

1 Determining the Plio-Quaternary uplift of the southern French massif-Central; a new insights for
2 intraplate orogen dynamics.

3

4 Oswald Malcles¹, Philippe Vernant¹, Jean Chéry¹, Pierre Camps¹, Gaël Cazes^{2,3}, Jean-François
5 Ritz¹, David Fink³.

6 ¹Geosciences Montpellier, CNRS-University of Montpellier, Montpellier, France

7 ²SEES, University of Wollongong, Wollongong, Australia

8 ³Australian Nuclear Science and Technology Organisation, Lucas Heights, Australia

9

10 *Correspondence to:* Oswald Malcles (oswald.malcles@umontpellier.fr)

11 **Abstract.**

12 The evolution of intra-plate orogens is still poorly understood. Yet, this is of major importance for
13 understanding the Earth and plate dynamics, as well as the link between surface and deep geodynamic
14 processes. The French Massif Central is an intraplate orogen with a mean elevation of 1000 m, with
15 the highest peak elevations ranging from 1500 m to 1885 m. However, active deformation of the
16 region is still debated due to scarce evidence either from geomorphological or geodetic and
17 seismologic data. We focus our study on the southern part of the Massif-Central, known as the
18 Cévennes and Grands Causses, which is a key area to study the relationship between the recent
19 geological deformation and landscape evolution. This can be done through the study of numerous
20 karst systems with trapped sediments combined with the analysis of a high-resolution DEM.

21 Using the ability of the karst to durably record morphological evolution, we first quantify the incision
22 rates. We then investigate tilting of geomorphological benchmarks by means of a high-resolution
23 DEM. We finally use the newly quantified incision rates to constrain numerical models and compare
24 the results with the geomorphometric study.

25 We show that absolute burial age (¹⁰Be/²⁶Al on quartz cobbles) and the paleomagnetic analysis of
26 karstic clay deposits for multiple cave system over a large elevation range correlate consistently. This
27 correlation indicates a regional incision rate of 83^{+17}_{-5} m/Ma during the last ca 4 Myrs (Pliocene-
28 Quaternary). Moreover, we point out through the analysis of 55 morphological benchmarks that the
29 studied region has undergone a regional southward tilting. This tilting is expected as being due to a
30 differential vertical motion between the north and southern part of the studied area.

31 Numerical models show that erosion-induced isostatic rebound can explain up to two-thirds of the
32 regional uplift deduced from the geochronological results and are consistent with the southward tilting
33 derived from morphological analysis. We presume that the remaining unexplained uplift is related to
34 dynamic topography or thermal isostasy due to the Massif Central Pliocene-Quaternary magmatism.

35 Integrating both geochronology and morphometrical results into lithospheric-scale numerical models
36 allows a better understanding of this intraplate-orogen evolution and dynamic. We assume that the
37 main conclusions are true to the general case of intraplate deformation. That is to say, once the
38 topography has been generated by a triggering process, rock-uplift is then enhanced by erosion and
39 isostatic adjustment leading to a significant accumulation of mainly vertical deformation.

40 **1 Introduction and Tectonic Setting**

41 **1.1 Introduction**

42 Since the past few decades, plate-boundary dynamic is, to a first order, well understood. This is not
43 the case for intraplate regions, where short-term (10^3 - 10^5 yr) regional strain rates are low and the
44 responsible dynamical processes are still in debate (e.g. Calais et al., 2010; Vernant et al., 2013; Calais
45 et al., 2016; Tarayoun et al., 2017). Intraplate deformations evidenced by seismic activity is
46 sometimes explained by a transient phenomenon (e.g., glacial isostatic rebound, hydrological
47 loading). However, to explain the persistence through time of intraplate deformation, and explain the
48 high finite deformation we can observe in the topography in many parts of the world as for instance
49 the Ural mountains in Russia, the Blue Mountains in Australia or the French Massif Central, one
50 needs to invoke continuous processes at the geological time-scale.

51 Located in the southwestern Eurasian plate (Fig. 1), the French Massif Central is an ideal case to
52 study this processes because a high resolution DEM encompasses the whole region and widespread
53 karstic areas are present along its southern and western edges, allowing the possibility to quantify
54 landscape evolution rates thanks to TCN burial ages. The region is characterized by a mean elevation
55 of 1000 m with summits higher than 1500 m. Such topography is likely to be the result of recent,
56 active uplift and as the Cevennes mountains experiences an exceptionally high mean annual rainfall
57 (the highest peak, Mount Aigoual, records the highest mean annual rainfall in France of 4015 mm) it
58 raises the question of a possible link between erosion and uplift as previously proposed for the Alps
59 (Champagnac et al., 2007; Vernant et al., 2013; Nocquet et al., 2016). This region currently undergoes
60 a small but discernible deformation, but no significant quantification can be deduced due to the
61 scarcity in seismicity (Manchuel et al., 2018). In addition, GPS velocities are below the uncertainty
62 threshold of GPS analyses (Nocquet et Calais, 2003; Nguyen et al., 2016).

63 In this study we focus on the Cevennes Mountains and the Grands Causses (Fig.1) area, where cave
64 systems with trapped sediments are known over a widespread altitude range. South and West of the
65 crystalline Cevennes mountains, prominent limestone plateaus, named Grands Causses, rise to 1000m
66 and are dissected by few canyons that are several hundreds of meter deep. The initiation of incision,
67 its duration and the geomorphic processes leading to the present-day landscape remain poorly
68 constrained. A better understanding of the processes responsible for this singular landscape would
69 bring valuable information on intraplate dynamics, especially where large relief exists.

70

71 **1.2. Geological background**

72 The oldest rock units in the study area were formed during the Variscan orogeny (late Palaeozoic,
73 ~300 Ma; Brichau et al., 2007) and constitute the crystalline basement of the Cevennes. Between 200
74 and 40 Ma (Mesozoic and middle Cenozoic), the region was mainly covered by the sea ensuring the
75 development of an important detrital and carbonate sedimentary cover, which can reach several km of
76 thickness in some locations (Sanchis and Séranne, 2000; Barbarand et al., 2001). During the Mesozoic

77 era, an episode of regional uplift and subsequent erosion and alteration (called the Durancian event) is
78 proposed for the origin of the flat, highly elevated surface that persists today across the landscape
79 (Bruxelles, 2001; Husson, 2014).

80 The area is affected by the major NE-SW trending Cevennes fault system, a lithospheric-scale fault,
81 inherited from the Variscan orogen. This fault system was reactivated several times (e.g. as a strike-
82 slip fault during the Pyrenean orogen or as a normal fault during the Oligocene extension). During the
83 Pyrenean orogeny, between 85 to 25 Ma (Tricart, 1984; Sibuet et al., 2004), several faults and folds
84 systems affected the geological formations south of the Cevennes fault, while very few deformations
85 occurred farther north within the Cévennes and Grand Causses areas (Arthaud and Laurent, 1995).
86 Finally, the Oligocene extension (~30 Ma) led to the counterclockwise rotation of the Corso-Sardinian
87 block and the opening of the Gulf of Lion, re-activating some of the older compressive structures as
88 normal faults. The main drainage divide between the Atlantic Ocean and the Mediterranean Sea is
89 located in our study area and is inherited from this extensional episode (Séranne et al., 1995; Sanchis
90 et al., 2000).

91 Afterwards during the Pliocene-Quaternary period, an intense volcanic activity has affected the
92 region, from the Massif Central to the Mediterranean shoreline. This activity is characterized by
93 several volcanic events that are well constrained in age (Dautria et al., 2010). The last eruption
94 occurred in the Chaîne des Puys during the Holocene (i.e. the past 10 kyrs (Nehlig et al., 2003;
95 Miallier et al., 2004). Some authors proposed that this activity is related to a hotspot underneath the
96 Massif Central leading to an observed positive heat-flow anomaly and a possible regional Pliocene-
97 Quaternary uplift (Granet et al., 1995; Baruol and Granet, 2002). Geological mapping at different
98 scale can be found at: <http://infoterre.brgm.fr/>.

99 Despite this well described overall geological evolution the onset of active incision that has shaped
100 the deep valleys and canyons (e. g. Tarn or Vis river, Fig 1) across the plateaus, and the mechanisms
101 that controlled this incision are still debated. One hypothesis proposes that canyon formation was
102 driven by the Messinian salinity crisis with a drop of more than 1000 m in Mediterranean Sea level
103 (Moccachin, 2007). This, however, would then not explain the fact that the Atlantic watersheds show
104 similar incision. Other studies have suggested that the incision is controlled by the collapse of cave
105 galleries that lead to fast canyon formation mostly during the late Quaternary, thus placing the onset
106 of canyon formation only a few hundreds of thousands of years ago (Corbel, 1954). More recently, it
107 has been proposed (based on relative dating techniques and sedimentary evidence) that incision
108 during the Quaternary was negligible (i.e. less than a few tens of meters), and that the regional
109 morphological structures seen today occurred around 10 Ma (Séranne et al., 2002; Camus, 2003).

110

111 1.3 Materials and methods

112 In this paper, we provide new quantitative constraints on both the timing of incision and the rate of
113 river down-cutting in the central part of the Cévennes and of the Grands Causses that has resulted in
114 the large relief between plateau and channel bed.

115 We employ two methods to infer allochthonous karstic infilling age and associated river down-

116 cutting. First, we use quartz cobbles to measure concentration of cosmogenic ^{10}Be and ^{26}Al isotopes.
117 The $^{10}\text{Be}/^{26}\text{Al}$ ratio provide burial ages of these karstic infilling. Second, paleomagnetic analyses of
118 clay deposits to obtain paleo-polarities. In both cases, vertical profiles among tiered caves systems
119 and horizontal galleries could provide local incision rate information. By analyzing a high-resolution
120 DEM (5m), we show that the region is affected by a southeastward regional tilting. Our results allow
121 to quantify the role of the Pliocene-Quaternary incision on the Cévennes landscape evolution and to
122 constrain numerical modeling from which we derive the regional uplift rates and a tilt of
123 geomorphological markers.

124 If incision is initiated by uplift centered on the North of the area where elevations are maximum, it
125 will lead to tilting of fossilized topographic markers as strath terraces. Our research approach provides
126 an opportunity to discriminate between three possible explanations for the current terrain morphology.
127 The first is based on old uplift and old incision (Fig. 2A). In this case, apparent incision rates would
128 be very low. For instance, if incision commenced 10 Ma (Serrane et al., 2002), we would find surface
129 tilting but cosmogenic burial dating with $^{10}\text{Be}/^{26}\text{Al}$ which cannot discern ages older than $\sim 5\text{Ma}$ due to
130 excessive decay of ^{26}Al , would not be possible. The second possibility (Fig. 2B) is that the uplift is
131 old, and incision consequently follows but with a time lag. Here the incision rate would be rather fast,
132 but no tilting is expected for the river-related markers because no differential uplift occurs after their
133 formation. Finally, the third possibility (Fig 2C) is that uplift and incision are concurrent and recent
134 (i.e. within the time scale of cosmogenic burial dating) and thus we would expect burial ages < 5
135 Myrs relatively high incision rates, and tilting of morphological markers. These different proposals for
136 the temporal evolution of the region will then be compared using numerical modeling.

