

1 **Multi-scale analysis and Modelling of aeromagnetic data over the**
2 **Bétaré-Oya area in the Eastern Cameroon, for structural evidence**
3 **investigations.**

4 **Christian Emile Nyaban^a; Théophile Ndoogra-Mbarga^{a, b*}; Marcellin Bikoro-Bi-Alou^c;**
5 **Stella Amina Manekeng Tadjouteu^a; Stephane Patrick Assembe^{a, d}**

6 ^aPostgraduate School of Sciences, Technologies & Geosciences, University of Yaoundé I, Yaoundé, Cameroon.

7 ^bDepartment of Physics, Advanced Teachers' Training College, University of Yaoundé I, P.O. Box 47 Yaoundé
8 Cameroon.

9 ^cDepartment of Earth Sciences, Faculty of Science, University of Maroua, Maroua, Cameroon.

10 ^dDepartment of Physics, Faculty of Science, University of Bamenda, Bamenda, Cameroon.

11 Correspondence should be addressed to Ndoogra Mbarga Théophile; *tndougsa@yahoo.fr

12

13 **ABSTRACT:**

14 This study was carried out in the Lom series in Cameroun, at the border with Central African
15 Republic located between the latitudes 5°30'-6°N and the longitudes 13°30'-14°45'E. A multi-
16 scale analysis of aeromagnetic data combining tilt derivative, Euler deconvolution, upward
17 continuation and the 2.75D modelling was used. The following conclusion were drawn: 1-
18 Several major families of faults were mapped. Their orientations are ENE-WSW, E-W, NW-
19 SE, N-S with a NE-SW prevalence. The latter are predominantly sub-vertical with NW and SW
20 dips and appear to be prospective for the future mining investigation. 2-The evidence of
21 compression, folding and shearing axis, was concluded from superposition of null contours of
22 the tilt-derivative and Euler deconvolution. The evidence of the local tectonics principally due
23 to several deformation episodes (D1, D2 and D4) associated with NE-SW, E-W, and NW-SE
24 events, respectively. 3- Depths of interpreted faults ranges from 1000 to 3400 m. 4- Several
25 linear structures correlating with known mylonitic veins were identified. These are associated
26 with the Lom faults and represent the contacts between the Lom series and the granito-gneissic
27 rocks; we concluded the intense folding caused by senestral and dextral NE-SW and NW-SE

28 stumps; 5- We propose a structural model of the top of the crust (schists, gneisses, granites) that
29 delineates principal intrusions (porphyroid granite, garnet gneiss, syenites, micaschists,
30 Graphite and Garnet gneiss) responsible for the observed anomalies. The 2.75D modelling
31 revealed; many faults with a depth greater than 1200 m and confirmed the observations from
32 RTE-TMI, Tilt derivative and Euler deconvolution; 6- We developed lithologic profile of
33 Betare Oya basin.

34 **Keywords: Aeromagnetic data, multi-scale analysis, 2.75D modelling, faults.**

35 **1. Introduction**

36 Magnetic method has a renewed interest for solid mineral, hydrocarbons, and geological
37 research. During data interpretation, the first crucial step is the removal of the effect of deep-
38 seated structures from the observed total magnetic field to enhance shallow body signatures
39 (Ndougsa et al., 2013). These shallow bodies in mining exploration are generally associated to
40 mineral substances which have magnetic properties (Ndougsa et al., 2013). In our study,
41 magnetic fabrics are signalled by Kankeu et al. (2009). The second step is mapping causative
42 body's edges, which is fundamental to the use of potential field data for geological mapping.
43 The edge detection techniques are used to distinguish between different sizes and different
44 depths of the geological discontinuities (Oruç et al., 2011). There have been several methods
45 proposed to help normalizing the magnetic signatures in images. Cordell and Grauch, (1985)
46 have suggested a method to locate horizontal extents of the sources from the maxima of
47 horizontal gradient of the pseudo-gravity computed from the magnetic anomalies. Verduzco et
48 al., (2004) discuss about the use of tilt derivative from gravity or magnetic field anomaly maps
49 using the horizontal gradient magnitude of the tilt derivative as an edge detector for vertical
50 contacts.

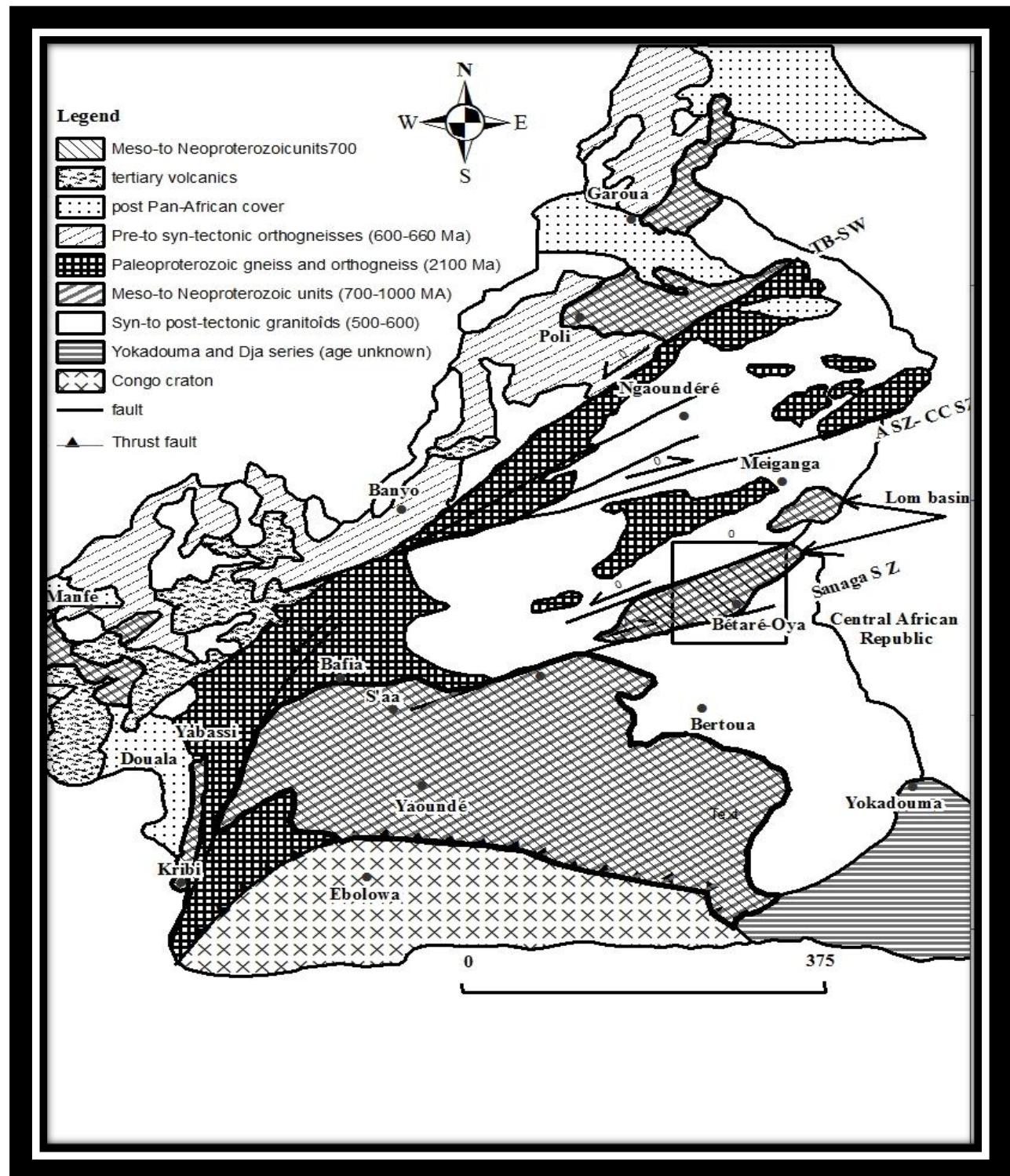
51 Salem et al., (2008) developed a new interpretation method for gridded magnetic data based
52 on the tilt derivative, without specifying prior information about the nature of the source. In this
53 article, we have used Salem's approach for the location of vertical contacts and source depth.

54 In addition, because the identified source has a non-uniform volume from the roof to the bottom,
55 we examine how this volume varies with depth by using upward continuation of magnetic
56 anomaly.

57

58 **2. Geological and tectonic setting**

59 **2.1. Regional setting.**


60 The following structural domains can be distinguished in the Pan-African belt north of the
61 Congo craton (Toteu et al., 2004; Fig. 1.A):

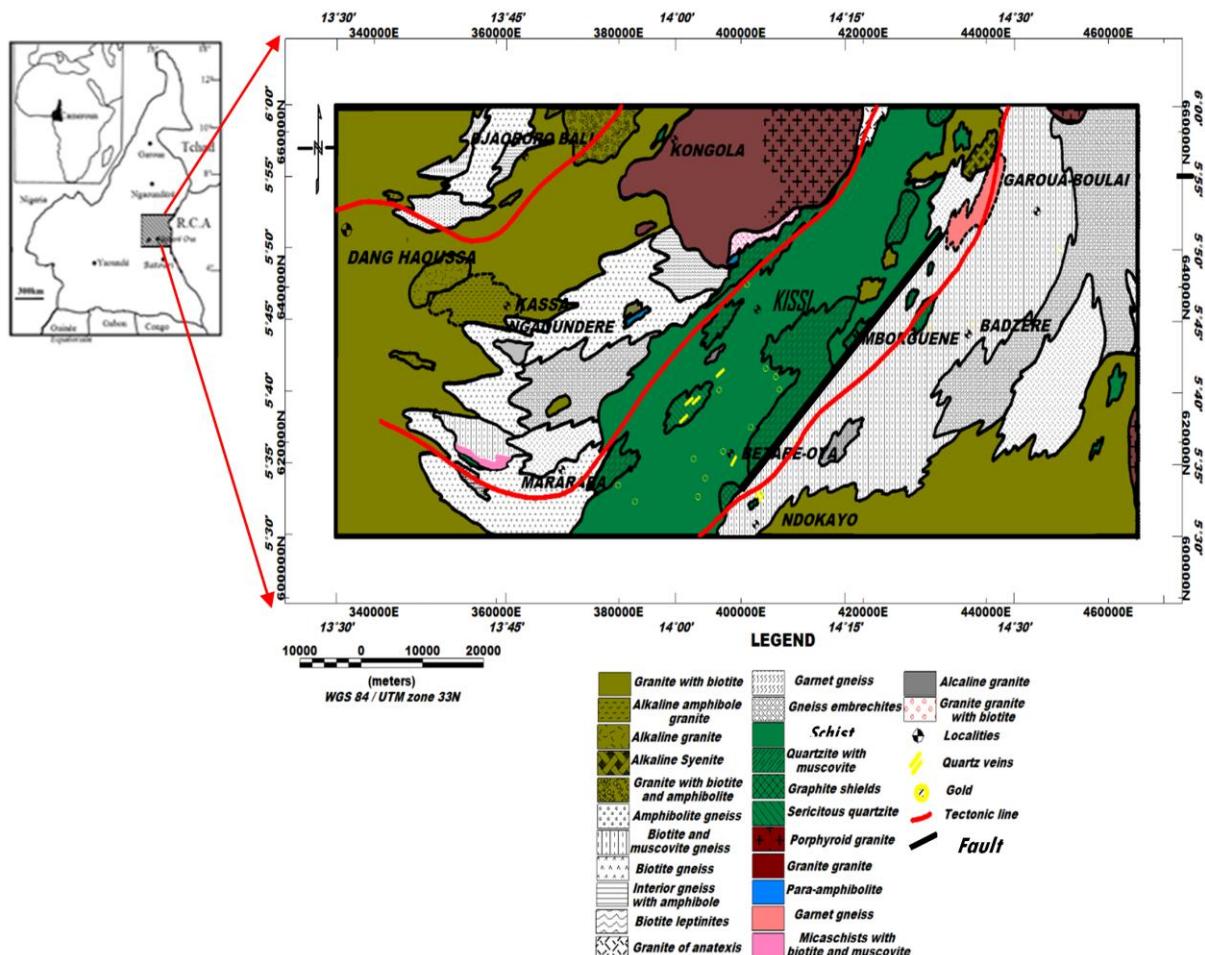
62 (a) A pre-collisional stage that includes the emplacement of pre-tectonic calc-alkaline
63 granitoids (e.g., at 660–670 Ma);
64 (b) A syn-collisional stage inducing crustal thickening and delamination of the subcrustal
65 lithospheric mantle and comprising D1 and D2 deformations and S-type granitoids
66 (640–610 Ma; Toteu et al., 2004);
67 (c) A post-collisional stage associated with D3 deformation (nappe and wrench)
68 concomitant with exhumation of granulite's, development of D4 shear zones, and
69 emplacement of late-tectonic calc-alkaline to sub-alkaline granitoids (600–570 Ma).

