 MPa) and at temperatures of 1100-1200°C. The purpose of this calculation is to provide a viscosity comparison with an equivalent basaltic lava flow erupted subaerially vs. that erupted in water depths of 2 km.

Comment 15: pag. 16, line 351 Is it \controls" or \control"?
Response 15: We have revised the ‘controls’ to ‘control’ in the text (L361).

Comment 16: pag. 17, line 363 It would be interesting to give an estimate of the cooling rate of underwater lavas. If possible.
Response 16: The cooling rates of submarine lava flows are highly dependent on their thickness and effusion rate. While we have good volumetric constraints, effusion rates are much harder to determine for whole-scale lava flow cooling rates. There has been prior work by Gregg and Fornari (1998) that looks at the theoretical surficial cooling rate of lava flows. Compositional data of these lava flows would also be required to make informative estimates of cooling rate. It is an interesting area of study that certainly requires more attention but, we argue, outside of the scope of this paper.

Comment 17: pag. 19, line 417 I would rephrase into ‘can play a critical role in understanding”.
Response 17: We have rephrase this sentence (Lines 422-424).
Responses to Dr. Alexander L. Peace

Comment 1: Figure 1a would benefit from a key (i.e. the red, green and blue symbols that are described in the caption).
Response 1: We have added the symbols in the figure caption to the image.

Comment 2: On Figure 2 some of the text for the different logs is very small and difficult to read, particularly the units. I suggest making these larger.
Response 2: We have made the font twice as large to make them easier to read.

Comment 3: In the caption for Figure 5, the mentions of ’(a)’ and ’(b)’ could be better placed to describe the figure. As it is they are both at the start of the caption which reads a little awkwardly. Also, Figure 5a might be better with a colour bar.
Response 3: We have changed the locations of (a) and (b) in the figure caption to make them easier to understand. We also added a colour bar to Figure 5(a).

Comment 4: There is a minor grammatical error in the acknowledgements (the 2nd “have” isn’t necessary).
Response 4: We could not find ‘have’ in the acknowledgements; maybe you were referring to the ‘Author Contribution’? Please note that we have carefully revised the main text to remove all grammatical errors.

Comment 5: Finally, another good example of a seismic reflection study on offshore volcanoes that may be of interest to the authors is by Keen et al. (2014) on the Charlie-Gibbs Volcanic Province.

References
Response 5: We have read and now cite this paper.

Responses to Dr. William W. Chadwick,

Comment 1: Line 1: I think a better title for this paper would be something like “3D seismic imaging of Miocene volcanoes in the South China Sea” – something that is more informative to the reader about the real content of the paper. I don’t think this paper is a general discussion about “extrusion dynamics of deep-water volcanoes”.
Response 1: Considering a lot of contents were referred to the extrusion dynamics of deep-water volcanoes (See the detailed Responses 2, 4 and 7) and we used 3D seismic data in this paper, we changed the title to “Extrusion dynamics of deep-water volcanoes
revealed by 3D seismic data” to make this title more informative to the reader.

Comment 2: Line 17 and throughout: What does “extrusion dynamics” mean here and throughout the manuscript? The authors need to explain what this means to them somewhere early in the paper. How can 3D (static) seismic images tell you about “dynamics”?

Response 2: Here, ‘extrusion dynamics’ means how the erupted materials flow and accumulate. Yes, the seismic images are ‘static’ in the sense volcanism has long-since ceased. However, the present structure and distribution of the volcanoes and their lavas allow us to infer how they formed (i.e. their “dynamics”).

Comment 3: Lines 24-25: I suggest taking out "shallow sub-surface depths" because it is unnecessary and potentially confusing with the "deep-water" emplacement of the volcano as a whole. (water depths vs. subsurface depths within sediment)

Response 3: We have deleted “shallow sub-surface depths” from the revised manuscript.

Comment 4: Line 26: In my experience high hydrostatic pressure has little effect on eruption processes (1000 m vs 4000 m depth), so I’m skeptical about this sentence.

Response 4: This has been modified in the revised manuscript (Lines 25-28: Extrusion dynamics were likely controlled by low magma viscosities as a result of increased dissolved H2O due to high hydrostatic pressure, and soft, near-seabed sediments, which collectively are characteristic of deep-water environments). We attribute the long run out of the lava flows due to increased effusion rate and low lava viscosity. The control of hydrostatic pressure in this setting is on the solubility of the erupted melt, where up to (and over) 20 MPa of hydrostatic pressure may allow lavas to be very H2O-rich, with viscosities up to an order of magnitude lower than their subaerial counterparts and/or submarine lavas erupted in drier tectonic settings (e.g. at Axial seamount). This is detailed more within the discussion (Lines 336-339).

Comment 5: Line 49: It seems to me a distinction should be made here. With before-and-after bathymetric surveys, the volumes of individual eruptions CAN be well-constrained. It is only if you don’t have information on the pre-existing topography or bathymetry – or you are estimating over longer periods of time (multiple eruptions or an entire volcano’s history) that volume estimation is more difficult.

Response 5: Yes, we agree with you that the volumes of individual eruptions can be relatively well-constrained, if we carry out the before- and –after-eruption bathymetric surveys and meanwhile less erosion occurs at the basal surface. We have expressed this meaning in the sentence “By collecting high-resolution, quantitative data on the morphology of modern volcanic edifices and surrounding lava flows from airborne/shuttle radar topography or time-lapse multi-beam bathymetry, we can estimate erupted volumes, at least for individual eruptive episodes (e.g. Holcomb et al., 1988; Walker, 1993; Goto and McPhie, 2004; Cocchi et al., 2016; Somoza et al., 2017; Allen et al., 2018; Chadwick et al., 2018; Grosse and Kervyn, 2018)” (Lines 41-46).
In fact, a pseudo three-dimensional data with only the upper and lower surfaces has been made, if the before- and –after-eruption bathymetric data are available. This pseudo three-dimensional data can use it to characterize the distribution of erupted material and calculate the volume. However, it cannot image the internal or basal structures of the erupted materials, and thus cannot establish how volcanoes grow and lava is emplaced over multiple eruptive episodes. Moreover, if large-scale erosion occurs at the basal surface of lava flow, the volume estimate only based on the before- and –after-eruption bathymetric surveys will be incorrect. Therefore, we still need ‘full 3D structure of these extrusive systems’ to ‘assess the accuracy of estimated volumes of total erupted materials, or test volcano growths and lava emplacement models’. Because we have expressed similar meaning as the reviewer suggested in the sentence mentioned above, we only made a minor revision to this sentence (added ‘total’; Line 49) to highlight the volume represents that of entire volcano’s history.

Comment 6: Line 51-58: The authors should mention these papers on seismic imaging of Axial Seamount (an active basaltic caldera with a summit depth of ~1400 m):

Response 6: We have read and cited Arnulf et al. (2014). However, Arnulf et al. (2018) focuses on a tomographic inversion of OBS data, and although 2D multi-channel seismic data are used, it is quite different from these we mention in Lines 51-58. We therefore choose not to cite Arnulf et al. (2018).

