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Response to review of Romain Jolivet (Referee) 
 
We are grateful for the constructive feedbacks provided by Romain Jolivet. He raises 

three main issues, which are addressed in detail below, answering as thoroughly as 
possible at each point raised. Furthermore, specific comments to individual cases of the 
manuscript are provided. In the following, we will repeat the referee’s statements and our 
reply to it (in bold font).  

 
 

In this article, Anderlini et al propose to apply an approach that has been applied extensively to 
various tectonically active regions globally but, to my knowledge, not very often to the actively 
deforming areas in the alps. The authors first derive some velocity fields from GNSS and InSAR 
data and describe some available leveling measurements. They propose a decomposition of the 
InSAR velocity maps into vertical and horizontal velocity fields, which are then discussed. They 
move on to a very classic 2D elastic modeling of the deformation to explore potential stress 
accumulation when considering the active faults in the region. 
In general, the paper is well written and I do not see major issues with it. However, some points 
need to be discussed and my comments might require a bit of work. Figures are clear (although 
texts could be emphasized on the maps). I see three main issues in the paper that require being 
fixed before publication but, after that is done, this paper will be a very interesting contribution to 
the discussion on how active are these frontal thrusts surrounding the Alps. I hence recommend 
moderate revisions and I am looking forward to see a revised version of the article. I have set 
major revisions in the review system because there is no intermediate step between minor and 
major for this journal. 
 
Main Comments: 
1 - There is very little discussion on how the selection of the data is performed to avoid the effect 
of subsidence in the plain. The authors propose a strict threshold of -0.5 mm/yr of vertical motion 
below which any deformation is considered as subsidence and removed from the data fed into the 
model. In my opinion, this is risky, as some long wavelength subsidence might affect the general 
pattern of deformation. If subsidence is high near the coast and in the plain, as implied by the data, 
then there should be a bending effect that will affect the whole dataset. The wavelength of such 
bending might depend on the processes at stake, but it is unlikely that a strict threshold will allow 
to bypass this discussion.  

 
We understand the raised point. We are aware that in this region several different 

deformation sources are involved besides tectonic loading. Concerning the widespread 
subsidence in the Venetian plain, there is an extensive literature discussing all the 
processes involved but no bending effects are mentioned. To justify the chosen threshold, 
we add in Section 3.4 an in-depth description of the ongoing processes as follows: “Several 
studies investigated subsidence processes in the Venetian plain (e.g. Carminati and Di 
Donato, 1999; Carbognin et al., 2004; Teatini et al., 2005; Bock et al., 2012), which is due to 
three main causes (both of natural and anthropogenic non-tectonic origin): 1- aquifer 
compaction after the strong groundwater withdrawal in the second half of the last century 
(e.g. Gatto and Carbognin, 1981; Carbognin et al., 1995); 2- uncontrolled expansion of 
coastal settlements and industrial activities (e.g. Tosi et al., 2002); 3- recent sediment 
compaction (e.g. Brambati et al., 2003; Fontana et al., 2008). As we can see from the profile 
A-B of Fig.5, subsidence rates increase from the center of the plain towards the coasts as 
due to the sum of the aforementioned processes.” Since none of the these processes can 
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be taken into account in our model, we choose the threshold of -0.5 mm/year and we add 
in the manuscript a reference to Section 3.4 to justify the choice. 

 
My point mainly arises from the fact that (and this is an issue) your model does not really fit the 
InSAR and leveling data you are using. The relatively high rates of uplift measured in the north 
are not correctly predicted by your model (which underdetermines uplift) while the low rates to the 
south are over-determined. It seems that there is a constant trend between the geodetic data and 
the model. Geodetic data agree well with each other, which is great, but the model does not really 
manage to catch up. This could also be caused by isostatic adjustment adding a long wavelength 
deformation (i.e. a wavelength longer than profile you have established). One possibility would be 
to explore the effect of a linear trend (or whatever long-wavelength pattern you can think of) that 
would represent the long wavelength deformation needed on top of what results from dislocations 
in an elastic half space. This requires exploring the tradeoff between this long wavelength 
deformation signal and what is predicted in terms of locking depth and slip rates for both faults. It 
should have an impact and should be accounted for in the inverse problem. 