70 The Pan-African formations of Cameroon belong to the mobile zone of Central Africa (Bessoles
71 et al., 1980), also known as the Oubanguide chain (Poidevin, 1985). It is attached to the East to
72 PanAfrican formations of the Mozambican belt of sub meridian orientation. To the West, it
73 extends to the North of Brazil by the Sergipe range. Two larges dextral mylonitic shear zones,
74 the Sanaga Fault (Dumont, 1986) and the Cameroon Centre Shear Zone, cross Cameroon from
75 northeast to southwest. These major shears belong to the Oubanguides setback zone (Rolin,
76 1995), which continually follows from the Gulf of Guinea to the Gulf of Aden (Cornacchia et
77 al., 1983). Geologically, the Pan-African mobile chain is composed of granites, schists,
78 micaschists, and migmatites (Poidevin, 1985).

79

80

81


82

83 **Figure 1.A** Geologic map of Cameroon, showing major lithotectonic units: ASZ, Adamaoua
84 shear zone; CCSZ, Central Cameroon shear zone; TBSZ, Tcholliré- Banyo shear zone,

85 modified from Kankeu et al. (2009) as a document available in a public domain. The location
86 of the study area is marked by a box and shown in detail in Figure 1B.

87 **2.2. Local setting.**

88 The study area is in eastern Cameroon; it is bounded by north latitudes 5°30'-6°, and east
89 longitudes 13°30'-14°45' (Fig. 1.B). The lithology comprises the Lom series constituted of
90 Neoproterozoic rocks sequence consisting of metasedimentary and metavolcanic rocks with
91 late granitic intrusions (Ngako et al., 2003). The lithologic units have a strong NE-SW regional
92 foliation deflected in places by the granitic pluton reflecting dextral and sinistral shear senses.
93 The rocks have been metamorphosed to greenschist facies and hydrothermal alteration
94 especially around the granitic plutons (Odey Omang et al., 2014). Gold is sporadically identified
95 in NE-SW quartz veins associated with early pyrite whereas a vug-filling late pyritization event
96 is barren (Asaah, 2010; Nih Fon et al., 2012).

98 **Figure 1.B** Geological map of the study area (Gazel and Gerard, 1954 modified as a document
99 available in a public domain). In the centre we have the Lom series marked by its greenschist
100 facies. We can also perceive in red the tectonic lines that cross the study area.

101 The orography and hydrographic network would be structurally guided (Kouske, 2006), sub-
102 divided into three major morphological units. The high-altitude unit (800-1092 m) which is a
103 vast peneplain enamelled by interfluves with multiple vertices of alignment-oriented NW-SE;
104 N-S and NE-SW; The low altitude unit (652-760 m) which is a large flat-bottomed depression,
105 in the centre of which is a U-shaped valley, oriented NE-SW within which flows the Lom river
106 and the intermediate unit (760-860 m) which corresponds to a long NE-SW oriented cliff
107 connecting the high-altitude unit to that of low altitude. In its northern part, this unit has an E-
108 W orientation.

109 **2.3. Geophysical constraints**

110 Seismic anisotropy in Cameroon has been studied by Koch et al., (2012) through analysis of
111 SKS splitting allows to identify four regions of distinct anisotropy: moderately strong NE-SW
112 oriented fast polarization directions ($\delta t \approx 1.0$ s) beneath two regions: the Congo Craton in the
113 south and the Garoua rift in the north; weak anisotropy ($\delta t \approx 0.3$ s) between the Congo Craton
114 and the CVL; N-S oriented fast polarization directions within the CVL, with $\delta t \approx 0.7$ s. (Koch
115 et al., 2012). Benkhelil et al., (2002) used seismic data and proposed structural and
116 chronostratigraphic scheme of the southern Cameroon basin (clayey sand, dolomitic to calcite
117 sandstone, marls and sandstone, dolomitic sandstone, granite, gneiss).

118 Gravity studies were carried out, Tadjou et al., (2004) identify many structures like contacts,
119 dykes, fractures, and faults in the transition zone between the Congo Craton and the Pan-African
120 Belt in Central Africa. Shandini et al., (2011) put into evidence in the northern margin of the
121 Congo Craton a deep structure, which corresponds to a classical model of collision suture of
122 the West-African Craton and Pan-African belt.

123 Owono et al., (2019) used 2.75D modelling of aeromagnetic data in Bertoua and shows
124 intrusive bodies composed of gneiss and porphyroid granite and some domes with their roof
125 situated at various depths not exceeding 1800 m from the surface. The structural map of the
126 study area shows the trending of the structural features observed, namely, NE-SW, NW-SE,
127 ENE-WSW, and WNW-ESE, respectively, while the E-W and N-S are secondary orientation
128 of the observed tectonic evidence.

129 **3. Materials and Methods**

130 ***3.1. Data acquisition and processing.***

131 The aeromagnetic data were collected in Cameroon by Survair Limited through the
132 Cameroon/Canada cooperation framework in the 1970s. Data were collected along N-S flight
133 lines at 750 meters spacing, with a flying height of 235 meters; the measurements involved a
134 magnetometer with a sensitivity of 0.5 nT (Paterson et al., 1976). Aeromagnetic anomalies
135 maps have been digitized using the geographical information system software (Mapinfo Pro.
136 16.0) and interpolated on 750 m cell-sized grid. The estimate error introduced is 0.28 mm which
137 is usually considered to be distinctive capacity of human vision (Achilleos, 2010). Gridding
138 and processing were done with Geosoft v8.4 software. The IGRF-70 reference field values were
139 removed from the observed magnetic data as stated by Reeves (2005).

140 ***3.2. Methods***

141 ***3.2.1. Upward continuation.***

142 The upward continuation computes the magnetic field that would have been measured
143 further away from the source, with is the smoothing operation. The upward continuation was
144 proposed by Henderson and Zietz (1949) and described by (Blakely, 1996). In this study it helps
145 us to easily visualize the effects of the deep sources and to remove their effect.

146 ***3.2.2. The Tilt-angle approach.***

147 The tilt-angle (Miller and Singh 1994; Verduzco et al., 2004; Salem et al., 2007) is defined
148 by the equation (1) below for a potential field anomaly T:

149
$$\theta = \tan^{-1} \frac{\frac{\partial T}{\partial z}}{\frac{\partial T}{\partial h}} \quad (1)$$
 where

150 $\frac{\partial T}{\partial h} = [(\frac{\partial T}{\partial x})^2 + (\frac{\partial T}{\partial y})^2]^{1/2}$ is the horizontal gradient magnitude and $\frac{\partial T}{\partial z}$ is the vertical gradient;

151 $\frac{\partial T}{\partial x}, \frac{\partial T}{\partial y}$ are respectively the horizontal gradients along the x and y directions.

152 In 2007, Salem et al., extended the method to the determination of depth to source by relating
153 the depth Z_c of the source and its horizontal location h to the tilt-angle through equation (2):

154
$$\theta = \tan^{-1} \left(\frac{h}{Z_c} \right) \quad (2)$$

155 This means that the vertical contacts are located for a nil tilt ($h = 0$) and the depth corresponds
156 to horizontal distance between 0° and $\pm 45^\circ$ contours, i.e., $h = \pm Z_c$ (Salem et al., 2007).

157 **3.2.3. Qualitative analysis by Tilt-angle derivative.**

158 The tilt angle operator can be used for mapping geological structures because it permits to locate
159 and to delimit their contacts and their shapes (Miller and Singh, 1994). By coupling it to the
160 extension upward, it becomes more interesting because one obtains the lateral extension of body
161 but also in depth therefore its three-dimensional shape. Salem et al., (2007) proposed the use of
162 tilt angle for the localization of vertical contacts. Knowing that the upward continuation
163 operator can attenuate short wavelengths and allow to visualize long wavelengths (Henderson
164 and Zietz, 1949), We can therefore use it for a better visualization of the behavior of contacts
165 with depth. Thus, we have:

166 - Generated the TMI maps reduced to the equator and then apply upward continuation for
167 1 and 2 km;
168 - Computed the position of the contact considered as vertical of these different three maps
169 using Salem et al. (2007);

170 - Superimposed finally the different contact maps obtained to evaluate the continuity of
171 the sources. This technique is used in the qualitative analysis for tilt-derivative results.

172 **3.2.4. Euler's Deconvolution.**

173 This method was introduced by Thompson, (1982) based on the Euler's homogeneity
174 equation to solve for the source depths for profile data. Reid et al., (1990) extended the operator
175 to gridded data by using equation (3):

176
$$\frac{(x-x_0)\partial M}{\partial x} + \frac{(y-y_0)\partial M}{\partial y} + \frac{(z-z_0)\partial M}{\partial z} = N(B-M) \quad (3)$$

177 where (x, y, z) represent the coordinates of the observation point, (x_0, y_0, z_0) the coordinate of
178 the magnetic source, M and B are the field at the observation point and regional the field
179 respectively; and N , the structural index, characterizes the variation rate of the field in relation
180 to the distance due to the type of source (table 1.A). In this study, we take the advantage of the
181 clustering in depth to define the correct structural index.

182 **Table 1.A** Structural index for magnetic sources of different geometries.

Source	Smellie model	Structural index
Sphere	Dipole	3
Vertical line end (pipe)	Pole	2
Horizontal line (cylinder)	Line of dipoles	2
Thin bed fault	Line of dipoles	2
Thin sheet edge	Line poles	1

183
184 **3.2.5. 2.75D modelling.**

185 A particularly useful variation on the 2D model which removes the restriction of infinite
186 strike length and is easier to define than the more complex 3D model, is a model with constant
187 cross-section extending over a finite strike length. This is known as 2.5D model. When the

188 source can have different strike extents on either side of the modelled profile, or the strike or
189 plunge of the body is not perpendicular to the profile, this is called a 2.75D model.

190 The 2.75D model represents the subsurface as a series of polygonal prisms with horizontal
191 axes (X) and finite extent in the strike direction (Y). This method was described by Skalbeck et
192 al., (2005). Geologic models were constructed with GM-SYS operator of Geosoft using the
193 2.75D modelling algorithm from Won and Bevis (1987), based on the analyses of Rasmussen
194 and Pedersen (1979). The 2.75D model gives the interpreter control of the third dimension
195 without the complexity of defining and manipulating a full 3D model.