Comment 7: Line 68: Why would pressure have an effect on rheology? Observations from are recent eruption site at ~4000 m depth in the Mariana back-arc suggest that high hydrostatic pressure there had little or no effect on eruption dynamics and lava morphology, compared to submarine eruptions observed at shallower depths (for example Axial Seamount at ~1500 m):

Response 7: As addressed in a previous comment (Response 4), the greater hydrostatic pressure will also control the solubility of H₂O in melt at the point of eruption (e.g. >20 MPa). Increased H₂O content in melt may lower bulk lava viscosity enough to modulate effusion rate and propagation dynamics. Dissolved H₂O content in magma will depend on the continental setting, so we may not expect H₂O-controlled viscosity effects to be as observable in tectonic settings where H₂O-undersaturated (even dry) magmas are being erupted on the seafloor e.g. mid ocean ridges and back arc basins. We have modified this sentence to: “We suggest the high hydrostatic pressure of the deep-water
environment controlled melt H2O content and internal lava viscosity, effusion rate and, consequently, volcano and lava flow morphology and run-out distance” (Lines 73-75).

Comment 8: Line 71: This statement is inaccurate. Before-and-after multibeam bathymetry calculates depth changes from the shape of the pre-eruption seafloor to the post-eruption seafloor, so does NOT assume a smooth base. You should re-phrase this to something like: "Any eruption volume estimates that do not include pre-eruption topography may be grossly underestimated."
Response 8: We have revised this sentence; “Our results also show that erupted volumes calculated from airborne/shuttle radar topography or time-lapse multi-beam bathymetry data, without knowledge of detailed geometry of the basal surfaces of the lava flows and the volcanoes themselves, may be grossly underestimated, particularly if extrusion was explosive and/or involved erosion of the seabed” (Lines 76-79).

Comment 9: Line 331: I question whether any of the referenced papers here support the statement that "extensive lava flows in deep water... occur primarily because of high hydrostatic pressure...". In fact, I question that conclusion at all.
Response 9: We have revised this sentence. The sentence now reads; “Extensive lava flows have also been observed at other deep-water volcanoes (e.g. Chadwick et al., 2018; Embley and Rubin, 2018; Ikegami et al., 2018) where greater dissolved H2O contents in melt imply lower melt viscosity while the lavas were mobile.” (Lines 336-338). See also response to comment 7. A detailed geochemical analyses of samples would be required to test this hypothesis; unfortunately this is not within the scope of the present study.

Comment 10: Line 344: You need to explain why you interpret that there are lava tubes (vs. just channels).
Response 10: In this study, the lava tube is core channel or channelization. In the plan view, it looks like a channel with high-low sinuosity. Therefore, we are apt to call them as ‘lava flow channel’ in this study.

Comment 11: Line 385-386: These references do not support this statement (in the 2nd half of the sentence). The Caress et al. paper describes an eruption in which the largest volume was erupted after lateral intrusion (not transport on the surface), and the Carey et al paper describes an eruption for which the largest volume was erupted as a pumice raft that floated to the ocean surface.
Response 11: Here we simply consider the ratio between the volume of erupted materials contained within the main volcano edifice vs. volume of lava flows transported from the volcano edifice; we do not consider how the erupted materials are transported. To avoid confusion, we have deleted the latter part of this sentence.

Comment 12: Figure 1: If the contour lines are in ms what do they show? The twt to the seafloor? Or some sub-surface horizon? Why not just use depth contours?
Response 12: Figure 1b is the bathymetry of the study area and the contours are in ms
Our 3D seismic data are in a time- rather than depth domain, thus all maps and profiles are presented in time domain. A precise velocity model is needed to convert from time to depth.

Comment 13: Figure 5: "Lava" is misspelled in the figure 5b legend.
Response 13: We have revised Figure 5b.

Responses to Dr. Weiwei Ding,

Comment 1: Line 45: change ‘volume’ to ‘volumes’;
Response 1: We have changed ‘volume’ to ‘volumes’ (Line 43).

Comment 2: Line 65: only the volcanoes that presently stand out the seabed can be imaged by the bathymetry and remote sensing data. Therefore, please add ‘present’ before ‘deep-water volcanoes’;
Response 2: We have added the word ‘modern’ before ‘deep-water volcanoes’ (Line 70).

Comment 3: Line 120: add ‘edifice’ after volcano;
Response 3: We have added ‘edifice’ (Line 128).

Comment 4: Line 205: change ‘volcano’ to ‘volcano edifice’ or ‘volcano construction’. V1 is a volcano edifice and don’t include the lava flows;
Response 4: We added ‘edifice’ after ‘conical volcano’ (Line 212).

Comment 5: Line 236: Please label the age of V1 here; it is easier for the author to compare the ages of V1 and V2;
Response 5: We have added the age of V1 (‘~6.5 Ma’) (Line 244).

Comment 6: Line 259: Same to above; please label the age of latest Pliocene? 2.58 Ma?
Response 6: Yes, it is about the same age or slightly older than T0. It is labeled in Line 267.

Comment 7: Lines 671-683: please carefully check the figure captions and make it clearer. For example, Ds is marked in the Figure 1a. However, it is not interpreted in the figure caption;
Response 7: We have improved labelling in Figure 1 and updated its figure caption (Lines 687-700).

Comment 8: Line 690: revise ‘refection’ to ‘reflection’;
Response 8: We have revised the caption for Figure 2 (Line 750).
Comment 9: Please mention A-A’ and B-B’ are the locations of Figure 6 and 7 in the caption.
Response 9: We have modified the caption to show the locations of Figure 6 and Figure 7 (Line 726).
Extrusion dynamics of deep-water volcanoes revealed by 3D seismic data

Qiliang Sun1,2,3, Christopher A-L. Jackson4, Craig Magee4,5, Samuel J. Mitchell6 and Xinong Xie1,3

1Key Laboratory of Tectonics and Petroleum Resources, China University of Geosciences (Wuhan), Ministry of Education, Wuhan 430074, China;
2Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China;
3College of Marine Science and Technology, China University of Geosciences (Wuhan), Wuhan, Hubei 430074, PR China;
4Basins Research Group (BRG), Department of Earth Science & Engineering, Imperial College, London, SW7 2BP, UK
5School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK
6School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ UK

Abstract
Submarine volcanism accounts for c. 75% of the Earth's volcanic activity. Yet difficulties with imaging their exteriors and interiors mean the extrusion dynamics—and erupted volumes of deep-water volcanoes remain poorly understood. Here, we use high-resolution 3-D seismic reflection data to examine the external and internal geometry, and extrusion dynamics of two Late Miocene-Quaternary, deep-water (>2 km emplacement depth) volcanoes buried beneath 55–330 m of sedimentary strata in the South China Sea. The volcanoes have crater-like basal contacts,
which truncate underlying strata and suggest extrusion was initially explosive, and erupted lava flows that feed lobate lava fans. The lava flows are >9 km long and contain lava tubes that have rugged basal contacts defined by ~90±23 m high erosional ramps. We suggest the lava flows eroded down into and were emplaced at shallow sub-surface depths within wet, unconsolidated, near-seafloor sediments. Extrusion dynamics were likely controlled by low magma viscosities as a result of increased dissolved H$_2$O due to high hydrostatic pressure, and soft, near-seabed sediments, which collectively are characteristic of deep-water environments. Because the lava flows and volcanic edifices are imaged in 3D, we calculate that long run-out lava flows account for 50–97% of the total erupted volume based on the 3D seismic data, and the remaining. Our results indicate deep-water volcanic edifices may thus form with a surprisingly minor component (~3–50%) of being preserved in the extrusive system deposits main volcanic edifice, and that accurate estimates of erupted volumes therefore requires knowledge of the volcano and lava basal surface morphology of genetically related lava flows. We conclude that 3D seismic reflection data is a powerful tool for constraining the geometry, volumes, and extrusion dynamics of buried, ancient or active deep-water volcanoes and lava flowsic features; such data should be used to image and quantify unravelling extrusion dynamics of modern deep-water volcanoes.