 
As concern the uplift of the Alps, the processes responsible for this signal are: 1) 

active tectonic shortening, which is expected to be significant in the Eastern Southern Alps 
due to the active compressional Adria-Eurasia convergence 2) glacial isostatic adjustment 
(GIA), which is expected to be higher in the center of the Alpine chain 3) erosional 
unloading 4) geodynamic processes due to mantle flows. We refer to Sternai et al. (2019) 
for a review of the aforementioned processes. Considering that for the eastern Alps the 
contribution to the uplift rates due to mantle flows (process n. 4) seems to be uncertain and 
negligible (Sternai et al., 2019), plausible estimates of the isostatic adjustment to 
deglaciation (n. 2) and erosion (n. 3) may account for up to ~80% of the budget of observed 
uplift rates in the Eastern Alps (see Fig.8 of Sternai et al., 2019). 

Several models have been proposed to quantify the Alpine uplift due to the glacio-
isostatic contribution (e.g. Barletta et al., 2006; Spada et al. 2009; Norton and Hampel, 2010; 
Mey et al., 2016) and the erosional unloading (e.g. Sternai et al., 2012, 2019; Mey et al., 2016), 
mostly by means of large scale models with a poor spatial resolution. However, it is known 
that these models are less reliable at the border of the Alpine ice cap (Sternai et al., 2019), 
where our study area is located. In the original manuscript we widely discussed about this 
issue in Section 6 (L380-391), and given these uncertainties, we have not considered to 
correct the geodetic observations for a long-wavelength isostatic contribute. However we 
acknowledged its importance, stating that “a possible correction for these contributions 
would slightly reduce the intensity of uplift rates. If it were possible to apply such a 
correction, the slip-rates estimates on the fault planes could be slightly reduced, in turn 
decreasing a little the seismogenic potential associated with the MT and BVT faults.” (L389-
391).  

In order to provide a quantitative estimate, we made a test by inverting for slip-rates 
and locking-depths assuming the same fault geometry, but geodetic rates corrected for a 
long-wavelength vertical signal, which is here assumed as a linear gradient of uplift rate 
along 100 km of distance. Considering the mean uplift rate of 1 mm/year in the 
northernmost sector of the study area (the Dolomites), we choose 0.8 mm/year (80%) as 
maximum vertical isostatic adjustment to be removed from the observed vertical velocities. 
In particular we consider a linear trend (with a slope of 0.008 mm/(year*km)) that starts from 
Treviso city (TREV and TVSO GPS stations), along the same direction of the profile 
indicated in Fig. 2, and reaching the limit of 0.8 mm/year of uplift rate in correspondence of 
POZZ station.  
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We are aware that this model is purely speculative and based on strong assumptions, 
but we can consider this simple approach as an upper-bound case on how considering or 
not these long-wavelength signal may affect the results of the inversion. 

We remove this linear signal from all the geodetic datasets, i.e. from the vertical 
component of GPS velocities, leveling data and subsampled InSAR LoS rates, and perform 
the inversion of the modified velocities in order to estimate locking depths and slip rates 
for the proposed fault geometry. Due to these changes in the input observations, we re-
evaluate the relative weighting factor Wsar, finding an optimal value of 0.68. 

The results of the inversion are presented in the Figure A1 (below), showing the same 
information reported in Figure 7 of the manuscript with a few differences: the purple line in 
the section of the vertical rates represents the linear gradient we removed, and light gray 
dots indicate the unmodified original datasets, while all the other data are corrected for the 
linear gradient. In the bottom panel the estimated parameters (locking depth and dip-slip 
rates) are reported, as well as in the following table. 