196 **4. Results**

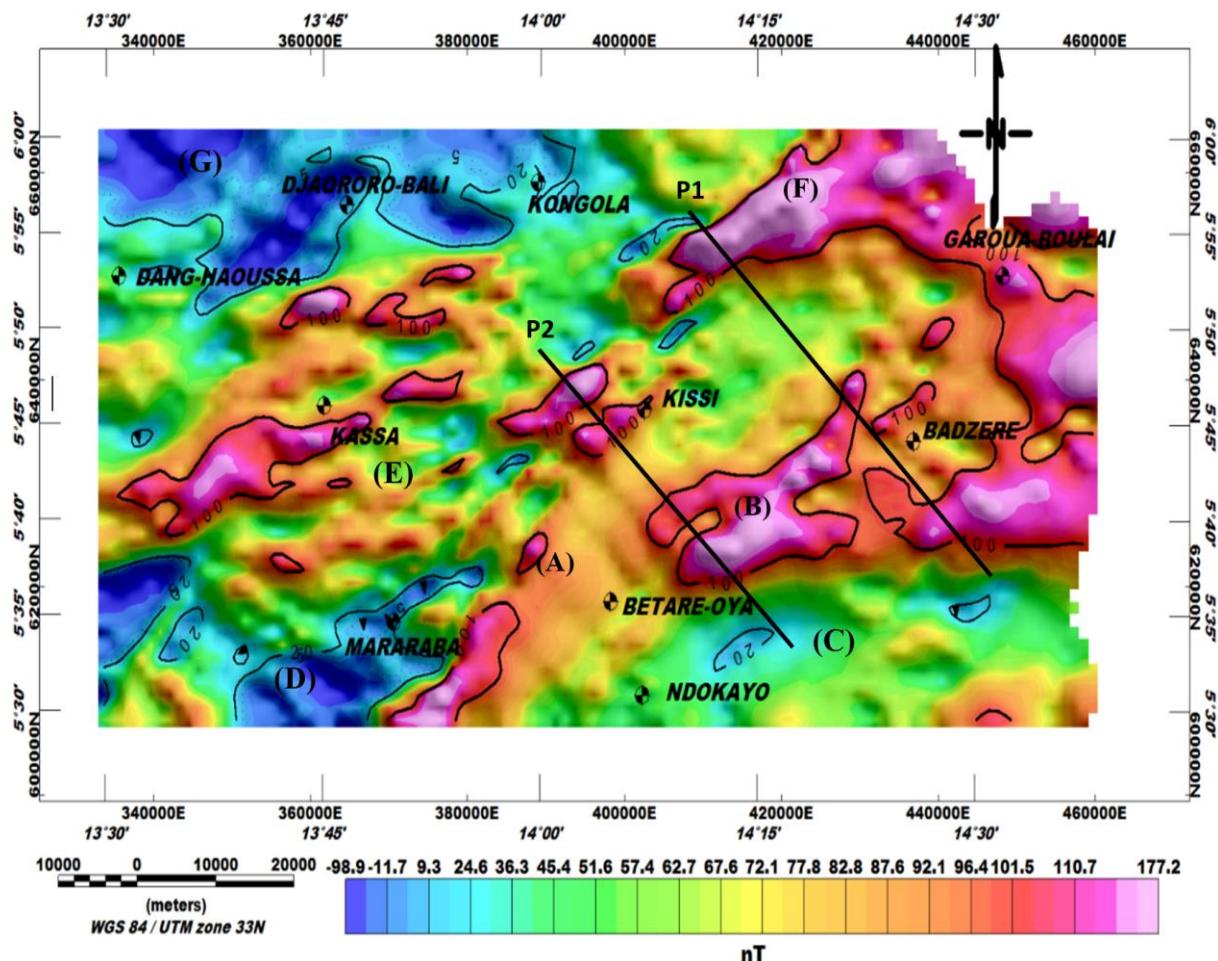
197 After interpolation, data have been reduced to the equator using the Fourier transform
198 performed with inclination $I = -11.98^\circ$ and declination $D = -4.96^\circ$ of January 1, 1970. Our
199 choice of declination and inclination values for the IGRF is included in the interval of validity
200 defines by the latest IGRF-12 (Thébault et al., 2015). This transformation eliminated the tilt of
201 the earth magnetic field due to inclination and positioned anomalies directly above the
202 corresponding magnetic source.

203 ***4. 1. Interpretation of the aeromagnetic total field reduced to Equator (RTE).***

204 The magnetic field over the Bétaré-Oya area has a complex magnetic pattern (Fig. 2.A). For
205 better characterization of the geological structures, we subdivided the area into different units:

206 ***Unit A***

207 The major observable singularity is in the centre where a large anomaly about 5 km wide
208 and up to 100 nT is observed. It is oriented NE-SW along the major tectonic feature in this area,
209 namely the tectonic line of the Sanaga (Fig. 1.A). Comparing with the geological map in Figure
210 2, this signal is mainly due to volcano-clastic schists (with gold deposit) also called Lom schists
211 associated with conglomeratic quartzites with intrusions of granitoids (Kankeu et al., 2009).


212 Hence, the presence of the anomalies with similar signatures could be related the circulation of
213 hydrothermal fluids rich in magnetic minerals along the Betaré-Oya Shear Zone (BOSZ).

214 *Unit B-C*

215 In the northeastern part of Bétaré-Oya, particularly around Badzéré, two heterogeneous
216 anomalies are observed. It is in the south of the area at Ndokayo, with very long wavelength of
217 about 22 km. Its amplitude is quite high and reaches 120 nT. It is aligned with the one of the
218 major foliations in this area trending E-W. The shape and amplitude of these anomalies suggest
219 high magnetization of the causative bodies, such as igneous granitoids know in this area.

220 *Unit D-E*

221 In Mararaba and Kassa, there is a large magnetic anomaly (Figure 3). It is characterized by a
222 long wavelength with variable amplitude reaching 150 nT, its approximate direction is ENE-
223 WSW. We can also observe anomalies of intensity 100 nT and 20 nT, elongated shapes, circular
224 and semi-circular, short wavelength-oriented ENE-WSW, NW-SE, NE-SW corresponding to
225 structural directions in the study area (Kankeu et al., 2009, Nih Fon et al., 2012).

226

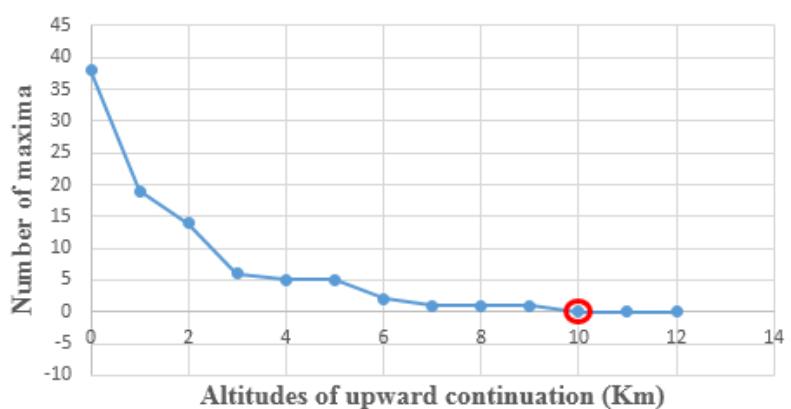
227

228 **Figure 2.A** Total magnetic intensity (TMI) map reduced to the equator.

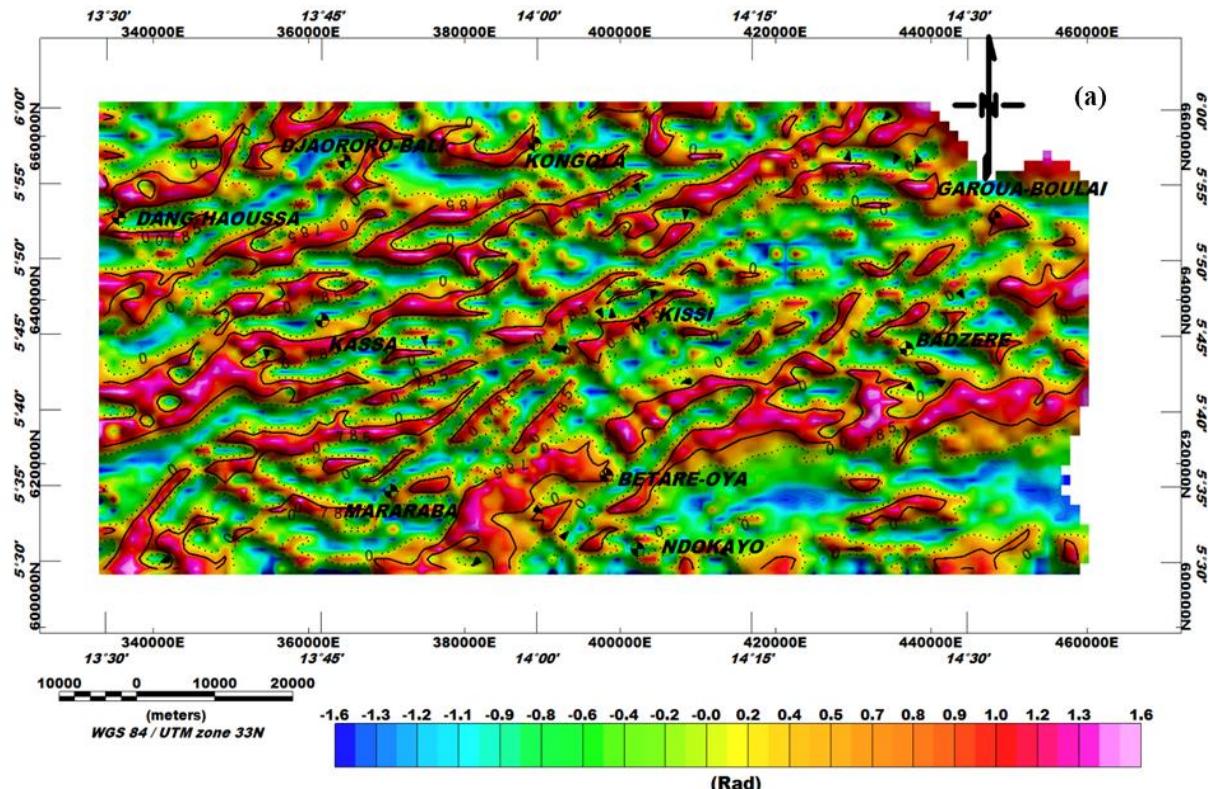
229 *Unit F*

230 In the northwestern part of Garoua-Boulai, heterogeneous anomaly with irregular shapes and a
 231 very long wavelength of about 22 km has been observed. Its amplitude is quite high and reaches
 232 177 nT. Its approximate direction is ENE-WSW. It is probably associated with the meta-
 233 volcanic outcrops of the meta-lava within the schistous Lom series (Regnoult, 1986).

234 *Unit G*


235 The lowest magnetic intensities are recorded in the north-west near Djaororo-Bali, where
 236 anomalies with amplitudes down to -98.9 nT are found associated with surface meta-sediments
 237 such as modified-biotite gneiss overlying the old metamorphic basement.