137 **2. Determining the incision rates in the Cévennes and the Grand Causses Region**

138 **2.1. Principles and methods**

139 **2.1.1. Karst model**

140 No evidence of important aggradation events has been reported in the literature for the studied area.
141 Therefore, we base our analysis on a per descensum infill model of the karst networks whereby
142 sediments are transported and then deposited within cave galleries close to base level. When cave-
143 systems and entry passages are near the contemporaneous river channel elevation (including higher
144 levels during floods), the deposition into caves of sediments, from clay to cobbles occurs, especially
145 during flood events. Subsequent river incision into bedrock creates a relative base level drop (due to
146 uplift or sea-level variations). The galleries associated with the former base-level are now elevated
147 above the new river course and become disconnected from further deposition. Hence fossilised and
148 trapped sediments throughout the cave network represent the cumulative result of incision. In this
149 commonly used model (Granger et al., 1997; Audra et al., 2001; Stock et al., 2005; Harmand et al.,
150 2017), the higher the gallery elevation (relative to the present-day base level) the older the deposits in
151 that gallery. As a result, the objective here is to quantify a relative lowering of the base level in the

152 karst systems, with the sediments closest to the base level being the youngest deposits, and note that
153 we do not date the cave network creation which may very well pre-date river sediment deposition.
154 Within individual canyons, successions of gallery networks across the full elevation range from
155 plateau top to modern river channel, were not always present and often sampling could not be
156 conducted in a single vertical transect. Thus, we make the assumption of lateral altitudinal continuity
157 i.e. that within a watershed, which may contain a number of canyons, the sediments found in galleries
158 at the same elevation were deposited at the same time. Inside one gallery, we use the classical
159 principle of stratigraphy sequence (i.e. the older deposits are below the younger ones). More
160 informations and detailed relationships concerning the karstic development and geometric relationship
161 between karstic network and morphological markers could be find in Camus (2003). In any cases, our
162 aim is not to date the galleries formation, neither to explain the formation processes (e.g. past
163 preferential alteration layer); but to use the time information brought by the sediment that have been
164 trapped into the cave system. Therefore, we apply the common used model (example in Harmand et
165 al., 2017) that had been proved by Granger et al., (1997, 2001). For cave topographic survey, we refer
166 the reader to https://data.oreme.org/karst3d/karst3d_map that provides 3D survey.

167 **2.1.2. Burial ages**

168 Burial dating using Terrestrial cosmogenic nuclides (TCN) is nowadays a common tool to quantify
169 incision rates in karstic environment (Granger and Muzikar, 2001; Stock et al., 2005; Mocochain.,
170 2007; Tassy et al., 2013; Granger et al., 2015; Calvet et al., 2015; Genti, 2015; Olivetti et al., 2016;
171 Harmand et al., 2017; Rovey II et al., 2017; Rolland et al., 2017; Sartégou, 2017; Sartégou et al.,
172 2018). This method relies on the differential decay of TCN in detrital rocks that were previously
173 exposed to cosmic radiation before being trapped in the cave system. With this in mind, the ^{10}Be and
174 ^{26}Al nuclide pair is classically used as (i) both nuclides are produced in the same mineral (i.e. quartz),
175 (ii) their relative production ratio is relatively well constrained (we use a standard $^{26}\text{Al}/^{10}\text{Be}$ pre-burial
176 ratio of 6.75, see Balco et al., 2008) and (iii) their respective half-lives (about 1.39 Myr and 0.70 Myr
177 for ^{10}Be and ^{26}Al , respectively) are well suited to karstic and landscape evolution study, with a useful
178 time range of \sim 100 ky to \sim 5 Myr.

179 To quantify the incision rate of the limestone plateau of the Cévennes area, we analysed quartz
180 cobbles infilling from four caves of the Rieutord canyon (Fig. 1), this canyon is well suited for such
181 study because horizontal cave levels are tiers over 200 m above the current river-level and are directly
182 connected to the canyon, leading to a straight relationship between river elevation and the four cave
183 infilling that we have sampled (Cuillère cave, Route cave, Camp-de-Guerre cave and Dugou cave).
184 Furthermore, cobbles source is well known and identified: the upstream part of the Rieutord river,
185 some tens of kilometers northward, providing a unique sediment origin composed of granite and
186 metamorphic rocks embedding numerous quartz veins. All samples (Example Fig. 3) were collected
187 far enough away ($>20\text{m}$) from the cave entrance and deep enough below the surface ($>30\text{m}$) to avoid
188 secondary in-situ cosmogenic production of ^{10}Be and ^{26}Al in the buried sediments.

189 The quartz cobbles were first crushed and purified for their quartz fraction by means of sequential
190 acid attack with Aqua-Regia ($\text{HNO}_3 + 3\text{HCl}$) and diluted Hydrofluoric acid (HF). Samples were then
191 prepared according to ANSTO's protocol (see Child et al. 2000) and $\sim 300\text{ }\mu\text{g}$ of a ^9Be carrier solution
192 was added to the purified quartz powder before total dissolution. AMS measurements were performed
193 on the 6MV SIRIUS AMS instrument at ANSTO and results were normalised to KN-5-2 (for Be, see
194 Nishiizumi et al., 2007) and KN-4-2 (for Al) standards. Uncertainties for the final ^{10}Be and ^{26}Al
195 concentrations include AMS statistics, 2% (Be) and 3% (Al) standard reproducibility, 1% uncertainty
196 in the Be carrier solution concentration and 4% uncertainty in the natural Al measurement made by
197 ICP-OES, in quadrature. Sample-specific details and results are found in table 1.

198 **2.1.3. Paleomagnetic analysis**

199 In parallel with burial dating, we analyzed the paleomagnetic polarities within endokarstic clay
200 deposits within two main cave systems: the *Grotte-Exsurgence du Garrel* and the *Aven de la Leicasse*
201 (Fig. 1). These two cave systems allowed us collecting samples along a more continuous range of
202 elevations than the one provided by the Rieutord samples (for burial age determination) and also
203 extending the spatial coverage to the Southern Grands Causses region. Thanks to the geometry of
204 these two cave systems, we sampled a 400m downward base level variation. The sampling was done
205 along vertical profiles from a few ten of centimeters to 2 meters high by means of Plexiglas cubes
206 with a 2 cm edge length (Fig. 4) used as a pastry cutter. We weren't able to analyse clay samples from
207 Rieutord canyon because no reliable clay infilling was found in the Rieutord caves.

208 Demagnetisation was performed with an applied alternative field up to 150mT using a 2G-760
209 cryogenic magnetometer, equipped with the 2G-600 degausser system controller. Before this analysis,
210 each sample remained at least 48h in a null magnetic field, preventing a possible low coercivity
211 viscosity overprinting the detrital remanent magnetisation (DRM) (Hill, 1999; Stock et al., 2005;
212 Hajna et al., 2010). If the hypothesis of instantaneous locked in DRM seems reasonable compared
213 with the studied time span, it is important to keep in mind that the details of DRM processes (as for
214 instance the locked in time) is not well understood (Tauxe et al., 2006; Spassov et Valet, 2012) and
215 could possibly lead to small variations (few percents) in the following computed incision rates.

216 Because fine clay particles are expected being easily reworked in the cave, careful attention was paid
217 to the site selection and current active galleries were avoided. Clays deposits had to show well
218 laminated and horizontal layering in order to prevent analysis of in-situ produced clays (from
219 decalcification) or downward drainage by an underneath diversion gallery that could strongly affect
220 the obtained inclination (and also the declination to a minor extent). Note that for paleo-polarities
221 study alone, small inclination or declination variations won't result in false polarities

222 **2.2 Quantifying the average incision rates**

223 **2.2.1. Local incision rate from burial ages (Rieutord Canyon)**

224

225 The relationship between burial ages and incision is shown in Figure 5. For the four caves, we
226 observed a good relationship between burial ages and finite incision, except for the Camp-de-Guerre
227 cave (CDG) site, the higher the cave is, the older the burial ages are. Burial ages for the Cuillère
228 cave, Dugou cave, Camp-de-Guerre cave and Route cave are 2.16 ± 0.15 , 0.95 ± 0.14 , 0.63 ± 0.1 and
229 0.21 ± 0.1 Myrs respectively. This is consistent with the supposed cave evolution and first-order
230 constant incision of the Rieutord canyon. CDG age has to be considered with caution. The CDG cave
231 entrance located in a usually dry thalweg can act as a sinkhole or an overflowing spring depending on
232 the intensity of the rainfall. The sample was collected in a gallery showing evidence of active flooding
233 ~ 10 m above the Rieutord riverbed, therefore the older than expected age, given the elevation of the
234 cave, is probably due to cobbles that came from upper galleries during flood events. Forcing the linear
235 regression to go through the origin, leads to an incision rate of 83 ± 35 m/Ma. These results show that
236 at least half of the 300 m deep Rieutord Canyon is a Quaternary incision. Extrapolating the obtained
237 rate yields an age of 4.4 ± 1.9 Ma for the beginning of the canyon incision, which suggests that the
238 current landscape has been shaped during the Pliocene-Quaternary period. To extend our spatial
239 coverage and bring stronger confidence into our results, we combine Rieutord burial ages with
240 paleomagnetic data from watersheds located on the other side of the Hérault watershed.

241 **2.2.2. Local incision rate from paleomagnetic data (Southern Grands Causses)**

242 A total of 100 clay-infilling samples distributed over of 13 sites (i.e. profiles) was studied. The lowest
243 sample elevation above sea level (a.s.l.) is in the Garrel (ca 190 m) and the highest in the Leicasse (ca
244 580 m a.s.l.). In the Leicasse cave system, we sampled 8 profiles totalizing 60 samples. Profiles
245 elevations are located between ca 200 m and ca 400 m above the base level (a.b.l.), which corresponds
246 to the elevation of the Buèges river spring at 170 m a.s.l.

247 In the Garrel cave system, we sampled 5 profiles for a total of 40 samples that range between 20 m
248 and 80 m a.b.l. defined by the Garrel spring at 180 m a.s.l. Given the very marginal difference in
249 elevation between the local base levels from these two caves, we assume that they have the same local
250 base level. At each studied site, if all the profile samples have the same polarity, the site is granted
251 with the same polarity, either normal or reverse. If not (i.e. the profile displays normal and reverse
252 polarities), we consider it as a transitional site. Figure 6 shows the results plotted with respect to the
253 paleomagnetic scale (x axis) for the past 7 Ma, and their elevation above the base level (y axis). The
254 measured paleomagnetic polarities on each site is plotted several times for given incision rates
255 supposed to be constant through times (this allows determining different age models and analyze their
256 correlation with the distribution of paleomagnetic data, see below). First, we note a good agreement
257 between samples located at the same elevation elevation and being part of the same stratigraphic layer
258 (Camus, 2003). This syngenetic deposition allows, as best explanation to prevent from a possible
259 partial endokarstic reworking. Second, the different elevations of the galleries where we collected the
260 samples allow proposing that the Leicasse deposits encompass at least three chronos, while the Garrel
261 deposits encompass only one. Third, a transitional signal comprised between a reversal signal (lower

262 samples) and a normal signal (upper ones) is observed at Les Gours sur Pattes (LGP) sampling site
263 (Fig. 7). This provides a strong constraint on the age of the sediment emplacement in the Leicasse
264 with respect to the magnetostratigraphic timescale (Fig. 6).

265 Compared to the Leicasse cave system, the elevation/polarity results for the Garrel are less
266 constrained. Only one site shows a reverse polarity at 90 m a.b.l., and the transitional polarity found at
267 40 m a.b.l. is unclear (tab, suppl mat.). The rest of the polarities (72 samples) are all normal. Given
268 that a U-Th ages younger than 90 kyrs was obtained for two speleothems (Camus, 2003) covering our
269 samples collected at 40 m a.b.l. (Fig. 6), we consider that the emplacement of the clay deposits
270 occurred during the most recent normal period and are therefore younger than 0.78 Ma (Figure 6).
271 The transition between the highest normal sample and the reversed one is located somewhere between
272 78 m and 93 m a.b.l. suggesting a maximum base level lowering rate of 109 ± 9 m/Ma.

273 To go further in the interpretation of our data, and better constraint the incision rate, we performed a
274 correlation analysis between observed and modeled polarities for a 0 to 200 m/Ma incision-rate range
275 (linear rate, each 1 m/Ma). Modeled polarities are found using the intersection between sample
276 elevation and incision-rate line.

277 We obtained 10 possible incision rates with the same best correlation factor (Fig. 8) spanning from 43
278 to 111 m/Ma (mean of 87 ± 24 m/Ma). Taking into account the transitional signal of the LGP site in
279 the Leicasse cave yields a linear incision rate of $83^{+17/-5}$ m/Ma. Proposed uncertainties are based on
280 previous and next transition-related estimated incision rate.