 

Dataset 
LD 

Montello 
Ramp 

LD 
Bassano 

Ramp 

Slip rate 
Montello 
Ramp 

Slip rate 
Montello 

Flat 

Slip rate 
Bassano 

Ramp 

Slip rate 
Deep 
Ramp 

RMSE 
GPS 

RMSE 
LEV 

RMSE 
InSAR 

Corrected 
data 4.6 km 8.6 km 0.5 mm/a 0.35 

mm/a 
2.0  

mm/a 2.3 mm/a 0.46 
mm/a 

0.57 
mm/a 

0.59 
mm/a 

Original 
Data 

5.6-3.8+3.5 
km 

9.1-0.6+1.3 
km 

0.5-0.1 +0.2 
mm/a 

0.4 ± 0.1 
mm/a 

2.1-0.6+0.8 
mm/a 

2.5-0.7+0.8 
mm/a 

0.44 
mm/a 

0.72 
mm/a 

0.66 
mm/a 

 
We observe that there are no substantial differences with respect to the optimal fault 

parameters obtained with the original dataset (Table 2 of manuscript, also reported above). 
This correction lead to a slight decrease of slip rates and locking depths, which are, 
however, all largely within the error bounds of the optimal model. We can note that at the 
expense of a slight increase of GPS RMSE, the misfit for the other data decreases, allowing 
for a better balancing among the three dataset. The slight increase of GPS residuals is 
mainly due to the misfit between the model and the vertical velocities to the north (see 
PASS and FDOS in the figure below) that depends, however, on the vertical gradient we 
remove which is steeper than the gradients expected from large scale models. In light of 
these results we do not aim at correcting the geodetic velocities for an isostatic uplift 
signal, considering also that the estimated fault parameters doesn’t provide significant 
differences in terms of slip-rates and locking depths. Most of these considerations have 
been added in Section 6 of the main text and the specific details in the Supplement.  
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Figure A1: Cross sections, across the A-B profile of Fig. 2 of the manuscript, showing the 
modeled (black lines) horizontal and vertical velocities, as well as the SAR ascending and 
descending LoS rates, along with the measured ones. Green points indicate leveling data 
and small blue dots represent the subsampled InSAR LOS rates used during the inversion. 
The bottom panel reports the optimal fault geometry with dip-slip rates and locking depths 
estimates. BV: Belluno valley 
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2 - There is not enough details on how the InSAR data have been processed. Although the SBAS 
method is now quite known, quantitative information is required to assess the quality of the velocity 
field. It is not only because it correlates quite well with GPS that everything has been done right. 
For instance, correcting for tropospheric delays using a phase-topography correlation when trying 
to unravel a signal that correlates as well with topography is dangerous. One could easily mix 
deformation with tropospheric delays.  

 
We used the SARScape module of ENVI software, provided by Harris Geospatial 

Solutions (http://sarmap.ch/tutorials/sbas_tutorial_V_2_0.pdf), to perform SBAS analysis. 
The SBAS algorithm includes several steps (e.g Pasquali et al. 2014): creation of a 
connection graph (computing all differential interferograms from the input image stack 
according to the chosen criteria for temporal and geometric baselines), differential 
interferogram generation (spectral shift and adaptive filtering), phase unwrapping, orbit 
refinement and re-flattening, first estimation of the average displacement, atmospheric 
phase screen removal, and final estimation of the average displacement and mean ground 
velocity. In our study, we achieved a ground resolution of 90 m by using a multi-looking 
factor of 4 in range and 20 in the azimuth. All the Single Look Complex images (SLC) are 
coregistered in the master image geometry using a 90-m Digital Elevation Model (DEM) 
provided by the Shuttle Radar Topography Mission (SRTM). The topographic phase 
contribution was removed using the DEM, too. We applied the Goldstein filter (Goldstein 
and Werner, 1998) to smooth the differential phase and use precise DORIS orbits (provided 
by the European Space Agency) and the SRTM DEM to correct the computed 
interferograms from possible orbital ramps. We used the Delauney minimum cost flow 
(MCF) network (Constantini, 1998) along with the Delaunay method to unwrap the 
differential interferograms. The unwrapping coherence threshold at this stage was set to 
0.3. We selected approximately several tens Ground Control Points (GCP) mainly at the 
borders of the processed frame, to perform the refinement and re-flattening step. 
Subsequently, the average displacement rate and residual height-correction factors were 
estimated by inverting a linear system through the Singular Value Decomposition method. 
Then, low-pass and high-pass spatial filters were used for the time-series images, to screen 
and remove the atmospheric phase component. In fact, the starting idea is that atmosphere 
is correlated in space but not in time. We considered two moving windows of 365 days and 
1200 meters for the two filters (High and low pass). Finally, the solution of the inversion 
was geocoded through the used DEM. All of the final displacement measurements were 
obtained onto the satellite line of sight (LOS) direction and geocoded in the UTM 33N 
reference system. 