Keywords
Volcano, deep-water, lava flow, seismic reflection, South China Sea

1. Introduction
The external morphology of volcanoes and their eruptive products reflect, and provide insights
into, the processes controlling magma extrusion and volcano construction (e.g. Walker, 1993; Planke et al., 2000; Grosse and Kervyn, 2018). By extracting high-resolution, quantitative data on the morphology of modern and, in some cases, still active volcanic edifices and surrounding lava flows from airborne/shuttle radar topography or time-lapse multi-beam bathymetry, we can estimate erupted volumes, at least for individual eruptive episodes and reconstruct volcano growth mechanisms histories (e.g. Holcomb et al., 1988; Walker, 1993; Goto and McPhie, 2004; Cocchi et al., 2016; Somoza et al., 2017; Allen et al., 2018; Chadwick et al., 2018; Grosse and Kervyn, 2018).

Whilst remote sensing data capture the external morphology of volcanoes and lava flows, both before, during, and after eruptions, they do not image their basal surface or internal architecture. Without access to the full 3D structure of these extrusive systems, it is difficult to assess the accuracy of estimated volumes of total erupted materials over multiple eruptive episodes, and to thus test or long-term test-volcano growths and lava emplacement models.

Several studies demonstrate that seismic reflection data can be used to map the external morphology and internal architecture of buried volcanoes in 3D (e.g. Planke et al., 2000; Calvès et al., 2011; Jackson, 2012; Magee et al., 2013; Arnulf et al., 2014; Reynolds et al., 2017; Arnulf et al., 2018). To-date, most seismic-based studies have focused on volcanoes formed in sub-aerial or shallow-marine environments (e.g. Planke et al., 2000; Jackson, 2012; Magee et al., 2013; Keen et al., 2014; Reynolds et al., 2018), although seismic reflection surveys have been used to image the shallowly buried flanks of deep-water volcanoes (e.g. Funck et al. 1996). The 3D geometry, internal structure, extrusion dynamics, and volume of deep-water volcanoes thus remain poorly documented. Without such information on the structure of deep-water volcanoes, we cannot assess how they grow or what potential hazards and they may pose (e.g. tsunamis induced by flank collapse, seabed
We use high-resolution 3D seismic reflection data to examine the external morphology and internal architecture of two, Late Miocene-Quaternary submarine volcanoes that were emplaced in deep-water (>2.0 km) on highly stretched continental crust in the northern South China Sea (Fig. 1). The volcanoes and associated lava flows are now buried by a ~55–330 m thick sedimentary succession (Fig. 1). Moreover, these two volcanoes are physically isolated and appear to have been fed by independent, sub-volcanic intrusive bodies (i.e. sills; see below); we can thus confidently characterize each individual volcano and its associated lava flows (Fig. 1b). By interpreting volcano and lava flow 3D structure, distribution, and size, we aim to determine extrusion dynamics, calculate accurate erupted volumes, and relate our findings to present modern deep-water volcanoes studied using bathymetry and remote sensing data. We show that the basal surfaces of these volcanic edifices and lava flows are rugged erosive, with 50–97% of the total erupted material hosted within the latter; i.e. the volcano edifices only comprise only a small portion of the total erupted magma volume. We suggest the high hydrostatic pressure of the deep-water environment controlled erupting lava rheology melt H2O content and internal lava viscosity, effusion rate and, consequently, volcano and lava flow morphology and run-out distance. Our results also show that erupted volumes calculated from airborne/shuttle radar topography or time-lapse multi-beam bathymetry data, without the knowledge of detailed geometry of the basal surfaces of the lava flows and the volcanoes themselves, which typically assume imaged volcanoes and lava flows have a smooth base, may be grossly underestimated, particularly if extrusion was explosive and/or involved erosion of the seabed.
2. Geological setting

The study area is located in the south of Pearl River Mouth Basin, on the northern, highly stretched continental crust of the South China Sea (Franke, 2013; Zhao et al., 2016) (Fig. 1a). The South China Sea was an area of subduction in the late Mesozoic, before the onset of continental rifting and subsequent seafloor spreading (~33-15 Myr) in the Cenozoic (e.g. Taylor and Hayes, 1983; Briais et al., 1993; Franke et al., 2014; Li et al., 2014; Sun et al., 2014a; Ding and Li, 2016). A lack of seaward-dipping reflections (SDRs), and low volumes of rift-related igneous rocks, suggest the northern part of the South China Sea is a magma-poor margin (e.g. Clift et al., 2001; Yan et al., 2006; Cameselle et al., 2017). Seafloor spreading ceased at ~15 Ma (Li et al., 2014), with post-rift thermal cooling driving subsidence of the northern South China Sea margin since the Early Miocene (Ru and Pigott, 1986; Yu, 1994). During this phase of thermal subsidence, the Dongsha Event (~5.3 Ma) occurred, which involved widespread uplift and normal faulting (e.g. Lüdmann et al., 2001). Several mechanisms may have triggered the Dongsha Event, including the collision between Taiwan and the East Asian continent (Lüdmann et al., 2001; Hall, 2002), isostatic rebound (Zhao et al., 2012), post-rift magmatism (Franke, 2013), lithospheric bending (Wu et al., 2014), and/or subduction of the South China Sea beneath the Philippine Sea plate (Xie et al., 2017).

Post-spreading magmatism in the South China Sea may reflect ascent of magma triggered by subduction of the South China Sea along the Manila trench and collision with Taiwan Island (Lüdmann et al., 2001), convective removal of continental lithosphere by warm asthenosphere (Lester et al., 2014), or magma ascent from a high-velocity layer in the lower crust fed by the Hainan mantle plume (Xia et al., 2016; Fan et al., 2017). Volcanoes generated by post-rift magmatism in the early Miocene and Quaternary were emplaced both onshore and offshore (e.g. Zou et al., 1995;
with the latter typically extruded onto the continental slope in relatively shallow water depths (<300 m; Yan et al., 2006; Zhao et al., 2016). Boreholes reveal these shallow-water volcanoes are composed of basalt, dacite, and rhyolitic tuff (Li and Liang, 1994; Yan et al., 2006; Zhao et al., 2016). In addition to the onshore and shallow-water volcanoes, several volcanoes were emplaced further basinwards on the continental slope in deeper water, close to the Continent-Ocean Boundary (COB; Fig. 1) (Clift et al., 2001; Wang et al., 2006; Cameselle et al., 2017). We examine two of these deep-water volcanoes, which are situated in an area currently characterized by water depths of 1850–2680 m and that are now buried by sedimentary strata up to 330 m thick (Fig. 1). Micropalaeontological data from the Pearl River Mouth Basin (Xu et al., 1995; Qin, 1996), and microfauna data from ODP borehole sites 1146 and 1148, indicate the Middle Miocene (16.5 Ma) to Recent, nanofossil-bearing clays encasing the volcanoes were deposited in a deep-water setting (1.0–3.0 km; Wang et al., 2000).