281 Using a similar approach for the Rieutord crystalline samples, that is to say we compute, for the same
282 incision-rate space, the distance in a least square sens between the modeled age and the measured
283 ones in order to check the cost function shape and acuteness. With this method, we determined a
284 linear incision rate of 85 ± 11 m/Ma (Fig 8). Those two results, based on independent computations,
285 suggest the same first-order incision rate for the last 4 Ma of $84^{+21/-12}$ m/Ma. Given that the Rieutord,
286 Garrel and Buèges rivers are all tributaries of the Hérault river, we propose that this rate represents the
287 incision rate for the Hérault river watershed, inducing approximately 300-350 m of finite incision over
288 the Pliocene-Quaternary period.

289 If the landscape is at first order in an equilibrium state, that is to say, if we preclude our incision rates
290 being a regressive erosional signal, the incision needs to be balanced by an equivalent amount of
291 uplift. If the uplift rate is roughly correlated to the regional topography, lowest uplift rates would be
292 expected in the south of our sampling sites inducing regional tilting of morphological benchmarks. In
293 the next part, we search for such evidences that would suggest differential uplift.

294

295 **3 Geomorphometric signature**

296

297 3.1 Tested hypothesis and methods

298 According to the Massif-Central centered uplift hypothesis, morphological markers such as strath

299 terraces, fluvio-karstic surfaces or abandoned meanders should display a southward tilting due to
300 differential uplift between the northern and the southern part of the region.

301 To investigate these differential vertical movement signals, we used the morphological markers
302 available in the study area (Fig. 9). We used a 5 m resolution DEM analysis to identify the markers
303 corresponding to surfaces with slope $< 2^\circ$. This cut-off slope angle prevents to identify surface related
304 to local deformation such as for example landslide or sinkhole. We point out that surface slope
305 increase through time (e.g. apparent tilting) could be due to diffusion processes and not related to
306 differential vertical displacements. However that problem is address by 1) the automatic selection and
307 correction and the final manual check for residue random distribution (see below). The local river
308 slope is on the order of 0.1° so the 2° cut-off angle is far from precluding to identify tilted markers.
309 We also use a criterion based on an altitudinal range for a surface. This altitudinal span is set
310 individually for each surface based on elevation, slope and curves map analysis, and encompass from
311 few meters to tens of meters depending on the size of the marker. We checked 80% of the identified
312 surfaces in the field in order to avoid misinterpretation. Some pictures are provided in supplementary
313 material. The dip direction and angle of the surface in computed in a two steps approach. First, we fit
314 a plan using extracted points from the DEM inside the delimited surface. Second, based on this plan
315 we remove the DEM points with residuals 3 times larger than the standard error and compute more
316 accurate plan parameters (second fitting). This outlier suppression removes any inaccurate DEM
317 points and correct for inaccurate surface delimitation (e.g. integration of a part of the edge of a strath
318 terrace, diffusion processes marks, etc.).

319 Because no obvious initially horizontal markers are known, we propose to correct the marker current
320 slope by the initial one to quantify the tilt since the marker emplacement. To do so we follow the
321 method used by Champagnac et al. (2008) for the Forealps. We identify the drain related to the marker
322 formation and compute its current local slope and direction. This method assumes that landscapes are
323 at the equilibrium state and that the river slope remained constant since the marker formation. This
324 assumption seems reasonable given the major river profiles and because most of the markers used are
325 far from the watershed high altitude areas precluding a recessive erosional signal. Finally, we
326 removed the local river plan from the DEM extracted surface.

327

328 3.2. Morphometrical results

329 Following this methodology, we obtained 61 surfaces (e.g. strath terraces). We then applied three
330 quality criterions to ensure the robustness of our results: 1) The minimal surface considered is 2500
331 m^2 based on a comparison between the 5m resolution DEM and a RTK GPS survey over 3 strath
332 terraces (Hérault river); 2) Final plans with dip angles larger than 2° are removed; 3) The residuals for
333 each geomorphological marker must be randomly distributed without marker edge signal, or clear
334 secondary structuration. Only 38 markers meet those 3 quality criterions.

335 If the identified and corrected markers have indeed registered a differential uplift between the north
336 and the south, we expected the following signals:

337 - The dipping direction of the tilted markers should be parallel to the main gradient of the topography,
338 i.e. between 150°E and 180°E for our studied region. This expectation is the most important one,
339 regarding uncertainties on the uplift rate and lithospheric elastic parameters.

340 - A latitudinal tilting trend, i.e. an increase of the tilt angle along the topography gradient. Indeed, null
341 or small tilts are expected near the shoreline and within the maximum uplift area of the
342 Cevennes/Massif Central, while the maximum tilt is expected at a mid-distance between these two
343 regions, i.e. about 50 km inland from the shoreline.

344 - A positive altitudinal tilting trend (an increase in dip angle with altitude). This trend would be
345 representative of the accumulation of finite tilt. However, it supposes a linear relationship between the
346 altitude and the age of the marker formation. If at first order, this straightforward hypothesis seems
347 reasonable for river-controlled markers (e.g. strath terraces), other surfaces are hardly expected to
348 follow such an easy relationship.

349

350 Among the three expected signal, southward dipping is robustly recorded with a mean tilt angle of
351 0.60 ± 0.40 ° with an azimuth of $N128 \pm 36$ °E (Fig. 10). Latitudinal trend and altitudinal trend are less
352 robustly reached but that is not surprising because of the strong susceptibility to local phenomenon or
353 even so lack of robust age constraint.

354

355 **4 Discussion**

356 Both geomorphological and geochronological evidence suggest a Pliocene-Quaternary uplift of the
357 Cevennes area. The origin of such uplift could be associated with several processes: erosion-induced
358 isostatic rebound, dynamic topography due to mantle convection, thermal isostasy, residual flexural
359 response due to the Gulf of Lion formation, etc. For the Alps and Pyrenees mountains, isostatic
360 adjustment due to erosion and glacial unloading has been recently quantified (Champagnac et al.,
361 2007, Vernant et al., 2013; Genti et al, 2016, Chery et al. 2016). Because the erosion rates measured in
362 the Cevennes are similar to those of the Eastern Pyrenees (Calvet et al., 2015, Sartégou et al., 2018a),
363 we investigate by numerical modeling how an erosion-induced isostatic rebound could impact the
364 southern Massif Central morphology and deformation.

365 We define a representative cross-section parallel to the main topographic gradient (i.e. NNW-SSE)
366 and close to the field investigation areas (Figure 11). We study the lithospheric elastic response to
367 erosion with the 2D finite element model ADELI (Hassani et Chery, 1996; Chéry et al. 2016). The
368 model is composed of a plate accounting for the elasticity of both crust and uppermost mantle.
369 Although the lithosphere rigidity of the European plate in southern Massif central is not precisely
370 known, vertical gradient temperatures provided by borehole measurements are consistent with heat
371 flow values ranging from 60 to 70 mW.m² (Lucazeau et Vasseur, 1989). Therefore, we investigate
372 plate thickness ranging from 10 to 50 km as done by Stewart et Watts (1997) for studying the vertical

373 motion of the alpine forelands.

374 We choose values for Young's and Poisson parameters of respectively 10^{11} Pa and 0.25, both
375 commonly used values for lithospheric modeling (e.g. Kooi et Cloething, 1992; Champagnac et al.
376 2007, Chéry et al., 2001). This leads to long-term rigidity of the lithosphere model ranging from 10^{21}
377 to 10^{25} N.m. Since the effect of mantle viscosity on elastic rebound is assumed to be negligible at the
378 time scale of our models (1 to 2 Myrs), we neglect the visco-elastic behaviour of the mantle.
379 Therefore, the base of the model is supported by an hydrostatic pressure boundary condition balancing
380 the weight of the lithosphere (Fig. 11). Horizontal displacements on vertical sides are set to zero since
381 geodetic measurements show no significant displacements (Nocquet et Calais, 2003; Nguyen et al.,
382 2016). The main parameters controlling our model are the erosion (or sedimentation) triggering
383 isostatic rebound and the elastic thickness.

384 The erosion profile (Fig. 11) is based on topography, our newly proposed incision rate and other
385 studies (Olivetti et al., 2016 for onshore denudation and Lofi et al., 2003; Leroux et al., 2014 for
386 offshore sedimentation). This profile is a simplification of the one that can be expected from Olivetti
387 et al. (2006) and do not aim at matching precisely the published data because of, (i) the explored time-
388 span (~ 1 Myrs) is not covered by thermochronological data (> 10 Myrs) or cosmogenic denudation
389 rate (10s-100s kyr); (ii) we base our erosion rate as being linked with local ($10s \text{ km}^2$) slopes, that are
390 higher near the drainage divide. We, by this aim can invoke any kind of erosion processes (e.g.
391 landslides); and (iii) the model assumes a cylindrical structure and consequently, high-frequency
392 lateral variations in term or actual denudation rate or proxy (slope, elevation, etc.) must be averaged.
393 Concerning this erosion profile, parametric study (highest erosion rate ranging from 1 to 1000 m/Ma)
394 give no difference in the interpretation and, for few percent variations, only few percent variations in
395 the modeled uplift-rate.

396 The flexural rigidity controls the intensity and wavelength of the flexural response and ranges from
397 10^{21} to 10^{25} N.m. It can be expressed as a variation in elastic thickness (T_e) ranging from 4.4 to 96 km
398 (Fig. 12). We also test a possible T_e variation between inland and offshore areas. For the following
399 discussion, we use an elastic thickness of 15 km corresponding to a value of D of 3.75×10^{23} N/m. In
400 this case, the inland and offshore parts are largely decoupled and the large sedimentation rate in the
401 Gulf of Lion does not induce a flexural response on the Cévennes and Grands Causses areas.

402 With a maximum erosion rate of 80 m/Ma (Fig 11), the models display uplift rates of 50 m/Ma over
403 more than 100 km. As previously explained, the finite incision is permitted by an equal amount of
404 uplift considering that the incision is not due to regressive erosion.

405 Every models show a general uplift. However, the uplift amplitude are smaller than the expected ones.
406 To obtain the same uplift rate than the incision rates, the applied erosion rate over the model must be
407 increased. However, we assume that the landscape is at equilibrium, so, if the erosion rate is

408 increased, it will be higher than the incision rate leading to the decay of relief over the area. No
409 evidence of such evolution is found over the region and, if further studies need to be done to quantify
410 the actual erosion rate, we mostly think that a second process is acting, inducing the rest of the uplift
411 that can't be obtained by the erosion-induced isostatic adjustment. Finally, models predict a seaward
412 tilt of the surface at the regional-scale (Fig. 13), in agreement with the observed tilting of
413 morphological markers.

414 We assume that the sediments collected in the karst were deposited per descensum, i.e. we do not
415 know if the galleries existed a long time before or were formed just before the emplacement of the
416 sediments, but the more elevated the sediments are, the older their deposit is. If there is no evidence of
417 an important aggradation episode leading to more a complex evolution as proposed for the Ardèche
418 canyon (Mocochain et al., 2007; Tassy et al., 2013), we point out that small aggradation or null
419 erosion period could, however, be possible. Some processes could explain such relative stability: e.g.
420 variation in erosion (due to climatic fluctuation) or impact of eustatic variations (in river profile,
421 flexural response, etc.). Such transient variations have been shown for the Alps (Saillard et al., 2014;
422 Rolland et al., 2017) and are proposed as being related to climato-eustatic variations and therefore
423 should last 10 to 100 kyr at most.

424 Based on our sampling resolution, we cannot evidence such transient periods and we must use an
425 average base level lowering rate in the karst, which we correlate to the incision of the main rivers. The
426 TCN-based incision rate derived from the Rieutord samples (83 ± 35 m/Ma) is consistent with the one
427 derived from the Garrel (U-Th ages: 85.83 m/Ma according to the sole U/Th exploitable result
428 (Camus, 2003)) and from the Garrel-Leicasse combination (Paleomagnetic approach: $84^{+21/-12}$ m/Ma).
429 This mean incision rate of ca. 85 m/Ma lasting at least 4 Ma, highlights the importance of the
430 Pliocene-Quaternary period into the Cévennes and Grand Causses morphogenesis. Furthermore, the
431 300 to 400 m of incision precludes a relative base level controlled by a sea-level drop. Indeed,
432 documented sea level variations are less than 100 m (Haq, 1988, Miller et al., 2005). Furthermore, the
433 Herault river does not show any significant knickpoints or evidence of unsteadiness in its profile as
434 expected if the incision was due to eustatic variations. Therefore, we propose that the incision rate of
435 ~85 m/Ma is due to a Pliocene-Quaternary uplift of the Cévennes and Grands Causses region.