 
Furthermore, since the region has quite strong topographic gradients, unwrapping is probably 
challenging and there is not a word on that (which method is used for unwrapping? In general, 
which software is used to compute the interferograms?).  

 
As mentioned above, we adopted the Minimum Cost Flow (MCF) algorithm with the 

Delauney triangulation method. The latter helps the propagation of the unwrapping solution 
to reach coherent pixels also if they are separated by non-coherent areas. In fact, as you 
can see from in Figure 4 of the main text, the solution was able to overcome only the first 
mountainous chain propagating through the valleys. This was exactly due the presence of 
quite strong topographic gradients, as the reviewer has noticed. All the A-InSAR 
processing chain, as already mentioned above, was computed using the Sarscape 
software. 
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Would it be possible to see a baseline plot?  

Yes, the following figure shows the obtained connections graph and baselines 
distribution for the ASAR-Envisat datasets of both ascending and descending orbits. We 
choose interferometric pairs with a perpendicular baseline smaller than 450 meters and a 
temporal baseline lower than 600 days for both the orbits. The figure is now added in the 
Supplement. 

 
Fig. A2: (A) Considered pairs connection graph for the descending SAR orbit; (B) 
Considered baseline graph for the descending SAR orbit; (C) Considered connection graph 
for the ascending SAR orbit; (D) Considered baseline graph for the ascending SAR orbit. 

 
Also, is there connectivity issues within the network, considering potential unwrapping issues?  

 
Looking at  Figure A2, we are confident that no remarkable unwrapping issues were 

found during such a step. Moreover, before following the inversion steps, we checked each 
interferogram discarding all the pairs showing clear unwrapping errors and keeping the 
ones with low atmospheric noise. 

 
What is the RMS of the reconstruction of your time series?  

 
We calculate the RMS considering one of the different possible formulas and exactly 

the following: 𝑅𝑀𝑆𝐸𝑟𝑟𝑜𝑟	 = 	√1 − 𝑟,𝑆𝐷. where SDy is the standard deviation of each 
retrieved displacement time series and r is the correlation coefficient between the time 
series and the considered acquisitions. RMS is a measure of the fitting quality geocoded. 
It is the RMSE expressed in millimeters. The higher this value the worse the fitting and 
inversion quality. The RMS about all the time series retrieval is showed in the figure A3: 



 7 

 
Fig. A3: RMSE maps of the displacement time series for the ascending and descending 
orbits 

 

 
Fig. A4: Chi-Square values for the ascending and descending orbits 
 
How linear is the time series?  

 
Initially, we considered a linear model in the inversion step then, in a second 

unwrapping run, the non-linearity is estimated from the residuals obtained as difference 
from the unwrapped phase and the linear model. One of the estimated parameters at the 
end of the processing chain is the Chi-square value (Figure A4) relative to each time series. 
Such a value is a non-dimensional number representing how much the time series diverges 
from the linear behavior. Low values of the Chi-square indicates a quasi-linear trend of the 
displacement time series, high values for the contrary. In any case, the Chi-square test has 
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to be considered carefully. In fact, high values do not mean not reliable result for that area. 
In fact the chi-square does not represent an absolute but relative parameter, in the meaning 
that it does not have a predefined maximum value (i.e. the interferometric coherence 
parameter) but can vary depending on the type of the movement present in the study area. 
So if there are zones with a non-linear behavior, such areas will show high chi-square 
values and vice-versa. In our case, high values of chi-square are greater than 100, thus 
values within 10-15% of the maximum can be considered representative of pixels having 
mostly linear behavior. 

 
Is there a time dependent signal?  

 
The retrieved patterns are mainly time independent, in the meaning that the most of 

the obtained ground deformation field shows a behavior tending towards the linear trend 
(red and orange areas in Figure A4) 
 
There is much more details provided for the processing of GPS data and the processing of InSAR 
being much less standardized than GPS these days (especially with the old Envisat data) suggests 
there is a lot to be added in the manuscript.  