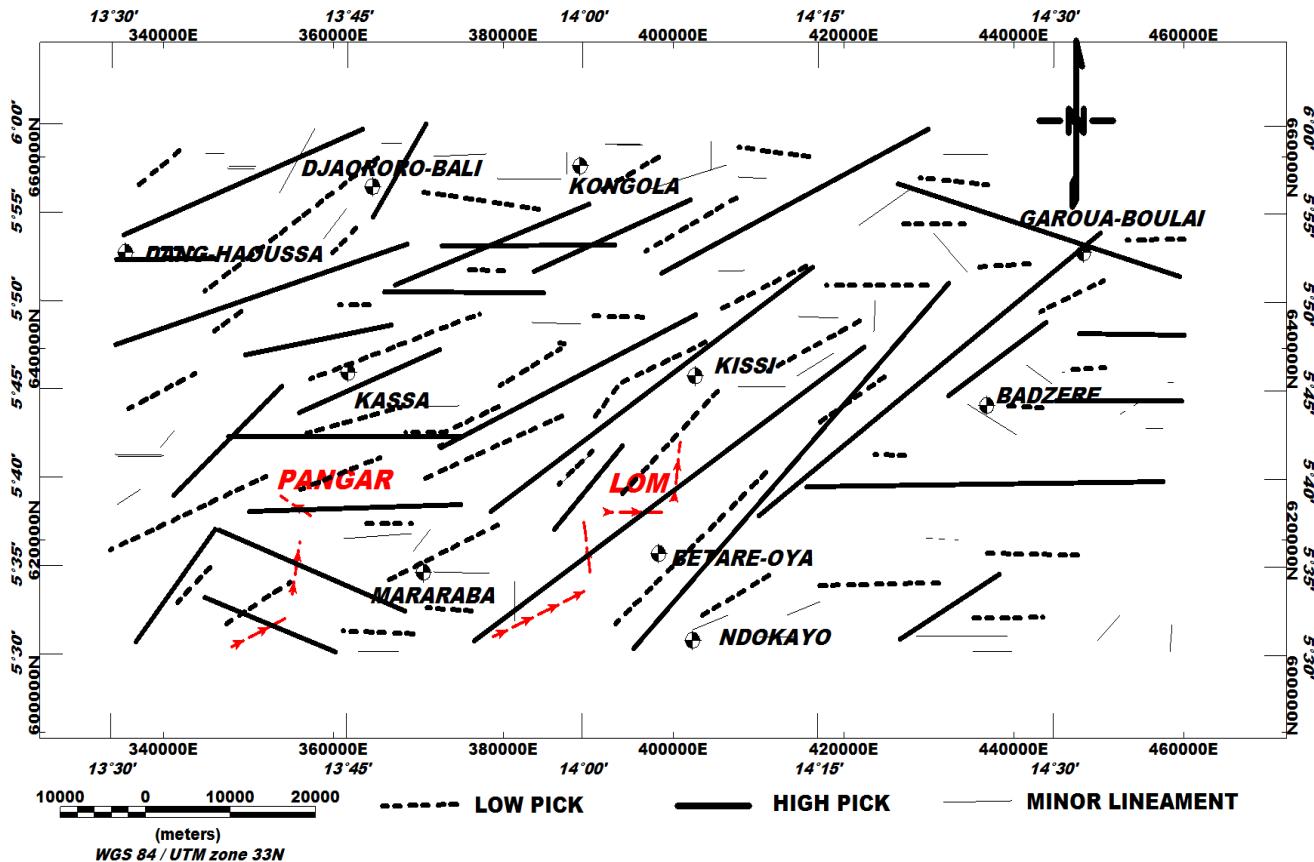
238 **4. 2. Tilt-angle on residual map.**


239 The residual map is obtained by subtracting the total magnetic field map reduced to the
 240 equator to the regional map. The determination of the optimum regional anomaly map for
 241 the study area lies on the method of Zeng, (1989). This method consists in determining a
 242 suitable altitude for upward continuation in the study area. The extrema of each altitude of
 243 upward continuation are then counted (table1.B). These are points where the gradient is
 244 null. Further, a graph of extrema versus altitudes of upward continuation is plotted (Fig.
 245 2.B). Finally, the suitable altitude ($h=10$ km) necessary for the upward continuation
 246 technique is determined graphically (Jacobsen, 1987; Jean et al., 2016).

247 **Table 1.B** Maxima and altitudes of upward continuation.

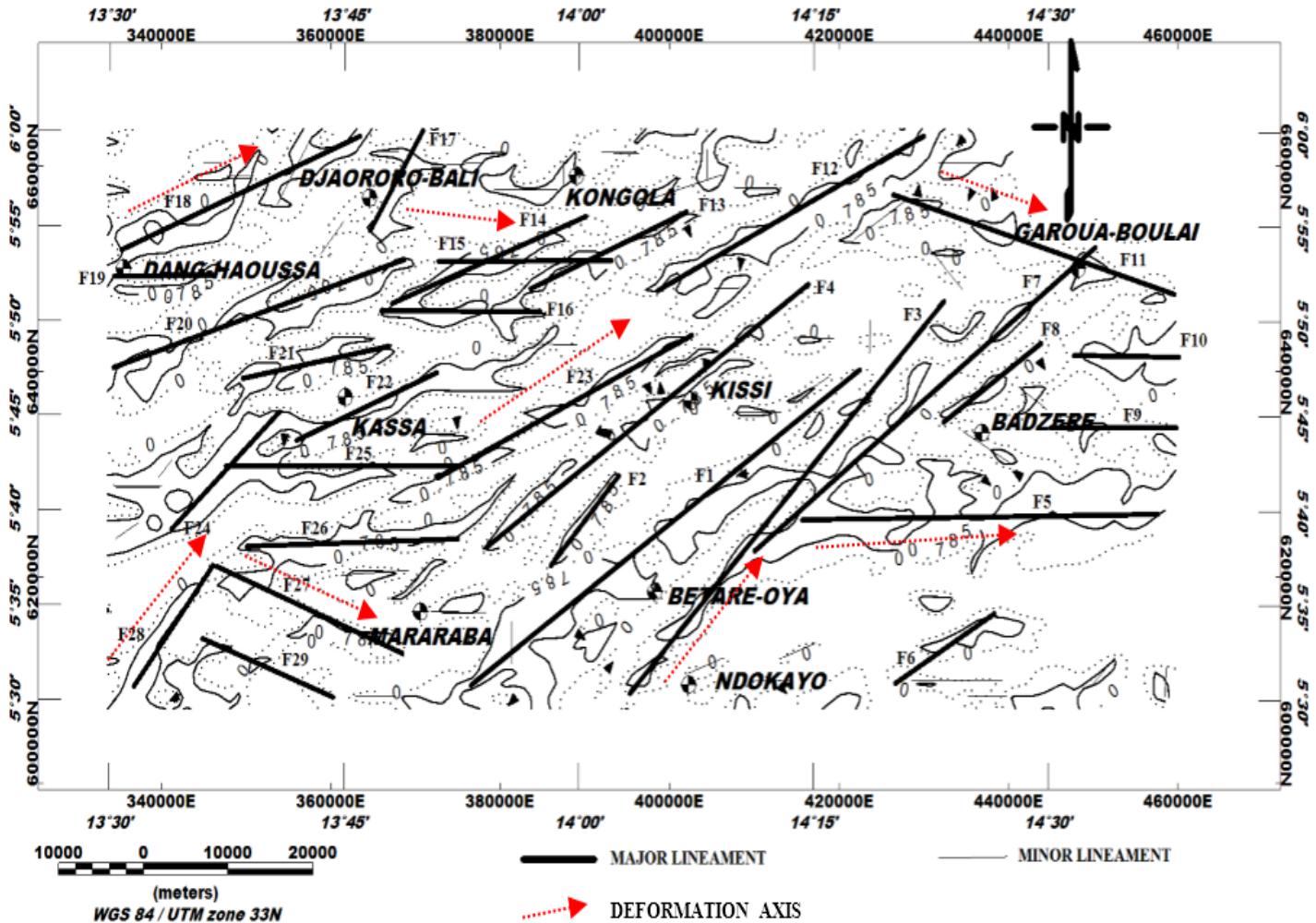
Number of maxima	Altitudes of upward continuation (Km)
38	0
19	1
14	2
6	3
5	4
5	5
2	6
1	7
1	8
1	9
0	10

248 **Figure 2.B** Number of extrema versus upward continuation height. From $h = 10$ km (circle in red), the number of maxima
 249 becomes constant and does not vary anymore.


250

251 **Figure 2.C** Tilt angle on residual map.

252 The generated tilt-angle's map (Fig. 2.C) represents possible lineaments of the study area.
 253 On this map it can clearly be seen that the signal is uniformly distributed in -1,6 rad to 1,6 rad
 254 intervals; thus, making it possible to map the lineaments with an extremely high resolution. The
 255 presence of several accidents marks the heterogeneity of the basement in this area as well as
 256 the intense deformation undergone by its subsurface. The lineaments and spatial patterns of
 257 geophysical attributes are important information that can be obtained from magnetic
 258 interpretations. Steep features and straight faults are commonly expressed as subtle lineaments
 259 of potential field. This expression can be gradient zones, local anomaly alignments of different
 260 types and shapes, aligned breaks, or discontinuities in the anomaly model.


261 **4.3. Structural map.**

262 To characterize information, we were interested in the peaks of anomalies derived from tilt
 263 angle derivative (Fig. 2.C). We counted 111 lineaments among which: 45 have lengths varying
 264 between (2.5 - 10.8) km; 37 minor lineaments varying between (1.2 - 2.3) km and 29 major

265 **Figure 3.A** Structural map of the study area.

266 lineaments between (2.4 - 15.6) km. Five structural families NE-SW are observed; ENE-
 267 WSW; E-W; NW-SE; N-S, the major structural direction being NE-SW (Fig. 3.A).

268

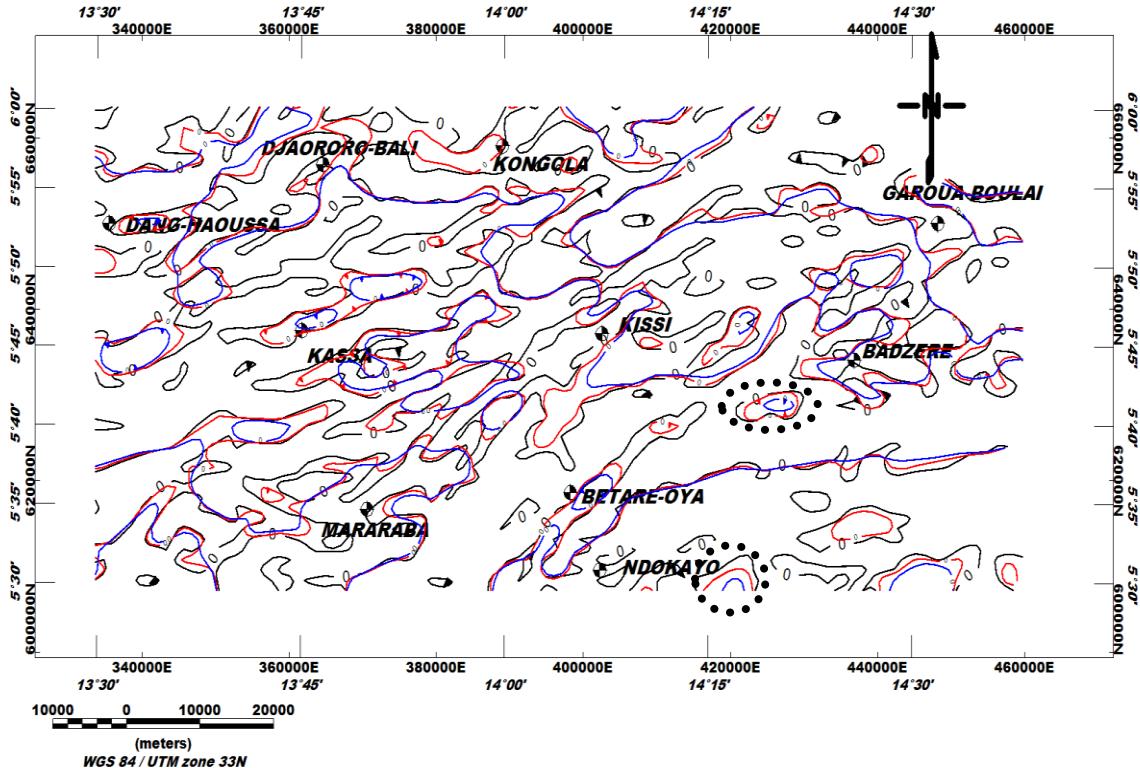
269 **Figure 3.B** Major faults map superimposed on tilt-angle contours. On this map we observe
 270 the major regional deformation axes (NE-SW, E-W, ENE-WSW and NW-SE) as well as the
 271 associated faults (F1 to F29).

272

273 The longest faults are present at the eastern edge of the Lom series with lengths of more
 274 than 15 km (F1, F3, F7). To the west we also note the NE-SW F4 fault with more than 10 km
 275 length which marks the limit of the Lom series (Fig. 3.B). The most remarkable is the change
 276 of direction of compression or deformation axes. The E-W events marked by the faults F15,
 277 F16, F19, F25, F26 at the eastern edge of the Lom and by the faults F5, F9, F10 in the west,
 278 seem to have been taken up by the tectonic accidents F1, F2, F3, F4, F7, F8, F12, F23
 279 punctuated by the Betaré-oya shear zone (BOSZ). The same phenomenon occurs in the extreme

280 west of the study area around Dang Haoussa and Mararaba with the ENE-WSW (F13, F14,
281 F18, F20, F21, F22) and NW-SE (F27, F29) accidents, respectively. These discrepancies
282 suggest the passage of shear faults. The curvature (type II) structures corresponding to foliations
283 induce most of the major fault network present in the Bétaré-oya area. In order to confirm the
284 results obtained by the tilt-derivative, we apply the Euler Deconvolution method.