436
437 Other river-valley processes could lead to a local apparent high incision rate as for instance major
438 landslide or alluvial fan (Ouimet et al., 2008). This hypothesis of an epigenetic formation of the
439 Rieutord is irrelevant because of i) none of the possible causes had been found in the Rieutord canyon
440 and ii) the consistency of the TCN-based incision rate and the paleomagnetic-based incision rate for
441 two other cave-systems. Indeed, the use of two independent approaches and three locations is a good
442 argument in favour of the robustness of our proposed mean 85 m/Ma incision rate. Yet, using more
443 data, particularly burial dating colocalized with clays samples and adding sampling sites would give a
444 stronger statistical validation. In the Lodèvre basin (Point 4, Fig. 1), inverted reliefs allow another
445 independent way to quantify minimal incision rate. K/Ar and paleomagnetic dated basaltic flows

446 spanning from 1 to 2 Myrs old that were deposited at the bottom of the former valley (Dautria et al.,
447 2010) are now located at ca 150 m above the current riverbed leading to an average incision rate of 77
448 ± 10 m/Ma, in agreement with karst-inferred incision rates.

449 Furthermore, preliminary results from canyons on the other side of the Grands Causses (Tarn and
450 Jonte) based on in-situ terrestrial cosmogenic dating suggest similar incision rates (Sartegou et al.,
451 2018b) and confirm a regional base level lowering of the Cévennes and Grands Causses region during
452 the Pliocene-Quaternary. This is consistent with the similarities of landscapes and lithologies observed
453 both on the Atlantic and Mediterranean watersheds (e.g. Tarn river).

454 Once the regional pattern of the Pliocene-Quaternary incision established for the Cévennes-Grands
455 Causses area, the next question is how this river downcutting is related to the regional uplift? First
456 order equilibrium shape and absence of major knick points in the main river profiles preclude the
457 hypothesis of regressive erosion. Hence, back to the three conceptual models presented in part 1
458 (Fig.2), we can discard, at first order, the models A (Old uplift-recent incision) and B (Old uplift-old
459 incision) because obtain incision rate show recent incision and surface tilting tend to prove a current
460 uplift. Therefore, the incision rate has to be balanced to the first order by the uplift rate. We add that
461 eustatic variations are of too low magnitude (100-120 m) and can't explain such total incision (up to
462 400m). Furthermore, no obvious evidence of active tectonics is reported for the area raising the
463 question of the processes responsible for this regional uplift. Very few denudation rates are reported
464 for our study area (Schaller et al., 2001; Molliex et al., 2016; Olivetti et al., 2017), and converting
465 canyon incision rates into denudation and erosion rates is not straightforward, especially given the
466 large karst developed in the area. Using a first order erosion/sedimentation profile following the main
467 topography gradient direction we have modeled the erosion-induced isostatic rebound. If this process
468 could create between half and two third of the Pliocene-Quaternary uplift, a previously existent
469 topography is needed to trigger erosion so it cannot explain neither the onset of the canyon-carving
470 nor the full uplift rates. Other, processes have to be explored such as dynamic topography or thermal
471 anomaly beneath the Massif-Central, the magmatism responsible for the important increase in
472 volcanic activity since ~ 6 Myrs (Michon et Merle, 2001; Nehlig et al., 2003) could play a major role,
473 notably in the initiation of Pliocene-Quaternary uplift. Further studies should aim to address the
474 problem of uplift onset, giving more clues concerning the stable continental area but owing the data
475 we presently have, discussing such onset is out of the scope of the paper.

476

477 5. Conclusion

478

479 Main results of this study are the following three points:

480 1- Mean incision rate of the Cévennes area is $83^{+17/-5}$ m/Ma during the last 4 Ma.

481 2- This incision is due to regional uplift with higher vertical velocities northward.

482 3- This uplift is partly due ($\frac{1}{2}$ to $\frac{2}{3}$) to isostatic adjustment induced by erosion.

483 Furthermore, our study highlights the importance of multidisciplinary approach especially in the study
484 of low-deformation rate areas.

485 To the contrary of previous studies that focused on one cave, we have shown that combining karst
486 burial ages and paleomagnetic analysis of clay deposits in several caves over a large elevation range
487 can bring good constraints on incision rates. This multi-cave system approach diminishes the intrinsic
488 limits of the two single methods: low sampling density (and analysis cost) for the TCN ages and
489 difficulty to set the position of paleomagnetic results. Our estimated paleo base level ages are
490 Pliocene-Quaternary (ca. last 4 Ma) and allow to derive a mean incision rate of $83^{+17/-5}$ m/Ma for the
491 Cévennes area. The landscape, and especially the river profiles suggest a first-order equilibrium
492 allowing considering the incision rate as an uplift rate.

493 We have shown using a geomorphological analysis that at least south of the Cévennes, several
494 surfaces are tilted toward the SSE. This kind of study had been performed before on large structures
495 (Champagnac et al., 2007) or endokarstic markers (Granger et Stock, 2004) but it is the first time that
496 it is performed at such scale with small markers. Numerical modeling yields the same pattern of SSE
497 dipping, allowing more confidence in the geomorphometric results.

498 Our multi-disciplinary approach brings the first absolute dating of the Cévennes landscapes and
499 suggests that the present-day morphology is partly inherited from the Plio-Quaternary erosion-
500 induced isostatic rebound.

501 We propose that related erosional isostatic adjustment is of major importance for the understanding of
502 the southern French Massif-Central landscape evolution and explains a large part of the uplift.

503 At larger scale, we assume that the main conclusion of our study can be extrapolated to the majority
504 of the intraplate orogens. That is to say, once the forces responsible for the initial uplift (e.g. plate
505 tectonics, dynamic topography) fade out, the uplift continue thanks to erosion-induced isostatic
506 adjustment.

507 An analysis at the scale of the Massif Central is now needed before nailing down our interpretations
508 of the Massif-Central dynamics.

509

510 **Code and data availability**

511 Surface analysis was performed using QGIS version 2.18, MAtlab® code and IGN DEM (RGE
512 Alti®) 5m). Modeling was performed using ADELI code (Hassani et Chéry, 1996; Chéry et al., 2016).
513 Data for TCN and paleomagnetic analysis are provided in the manuscript itself or in supplementary
514 material. Additional informations for geologic background are available at <http://infoterre.brgm.fr/>
515 (French Geological Survey data visualizer).

516

517 **Author contributions**

518 OM, PV and GC did the sampling. GC and DF performed the TCN analysis. PC and OM did the
519 magnetic measurements and interpretations. OM did the surface identification and analysis. OM, PV
520 and JC performed the numerical model. OM, OV, JFR, GC, PC, JC and DF interpreted and wrote the
521 article.

522

523 **Competing interests**

524 The authors declare that they have no conflict of interest.

525

526 **Acknowledgments**

527 We are grateful to ANSTO for providing facilities for chemical extraction for the TCN analysis. We
528 thanks the reviewers for useful remarks and comments that we think help to increase the level of the
529 paper.

530 **References**

531

532 Arthaud F. et Laurent P.: Contraintes, déformations et déplacements dans l'avant-pays pyrénéen du
533 Languedoc méditerranéen, Godin. Acta, 8, 142-157, 1995.

534 Audra P., Camus H. et Rochette P.: Le karst des plateaux de la moyenne vallée de l'Ardèche : datation
535 par paléomagnétisme des phases d'évolution plio-quaternaires (aven de la Combe Rajeau). Bull. Soc.
536 Géol. France, 2001, t. 172. N°1, pp. 121-129, 2001.

537 Balco, G., Stone, J.O., Lifton, N.A., Dunai, T.J., 2008. A complete and easily accessible means of
538 calculating surface exposure ages or erosion rates from Be-10 and Al-26 measurements. Quat.
539 Geochronol. 3, 174–195. 2008.

540 Barbarand J., Lucaleau F., Pagel M. Et Séranne M.: Burial and exhumation history of the south-
541 eastern Massif Central (France) constrained by en apatite fission-track thermochronology.
542 *Tectonophysics*, 335, 275-290, 2001.

543 Barruol G. et Granet M.: A Tertiary asthenospheric flow beneath the southern French Massif Central
544 indicated by upper mantle seismic anisotropy and related to the west Mediterranean extension. Earth
545 and Planetary Science Letters 202 (2002) 31-47, 2002.

546 Brichau S., Respaut J.P. et Monié P.: New age constraints on emplacement of the Cévenol granitoids,
547 South French Massif Central, Int J Earth Sci 97:725–738, doi: 10.1007/s00531-007-0187-x, 2007.

548 Bruxelles L.: Dépôts et altérites des plateaux du Larzac central : causses de l'Hospitalet et de
549 Campestre (Aveyron, Gard, Hérault) Evolution morphogénétique, conséquences géologiques et
550 implications pour l'aménagement. Université d'Aix-Marseille I, Université de Provence, UFR
551 Sciences géographiques et de l'aménagement. Thèse, spécialité : Milieux physiques méditerranéens,
552 2001.

553 Calais, E., Freed, A. M., Van Arsdale, R., & Stein, S. (2010). Triggering of New Madrid seismicity by
554 late-Pleistocene erosion. Nature, 466(7306), 608–611. <http://doi.org/10.1038/nature09258>

555 Calais, E., T. Camelbeeck, S. Stein, M. Liu, and T. J. Craig (2016), A new paradigm for large
556 earthquakes in stable continental plate interiors, Geophys. Res. Lett., 43, doi:10.1002/2016GL070815,
557 2016.

558 Calvet M., Gunnell Y., Braucher R., Hez G., Bourlès D., Guillou V., Delmas M. et ASTER team: Cave
559 levels as proxies for measuring post-orogenic uplift : Evidence from cosmogenic dating of alluvium-

560 filled caves in the French Pyrenees. *Geomorphology* 246 (2015) 617- 633 ; doi :
561 10.1016/j.geomorph.2015.07.013, 2015.

562 Camus H.: Vallée et réseaux karstiques de la bordure carbonatée sud-cévenole. Relation avec la
563 surrection, le volcanisme et les paléoclimats. Thèse de doctorat, Université Bordeaux 3, 692 p, 2003.

564 Champagnac J.D., Molnar P., Anderson R.S., Sue C. et Delacou B.: Quaternary erosion-induced
565 isostatic rebound in the western Alps. *Geology*, March 2007 ; v.35 ; no. 3 ; p. 195-198, doi : 10.1130/
566 G23053A.1, 2007.

567 Champagnac J-D. van der Beek P. Diraison G. et Dauphin S.: Flexural isostatic response of the Alps
568 to increased Quaternary erosion recorded by foreland basin remnants, SE France. *Terra Nova*, Vol 20,
569 No. 3, 213-220, doi : 10.1111/j.1365-3121.2008.00809.x, 2008.

570 Chéry J., Zoback M.D. et Hassani R.: An integrated mechanical model of the San Andreas Fault in
571 central and northern California. *J. Geophys. Res.*, 106(B10) :22051. 52,61, 2001.

572 Chéry, J., Genti, M. And Vernant, P. Ice cap melting and low-viscosity crustal root explain the narrow
573 geodetic uplift of the Western Alps. *Geophys. Res. Lett.* 43,1-8 (2016).

574 Child D.P., Elliott G., Mifsud C., Smith A.M and Fink D., Sample processing for earth science studies
575 at ANTARES. *Nuclear Instruments and Methods in Physics Research Section B Beam Interactions
576 with Materials and Atoms* 172(1-4):856-860 doi: 10.1016/S0168-583X(00)00198-1, 2000.