 
We added much more info about the processing steps and the parameters setting 

adopted during the processing chain in the manuscript and in the Supplement. 
 

Finally, a lot of people have developed comparable methods for InSAR downsampling and they 
deserve some credit (see Lohman & Simons 2005, Jolivet et al 2012, 2015 or Sudhaus & Jonsonn 
2009 for instance, but there is many other papers mentioning this). 

 
We agree with the reviewer, there is a lot of literature regarding downsampling 

methods of InSAR data and we add now a short description in Section 4: “Most of literature 
regarding downsampling methods of InSAR data analyzes coseismic and volcanic ground 
deformation. In these cases just a portion of the displacement map is characterized by high 
deformation gradient, thus the widely-used quadtree sampling method (e.g. Jónsson et al., 
2002; Pedersen et al., 2003; Lohman and Simons, 2005; Metzger et al., 2011; Barnhart and 
Lohman, 2013) is appropriate. Indeed this algorithm reduce the number of data in order to 
represent the statistically significant portion of the signal (Jónsson et al., 2002) choosing 
a specific threshold value for the data variance in each iteration. This method has been 
applied also for interseismic studies (e.g. Jolivet et al., 2012; Maurer and Johnson, 2014; 
Xue et al., 2015) where, however, the signal-to-noise ratio of InSAR data is big enough to 
define an appropriate threshold value to avoid losing information of the deformation 
gradients. In our case, with low deformation gradients it is highly risky to apply a 
subsampling method that depends on the deformation signal itself. For this reason we 
apply an alternative method that uniformly reduce the density of pixels and the specific 
technical details are provided in the Supplement.” 
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3 - The description of the inversion procedure is incomplete. The algorithm used to find the 
minimum of the cost function should be, at least, named.  

 
We integrate the main text in Section 4 as follows: “The inversion method exploits a 

constrained, non-linear, derivative-based optimization algorithm (i.e. interior-point, see 
Byrd et al., 1999; Waltz et al., 2006). It allows to estimate the optimal parameter solution 
corresponding to a possible global minimum of the cost function representing the misfit 
between the model prediction and the geodetic measurements. These algorithms depend 
on the gradient and higher-order derivatives in order to guide them through misfit space, 
thus they can get trapped in a local minimum (Cervelli et al., 2001), providing the best 
results when the starting point is near the global minimum. However, in order to ensure 
that we find a global solution in the inversion, we tested several different initial guess 
founding always the same model estimate.” 

 
Furthermore, I suspect there is some regularization of the inverse problem involved (maybe not), 
but please mention it.  

 
No, there is no regularization of the inverse problem, but we applied specific 

constraints to the parameter space to be investigated (such as locking depth within the 
elastic thickness and slip rates kinematically consistent among them). Indeed, we did not 
modify the relationship of the cost function (as it would be done in case of a regularization) 
that considers only the weighted misfit between observed and modeled velocities, but we 
took advantage of the specific options of the minimization algorithm described above, 
forcing the model to respect the imposed constraints.  

 
In addition, the data covariance is not described. How is it determined? One cannot follow the deal 
with weights if one cannot reconstruct the covariance matrix. 

 
We add in the manuscript in Section 4 the description of the data covariance: “The 

data covariance matrix is computed as follows:𝑐𝑜𝑣	 = 	𝛴𝑅𝛴2where𝛴is the diagonal matrix of 
data uncertainty and R is the data correlation matrix, that is dimensionless, equal to one 
along the diagonal and the off-diagonal elements representing the correlation between 
each couple of data. Assuming the three geodetic dataset (GPS, InSAR and leveling) 
independent among them, the whole covariance matrix is composed by three independent 
blocks, one for each dataset. The correlation values are nonzero only for the three 
components of each GPS site, considering the measurements obtained by the GPS stations 
to be uncorrelated among them, and for the leveling data, following the approach of 
Árnadóttir et al. (1992). The InSAR data covariance matrix is instead diagonal with equal 
variance of 1 mm2/year2 for all the pixels.” 