285 ***4.4. 3D extension of anomalies.***


286 By superposing the zero contours of tilt-angle of the residual map, we obtain Figure 3.C
287 which no perfect superimposition of sources on the previous ones, hence assuming the
288 heterogeneity of the basement and existence of movements that affected the subsurface
289 formations. Deep crustal tightening of volcano – clastic rocks in the vicinity of Betaré - Oya
290 confirms that the site is affected by shear tectonics (Soba, 1989), causing deep and shallow
291 faults. This is witnessed by the contact between the granito-gneissic rocks and the Lom schists
292 (Fig. 1.B). These contours delimit the edges of the magnetic source, so their superposition in
293 depth allows to have an idea about the disposition, the extent, the dip, and the shape of the
294 geological sources responsible for the magnetic anomalies observed.

295 By applying the principles mentioned in subsection 3.2.2, we observed from the obtained map
296 (Figure 3C below) facts as follow:

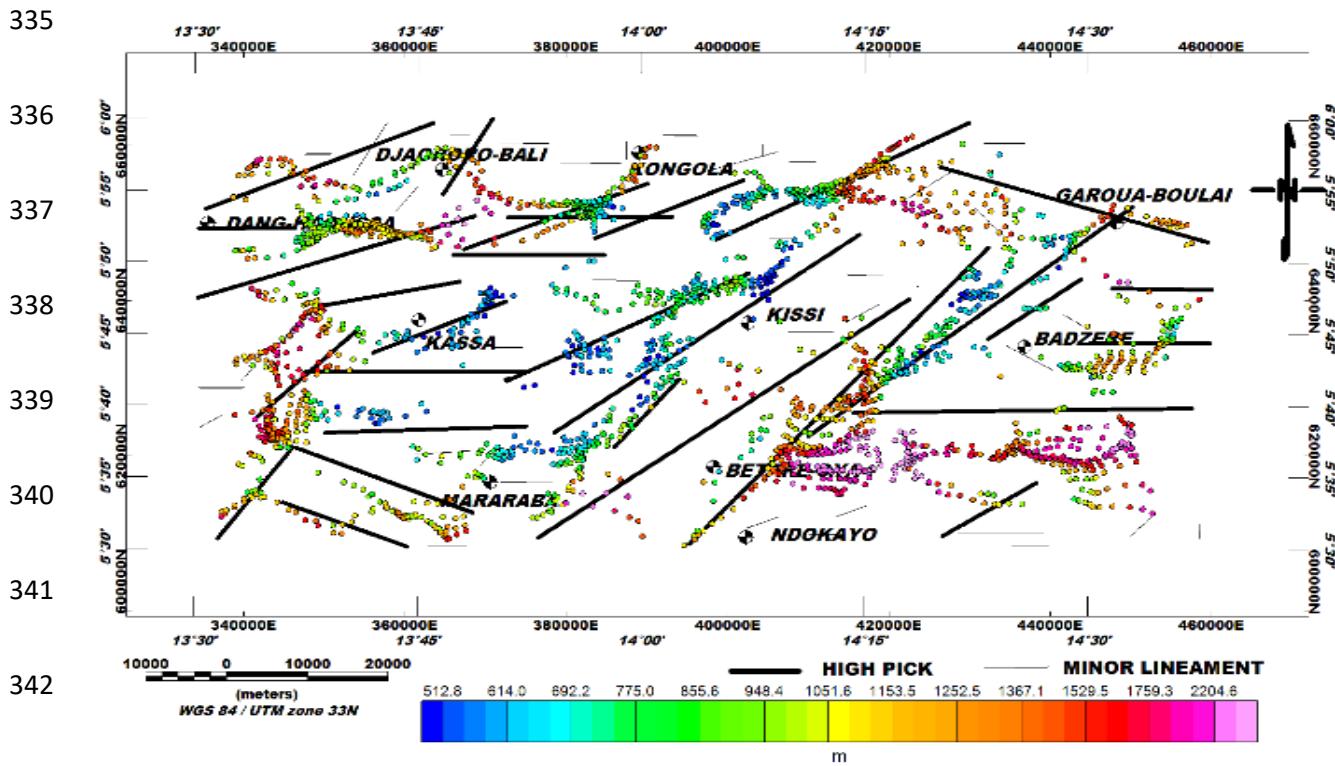
297 i)- They are not identical, which could mean that the contacts situated at the near surface could
298 be masked by those located at the subsurface or in depth.
299 ii)- There are some vertical contacts that narrowed with depth. This could be interpreted as a
300 sign of crustal thinning of the source of the anomaly with depth.
301 iii)- In some places, a lateral displacement of the contact is identified. It could suggest here, a
302 dip of the source in the concerned direction.

303 For example, at the East of Ndokayo, Kassa and south-east of Mborguene, several
304 structures lose extension in depth, taking the form of a basic cone of revolution located on the
305 surface (interrupted circle).

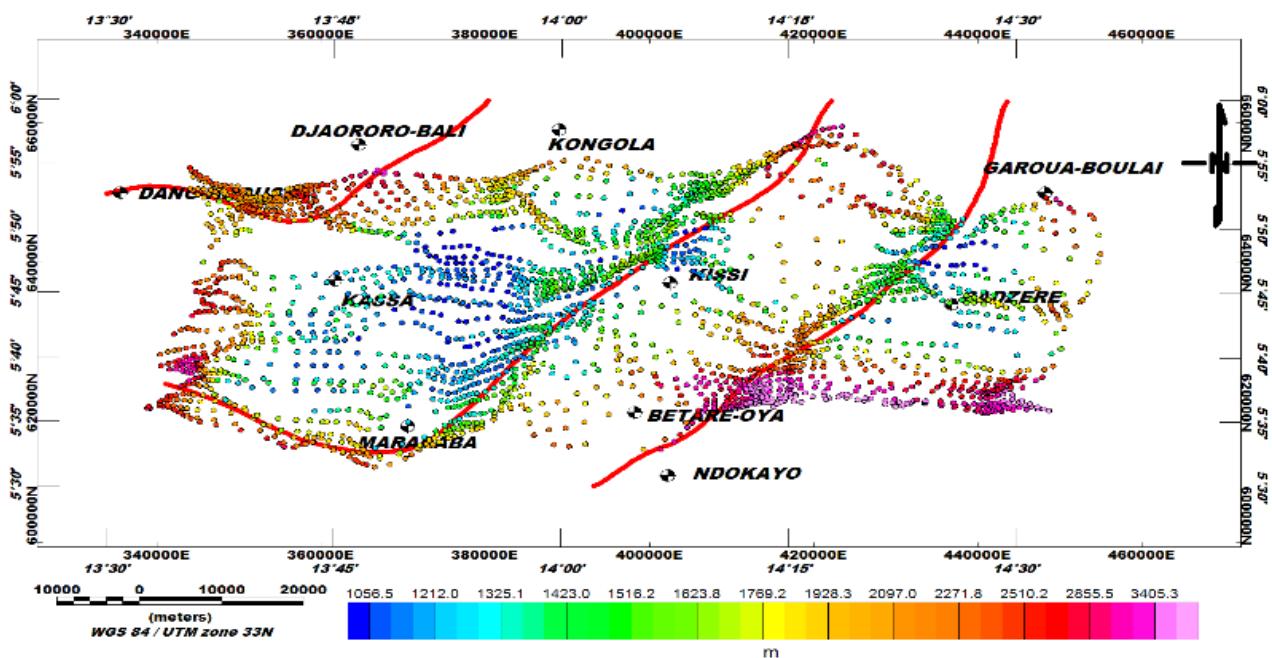
306 The presence of this regional-scale fold system, which controls all movements in the area
307 (BOSZ), suggests an interconnection of crustal geological structures by lines of faults and
308 foliations. Hence the structural elements highlighted in this study (folds, faults, dykes, etc.)
309 globally belong to Pan-African tectonics.

320 **Figure 3.C** Superposition of contours ($\Theta=0^\circ$) of Tilt angle of RTE upward continued to 1 km
 321 (red) and 2 km (blue).

322 4.5. Quantitative analysis


323 4.5.1. *Tilt-angle.*

324 The tilt-angle operator makes it easy to determine the depth of the vertical contacts (Salem
325 et al., 2007) by estimating the distance between the zero-angle contours and those
326 corresponding to the values $\pm 45^\circ$ (Fig. 3.B). We have determined the average depths interval
327 ranges from 1 to 3 kilometres for major lineaments (Table 1.C).


328 **4.5.2. Euler deconvolution.**

329 Euler's solutions allowed us to verify the position of the contacts obtained by the tilt angle
330 method as well as their depth.

331 The superposition of the structural map with Euler's solutions allowed us to delimit deep and
 332 superficial faults, dykes, and veins; to delineate tectonic lines established by previous
 333 geological studies (Gazel et al., 1954) and to compare with results from the tilt angle method
 334 (Fig. 4.B).

344 **Figure 4.A** Euler solution (N=1; W=25; Z=10%).

351 **Figure 4.B** Euler solution (N=2; W=20; Z=10%). The Euler maps above allow for a
 352 comparative study with the results obtained from the tilt derivative. They also make it possible
 353 to confirm the tectonic lines of the zone (in red) highlighted in the work of Gazel and Gerard,
 354 (1954) and to estimate their depths.

355 On Euler's solutions map we have perfectly distinguished the limits of the intrusive bodies
 356 and the deeper faults. On these maps, we observe five main directions of structures namely:
 357 NE-SW; ENE-WSW; E-W; NW-SE; N-S (Fig. 3.B). In addition, the vertical contacts are
 358 clearly visible on Euler solutions map and extend over 15 km length.
 359 The deepest accidents are mainly NE-SW to E-W with depths of over 3500 m and are well
 360 located at the eastern limits in the Lom series and the Badzéré gneisses contact zone and also
 361 around the East fault of Bétaré-oya. In the south-west of the map, at Mararaba, Euler's solutions
 362 allow to detect approximately NW-SE faults that was the result of the highlighted tectonic line
 363 (Fig. 4.A) and whose depths are estimated at 3000 m. We obtain depths ranging from 0.5 to 3.6
 364 km. Figure 4.B clearly shows tectonic directions which dominate all subsurface movements of
 365 the study area and their depths ranging from 1 to 3.4 km.

366 **Table 1.C** Main faults of Lom series. This summary table is obtained after comparing the
 367 results from the Euler deconvolution method and the tilt derivative.