577 Corbel J.: Les phénomènes karstiques dans les Grands Causses. In : *Revue de géographie de Lyon*,
578 vol. 29, n°4, pp. 287-315, doi : 10.3406/geoca.1954.1990, 1954.

579 Dautria J.M., Liotard J.M., Bosch D., Alard O.: 160 Ma of sporadic basaltic activity on the Languedoc
580 volcanic line (Southern France): A peculiar cas of lithosphere-asthenosphere interplay. *Lithos* 120
581 (2010) 202-222, doi: 10.1016/j.lithos.2010.04.009, 2010

582 Genti M.: Impact des processus de surface sur la déformation actuelle des Pyrénées et des Alpes.
583 *Géophysique [physics.geo-ph]*. Université de Montpellier, 2015. Français. Thèse, 2016.

584 Granet M., Wilson M. et Achauer U.: Imaging a mantle plume beneath the French Massif Central.
585 *Earth and Planetary Science Letters* 136 (1995) 281-296, 1995.

586 Granger, D. E., Fabel, D. and Palmer, A.N.: Pliocene-Pleistocene incision of the Green River,
587 Kentucky determined from radioactive decay of cosmogenic ^{26}Al and ^{10}Be in Mammoth Cave
588 sediments. *GSA Bulletin*; July 2001; v. 113; no. 7; p. 825-836

589 Granger, D. E., Kirchner, J. W., and Finkel, R. C.: Quaternary downcutting rate of the New River,
590 Virginia, measured from differential decay of cosmogenic ^{26}Al and ^{10}Be in cave-deposited alluvium.
591 *Geology*; February 1997 ; v. 25 ; no.2 ; p. 107-110, 1997.

592 Granger D.E., Gibbon R.J., Kuman K., Clarke R.J., Bruxelles L. and Caffee M.W.: New cosmogenic
593 burial ages for Sterkfontein Member 2 *Australopithecus* and Member 5 Oldowan, *Nature Letter* 2015,
594 doi: 10.1038/nature14268, 2015.

595 Granger D.E. and Muzikar P.F.: Dating sediment burial with in situ-produced cosmogenic nuclides:
596 theory, techniques, and limitations. *Earth and Planetary Science Letters* 188 (2001) 269-281, 2001.

597 Granger D.E. and Stock G.M.: Using cave deposits as geologic tiltmeters : Application to postglacial
598 rebound of the Sierra Nevada, California. *Geophysical Research Letters*, vol. 31, L22501, doi :
599 10.1029/2004GL021403, 2004.

600 Zupan Hajna N., Mihevc A., Pruner P. and Bosák P. 2010. Palaeomagnetic research on karst sediments
601 in Slovenia. *International Journal of Speleology*, 39(2), 47-60. Bologna (Italy). ISSN 0392-6672,
602 2010.

603 Haq B.U., Herdenbol J. and Vail P.R.: Mesozoic and cenozoic chronostratigraphy and cycles of sea-
604 level change. *Society Economic Paleontologists Mineralogists Special Publication*, 42, 71-108, Tulsa,
605 Oklahoma. 1988.

606 Harmand D., Adamson K., Rixhon G., Jaillet S., Losson B., Devos A., Hez G., Calvet M. and Audra
607 P.: Relationships between fluvial evolution and karstification related to climatic, tectonic and eustatic
608 forcing in temperate regions, *Quaternary Science Reviews* (2017) 1-19, doi :
609 10.1016/j.quascirev.2017.02.016, 2017.

610 Hassani R. and Chery J., Anaelasticity explains topography associated with Basin and Range normal
611 faulting. *Geology* 24(12):1095. doi: 10.1130/0091-7613(1996)024<1095:AETAWB>2.3.CO;2. 1996.

612 Hill C.A., 1999.. Sedimentology and Paleomagnetism of sediments, Kartchner caverns, Arizona.
613 *Journal of Cave and Karst Studies* 61(2) : 79-83, 1999.

614 Husson E.: Interaction géodynamique/karstification et modélisation 3D des massifs carbonatés :
615 Implication sur la distribution prévisionnelle de la karstification. Exemple des paléokarsts crétacés à
616 néogènes du Languedoc montpelliérain. *Sciences de la Terre*. Université Montpellier 2- Sciences et
617 techniques du Languedoc, 236 p, 2014.

618 Kooi H., Cloetingh S. et Burrus J.: Lithospheric Necking and Regional Isostasy at Extensional Basins
619 1. Subsidence and Gravity Modeling With an Application to the Gulf of Lions Margin (SE France),
620 *Journal of Geophysical Research* , vol. 97, no. B12, Pages 17,553- 17,571, november 10, 1992.

621 Leroux E., Rabineau M., Aslanian D., Granjeon D., Droz L. et Gorini C.: Stratigraphic simulations of
622 the shelf of the Gulf of Lions: testing subsidence rates and sea-level curves during the Pliocene and
623 Quaternary. *Terra Nova*, Vol 26, No. 3, 230-238, doi: 10.1111/ter.12091, 2014.

624 Lofi J., Rabineau M., Gorini C., Berne S., Clauzon G;, De Clarens P., Dos Reis A.T., Mountain G.S.,
625 Ryan W.B.F, Steckler M.S. et Fouchet C.: Plio-Quaternary prograding clinoform wedges of the
626 western Gulf of Lion continental margin (NW Mediterranean) after the Messinian Salinity Crisis.,
627 *Marine Geology* July 2003; 198 (3-4) : 289-317, doi: 10.1016/S0025-3227(03)00120-8, 2003.

628 Lucaleau F. and Vasseur G.: Heat flow density data from France and surrounding margins, In: V.
629 Cermak, L. Rybach and E.R. Decker (Editors), *Tectonophysics*, 164 (1989) 251-258

630 Manchuel K., Traversa P., Baumont D., Cara M., Nayman E. Et Durouchoux C.: The French seismic
631 CATalogue (FCAT-17), *Bull Earthquake Eng* (2018) 16:2227–2251, doi: 10.1007/s10518-017-0236-1,
632 2018.

633 Miallier D., Michon L., Evin J., Pilleyre T., Sanzelle S., et Vernet G.: Volcans de la Chaîne des Puys
634 (Massif Central, France) : point sur la chronologie Vasset-Kilian-Pariou-Chopine. *Comptes Rendus*
635 *Géoscience*, Elsevier

636 Michon L. et Merle O.: The evolution of the Massif Central rift: Spatio-temporal distribution of the
637 volcanism. *Bulletin de la Society Geologique de France*, 2001, t. 172, n°2, pp. 201-211, doi:
638 102113/172.2.201, 2001.

639 Miller, K.G., Kominz, M.A., Browning, J.V., Wright, J.D., Mountain, G.S., Katz, M.E., Sugarman,
640 P.J., Cramer, B.S., Christie-Blick, N., Pekar, S.F.: The Phanerozoic record of global sea-level change.
641 *Science* 310, 1293–1298, doi : 10.1126/science.1116412, 2005.

642 Mocochain L.: Les manifestations géodynamiques –Externes et internes- de la crise de salinité
643 messinienne sur une plate-forme carbonatée péri-méditerranéenne : le karst de la basse Ardèche
644 (moyenne vallée du Rhône ; France). Thèse de doctorat, Université Aix- Marseille I – Université de
645 Provence U.F.R des Sciences géographiques et de l'aménagement Centre Européen de Recherches et
646 d'Enseignement en Géosciences de l'Environnement., 196 p, 2007.

647 Molliex S., Rabineau M., Leroux E., Bourlès D.L., Authemayou C., Aslanian D., Chauvet F., Civet F.
648 et Jouët G.: Multi-approach quantification of denudation rates in the Gulf of Lion source-to-sink
649 system (SE-France). *Earth and Planetary Science Letters* 444 (2016) 101-115, doi :
650 10.1016/j.epsl.2016.03.043, 2016.

651 Nehlig P., Boivin P., de Goërs A., Mergoil J., Prouteau G., Sustrac G. Et Thiéblemont D.: Les volcans
652 du Massif central. *Revue BRGM: Géologues*, Numéro Spécial: Massif central, 2003.

653 Nguyen H. N., Vernant P., Mazzotti S., Khazaradze G. et Asensio E.: 3-D GPS velocity field and its
654 implications on the present-day post-orogenic deformation of the Western Alps and Pyrenees. *Solid
655 Earth*, 7 ; 1349-1363, 2016, doi : 10.5194/se-7-1349-2016, 2016.

656 Nocquet J.-M. et Calais E.: Crustal velocity field of western Europe from permanent GPS array
657 solutions, 1996-2001. *Geophys. J. Int.* (2003) 154, 72-88, doi : 10.1046/j.1365-246X.2003.01935.x,
658 2003.

659 Nocquet J.-M., Sue C., Walpersdorf A., Tran T., Lenôtre N., Vernant P., Cushing M., Jouanne F.,
660 Masson F., Baize S., Chéry J. and Van der Beek P.A., Present-day uplift of the western Alps, *Sci. Rep.*
661 6, 28404; doi: 10.1038/srep28404 (2016).

662 Olivetti V., Godard V., Bellier O. et ASTER team : Cenozoic rejuvenation events of Massif Central
663 topography (France) : Insights from cosmogenic denudation rates and river profiles. *Earth and
664 Planetary Science Letters* 444 (2016) 179-191, doi : 10.1016/j.epsl.2016.03.049 0012-821X, 2016.

665 Ouimet, WB, Whipple, KX, Crosby, BT, Johnson, JP, Schildgen, TF. 2008. Epigenetic gorges in
666 fluvial landscapes. *Earth Surface Processes and Landforms* 33: 1993– 2009. doi: 10.1002/esp.1650
667 Epigenetic. 2008.

668 Rolland Y., Petit C., Saillard M., Braucher R., Bourlès D., Darnault R. Cassol D. Et ASTER Team:
669 Inner gorges incision history: A proxy for deglaciation? Insights from Cosmic Ray Exposure dating
670 (10Be and 36Cl) of river-polished surfaces (Tinée River, SW Alps, France). *Earth and Planetary
671 Science Letters*, Elsevier, 2017, 457, pp.271 - 281, doi : 10.1016/j.epsl.2016.10.007. <hal-01420882>,
672 2017.

673 Rovey II C.W., Balco G., Forir M. Et Kean W.F.: Stratigraphy, paleomagnetism, and cosmogenic-
674 isotope burial ages of fossil-bearing strata within Riverbluff Cave, Greene County, Missouri.
675 Quaternary Research (2017), 1-13, doi : 10.1017/qua.2017.14, 2017.

676 Saillard M., Petit C., Rolland Y., Braucher R., BOurlès D.L., Zerathe S., Revel M. Et Jourdon A.: Late
677 Quaternary incision rates in the Vésubie catchment area (Southern French Alps) from in situ-produced
678 ^{36}Cl cosmogenic nuclide dating: Tectonic and climatic implications, J. Geophys. Res. Earth Surf., 119,
679 1121–1135, doi:10.1002/ 2013JF002985. 2014.

680 Sanchis E. et Séranne M.: Structural style and tectonic evolution of a polyphase extensional basin of
681 the Gulf of Lion passive margin : the Tertiary Alès basin, southern France. Tectonophysics 322 (2000)
682 219-242, doi : 10.1016/S0040-1951(00)00097-4, 2000.

683 Sartégou A.: Évolution morphogénique des Pyrénées orientales: apports des datations de systèmes
684 karstiques étagés par les nucléides cosmogéniques et la RPE. Géomorphologie. Thèse de l'Université
685 de Perpignan. Français <NNT : 2017PERP0044>. <tel-01708921> , 2017.

686 Sartégou, A., Bourlès, D. L., Blard, P.-H., Braucher, R., Tibari, B., Zimmerman, L., et al. (2018a).
687 Deciphering landscape evolution with karstic networks_ A Pyrenean case study. Quaternary
688 Geochronology, 43, 12–29. <http://doi.org/10.1016/j.quageo.2017.09.005>

689 Sartégou A., Mialon A., Thomas S., Giordani A., Lacour Q., Jacquet A., André D., Calmels L.,
690 Bourlès D.L., Bruxelles L., Braucher R., Leanni L. Et ASTER team.: When TCN meet high school
691 students: deciphering western Cévennes landscape evolution (Lozère, France) sin g TCN on karstic
692 networks. Poster 4th Nordic Workshop on Cosmogenic Nuclides. 2018b.