 
Then, there is a problem in the a posteriori covariance discussion. The authors mention the a 
posteriori covariance is derived for the linear terms while bootstrap is used for the non-linear terms. 
In my opinion, the covariance that is derived here is obtained considering the least squares 
criterion (without regularization? with regularization? Is it just GˆT Cdˆ{-1} G ?) but then, it only 
corresponds to a “slice” of the model space, that slice corresponding to the best non-linear 
parameters obtained. If so, the a posteriori covariance is greatly underestimated as it is only 
representative of a joint marginal of the full a posteriori PDF.  
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We estimated the a-posteriori covariance matrix considering the least squares 
criterion (without regularization), but we agree with the reviewer that this is a partial 
representation of the slip rate uncertainties. We consider now to use the bootstrap 
distributions both for the linear and non-linear model terms providing the errors at 95% 
confidence bounds. Please see the answer below and the further specific details of the 
adopted approach. The error bounds for the estimated parameters have been corrected in 
Table 2 and in Figure 7 of the manuscript. For a full description of the model parameters 
uncertainties we provide also the trade-off distributions between parameters pairs, 
replacing Figure S6 of the supplementary material with the Figure A5 shown below. We can 
observe from these distributions that the locking depth estimates do not show any 
correlation with the other parameters, while for the dip-slip rates the strict correlation 
among them is representative of the kinematic conservation constraint, for which the only 
parameter we can consider independent is the deep decollement slip rate (underlined label 
of Figure A5). We have modified accordingly the main text, discussing in Section 5 the 
results in terms of fault parameters error bounds from the frequency histograms and of 
possible correlation between parameters from the trade-off scatter plots.   
 

 
Fig A5: Model parameters distribution, obtained from the inversion of 1000 bootstrap re-
samples of the original data (see Section 5). Top row: frequency histograms of the optimal 
fault parameters with the best optimal model (red line) and boundary values of 95 percentile 
confidence interval (green lines); see Table 2 for specific values. Other rows: scatter plots 
showing trade-off between parameter pairs.  
 
Finally, one can see in supplementary material figure S6 that the range of possible models for the 
locking on the Montello Ramp is bi-modal. 

 
Figure S6 (now, top row of Figure A5) doesn’t show the range of possible models, but 

the collection of the optimal models we obtain randomly resampling the data by means of 
a bootstrap procedure used to estimate confidence intervals of the derived parameters 
(Segall and Davis, 1997) without making assumptions about the underlying statistics of 
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errors (Amoruso and Crescentini, 2008). This method reflects the limitation of the data set 
used (Cervelli et al., 2001), and the bi-modal behavior of the locking depth of the Montello 
Ramp should be interpreted as representative of the low capability of the data to constrain 
this parameter, for which indeed the deformation signal is close to the techniques limits 
and velocity measurements appears noisy. These considerations are now added to the 
manuscript in Section 5 to provide a more complete description of the error bounds 
definition. 

 
Then, if it is not Gaussian, why choosing the mean model?  

 
We didn’t choose the mean model but the optimal model estimated by the inversion 

algorithm, described above, using the whole geodetic dataset. 
 

It seems that some models could be more appropriate. Would it be possible to sample for all the 
possible models using a Monte Carlo approach, which would give all the tradeoffs between the 
various parameters (and potentially solve the issue raised in my first comment)? 

 
The bootstrap resampling provides optimal model distribution and the tradeoffs 

between the various parameters as shown in Figure A5.  
 

For the minor comments, please refer to the annotated pdf I have sent along with my review.  
 
We corrected the minor comments annotated in the pdf. 

 
Looking forward to read an improved manuscript, if I am required to do so. I also strongly 
encourage the authors to add their geodetic data (i.e. the GPS, InSAR and leveling rates 
presented in the paper) to an online repository so other scientists can have a go at the modeling, 
once this study is published. 

 
Since the GPS and leveling rates are already available in the Supplement, only InSAR 

velocities are made available in an online repository.    
 
Please also note the supplement to this comment: 
https://www.solid-earth-discuss.net/se-2020-10/se-2020-10-RC2-supplement.pdf 
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