Supporting information for:

The competition between fracture nucleation, propagation and coalescence in the crystalline continental upper crust

Jessica A. McBeck¹, Wenlu Zhu², François Renard¹,³
¹Njord Centre, Department of Geosciences, University of Oslo, Norway
²Department of Geology, University of Maryland, College Park, U.S.A.
³University Grenoble Alpes, University Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTerre, France

Correspondence to: Jessica McBeck (j.a.mcbeck@geo.uio.no)

Introduction

This supporting information includes two figures.
Figure S1. Influence of changing the volume threshold used to extract the fracture networks.
a) Total volume of nucleating and pre-existing fractures.
b) Total volume of propagating and coalescing fractures.
c) Number of growing fractures located near and far from other fractures. The main trends observed when the volume threshold is 100 voxels (shown in the main text) are the same as those when the threshold is 500 voxels.
Figure S2. Identification of axial strain at macroscopic yield point. a) Differential stress and axial strain relationships with axial strain at limit of linear phase (vertical solid line), corresponding linear fit (solid line) and resulting yield point (dashed line). b) Normalized difference between the differential stress of the linear fit and observed differential stress, \(\Delta \sigma = (\sigma_{\text{fit}} - \sigma_{\text{obs}}) / \sigma_{\text{obs}} \), where \(\sigma_{\text{fit}} \) and \(\sigma_{\text{obs}} \) are the differential stress of the linear fit and observed. The yield point occurs at the largest axial strain when \(\Delta \sigma < 0.01 \) (red line).