3. Data and Methods

We use a time-migrated 3D seismic reflection survey acquired in 2012 and covering an area of ~350 km² (Fig. 1b). The seismic data are zero-phase processed and displayed with SEG (Society of Exploration Geophysicists) normal polarity, whereby a downward increase in acoustic impedance (a function of rock velocity and density) corresponds to a positive reflection event (red on seismic profiles) (e.g. Brown, 2004). The inline and crossline spacings are 25 m, respectively. The seismic data have a dominant frequency in the interval of interest (i.e. 0–400 ms two-way time (twt)) of ~40 Hz.
Stacking velocities are not available for the survey and no wells intersect the studied Late Miocene-Quaternary, buried, deep-water volcanic features. We thus have no direct control on observations of the composition or velocities of the seismically imaged volcanic materials. Depth-conversion of volcano edifice and lava flow thickness measurements in milliseconds (twt) to meters is therefore based on velocity estimates, which introduces some uncertainty into our erupted volume calculations. To derive a reasonable velocity estimate, we use velocity data for submarine volcanoes obtained from boreholes (i.e. BY7-1 and U1431) (Li et al., 2015; Zhao et al., 2016) and OBS (Ocean Bottom Seismometer) profiles (Yan et al., 2001; Wang et al., 2006; Chiu, 2010; Wei et al., 2011) in the South China Sea. The boreholes, which are situated >300 km away from our study area, intersect buried basaltic volcanoes with p-wave velocities of ~4.5 km/s (BY7-1; Zhao et al., 2016) and ~3.0–5.0 km/s (IODP U1431; Li et al., 2015). OBS profiles reveal that submarine volcanoes located 140 km from the study area (Fig. 1a) typically have p-wave velocities of >3.0 km/s, and occasionally up to ~5.5 km/s (Yan et al., 2001; Wang et al., 2006; Chiu, 2010; Wei et al., 2011). These basaltic composition and p-wave velocities of ~3.0–5.5 km/s for volcanoes intersected by boreholes and studied using OBS data are consistent with p-wave velocity data for shallow-water, mafic volcanoes located offshore western India (~3.3–5.5 km/s; Calvès et al., 2011), and southern Australia in the Bight (~2.4–6.7 km/s, with an average velocity of 4.0 km/s; Magee et al. 2013) and Bass (~2.2–4.0 km/s with an average of 3.0 km/s; Reynolds et al. 2018) basins. Based on these velocity data, we assume the imaged volcanic material studied deposits here have mafic compositions and p-wave velocities of 4.0 (±1.0) km/s. It is important to note that using a range of estimated velocities does not affect our calculation of the relative amount of material contained within volcanic edifices versus the flanking lava flows.
We calculate a vertical resolution ($\lambda/4$) of \sim10 m for the sedimentary strata encasing overlying volcanic materials, given a dominant frequency of 40 Hz and assuming a seismic velocity of 2.2 km/s for the nanofossil-bearing clay (based on seismic refraction profiles OBS1993, Yan et al., 2001; OBS2001, Wang et al., 2006; OBS2006-3, Wei et al., 2011). The calculated vertical resolution for the volcanic materials is 19–31 m, based on a dominant frequency of 40 Hz and estimated seismic velocities of 4.0 (±1.0) km/s. The top and base of volcanic structures can be distinguished in seismic reflection data when their thickness is greater than the estimated vertical resolution of these data (i.e. 19–31 m) (Brown, 2004). Volcanic structures with thicknesses below the vertical resolution, but above the detection limit (i.e. $\lambda/8 = 10–16$ m), are imaged as tuned reflection packages whereby reflections from their top and base contacts interfere on their return to the surface and cannot be distinguished (Brown, 2004). The lava flows we image are typically >2 seismic reflection thick (>41±10 m), suggesting they too are thicker than the tuning thickness and are represented by discrete top and basal reflections (Tables 1-3).

We used a regional 2D seismic profile and interpreted four seismic surfaces tied to ODP Site 1146, which is located ~65 km west of the study area (Figs. 1a, 2), and two horizons locally mappable around the volcanoes: T0 (~2.58 Ma), T1 (~5.3 Ma), TRa (~6.5 Ma), and TRb (~8.2 Ma), TM (top of the volcanic material) and BM (base of the volcanic material). The youngest age of the volcanoes and associated lava flows are determined using the first seismic reflection that onlaps or overlies them (Fig. 3). After mapping TM and BM, we calculated the volumes of the volcanic features (Tables 1-4), with errors largely arising from uncertainties in the velocities (4.0±1.0 km/s) used to undertake the depth conversion (see above).

Root mean square (RMS) amplitude extractions and slices through a variance volume were used...
to constrain the geometry, scale, and distribution of the submarine volcanoes (Figs. 3-8). The RMS amplitude attribute computes the square root of the sum of squared amplitudes, divided by the number of samples within the specified window used; put simply, the RMS attribute measures the reflectivity of a given thickness of seismic data (Fig. 4a) (Brown, 2004). The variance attribute is free of interpreter bias because it is directly derived from the processed data (Fig. 5). Variance measures the variability in shape between seismic traces; this can be done in a specified window along a picked horizon or within a full 3D seismic volume. Variance is typically used to map structural and stratigraphic discontinuities related to, for example, faults and channels (Brown, 2004).

4. Seismic expression and interpretation of igneous features

4.1. Observations

We identify three main types of seismic structures and associated facies related to these buried deep-water volcanoes:volcanic deposits: (1) Seismic Facies 1 (SF1):—two (V1 and V2) conical-shaped features up to ~202 ms twt (~404±101 m) thick, which internally are weakly-to-moderately reflective or chaotic with distinguished reflections downlapping onto BM, capped by a positive polarity, high-amplitude reflection (TM) onlapped by overlying strata (Figs. 3a, 7); (2) Seismic Facies 2 (SF2):—ribbon-like, broadly strata-concordant, high-amplitude, positive polarity reflections, which emanate from the conical structures (SF1) and extend up to ~9.2 km downslope (Figs. 3a-b, 6-7); and (3) Seismic Facies 3 (SF3):—saucer-shaped, strata-discordant, high-amplitude reflections situated beneath SF1 and SF2 (Fig. 6).
4.2. Interpretations

The conical shape of SF1 and downlap of its internal reflections (where developed) onto BM, coupled with onlap of overlying reflections onto TM, suggest SF1 is an extrusive rather than intrusive feature. SF1 is similar in terms of its conical shape, highly reflective top, and internally chaotic reflections to mud volcanoes documented elsewhere in the northern South China Sea (Sun et al., 2012; Yan et al., 2017). It is therefore plausible SF1 could represent a mud volcano that fed long run-out mud flows (i.e. SF2). Alternatively, the highly reflective, ribbon-like geometry of SF2 is similar to that associated with shallow/free gas accumulations (Sun et al., 2012). We consider these two interpretations unlikely because: (i) the limited supply and high viscosity of mud means mud volcanoes are rarely associated with long run-out flows, although we note that one mud flow in the Indus Fan was ~5.0 km long (Calvès et al. 2009); and (ii) the top of SF2 is defined by a positive polarity reflection (downward increase in acoustic impedance), which is opposite to that typically associated with shallow/free gas accumulations (e.g. Judd and Hovland, 2007; Sun et al., 2012). Based on their geometric and geophysical characteristics, spatial relationships, and similarity to structures observed on other rifted continental margins, we interpret these features as volcanic edifices (SF1), genetically related lava flows (SF2), and saucer-shaped shallow sills (SF3) (e.g. Berndt et al., 2000; Planke et al., 2000; Thomson and Hutton, 2004; Calvès et al., 2011; Jackson, 2012; Magee et al., 2013; Keen et al., 2014; Reynolds et al., 2018). We now focus on the detailed external morphology and internal architecture of the two deep-water volcanoes that are shallowly buried (<330 m) and thus well-imaged.
4.3. Volcano edifice 1 (V1) and associated lava flows

V1 is a prominent, ~202 ms twt high (404±101 m) and ~3.0 km diameter conical volcanic edifice covering ~7.2 km², with a volume of ~0.94±0.24 km³ and an average flank dip of ~15.0°±3.6° (Figs. 3-4; Table 1). V1 is onlapped by overlying reflections, with the oldest onlapping reflection correlating to TRa (~6.5 Ma); this suggests V1 was emplaced in the latest Miocene-earliest Pliocene (>6.5 Ma) (Fig. 3a). V1 is underlain by a downward-tapering, >1.1 km deep, up to 2.0 km wide, sub-vertical zone of chaotic reflections (Fig. 3a). We attribute the poor imaging within this chaotic sub-vertical zone to: (1) the presence of sub-vertical feeder intrusions that disrupt background reflections and scatter energy (cf. Thomson, 2007); (2) increased fluid flow and hydrothermal alteration in fractured and deformed host rock adjacent to the magma plumbing system; and/or (3) scattering of energy travelling through the volcano, leading to ‘wash-out’ of the underlying data (i.e. a geophysical artefact; Magee et al. 2013). This reduction in imaging beneath the volcanoes partly obscures their basal surface, but where visible it is clear BM undulates and truncates underlying stratal reflections (Fig. 3b).