693 Schaller M., von Blanckenburg F., Hovius N. Et Kubik P.W.: Large-scale erosion rates from in situ-
694 produced cosmogenic nuclides in European river sediments. Earth and Planetary Science Letters 188
695 (2001) 441-458, 2001.

696 Séranne M., Benedicto A., Labaum P., Truffert C. et Pascal G.: Structural style and evolution of the
697 Gulf of Lion Oligo-Miocene rifting : role of the Pyrenean orogeny. Marine and Petroleum Geology,
698 Vol. 12, No. 8, pp. 809-820, 1995.

699 Séranne M., Camus H., Lucaleau F., Barbarand J. et Quinif Y.: Surrection et érosion polyphasées de la
700 Bordure cévenole. Un exemple de morphogenèse lente. Bull. Soc. Géol. France, 2002, t. 173, n°2, pp.
701 97-112, 2002.

702 Sibuet J.-C., Srivastava S.P. et Spakman W.: Pyrenean orogeny and plate kinematics. Journal of
703 Geophysical Research: Solid Earth, Vol 109, doi: 10.1029/2003JB002514 , 2004.

704 Spassov S. et Valet J.-P.: Detrial magnetisations from redeposition experiments of different natural
705 sediments. Earth and Planetary Science Letters 351-352 (2012) 147-157, doi:
706 10.1016/j.epsl.2012.07.016, 2012

707 Stewart J. and Watts A.B.: Gravity anomalies and spatial variation of flexural rigidity at mountain
708 ranges. Journal of Geophysical research, vol 102, no. B3, Pages 5327-5352, march 10, 1997, doi:
709 10.1029/96JB03664, 1997.

710 Stock G.M., Granger D.E., Sasowsky I.D., Anderson R.S. et Finkel R.C.: Coomparison of U-Th,
711 paleomagnetism, and cosmogenic burial methods for dating caves : Implications for landscape

712 evolution studies. *Earth and Planetary Science Letters* 236 (2005) 388-403, doi :
713 10.1016/j.epsl.2005.04.024, 2005.

714 Tarayoun A., Mazzotti S., Gueydan F., Quantitative impact of structural inheritance on present-day
715 deformation and seismicity concentration in intraplate deformation zones, *Earth and Planetary
716 Science Letters*, Volume 518, 2019, Pages 160-171, ISSN 0012-821X, doi:
717 10.1016/j.epsl.2019.04.043., 2017.

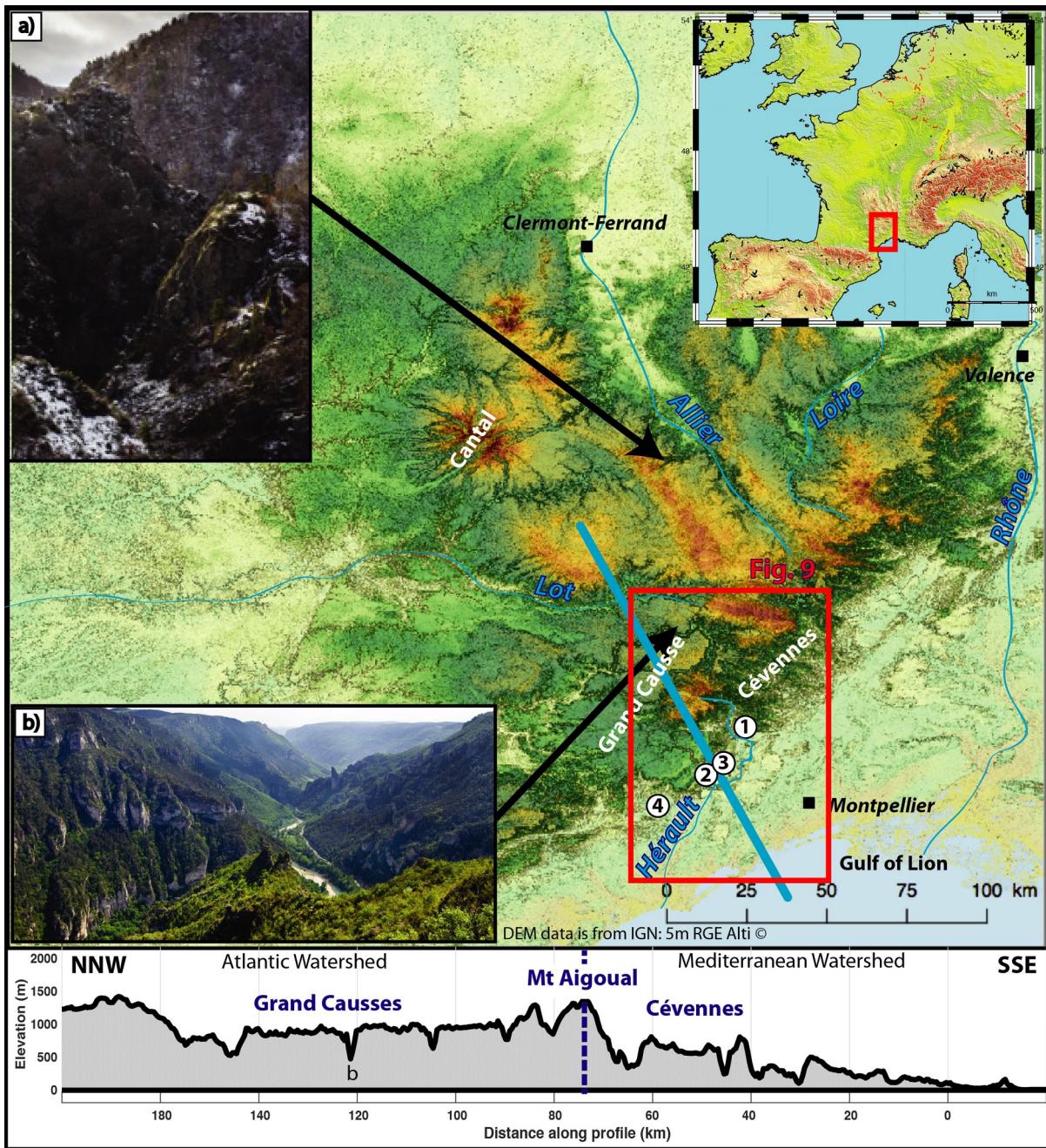
718 Tassy A., Mocochain L., Bellier O., Braucher R., Gattacceca J., Bourlès D.: Coupling cosmogenic
719 dating and magnetostratigraphy to constrain the chronological evolution of peri-Mediterranean karsts
720 during the Messinian an the Pliocene: Example of Ardèche Valley, Southern France. *Geomorphology*,
721 189 (2013), pp. 81-92, doi: 10.1016/j.geomorph.2013.01.019, 2013.

722 Tauxe L., Steindorf J.L. et Harris A.: Depositional remanent magnetisation: Toward an improved
723 theoretical and experimental foundation. *Earth and Planetary Science Letters* 244 (2006) 515-529, doi:
724 10.1016/j.epsl.2006.02.003, 2006.

725 Tricart P. : From passive margin to continental collision: A tectonic scenario for the western Alps.
726 *American journal of science*, Vol. 284, February, 1984, P97-120, 1984.

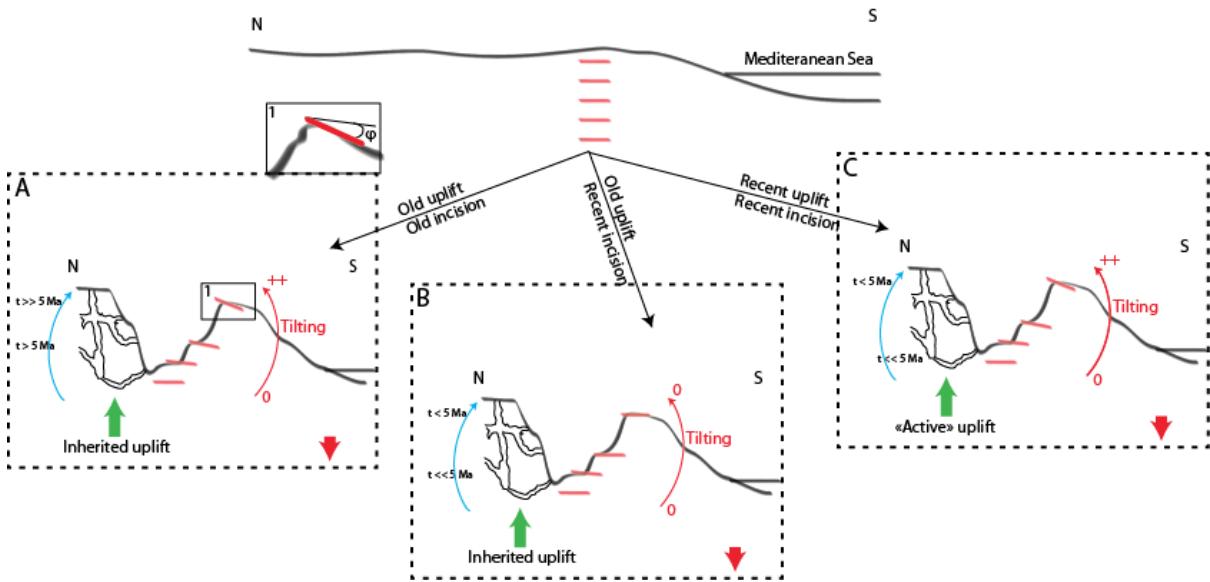
727 Vernant, P., Hivert, F., Chéry, J., Steer, P., Cattin, R., & Rigo, A. (2013). Erosion-induced isostatic
728 rebound triggers extension in low convergent mountain ranges. *Geology*, 41(4), 467–470.
729 <http://doi.org/10.1130/G33942.1>

730


731

732

733


734

735

736
737 **Figure 1:** 30 m resolution DEM of the French Massif-Central and slope shadowed. Examples of finite
738 incision typical of the French Massif-Central in a) crystalline basement (Seuge Canyon) and b)
739 limestone plateau (Tarn Canyon). Location of the study area in red box (Fig. 9) and numbered site
740 1) is the Rieutord Canyon (43.958°N ; 3.709°E) where TCN measurements have been done, 2) and 3)
741 are the Leicasse Cave System (43.819°N ; 3.56°E), and the Garrel Cave system (43.835°N ; 3.616°E)
742 respectively, where paleomagnetic analysis have been done and 4) is the Lodève basin (43.669°N ;
743 3.382°E) with dated basaltic flows. Bottom panel is an example of typical topographic profile used
744 for the numerical model set up.

745 Note the south-western area with large plateau dissected by canyon, and the rugged area with
746 steep valley called the Cevenne. They are typical regional limestone and crystalline morphology
747 respectively.