368

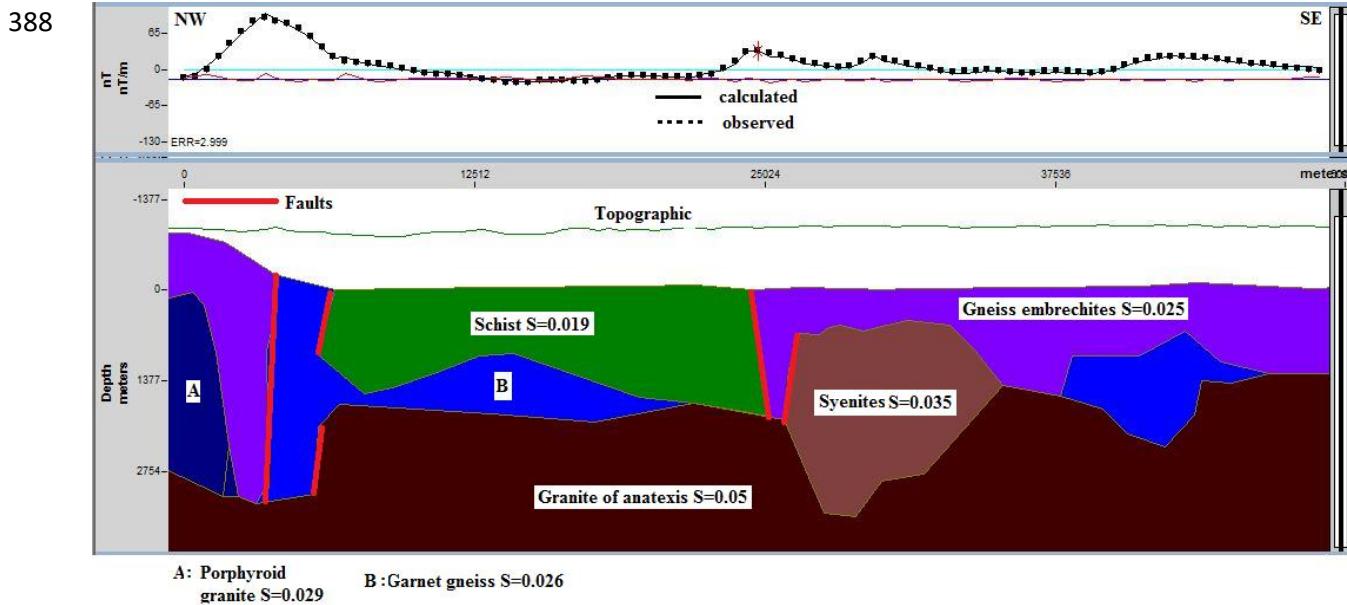
Faults	Directions	Dips	Depths (km)
F1	N56°E	Vertical	3,6
F2	N44°E	NW	2,1
F3	N44°E	NE	2,9
F4	N56°E	Vertical	1,3

F5	N90°E	Vertical	2,6
F6	N60°E	NE	2,1
F7	N56°E	Vertical	2,9
F8	N56°E	Vertical	1,6
F9	N90°E	Vertical	2,3
F10	N90°E	Nord	3,5

F11	N107°E	NW	2,6
F12	N65°E	NW	3,5
F13	N65°E	Vertical	1,5
F14	N70°E	Vertical	2,5
F15	N90°E	Nord	2,3
F16	N90°E	Nord	1,2
F17	N32°E	Vertical	2,3
F18	N70°E	Vertical	2,6
F19	N90°E	NW	2,6
F20	N70°E	Vertical	3,6

F21	N80°E	NW	3,6
F22	N65°E	Vertical	1,5
F23	N65°E	Vertical	2,3
F24	N47°E	Vertical	3,6
F25	N90°E	Vertical	3,5
F26	N90°E	Vertical	1,3
F27	N110°E	Vertical	2,3
F28	N40°E	Vertical	2,3
F29	N110°E	Vertical	2,5

369

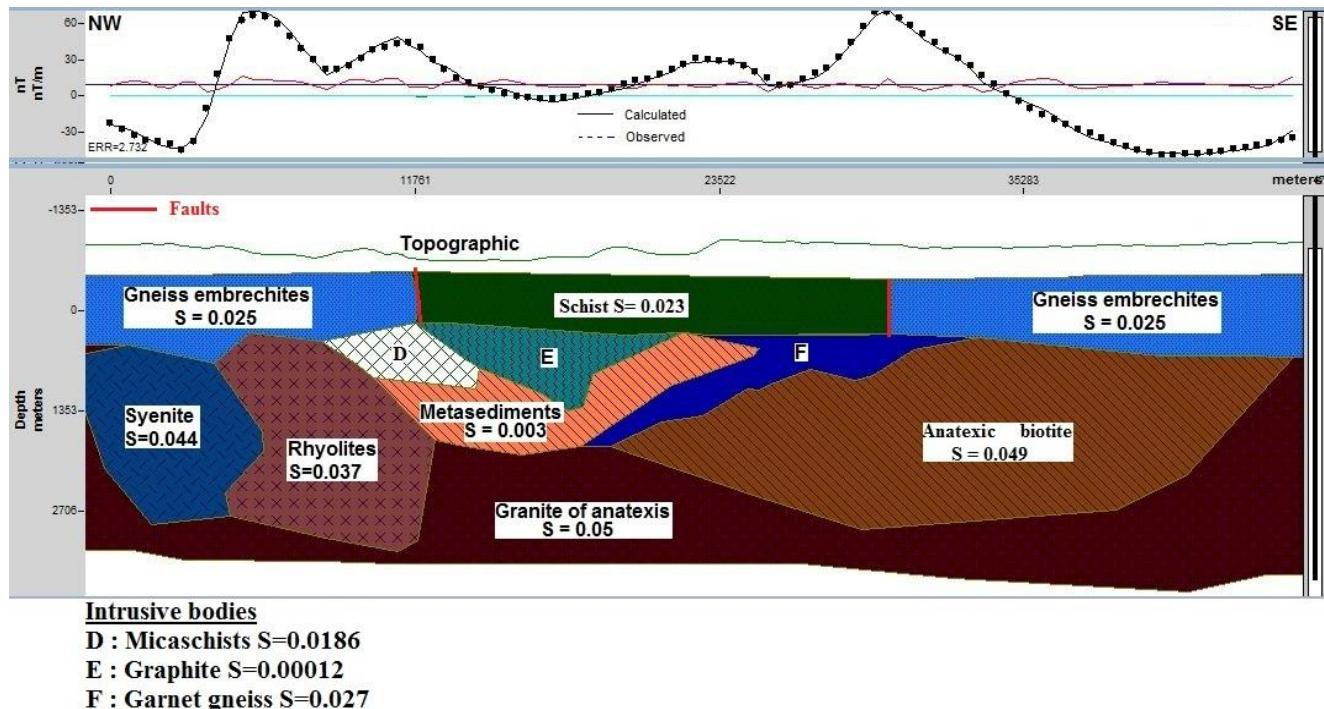

370

371 **4.5.3. 2.75D modelling.**

372 **Profile 1**

373 This profile extends 48.8 km NW-SE through Badzere and Mborguene. It crosses 6 geological
 374 formations from NW to SE, namely: porphyroid granite, granite with biotite, Gneiss
 375 embrechites, granite of anatexis, schists, biotite, and muscovite gneiss (Fig. 2.A). The strongest
 376 anomalies are localized in the NW of the profile with an intensity of 177 nT. The basement
 377 obtained is made up of granites anataxis which are old magmatic rocks forming the old
 378 basement complex and put in place during the first half of the Precambrian. Its maximum depth
 379 is $h = 3.608$ km which agrees with the depths obtained by the Euler convolution (Fig. 5.A). Its
 380 susceptibility is $S = 0.05$ SI. Above, one can observe the embrechite gneisses ($S = 0.025$ SI),
 381 volcano-clastics schists ($S = 0.019$ SI). This contact between the granito-gneissic rocks and the
 382 Lom schists has therefore caused several fractures and faults, represented here by several

383 intrusions: porphyroid granite ($S=0.029$ SI), garnet gneiss ($S = 0.026$ SI), syenites ($S=0.035$ SI). Our model agrees with previous geological (Poidevin, 1985; Gazel and Gerard, 1954; 384 Kouske, 2006; Ngako et al., 2003) and geophysical studies (Koch et al., 2012; Owono et al., 385 2019). These intrusions were set up during the pan-African orogenesis (Eno Belinga, 1984) and 386 are present in our geological map (Fig. 1.B)

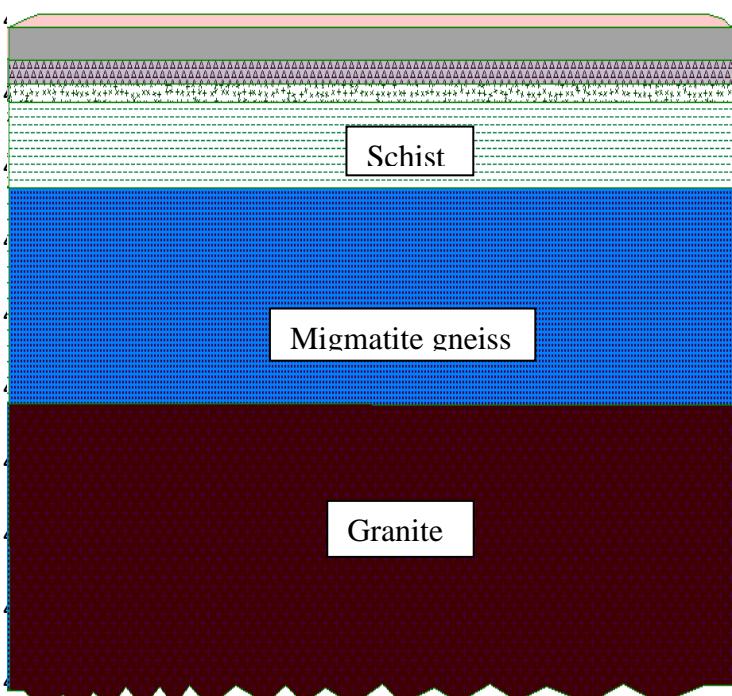

Figure 5.A 2.75D model obtained from profile P1.

390 **Profile 2**

391 The profile 2 extends 46 km along the NW-SE direction through Bétaré-oya and Kissi. It crosses
 392 5 geological formations: Biotite leptinites gneiss, quartzite with muscovite schists, schists,
 393 biotite and muscovite gneiss, alkaline granite (Fig. 2.A). The lowest anomalies are localized in
 394 the NW of the profile with an intensity of -43.4 nT, while the strongest are on the edge of the
 395 Lom schists with a maximum value of 65.6 nT. The obtain basement is made up of anatexite
 396 granites ($S = 0.05$ SI), intruded by strongly magnetized rocks such as syenite ($S = 0.044$ SI),
 397 ryolite ($S = 0.037$ SI) and anatexic biotites ($S = 0.048$ SI). Upstream, one can note the
 398 embrechite gneisses ($S = 0.025$ SI) discordant to volcano-clastic schists ($S = 0.023$ SI) located
 399 above the metasediment's rocks ($S = 0.003$ SI). One can also observe several intrusions
 400 micaschists ($S=0.0186$ SI), Graphite ($S=0.00012$ SI) and Garnet gneiss ($S=0.027$ SI). The
 401 geological layers obtained are located below the topography and the maximum depth is $h =$

402 3.419 km (Fig. 5.B), in agreement with the data resulting from the Euler deconvolution. The
 403 model from this profile is in accordance with previous studies (geology, seismic, magnetic etc.).
 404 We note intrusions from the pan-African orogenesis (Poidevin, 1985; Gazel and Gerard, 1954;
 405 Kouske, 2006; Ngako et al., 2003; Koch et al., 2012; Owono et al., 2019; Eno Belinga, 1984),
 406 located in our geological map (Fig. 1.B).