Volcano V1 is surrounded by an asymmetric apron of moderate-to-high amplitude reflections extending up to 1.5 km from the main edifice. The apron is up to ~115 ms twt thick (~230±58 m), and has a dip of <0.5° (Figs. 4a-b; Table 2). A package of moderate-to-very high-amplitude reflections extending a further c. 1.5 km down-dip of this apron contains very high-amplitude, channel-like geometries (marked with C1-C3 in (Fig. 4a), which terminate down-dip into or are flanked at prominent bends by, moderate-amplitude, fan-like geometries (marked with F1-F4 in Fig. 4a). We interpret these two features as lava flow channels and fans, respectively (Fig. 3-4). The lava flow channels are sinuous, <340 m wide, and usually bisect the lava fans (Figs 4a-b). Lava flow-
related features (i.e. apron, channels, and fans) emanating from V1 cover an area of ~14 km² (Tables 3-4), have an average thickness of ~33 ms twt (~66±17 m), and a volume of ~0.92±0.23 km³; this volume is nearly equal to that of V1 (~0.94±0.24 km³) and thus represents ~50% of the total erupted volume (~1.86±0.47 km³).

4.4. Volcano edifice 2 (V2) and associated lava flows

V2 covers ~0.44 km² and is elliptical in plan-view, with long and short axes of ~1.2 km and ~0.6 km, respectively (Figs. 5, 7). The volcano is ~100 ms twt high (~200±50 m), with an irregular base, has flank dips of ~27.8°±5.9°, and a volume of 0.03±0.01 km³ (Figs. 5, 7; Table 1). The top of V2 is of moderate amplitude and is irregular, with the oldest onlapping reflections correlating to Reflector T1 (~5.3 Ma) suggesting V2 is latest Miocene-earliest Pliocene (>5.3 Ma), but probably younger than V1 (>6.5 Ma) (Fig. 7). Reflections within V2 are chaotic and, similar to V1, V2 is underlain by a vertical zone of disturbance (Fig. 7). V2 lacks a lava apron, instead being directly flanked by relatively straight, up to ~9.2 km long lava flow channels extending beyond the seismic survey boundary on its south-eastern side (C4-C7) (Fig. 5a). Lava flow C6 is unusual in that underlying strata are truncated at the base of the flow, defining ‘ramps’ that are up to ~32.5 ms twt high (~65±16 m) and dip towards V2 at ~25.5°±5.8° (Fig. 8). Beyond the main ramp at the base of lava flow C6 (Fig. 5b), the lava flows thicken to ~130 ms twt (~260±65 m), where it is defined by stacked, high-amplitude reflections that have a lobate geometry in plan-view (F5) (Figs. 5, 7, 8c-d). At its distal end, the pinch out of F5 occurs where it abuts a basal ramp that is ~90±23 m tall and that dips ~9.3°±2.3° (Figs. 8c-d). F5 is capped by a younger lava fan (F6) (Figs. 8c-d). The V2-sourced lava flows (C4-C7 and F5) cover ~11.5 km²; ~4.20 km² of this comprises lava flow channels and ~7.32...
km² lava fan. Given the average thickness of the lava flow channels (~61±16 m) and fans (~109±27 m), we estimate the total volume of V2-sourced lava flows to be ~1.05±0.27 km³; this volume estimate is ~35 times greater than that of the main V2 edifice (0.03±0.01 km³), representing ~97% of the total erupted volume.

4.5. Shallow sills and associated lava flows

South of V2, we map two areally extensive, partly merged lava flows emanating from the upper tips of inclined sheets fringing saucer-shaped sills (i.e. S1 and S2) (Figs. 1b, 5-6). A narrow, vertical, seismically chaotic/blanking zone occurs directly below the saucer-shaped sills (Fig. 6). Several linear structures, rooted at the junction between sills, and feeding the overlying lava fan (F6), are also observed (Fig. 6). F6 covers an area of ~49 km², with a diameter of ~7.9 km and thickness of 55±14 m (Table 4). F6 is directly onlapped by surface T0 (~2.58 Ma), suggesting it was emplaced in the latest Pliocene (>2.58 Ma) (Fig. 6). Similar to other lava fans, F6 is characterized by a single, positive, high-amplitude seismic event (Fig. 6). F6 extends beyond the seismic coverage and is much bigger than other lava fans imaged in the study area (Figs. 5-6; Table 4).

5. Discussion

5.1. Water depths during volcano emplacement

The different burial depths and onlap relationships of the volcano edifices and lava flows studied here suggest three phases of volcanism: i.e. ~6.5 Ma for V1, ~5.3 Ma for V2, and ~2.58 Ma for S1/S2 (Figs. 2-3, 6-7). According to the relative sea-level change curve of the Pearl River Mouth Basin acquired from nannofossils (Xu et al., 1995; Qin, 1996) and the dating of volcanic phases, the
water depths during V1 and V2 emplacement were likely ~75 m and ~150 m shallower than the present depths of ~2.25 km and ~2.14 km, respectively. The water depth during the emplacement of F6, fed by S1/S2, was probably ~150 m greater than the present depth of ~2.32 km (Xu et al., 1995; Qin, 1996). To be conservative, we estimate that volcanism in the study area occurred in water depths of a little over 2.0 km.

5.2. Origin of post-spreading volcanism in the SCS

The volcanoes documented here (~6.3–2.58 Ma) have similar ages with those documented in Hainan Island (e.g. Tu et al., 1991; Shi et al., 2011) and southwestern SCS (e.g. Li et al., 2013) (Fig. 1a). However, our these volcanoes are substantially younger than those previously observed in the central SCS (~13.8–7.0 Ma; Expedition 349 Scientists, 2014; Li et al., 2015) and on the middle-lower slope of the northern SCS (~23.8-17.0 Ma; Yan et al., 2006; Zhao et al., 2016; Fan et al., 2017). We note such that the small-scale, buried, post-spreading volcanic features studied here have not been identified by lower-resolution techniques (e.g. gravity, magnetism, OBS and 2D seismic data). These young volcanic features may be widespread and diagnostic of post-spreading magmatism across the northern SCS (e.g. Briais et al., 1993; Yan et al., 2006).