748

749 **Figure 2: conceptual models for landscape evolution. Top panel is the initial stage (prior**
 750 **to uplift). Each panel represents a possible scenario explaining current morphology: A)**
 751 **Old uplift and old incision, B) Old uplift and recent incision and C) both recent uplift and**
 752 **incision. Blue arrow and associated ages show expected result (or absence of) for burial**
 753 **dating. Red level represents morphological markers that are fossilised when reaching the**
 754 **surface, accumulating afterward (or not) the differential uplift by finite tilting.**

755

756

757

758

759 **Figure 3: Example of quartz cobbles sampled for burial dating. Location: Cuillère Cave (Site 1,**
 760 **Fig.1)**

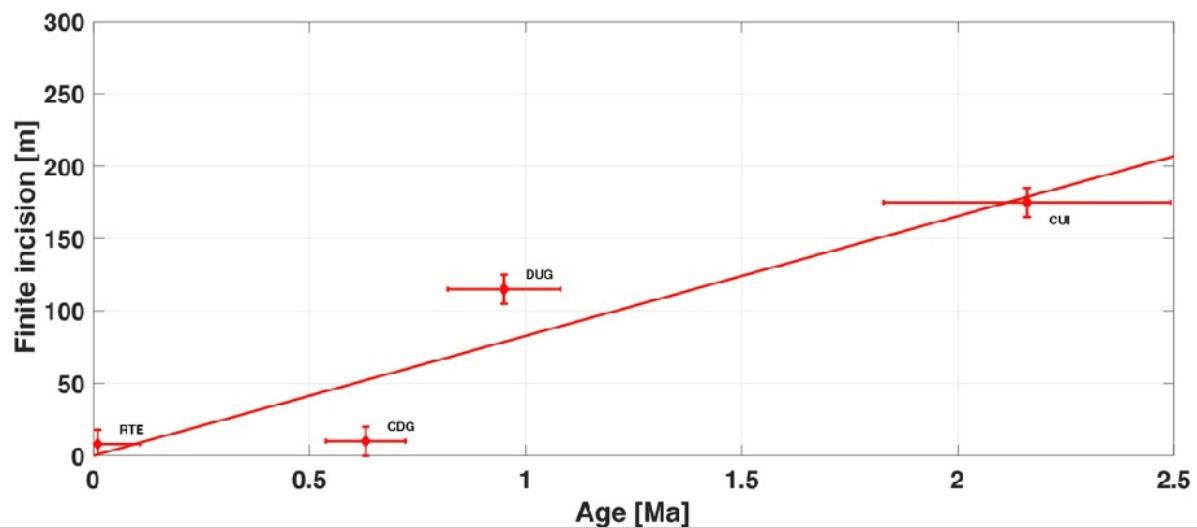
761

762

763

764

765

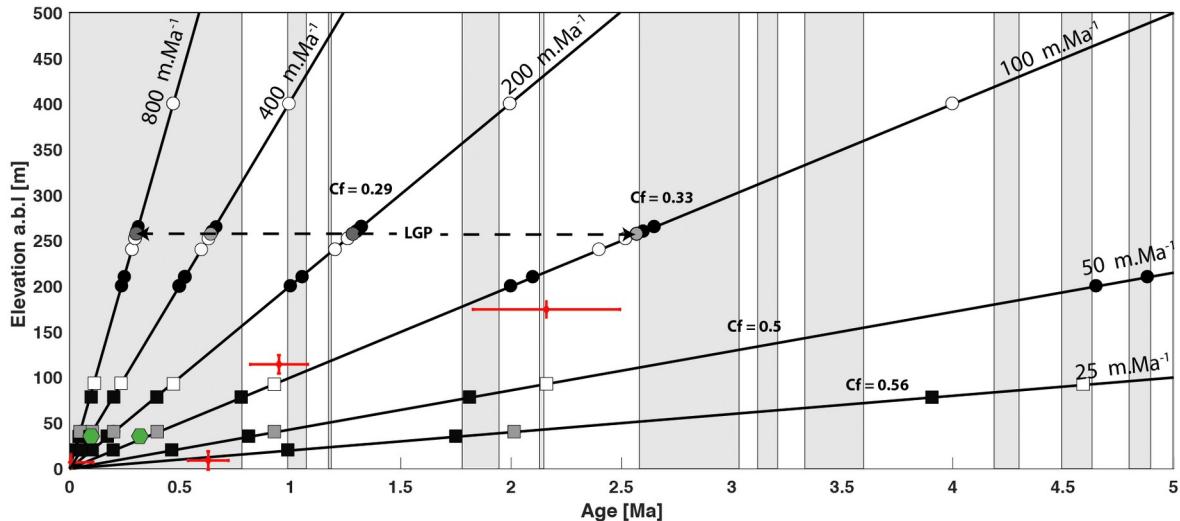


767

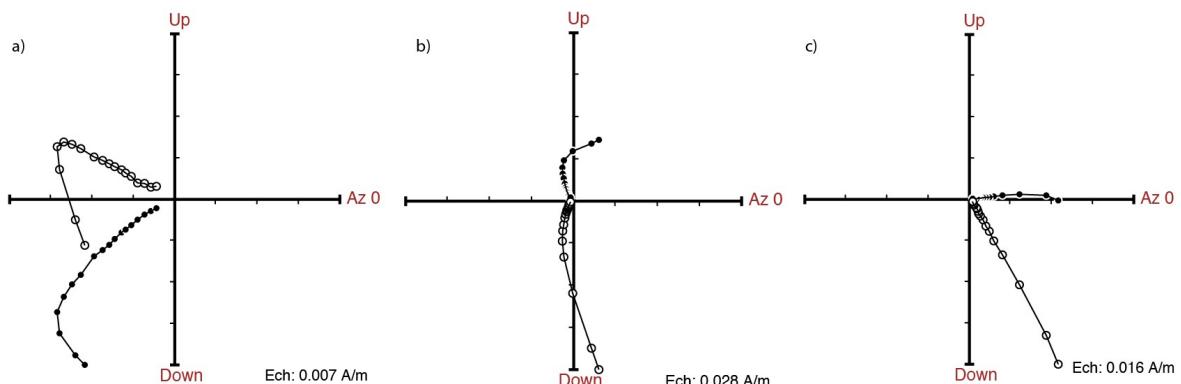
768 **Figure 4:** Example of clay sampling for the paleomagnetic study. Location at the entrance shaft (Highest
 769 elevation of every samples (~580 m a.s.l.), Leicasse Cave system, Site 2, Fig. 1)

770

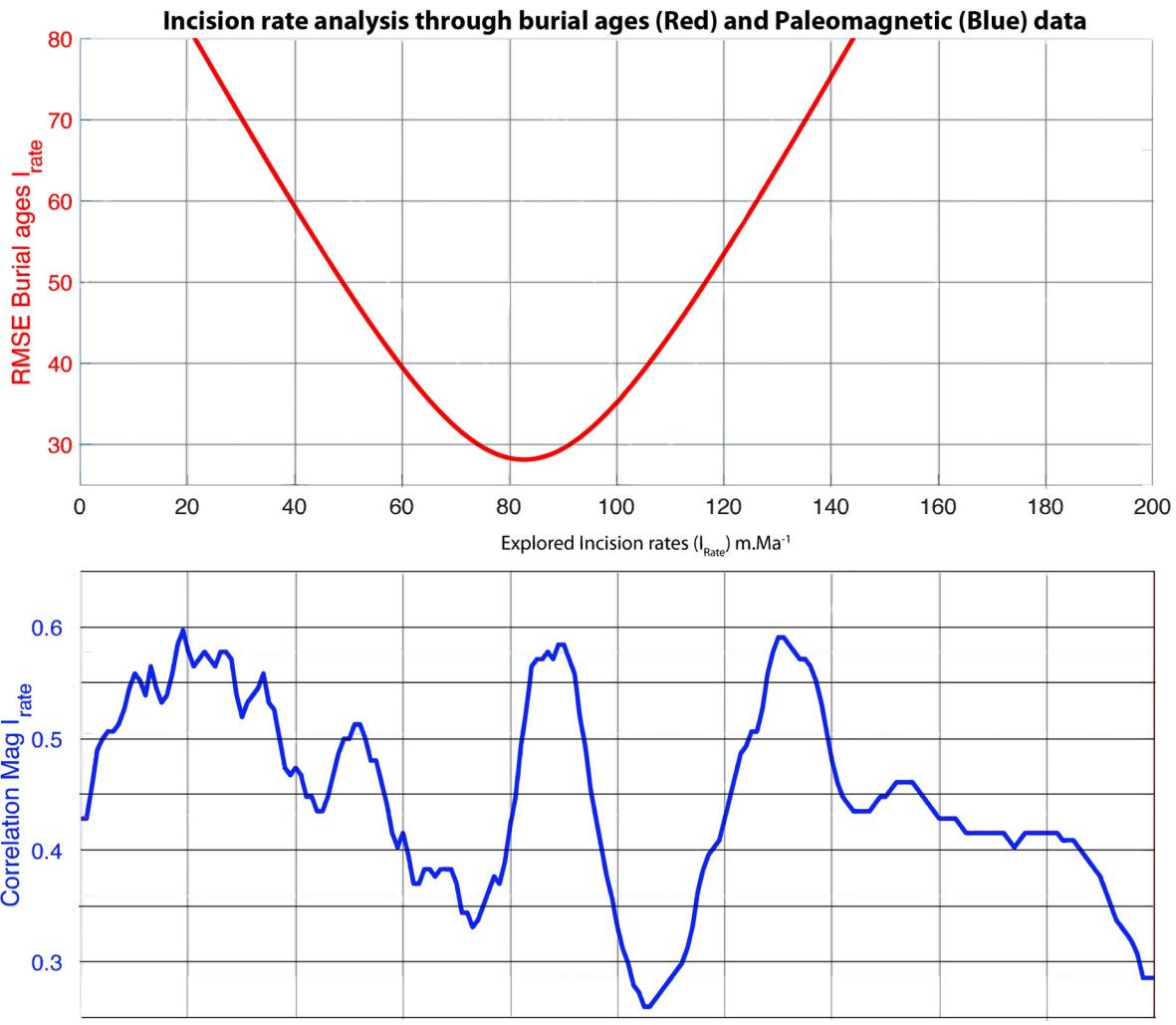
771


772

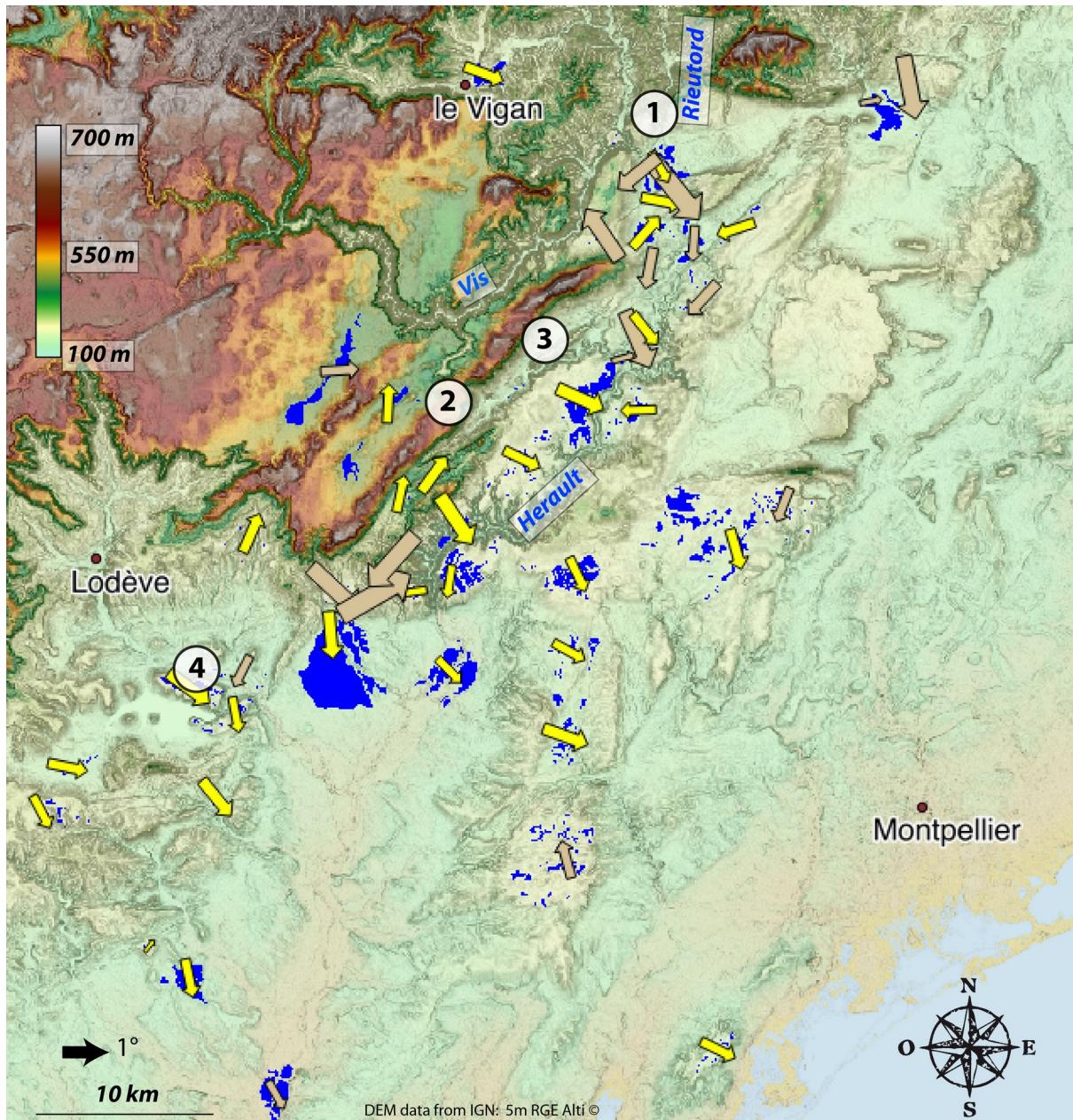
773 **Figure 5:** Correlation diagram of finite incision and burial age for the Rieutord canyon (Site 1, Fig.
 774 1). Finite incision is the elevation of the sampling site relatively to the current riverbed. RTE for
 775 Route Cave, CDG for Camp de Guerre Cave, DUG for Dugou Cave and CUI for Cuillère Cave