407

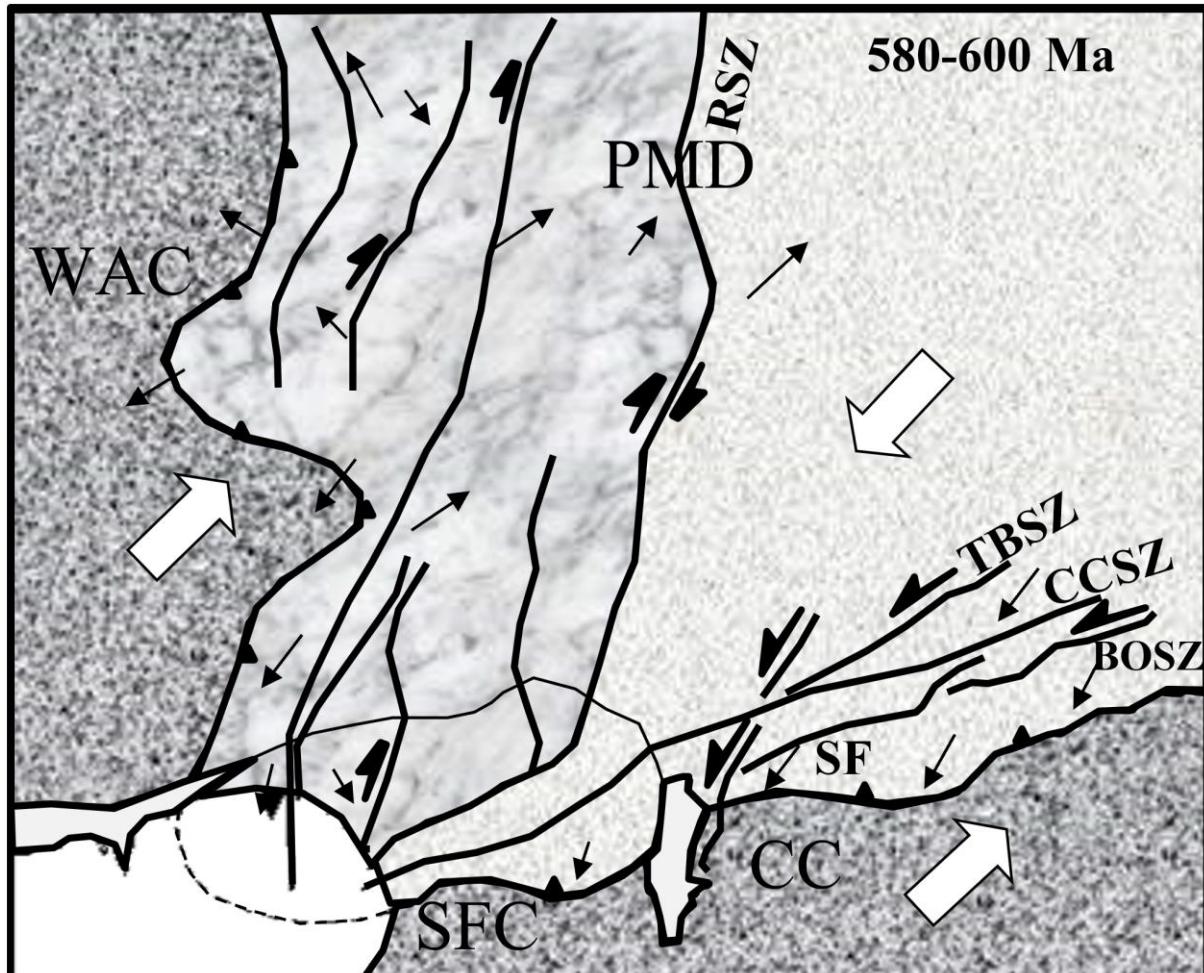


408 **Figure 5.B** 2.75D model obtained from profile P2.

409 **5. Regional analysis of the 2.75D models**

410 The geological synthesis of Cameroon allows us to have a lithostratigraphic sketch of the
 411 Lom Formation. Recently, the near-surface work Mboudou et al., (2017) at Betare-Oya
 412 proposes the lithological model with topsoil, saprolites, sandy layer, conglomeritic sand and
 413 schist formations.

414 On our model from profile 2 that passes through the locality of Bétaré oya, we observe that
 415 the first layers of rocks encountered are well below the topography that is explained by the fact
 416 that the method used allows us to highlight the structuring of deep formations. This would have
 417 the effect of hiding the superficial (sediments) hence the observed shift. Thus, the first
 418 formation detected on our models at Betare-Oya is schist. We can therefore complete this
 419 lithological model with the formations of the pan-African basement highlighted by our
 420 geophysical methods (Fig. 5.C) and propose the litho-stratigraphic model updated below (table
 421 2). Crustal formations in our model are in accordance with those obtained by Benkhelil et al.,
 422 (2002) from seismic data south Cameroon and summary above and geological study of
 423 Mboudou et al., (2017).


434 **Figure 5.C** Improve sketch of lithologic profile
 435 of Betare Oya basin. The scale map is 2/1000.

435 This model confirms the granite-gneiss nature of the pan-African base.
 436 The major faults highlighted in this work controlled by the Betare - Oya shear zone (BOSZ)
 437 belong in fact to a wider network of faults found on the Pan-African and which would extend
 438 to the São Francisco Craton (SFC) by the central Cameroon shear zone (CCSZ). Indeed, the
 439 work of Toteu et al., (2004) suggests that the Reghane shear zone, which during the whole Pan-

Rocks	Thicknesses (m)
Top soil	< 1,5
Saprolites	2
Sandy layer	1,5
Conglomeritic sand	1,4
Schist	227, 18
Migmatite gneiss	699,83
Granites	> 1600

Table 2 Nature of formations.

440 African evolution (650-580 Ma) only recorded dextral wrench movement, can be considered as
441 a major boundary separating mobile domain in two (Fig. 5.D) - a western part where the
442 tectonics is controlled by the motion of the WAC and an eastern part controlled by the motion
443 of the Congo craton.

444

445 **Figure 5.D** The Pan-African mobile domain (PMD) between the West Africa craton (WAC)
446 and the São Francisco (SFC) and Congo (CC) cratons showing two sub-domains, west and east,
447 separated by the Raghane Shear Zone (R.S.Z.). Horizontal lines represent the Tcholliré-Banyo
448 shear zone (T.B.S.Z.); central Cameroon shear zone (C.C.S.Z.); Sanaga fault (SF); Betare-Oya
449 shear zone (BOSZ). Small arrows correspond to stretching lineation's and large arrows to
450 movement directions of blocks during D3 (600–580 Ma). Toteu et al., (2004) modified (initial
451 document is available in a public domain).

452

453 **6. Discussion**

454 The structural map obtained (Figure 3.A) shows a great disparity in the distribution of
455 lineaments which can be explained in part by the general tectonics of the area. Hence, the
456 collision between the stable Archean craton in the South and one of the two Paleoproterozoic

457 blocks in the north during the Pan-African orogeny 700 Ma, would have caused a flattening of
458 the basement and intrusions in the old Precambrian basement, causing the major NE-SW
459 oriented lineaments related to the Lom schists. According to the Cameroon geological
460 synthesis, these intrusions are identified as granitic batholiths placed during regional
461 deformation D1 and D2.

462 On both sides of the Lom series, there are major NE-SW lineaments representing the
463 bounding faults of the Lom series with the granite-gneiss rocks. The E-W; NE-SW and N-S
464 lineaments may represent major tectonic structures marking the change in the structural
465 direction between the trans-Saharan (N-S) and the Oubangui (E-W) chains.

466 At the local scale, the deformation D2 is characterized by L2 lineation's representing here
467 stretches of quartz minerals-oriented E-W. The ENE-WSW oriented lineaments appear to
468 correlate with the mylonitic deformations occurring during the D3 phase while the ones
469 trending NW-SE related to senestral and dextral recesses and represent fractures with or without
470 lode flow. These structures much more abundant near Mararaba and could be the target for
471 future mining studies.

472 The geoelectrical study of Nih Fon et al. (2012) in our study area identified NE-SW
473 oriented irregular anomaly zones. These correlate with the quartz veins known in the region
474 and are aligned with the regional shear zone. The morphological units identified also present
475 NW-SE, N-S, NE-SW and E-W directions. In addition, Kouske (2006) reveals that the
476 hydrographic network of the study area has two major directions, NE-SW and NW-SE and it is
477 dense and dendritic type.

478 The P1 and P2 models obtained can be used as pseudo 3D imagery of the Lom basement.
479 Previous geological studies indicate that the area was a subject to intense metamorphic activity
480 during Neoproterozoic that has resulted in schist formation (Coyne et al., 2010). The contact
481 between this schistous series and the gneissic and granitic rocks of the basement resulted in
482 multiple fractures and faults (Gazel et al., 1954; Soba, 1989). The litho-stratigraphic sketch

483 proposed by our models derived from the magnetic profiles and work of Mboudou et al., (2017)
484 are consistent with previous geological work that asserts that the Pan-African basement would
485 be made up of migmatites and granitic to ortho-gneissic and biotite rich rocks (Poidevin, 1985;
486 Gazel and Gerard, 1954; Kouske, 2006; Ngako et al., 2003; Koch et al., 2012; Owono et al.,
487 2019; Eno Belinga, 1984).

488 From the mining point of view, the artisanal gold indices are places located near the
489 Lom and Pangar rivers (Nih Fon et al., 2012). These alluviums correlate with NE-SW trends in
490 our structural map. Since the structures in our study area are structurally guided, it can be
491 concluded that the alluvial deposits observed and exploited by residents are some signs that
492 have been leached and transported by the waterways. Overall, the geological structures obtained
493 from the data processing correspond to the ductile-brittle structures such as shear zone and
494 faults. These structures constitute pathway for both mineralizing fluids and ground water. Since
495 several gold mines exist in Betare-Oya area, the new mapping approach could be an important
496 guide for the identification of the structures that control the gold mineralization in the area.

497 **7. Conclusion**

498 In this work, some new analysis techniques were applied on aeromagnetic data to delineate the
499 sub-surface structures. The results obtained highlight the axes of compression, folding and
500 shearing; mylonitic veins (veins are at the outcrop's scale) several kilometres long and oriented
501 NE-SW. The regional and local structural settings of the area are characterized by major faults
502 and other structural elements mainly striking in the NE-SW, NW-SE, ENE-WSW, N-S and E-
503 W directions. Major trend in the NE-SW direction represents the dominant tectonic trend which
504 is the prolongation of the Central Cameroon Shear Zone (CCSZ) in the study area. Several folds
505 and faults evidenced by this study correlate with past studies while others are inferences. The
506 depths of major accidents in the area have been estimated between 1.2 to 3.6 km and the NE-
507 SW structures on our structural map are proposed here for a possible gold exploration. The
508 models from the P1 and P2 profiles have enabled: to propose a structuration of the superficial

509 crust of the Lom highlight the main rocks and intrusions responsible of the observed anomalies
510 (porphyroid granite, garnet gneiss, syenites, micaschists, Graphite and Garnet gneiss), identify
511 deep and shallow fractures, their depths and to propose a lithostratigraphic model in agreement
512 with the previous works. Finally, we note that the tilt angle coupled to the upward continuation
513 is an interesting tool for 2.75D modelling.

514 Despite the results obtained, some limits are observed concerning the application of the tilt
515 derivative on data RTE, as cited below:

- 516 - With the RTE, we used the hypothesis of a magnetic induced anomaly, which has the
517 same direction as the geomagnetic field, given by the global geomagnetic field models
518 (IGRF), and the remanent part in the rock source of the anomaly seems to be neglected.
- 519 - Satisfactory results using the tilt angle on magnetic data analysis and modelling,
520 especially in the determination of the vertical contacts in low latitude areas, are
521 constrained by the using of the data RTE.

522 In our case, investigating a low latitude area we engaged the:

- 523 - Use of the Euler deconvolution to identify various potential contacts including the
524 vertical one and then compare them with those derived from the tilt results.
- 525 - Care to correlate our results with the previous geological investigations over and
526 outside on one hand, and geophysical studies over adjacent areas particularly the
527 aeromagnetic investigations on the second hand.

528 **Data Availability**

529 The data used to support the findings of this study are available from the corresponding
530 author upon request.

531 **Author Contribution**

532 Christian Emile Nyaban performed the data analyses, modelling and preliminary interpretation
533 including preparation of the manuscript in conjunction with all the co-authors; Theophile
534 Ndougsa-Mbarga design the topic, gives the orientations for the investigation and reviewed the
535 quality of the models and related interpretation and the entire manuscript ; Marcelin Bikoro-
536 Bi-Alou defines the criteria and the physical parameters for the 2D3/4 modelling with the first

537 author; Stella Amina Manekeng-Tadjouteu and Stephane Patrick Assembe have worked on the
538 review of quality and quantitative analyses of respectively maps and 2D3/4 models.