Given that the volcanoes documented here were emplaced after SCS rifting (>32 Ma ago; e.g. Taylor and Hayes, 1983; Franke et al., 2014; Li et al., 2015) and spreading (>15 Ma ago; Li et al., 2014), it is clear they have a different origin to than the breakup-related volcanoes described elsewhere (e.g. Yan et al., 2006; Expedition 349 Scientists, 2014; Li et al., 2015; Zhao et al., 2016; Fan et al., 2017). The post-spreading age of volcanism may suggest that mantle melting (Clift et al., 2001) and convective removal of continental lithosphere by warm asthenosphere (Lester et al.,
2014), processes typically associated with rifting and breakup, were not responsible for the
generation of this phase of igneous activity. Magmatism gets younger south-eastwards, from ~23.8–
17.0 Ma on the proximal continental slope (Yan et al., 2006; Zhao et al., 2016; Fan et al., 2017) to
~6.30–2.58 Ma in the deeper water study area. This observation is seemingly in agreement with the
results of teleseismic imaging, which shows southeastward migration of the eastern branch of the
Hainan mantle plume (Xia et al., 2016). This suggests that plume melt (Xia et al., 2016; Fan et al.,
2017) may have supplied magma to the observed volcanoes. However, where the Hainan
mantle plume was located or even whether the Hainan mantle plume occurred or not are still
questioned controversial at present (e.g. Wheeler and White, 2000; He and Wen, 2011; Zhang and
Li, 2018). Another possibility for the origin of the magma feeding these volcanoes—is related to
the Dongsha Event, which may have triggered the upwelling of mantle materials
as well as transtensional faulting (Lüdmann et al., 1999). The Dongsha Event peaked at ~5.3 Ma
and 2.58 Ma (Lüdmann et al., 2001) and was broadly synchronous with the main period of eruptive
magmatism documented here. Faults generated during the Dongsha Event may have provided high-
permeability zones that promoted the vertical migration of magma that fed the eruptive centers.

5.3. Volcano construction

Both V1 and V2 are underlain by sub-vertical, pipe-like zones of chaotic reflections, which we
suggest demarcate the limits of their magma plumbing systems. The basal surfaces of V1 and V2
truncate underlying strata (Figs. 3a, 7). Apparent erosion of the sub-volcanic substrate may indicate
the initial eruptions were explosive, similar to eye-shaped hydrothermal vents documented by, for
example, Hansen et al. 2006; Magee et al. 2016). Alternatively, subsidence of the volcano load into
underlying, wet, unconsolidated sediments may have caused the strata to locally compact and thereby change the reflection configuration, making it appear that they are truncated.

Internal reflections that lie sub-parallel to the flanks of V1 and V2 suggest the volcanoes grew by increasing both edifice height and diameter by the accretion of volcanic material (Magee et al. 2013).

Flank dips of \(~15^\circ - 28^\circ\) likely indicate that the volcanic material building the edifices constitutes coherent lava flows and/or a dome structure, rather than a pyroclastic cone of tephra (Francis and Thorpe, 1974; Griffiths and Fink, 1992). Construction via emplacement of coherent lava flows is consistent with the presence of internal reflections in V1 and V2; i.e. boundaries between blocky lava flows would be irregular and scatter seismic energy, meaning they would not likely be imaged.

5.4. Lava flow extrusion dynamics

In addition to the formation of volcanic edifices, both V1 and V2, as well as S1 and S2, are associated with extensive lava flows. In particular, we show V1 and V2 are flanked either by an asymmetric lava apron, which is broader on their downslope (SE) side, or lava flow channels that flowed south-eastwards for up to \(>9\) km (Figs. 3a, 4a-b, 5a). At sub-aerial volcanoes (e.g. Walker, 1993; Cashman et al., 1999), high eruption rates and low magma viscosities are the dominant causes of long run-out lava flows. Extensive lava flows have also been observed at other deep-water volcanoes (e.g. Chadwick et al., 2018; Embley and Rubin, 2018; Ikegami et al., 2018) and they are possibly related to occur primarily because of the high hydrostatic pressure in deep-water environments where greater dissolved H\(_2\)O contents in melt imply lower melt viscosity while the lavas were mobile. These low viscosity, highly mobile – and thus, lavas had the could potentially have longer run-out distances to propagate further from source (e.g. Chadwick et al., 2018; Embley,
higher ambient pressure can **also** affect bulk lava rheology. (lower–viscosity, e.g., decreased vesicularity and crystal content.)* Lower gas fractions will also suppress magma decompression and ascent **prior to eruption**, and, thereby, effusion rates and extrusion dynamics. (Bridges, 1997; Gregg and Fornari, 1998). For example, upon eruption of a 1200°C–1100°C basalt (MORB composition) at a confining pressure of 20 MPa (i.e. a hydrostatic-equivalent water depth of 2 km), lava-the melt can contain up to 1.4 wt% H₂O at equilibrium volatile solubility (Newman and Lowenstern, 2002). Using the viscosity model of Giordano et al. (2008) and 1.4 wt% H₂O. The resulting lava viscosity of 9–38 Pa s is significantly lower than a dry (e.g., 0.1 wt% H₂O) sub-aerial basalt, having a viscosity range of 41–248 Pa s (calculated using Giordano et al., 2008). Higher H₂O content in lavas erupted in deep-water, compared to those extruded in sub-aerial settings, will mean: (1) there are fewer bubbles from suppressed degassing or brittle fragmentation to hinder flow (Gregg and Fornari, 1998); (2) crystallization may be inhibited, reducing the effect of crystal interactions on viscosity; and (3) the glass transition temperature is suppressed (Giordano et al. 2008), allowing lavas to flow further as the interiors cool.

From our seismic reflection data it is also clear that channelization in lava tubes, in addition to the water content effects described above, also facilitated long distance lava transport. We suggest these tubes formed by rapid cooling and hardening thickening of a surficial crust that insulated and focused lava flow through a core channel (e.g. Cashman et al., 1999). Based on the long run-out lava distances, we consider our initial assumption that the imaged volcanic features have a mafic composition **remains valid**. Overall, whilst we do not know the composition of the lavas imaged in our seismic reflection data, pressure-related changes in lava rheology and channelization...
of any lava type (i.e. mafic to silicic) will allow it to flow hotter for longer. Given the downslope topographic controls during eruption, a combination of rheology changes and channelization allowed lavas to flow for >9 km from associated volcanic edifices.

The overall geometry and internal architecture of the imaged lava flows indicate substrate rheology was a key also controlled on emplacement dynamics. Our 3D seismic reflection data show that relatively long run-out lava flows (>9 km) erupted from deep-water volcanoes have a rugged basal surface that is locally defined by erosional basal 'ramps'. Truncation of underlying strata suggests the lavas were able to erode down into the seabed, perhaps because the pre-eruption substrate was cold, wet, and unconsolidated. We suggest erosion of the lava substrate was promoted by: (1) the dense (bubble-poor) lava sinking down into or ‘dredging’ the soft sediments (Duffield et al., 1986; Ikegami et al. 2018); (2) thermal erosion (Griffiths, 2000); and/or (3) more “turbulent” flow dynamics of channelized lava, consistent with the inferred low viscosities (<10 Pa s).

Lava flows eventually ceased in distal areas due to gradual cooling and crystallization (Cashman et al., 1999). We suggest that, in the case of the straight lava flows (C5 and C6), lava transported within the axial tube temporarily accumulated at the transient end of the flow, possibly forming a lava pool (Greeley, 1987). Lava entering the tube from the ongoing or new volcanic eruption caused an increase in pressure, with the cooled and crystallized material at the flow toe forming an impermeable, albeit, transient barrier. High hydrostatic pressure (>26 MPa at C5 and C6) and thick surficial crusts inhibited the release of pressure build up by significant lava inflation (Gregg and Fornari, 1998). Eventually, pressure build-up was sufficient to rupture this frontal barrier, leading to emplacement of a downdip fan downdip of the front most base lava ramp barrier (F5; Fig. 5a, 7-8) (Griffiths, 2000). However, in the case of fans (e.g. F1-4) fed by sinuous channels (Figs. 4a-b),
we suggest these were emplaced in a process similar to that documented by Miles and Cartwright (2010), with lobate lava flows fed and bisected by a ‘lava tube’ through magma inflation and increases in eruption rate. At the end of sinuous lava flow channels (e.g. C1), the main channel bifurcated to form a lobate fan (F3, Figs. 4a-b), which was also probably caused by flow branching triggered by magma cooling (Griffiths, 2000).