776

777


778

779
780 Figure 6. Constraining the incision rate in the Cevennes margin, using paleomagnetic polarities from
781 clay deposits (black, grey and white symbols) and burial ages (red crosses): Circles are from the Le-
782 icasse cave with LGP being *les gours sur pattes profile* (see text), squares are from the Garrel cave.
783 Black, grey and white symbols correspond to normal, transitional and reverse polarities, respectively.
784 Black linear straight lines define possible incision rates that are supposed stable thought time. (num-
785 bers in white rectangles define the Cf values are correlation factor between the measured paleomag-
786 netic polarities and the predicted paleomagnetic scale (see also Figure 8). Green hexagons show the
787 U/Th ages obtained on speleothems in the Garrel by Camus (2003).



790
791
792 **Figure 7: Zijderveld Diagram for three samples from the Gours-sur-Pattes (Leicasse, Site 2,
793 Fig.1) site. Stratigraphical order is from a) (the older, base of the profile) to c) (the younger, top
794 of the profile).**

796
797 **Figure 8: Best incision rates based on paleomagnetic data (blue) and burial ages (red). The blue**
798 **curve is the normalized smoothed (10 m/Ma sliding window for better visualization) correlation**
799 **between theoretical and observed polarities. The highest correlation corresponds to the best**
800 **incision rates. The red curve is the RMSE for the linear regression through the burial ages data set**
801 **shown on Fig. 4.**

802
803
804
805
806
807
808
809
810
811
812
813
814

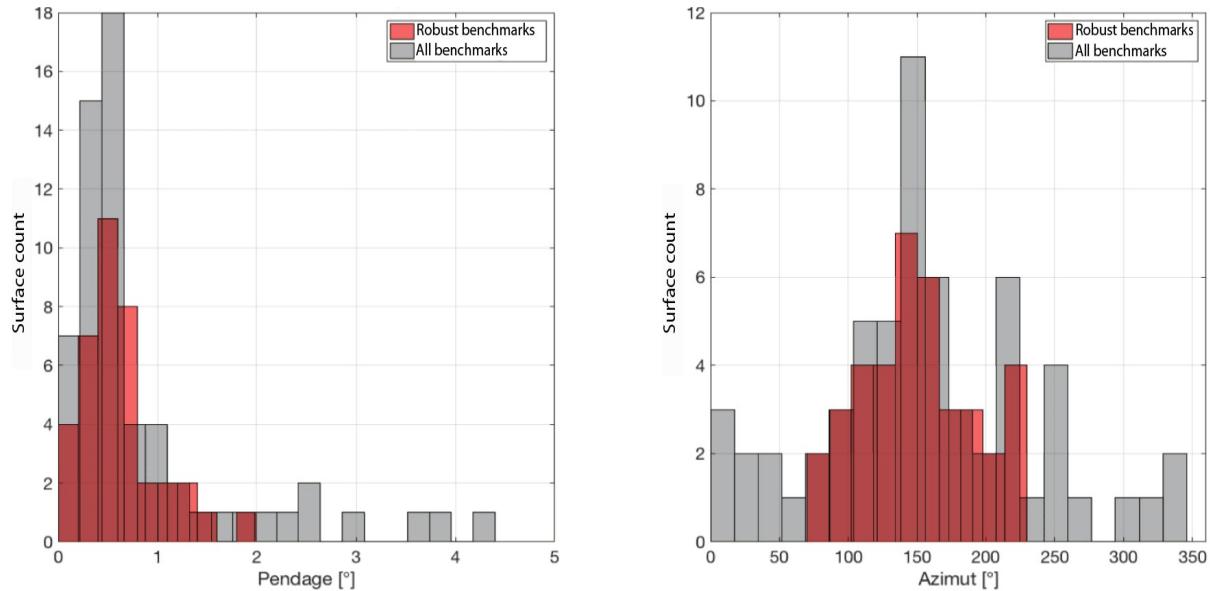
815

816

817 **Figure 9: Tilting map of geomorphological benchmark (blue areas). Base-map is 30 m resolution**
 818 **DEM with slope shadow. Arrows are orientated according to the marker downward dip. The arrow**
 819 **size is set accordingly to the corrected tilting angle (the bigger, the more the tilting). Yellow and**
 820 **brown arrows are for robust and less robust surfaces respectively. Several arrows are hidden**
 821 **because of their small size and too high proximity with bigger ones. Numerated site 1) is the**
 822 **Rieutord Canyon, 2) is the Leicasse Cave System, 3) is the Garrel Cave system and 4) is the Lodève**
 823 **basin with dated basaltic flows. See Fig. 1 for geographical coordinates.**

824

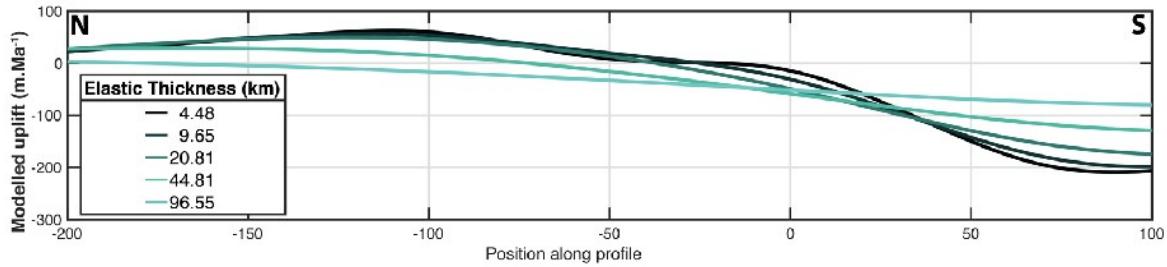
825

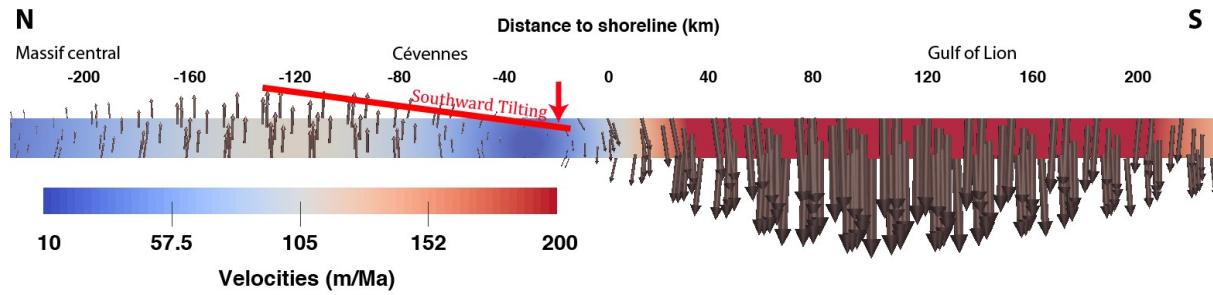

826

827


828

829


830


831
832 **Figure 10: Tilting and azimuth distribution.** Left panel is density distribution for surface maximum
833 tilting in degree. Right panel is azimuth of maximum dipping relative to the north. For each
834 histogram, red and grey populations are for robust and primary detected markers.

838
839
840
841 **Figure 11: Top panel: schematic topographic profile.** The red box delimits the area shown Fig. 1
842 and 9. Middle panel, surface processes profile, negative values are for erosion and positive values
843 for sedimentation. Bottom panel: model set-up with two compartments (one for the Cevennes area
844 and the second one for the gulf of Lion). The base of the model is compensated in pressure and the
845 right and left limits are fixed at zero horizontal velocity and free vertical velocity. T_e is the
846 equivalent elastic thickness (in km), E (Pa) and v are the Young modulus and the Poisson
847 coefficient respectively whom values are independent in each compartment.

850 **Figure 12: Modeled uplift according to different Te. Most plausible Te are between 10 and 30 km.**

852 **Figure 13: Modeling result for Te= 15 km. Erosion-sedimentation rate profile is the same as in Fig.**
 853 **6. Velocity field is shown using arrow for orientation velocity magnitudes are quantified by the**
 854 **font color code. Black values on top are distance relative to the sea-shore (positive value landward**
 855 **and negative values seaward). Red line represents the southward modeled tilting due to**
 856 **differential uplift.**

857

Cave	Lat	Lon	Elevation	Height	Conc ^{10}Be (10^4 atm/g)	$\sigma^{10}\text{Be}$ (10^3 atm/g)	Conc ^{26}Al (10^5 atm/g)	$\sigma^{26}\text{Al}$ (10^4 atm/g)	$^{26}\text{Al}/^{10}\text{Be}$ (and σ)	Burial age and σ (Ma)
RTE	43.960	3.707	175	8	3.54	1.18	2.16	1.47	6.11 \pm 0.46	0.20 \pm 0.15
CDG	43.955	3.710	185	10	8.87	3.12	4.29	3.28	4.83 \pm 0.41	0.67 \pm 0.16
DUG	43.957	3.711	245	115	1.27	5.68	0.529	0.636	4.15 \pm 0.53	0.99 \pm 0.25
CUI	43.959	3.711	354	175	1.70	7.14	0.375	0.528	2.20 \pm 0.32	2.28 \pm 0.28

858

859 Table 1: Samples analytical results and parameters. Cave code are: RTE for the “de la route” Cave, CDG for the
 860 “Camp de Guerre” cave, DUG for the “Dugou” Cave and CUI for the “Cuillère” Cave. Main parameters are the
 861 geographical coordinate (Lat, Lon in decimals degree), the elevation (a.s.l), the height (a.b.l., computed
 862 relatively to the surface river elevation. The concentration (atoms/g quartz) of ^{10}Be and ^{26}Al in collected sand
 863 samples are all AMS $^{10}\text{Be}/\text{Be}$ and $^{26}\text{Al}/\text{Al}$ isotopic ratios corrected for full procedural chemistry blanks and
 864 normalized to KN-5-4 and KN -4-2, respectively. The error in the brackets is for total analytical error in final
 865 average ^{10}Be and ^{26}Al concentrations based on statistical counting error s in final $^{10}\text{Be}/\text{Be}$ ($^{26}\text{Al}/\text{Al}$) ratios
 866 measured by AMS in quadrature with a 1% error in ^9Be spike concentration (or a 4% error in ^{27}Al assay in
 867 quartz) and a 2% (or 3%) reproducibility error based on repeat of AMS standards. Burial age (minimum)
 868 assuming no post-burial production by muons at given depth (all deeper than 30m) in cave below surface and
 869 assuming initial $^{26}\text{Al}/^{10}\text{Be}$ ratio is given by the production ratio of 6.75. The burial age error determined by using
 870 a $\pm 1\sigma$ range in the measured $^{26}\text{Al}/^{10}\text{Be}$ ratio