539 **Competing Interest**

540 The authors declare that there are no conflicts of interest regarding the publication of this paper.

541 **Acknowledgements**

542 The authors thank the reviewers for their valuable comments.

543 **References**

544 Achilleos, G. A., 2010. Approaching a model for estimating horizontal errors of digitized
545 contours. *Journal of Spatial Science*, 55:1, pp. 147-164.

546 <https://doi.org/10.1080/14498596.2010.487856>

547 Asaah, V. A., 2010. Lode gold mineralization in the Neoproterozoic granitoids of Batouri,
548 southeastern Cameroon. Faculty of Energy and Economic Sciences, Clausthal University
549 of Technology, Doctorat/PhD Thesis, 187 p.

550 Benkhelil J., Pierre G., Claude P., Ngueutchoua G., 2002. Lithostratigraphic, geophysical and
551 morpho-tectonic studies of the South Cameroon shelf. *Marine and Petroleum Geology*,
552 19, pp. 499-517. [https://doi.org/10.1016/S0264-8172\(02\)00002-8](https://doi.org/10.1016/S0264-8172(02)00002-8)

553 Bessoles B., and Trompette M., 1980. “Géologie de l’Afrique: la chaîne Panafricaine, “Zone
554 mobile d’Afrique centrale (partie sud) et Zone mobile soudanaise”,” Mémoire du BRGM,
555 vol. 92, pp. 19–80. [http://pascal-](http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=PASCALGEOEBRGM8120168309)
556 francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=PASCALGEOEBRGM8120168309

557 Blakely, R. J., 1996. Potential theory applied in gravity and magnetism. Cambridge University
558 Press, Cambridge, 441p.

559 Cordell L. & Grauch V.J.S., 1985. Mapping basement magnetization zones from aeromagnetic
560 data in the San Juan Basin, New Mexico. In: Hinze W.J. (ed.) – The utility of regional
561 gravity and magnetic anomaly maps. Soc. Explor. Geophys., pp. 181-197.
562 <https://doi.org/10.1190/1.0931830346.ch16>

563 Cornacchia M. and Dars R., 1983. “Un trait structural majeur du continent africain: Les
564 linéaments centrafricains du Cameroun au Golfe d’Aden,” Bulletin de la Société
565 Géographique de France, vol. 25, pp. 101–109. <https://doi.org/10.2113/gssgbull.S7-XXV.1.101>

567 Coyne, Bellier, 2010. Aménagement hydroélectrique de Lom Pangar, doc. No 10108-RP-400-
568 B, pp.57-58.

569 Dumont J. F., 1986. “Identification par télédétection de l’accident de la Sanaga (Cameroun).
570 Sa position dans les grands accidents d’Afrique Centrale et de la limite Nord du Craton
571 du Congolais,” Géodynamique, vol. 1, no. 1, pp. 13–19.
572 <http://www.documentation.ird.fr/hor/fdi:23608>

573 Eno Belinga S. M., 1984. Géologie du Cameroun, Librairie Universitaire de Yaoundé,
574 République Unie du Cameroun.

575 Gazel J., Gerard G., 1954. Geological map of Cameroon recognition at the scale 1/500 000, p.
576 27.

577 Henderson, R.G. and Zietz, I., 1949. The Upward Continuation of Anomalies in Total Magnetic
578 Intensity Fields. Geophysics, 14, 517-534. <https://doi.org/10.1190/1.1437560>.

579 Jacobsen, B.H. 1987. A Case for Upward Continuation as a Standard Separation Filter for
580 Potential-Field Maps. Geophysics, 52, 390-398. <http://dx.doi.org/10.1190/1.1442378>.

581 Jean, M., E. J. M. Abate, P. Njandjock Nouck, H. E. Ngatchou, V. Oyoa C. T. Tabod, E.
582 Manguelle-Dicoum, 2016. Structure of the Crust Beneath the South Western Cameroon,
583 from Gravity Data Analysis. International Journal of Geosciences, 2016, 7, 991-1008.

584 KanKeu, B., Greiling, R. O., Nzenti, J. P., 2009. Pan-African strikeslip tectonics in eastern
585 Cameroon -Magnetic fabrics (AMS) and structures in the Lom basin and its gneissic
586 basement. - Precambrian Research, 174, pp. 258-272.
587 <https://doi.org/10.1016/j.precamres.2009.08.001>

588 Koch, F., Wiens, D., Nyblade, A., Shore, P., Tibi, R., Ateba, B., Tabod, C. and Nnange, J.,
589 2012. Upper Mantle Anisotropy beneath the Cameroon Volcanic Line and Congo Craton
590 from Shear Wave Splitting Measurements. Geophysical Journal International, 190, pp.
591 75-86. <https://doi.org/10.1111/j.1365-246X.2012.05497.x>

592 Kouske, A.P. 2006. Geological and environmental study of the artisanal gold mining sector of
593 Bangbel-Mborguéné (East Cameroon), DEA dissertation in earth sciences, University of
594 Yaounde I, Cameroon, 89 p.

595 Mboudou G. M., Kennedy F. F., Njoh O. A., Agyingi C. M., 2017. Characterization of Alluvial
596 Gold Bearing Sediments of Betare Oya District-East Cameroon, Implication for Gold
597 Exploration and Recovery. Journal of Geology, 2017, 7, pp. 1724-1738.
598 [10.4236/ojg.2017.711115](https://doi.org/10.4236/ojg.2017.711115)

599 Miller, H. G., Singh, V., 1994. Potential field tilt- a new concept for location of potential field
600 sources. Journal of applied Geophysics, 32, pp. 213-217. [https://doi.org/10.1016/0926-9851\(94\)90022-1](https://doi.org/10.1016/0926-9851(94)90022-1)

602 Ndougsa, M.T., Bikoro B. A., Tabod C. T., Sharma K. K., 2013. Filtering of gravity and
603 magnetic anomalies using the finite element approach (fea). Journal of Indian Geophysical
604 Union, 17(2), 167-178.

605 Ngako, V., Affaton, P., Nnange, J. M., Njanko, Th., 2003. Pan-African tectonic evolution in
606 central and Southern Cameroon: transpression and transtension during sinistral shear
607 movements, *J. Afr. Earth Sci.*, 36, pp. 207-214. [https://doi.org/10.1016/S0899-5362\(03\)00023-X](https://doi.org/10.1016/S0899-5362(03)00023-X)

609 Nih Fon, A., Bih, C. V., Suh, C. E., 2012. Application of Electrical Resistivity and
610 Chargeability Data on a GIS Platform in Delineating Auriferous Structures in a Deeply
611 Weathered Lateritic Terrain, Eastern Cameroon. *International Journal of Geosciences*, pp.
612 960-971. <http://dx.doi.org/10.4236/ijg.2012.325097>

613 Oruç, B., Selim, H.H., 2011. Interpretation of magnetic data in the Sinop area of Mid Black
614 Sea, Turkey, using tilt derivative, Euler deconvolution, and discrete wavelet transform.
615 *Journal of Applied Geophysics* pp. 194-204. <https://doi.org/10.1016/j.jappgeo.2011.05.007>

616 Odey Omang B., Che V. B., Nih Fon, Embui V., Cheo Suh E., 2014. Regional Geochemical
617 Stream Sediment Survey for Gold Exploration in the Upper Lom Basin, Eastern
618 Cameroon. *International Journal of Geosciences*, 2014, 5, pp. 1012-1026.

619 Paterson, Grant, Watson Ltd., 1976. Aeromagnetic studies on some regions of the United
620 Republic of Cameroon. Interpretation report. A.C.D.I. Toronto, 192 p.

621 Pepogo, M. A. D., Ndougsa, M. T., Meying, A., Ngoh, J.D., Mvondo, O. J., & Ngoumou, P.
622 C., 2018. New Geological and Structural Facts under the Lateritic Cover in Garga Sarali,
623 Ndokayo (East Cameroon) Area, from Audiomagnetotellurics Soundings, *International
624 Journal of Geophysics*, Volume 2018, Article ID 4806357, 17 pages,
625 <https://doi.org/10.1155/2018/4806357>.

626 Poidevin, J. L., 1985. “Le Protérozoïque supérieur de la République Centrafricaine,” *Annals
627 of Royal Museum for Central Africa*, Tervuren, vol. 91, p. 74.

628 Rasmussen, R. and Pedersen, L.B., 1979. End corrections in potential field modeling, *Geophys.
629 Prospect.*, 27, pp. 749–760.

630 Regnoult, J.M., 1986. Geological Synthesis of Cameroon. 119 p.

631 Reid, A. B., Allsop, J.M. Granser, H., Millett, A. J., and Somerton. I. W., 1990. Magnetic
632 interpretation in three dimensions using Euler Deconvolution: Geophysics, vol.55, pp.
633 80-90. <https://doi.org/10.1190/1.1442774>

634 Rolin P., 1995. "La zone de décrochement panafricain des oubanguides en république
635 centrafricaine," Comptes Rendus de l'Académie des Sciences, vol. 320, no. 2A, pp. 63–
636 69.

637 Salem,A., William, S., Fairhead, D., Ravat, D, Smith, R., 2007. Tilt-depth method: a simple
638 depth estimation method using first-order magnetic derivatives. The Leading Edge
639 December, Meter Reader, 150, pp. 2-5. <https://doi.org/10.1190/1.2821934>

640 Salem, A., Williams, S., Fairhead, J.D., Smith, R., Ravat, D.J., 2008. Interpretation of magnetic
641 data using tilt-angle derivatives. Geophysics 73, P.L1–P.L10.
642 <https://doi.org/10.1190/1.2799992>

643 Shandini N. Y., Tadjou J. M., and Basseka C. A., 2011. "Delineating deep basement faults in
644 South Cameroon area," World Applied Sciences Journal, vol. 14, no. 4, pp. 611–615.

645 Skalbeck, J.D., Karlin, R.E., Shevenell, L. and Widmer, M.C., 2005. Gravity and
646 aeromagnetic modeling of alluvial basins in the southern Truckee Meadows adjacent to the
647 Steamboat Hills geothermal area, Washoe County, Nevada. Geophysics, Vol. 70, N°3.
648 <https://doi.org/10.1190/1.1925739>

649 Soba, D., 1989. The Lom series: geological and geochronological study of a volcano-
650 sedimentary basin of the Pan-African chain in eastern Cameroon. State Doctorate Thesis,
651 Pierre and Marie Curie University, Paris 6, 198 p.

652 Tadjou J. M., Manguelle-Dicoum E., Tabod C. T., 2004. "Gravity modelling along the
653 northern margin of the Congo craton, South-Cameroon," Journal of the Cameroon
654 Academy of Sciences, vol. 4, pp. 51–60.

655 Thébault et al., 2015. International Geomagnetic Reference Field: the 12th generation, Earth,
656 Planets and Space 67:79, 19 p. <https://doi.org/10.1186/s40623-015-0228-9>

657 Thompson D.T., 1982. EULDPH: A new technique for making computer-assisted depth
658 estimates from Magnetic data. Geophysics, vol.47, pp.31-37.
659 <https://doi.org/10.1190/1.1441278>

660 Toteu S. F., Penaye J., and Poudjom Djomani Y., 2004. Geodynamic evolution of the Pan-African
661 belt in central Africa with special reference to Cameroon. Canadian Journal of Earth
662 Sciences Vol. 41, pp.73–85. <https://doi.org/10.1139/e03-079>

663 Verduzco, B., Fairhead, J. D, Green, C. M., Mackenzie, C., 2004. New insights into magnetic
664 derivatives for structural mapping. The Leading Edge, SEG February, pp. 116-119.
665 <https://doi.org/10.1190/1.1651454>

666 Won, I.J. and Bevis, M., 1987. Computing the gravitational and magnetic anomalies due to a
667 polygon: Algorithms and FORTRAN subroutines, Geophysics, 52, 232–238.
668 <https://doi.org/10.1190/1.1442298>

669 Zeng, H., 1989. Estimation of the Degree of Polynomial Fitted to Gravity Anomalies and Its
670 Applications. Geophysical Prospecting, 37, 959-973. <https://doi.org/10.1111/j.1365-2478.1989.tb02242.x>