5.5. Volume balance of volcano edifice and lava flow

Inaccurate constraints on total erupted volumes compromises our understanding of volcano construction, lava propagation, eruption rates, eruption durations, magma storage conditions, melting processes, and risk assessment of volcanism in deep-water settings (Carey et al., 2018). High-resolution 3D seismic reflection data allow us to calculate the volumes of material contained within volcano edifices and in flanking lava flows, if they are thick enough to be imaged. In this study, we show that most (i.e. 50-97%) of the erupted material was transported away from the imaged edifices, an observation comparable to that made for deep-ocean volcanic eruptions (Caress et al., 2012; Carey et al., 2018). A critical outcome of our work is that flanking lava flows, and to a lesser extent the volcanic edifices, have rugged and discordant bases (Fig. 7); accurately calculating the volume of deep-water volcanoes and lava flows therefore requires an understanding of their pre-eruption basal morphology. Erupted volume estimates based solely on remote sensing of the post-eruption seafloor may be thus incorrect (e.g. Robinson and Eakins, 2006).

Although we show the accuracy of total erupted volume estimates can be improved by constraining basal volcano and lava morphologies, seismic images capturing the geological record of deep-water volcanoes cannot determine how much, if any, clastic volcanic material was transported away from
the eruption site as pumice rafts (e.g., Carey et al. 2018) or through ocean current clast suspension and remobilization subsequent transport (e.g., Jutzeler et al., 2014; Carey et al. 2018). Nevertheless, 3D seismic imaging can significantly improve quantitative volume estimates of recent and ancient volcanic features (e.g., volcanic edifices and lava flows), either currently outcropping on the seafloor or now buried by sedimentary successions.

6. Conclusions

High-resolution 3-D seismic data from the South China Sea allow us to image and map the internal structure, calculate the volume of erupted material, and to better understand the extrusion dynamics of buried deep-water volcanoes; such insights cannot readily be gained from analysis of remote sensing data (e.g., airborne/shuttle radar topography). Volcanism occurred ~6.3–2.58 Ma, after seafloor spreading had ceased in the area, and may be related to the Dongsha Event and/or a hypothesized Hainan mantle plume. High hydrostatic pressure, an inclined seabed (~1°), and low-strength, very fine-grained, near-seabed sediments, combined with formation of lava tubes and extrusion of low-viscosity magmas, are likely responsible for observed long-distance lava run-outs (>9 km) in this deep-water environment. We show the imaged volcanic edifices and associated lava flows have rugged, erosional bases, meaning traditional remote sensing-based volume calculations of deep-water volcanic features, which typically assume smooth bases, are underestimated. Because seismic reflection data images the base of deep-water volcanoes and lava flows, we calculate a large amount (as high as ~97%) of the erupted materials were transported away from the volcano edifices as lava flows, suggesting that volume of deep-water volcanic edifices may not faithfully archive eruption size or magma production. Considering deep-water conditions (e.g., high
hydrostatic pressure and unconsolidated sediments) in the study area are common elsewhere, the conclusions derived from this study can likely be used in other deep-water sedimentary basins and perhaps sedimentary some mid-ocean ridges. Our study highlights that 3D seismic reflection data can play a critical role in understanding volcano morphology in 3D and accurately estimating the volumes of erupted materials.

Author Contribution

Qiliang Sun, Christopher A-L. Jackson, Craig Magee and Xinong Xie have contributed to the conceptualization, data analysis, writing and revising the original draft. Samuel J. Mitchell have contributed to the conceptualization and revising the original draft.

Competing interests

The authors declare that they have no conflict of interest.

Acknowledgment

This work was supported by the National Scientific Foundation of China (Grant Nos. 91528301, 41676051 and 41372112), the Programme of Introducing Talents of Discipline to Universities (No. B14031) and the Fundamental Research Funds for the Central Universities-the China University of Geosciences (Wuhan) (No. CUG160604). We thank the China National Offshore Oil Company (CNOOC) for permission to release the data; reflection seismic data may be requested from CNOOC (http://www.cnooc.com.cn/en/). Dieter Franke, Gerome Calvès and Nick Schofield are thanked for their invaluable comments and suggestions on a previous version of this manuscript. We thank
Weiwei Ding, Alexander Peace, and William Chadwick for their constructive comments on this version of the manuscript, and Antonella Longo for editorial handling. Rebecca Bell is thanked for generously providing office space during the visit of Qiliang Sun to Imperial College.

References

Franke, D., Savva,D., Pubellier, M., Steuer, S., Mouly, B., Auxietre, J., Meresse, F., and Chamot-Rooke, N.: The
final rifting evolution in the South China Sea, Mar. Petrol. Geol., v. 58, p. 704-720,

Li, P., and Liang, H.: Cenozoic magmatism in the Pearl River Mouth Basin and its relationship to the basin evolution and petroleum accumulation, Guangdong Geology, 9, 23-34, 1994.

Sibuet, J.-C., Yeh, Y.-C., and Lee, C.-S.: Geodynamics of the South China Sea, Tectonophysics, 692, 98-119,

Thomson, K., and Hutton, D.: Geometry and growth of sill complexes: Insights using 3-Dseismic from the North

Zhao, S.J., Wu, S.G., Shi, H.S., Dong, D.D., Chen, D.X., and Wang, Y.: Structures and dynamic mechanism related to the Dongsha Event at the northern margin of the South China Sea, Progress in Geophysics, 27, 1008-1019,
Tables

Table 1: Dimensions of volcano edifices. *diameter and dip are average values.

<table>
<thead>
<tr>
<th>Volcano edifice</th>
<th>Diameter (m)</th>
<th>Height (m)</th>
<th>Area (km²)</th>
<th>Volume (km³)</th>
<th>Dip (º)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volcano edifice 1 (V1)</td>
<td>3018</td>
<td>404±101</td>
<td>7.15</td>
<td>0.940±0.235</td>
<td>15.0±3.6</td>
</tr>
<tr>
<td>Volcano edifice 1 (V2)</td>
<td>714</td>
<td>200±50</td>
<td>0.44</td>
<td>0.030±0.008</td>
<td>27.8±5.9</td>
</tr>
</tbody>
</table>

Table 2: Dimensions of lava flow apron. *Diameter is calculated from the area as a circle. V =

<table>
<thead>
<tr>
<th>Lava flow apron</th>
<th>Diameter (m)</th>
<th>Area (km²)</th>
<th>Thickness (m)</th>
<th>Volume (km³)</th>
<th>Feeder</th>
<th>Shape</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lava flow apron</td>
<td>3182*</td>
<td>7.95</td>
<td>80±20</td>
<td>0.637±0.159</td>
<td>V1</td>
<td>Ring</td>
</tr>
</tbody>
</table>

Table 3: Dimensions of lava flow channels (C). Please note that all the lengths of lava flow channels are measured along their axes. *Maximum lengths (including the inferred part of lava flow channels); bMinimum length (C3 extends beyond the 3D survey); cThicknesses cannot be measured, because of lava flow channels (C1 and C2) are only identified on the plan-view map (RMS and variance slice map); dArea and volume don’t include the inferred part of C5.

<table>
<thead>
<tr>
<th>Lava flow channels</th>
<th>Length (km)</th>
<th>Width (m)</th>
<th>Thickness (m)</th>
<th>Area (km²)</th>
<th>Volume (km³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volcano edifices 1-related</td>
<td>C1</td>
<td>2.86*</td>
<td>55-273</td>
<td>unknown c</td>
<td>0.31 a</td>
</tr>
<tr>
<td></td>
<td>C2</td>
<td>3.66*</td>
<td>94-340</td>
<td>unknown c</td>
<td>0.56 a</td>
</tr>
<tr>
<td></td>
<td>C3</td>
<td>4.60 b</td>
<td>163-340</td>
<td>52±13</td>
<td>0.84 a</td>
</tr>
<tr>
<td>Volcano edifices 2-related</td>
<td>C4</td>
<td>2.80</td>
<td>172-229</td>
<td>61±15</td>
<td>0.54</td>
</tr>
<tr>
<td></td>
<td>C5</td>
<td>9.15 a</td>
<td>185-267</td>
<td>64±16</td>
<td>1.52 d</td>
</tr>
<tr>
<td></td>
<td>C6</td>
<td>6.39</td>
<td>203-285</td>
<td>60±15</td>
<td>1.47</td>
</tr>
<tr>
<td></td>
<td>C7</td>
<td>1.93</td>
<td>236-427</td>
<td>57±14</td>
<td>0.67</td>
</tr>
</tbody>
</table>

Table 4: Dimensions of lava flow fans. *Diameter is calculated from the area as a circle.
Minimum areas and volumes, because of limited data coverage. C = Lava flow channel; S = Sill.

<table>
<thead>
<tr>
<th>Lava flow fans</th>
<th>Diameter (m)</th>
<th>Area (km²)</th>
<th>Thickness (m)</th>
<th>Volume (km³)</th>
<th>Feeder</th>
<th>Shape</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lava flow fan 1 (F1)</td>
<td>944ᵃ</td>
<td>0.70</td>
<td>41±10</td>
<td>0.028±0.007</td>
<td>C1</td>
<td>Lobate</td>
</tr>
<tr>
<td>Lava flow fan 2 (F2)</td>
<td>1050ᵃ</td>
<td>0.87</td>
<td>41±10</td>
<td>0.035±0.009</td>
<td>C1</td>
<td>Lobate</td>
</tr>
<tr>
<td>Lava flow fan 3 (F3)</td>
<td>997ᵃ</td>
<td>0.78ᵇ</td>
<td>41±10</td>
<td>0.031±0.008ᵇ</td>
<td>C1</td>
<td>Lobate</td>
</tr>
<tr>
<td>Lava flow fan 4 (F4)</td>
<td>2171ᵃ</td>
<td>3.70ᵇ</td>
<td>41±10</td>
<td>0.148±0.037ᵇ</td>
<td>C2</td>
<td>Lobate</td>
</tr>
<tr>
<td>Lava flow fan 5 (F5)</td>
<td>3054ᵃ</td>
<td>7.32</td>
<td>109±27</td>
<td>0.791±0.198</td>
<td>C5/C6</td>
<td>Lobate</td>
</tr>
<tr>
<td>Lava flow fan 6 (F6)</td>
<td>7906ᵃ</td>
<td>49.07ᵇ</td>
<td>55±14</td>
<td>2.650±0.662ᵇ</td>
<td>S1/S2</td>
<td>Lobate</td>
</tr>
</tbody>
</table>
Figures

Figure 1: Geological setting of the study area. (a) **Bottom left inset**: regional setting of the South China Sea that is bounded by the Red River Strike-slip faults (RRFs) to the west and by the subduction trench (Manila Trench) to the east. Hainan Island (HN; Tu et al., 1991; Shi et al., 2011) and southwestern South China Sea (SWSCS; Li et al., 2013) in which the magmatism has the similar ages with the studied volcanoes are labelled in blue. **In Figure (a)**: The study area (marked with red square) is located to the south of Dongsha Islands (labeled Ds). The green dashed line outlines the boundary of Pearl River Mouth Basin. Locations of boreholes (Red dots; Exploration well BY7-1 and ODP sites 1146 and 1148), crustal structure profiles (Purple solid lines; OBS1993 (Yan et al., 2001), OBS2001 (Wang et al., 2006), OBS2006-3 (Wei et al., 2011), and OBS2008 (Chiu, 2010)).
and mud volcanoes (Mvs) (Light blue dots; Mvs; Sun et al., 2012; Yan et al., 2017) are labeled. Ds = Dongsha Islands; COB = Continent ocean boundary (Adopted from Sibuet et al., 2016). The base map is modified from Yang et al. (2015); (b) Seabed morphologies of the study area. Distributions of volcano edifices (red), sills (blue), lava flows (green) and locations of Figures 4a and 5a are labeled. The contour lines are in 100 ms (two way travel time).
Figure 2: (a) Synthetic seismogram of ODP Site 1146 (Modified from Sun et al., 2017); D/T = depth/time; DT = interval transit time; RHOB = lithologic density; RC = reflection coefficient; (b) Seismic profile crossing through ODP Site 1146. The four seismic surfaces (T0 (~2.58 Ma), T1 (~5.3 Ma), TRa (~6.5 Ma) and TRb (~8.2 Ma)) are labeled. D/T = depth/time; DT = interval transit time; RHOB = lithologic density; RC = reflection coefficient; (c) Lithology and depositional environment (DE) of ODP Site 1146 (Modified from Wang et al. (2000) and Clift et al. (2001)).
Figure 3: Seismic characteristics of deep-water volcano (V1) and associated lava flow channels/fans.

(a) Seismic profile crosscuts the volcano edifice and associated lava flow; (b) Seismic profile crosscuts the lava flow (enhanced seismic anomalies). TM = top of volcano/lava flow; BM = base of volcano/lava flow. See locations of seismic profiles in Figure 4.
Figure 4: (a) and (b) RMS amplitude map (± 30 ms along the surface BM) and its interpretations. Volcanic apron, lava flow channels/fans are labeled. See map location in Figure 1b. Red lines in (a) show locations of seismic profiles in Figure 3. See location in Figure 1b.
Figure 5: (a) Variance slice (extracted from the surface BM) and (b) its interpretations. Lava flows are clearly identified by their texture and marked in (b). C = lava flow channel; S = shallow sill; F = lava fan. Red lines A-A' and B-B' in (a) are seismic profiles shown in Figures 6 and 7. (a) and (b) Variance slice (extracted from the surface BM) and its interpretations. Lava flows are clearly identified and marked. C = lava flow channel; S = shallow sill; F = lava fan.
Figure 6: (a) Seismic profile and (b) its interpretation show magma pluming system from deep-seated sill, shallow sill (S1) and lava fan (F6). See location of seismic profile A-A’ in Figure 5a.
Figure 7: (a) Seismic profile crosscuts V2 and along lava flow channel (C6) and Lava fans (F5 and F6). The V2 has a sharp boundary to the upslope. Lava fan 6 (F6) is directly overlying the Lava fan 5 (F5). BM = base of volcano/lava flow; See location of seismic profile B-B’ in Figure 5a. See location in Figure 5a.
Figure 8: (a) and (b) Enlargement of the end of lava flow channel (ramp structure) and its line drawings; (c) and (d) Enlargement and its line drawings of the lava fans (F5 and F6). BM = base of volcano/lava flow. See locations in Figure 7.