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Abstract. The origin of intraplate volcanism is not explained by plate tectonic theory, and several models have been put forward

for explanation. One of these models involves Edge-Driven Convection (EDC), in which cold and thick continental lithosphere

is juxtaposed to warm and thin oceanic lithosphere to trigger convective instability. To test whether EDC can produce long-

lived high-volume magmatism, we run numerical models of EDC for a wide range of mantle properties and edge (i.e., the

oceanic-continental transition) geometries. We find that the most important parameters that govern EDC are the rheological5

parameters mantle viscosity η0 and activation energy Ea. However, even the maximum melting volumes predicted by our

most extreme cases are insufficient to account for island-building volcanism on old seafloor, such as at the Canary Islands and

Cape Verde. Also, beneath old seafloor, localized EDC-related melting commonly transitions into widespread melting due to

small-scale sublithospheric convection, inconsistent with the distribution of volcanism at these volcano chains. In turn, EDC

is a good candidate to sustain the formation of small seamounts on young seafloor, as it is a highly transient phenomenon that10

occurs in all our models soon after initiation. In a companion paper, we investigate the implications of interaction of EDC with

mantle-plume activity.

Copyright statement. TEXT

1 Introduction

Understanding the origin of volcanism improves our understanding of Earth’s deep interior processes, structure and compo-15

sition. In this context, intraplate volcanism deserves particular attention, because it is not readily explained by plate-tectonics

processes. One of the leading theories to explain intraplate magmatism involves mantle plume theory. In this theory, a magmatic

hotspot is sustained by a fixed and columnar mantle upwelling, or “plume”, forming a volcano chain on a steadily moving plate

(Wilson, 1963; Morgan, 1971).

Plume theory makes specific testable predictions, such as the distribution of volcanism, the age-distance relationship along20

the volcanic chain, as well as anomalies in heat-flux and topography (hotspot swells). These predictions have been successfully

compared to observations at several locations (e.g. Hawaii, Louisville. . . ), however, comparisons fail at other locations (see
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Courtillot et al., 2003). For example, the age-distance relationship measured along the Pukapuka Ridge does not agree with the

overriding plate motion (Sandwell et al., 1995; Ballmer et al., 2013); at Madeira, there is no apparent swell (Anderson, 2005;

Ballmer et al., 2013; King and Adam, 2014); etc. Accordingly, alternative or complementary models have been proposed for25

sustaining intraplate volcanism (Foulger and Anderson, 2005; Hirano, 2011; Ballmer et al., 2015; Green, 2015).

One of these models involves Edge-Driven Convection (EDC; King and Anderson, 1995, 1998). EDC is a variant of small-

scale convection (SSC; Richter, 1973; Parsons and McKenzie, 1978; Huang et al., 2003; Dumoulin et al., 2005), i.e. a thermal

boundary-layer instability that is largely driven by cooling of the lithosphere and the related density inversion (Ballmer et al.,

2009; Ballmer, 2017). EDC is triggered by the presence of lithospheric steps (or lateral heterogeneity): the related lateral density30

difference promotes the instability (which is ultimately driven by the density inversion), setting up a convection cell (figure

1). But apart from this, it has all the characteristics of SSC. According to King and Anderson (1995, 1998), the associated

upwelling(s) may be sufficient to sustain mantle melting without the need of a plume. This magmatism is predicted to occur at

a distance from the step in lithospheric thickness (e.g., nearby a cratonic margin) of a few hundred kilometers.
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Figure 1. Schematic of Edge-Driven Convection. A downwelling is promoted on the thick continental side of the lithospheric edge, triggering

a passive upwelling that sustains mantle decompression melting (orange) and related volcanism parallel to the continent-ocean transition

(cones). The Lithosphere-Asthenosphere Boundary (LAB) is labeled.

In the Atlantic Ocean basin, several volcanic chains occur near the margin of the continental platform (e.g., the Canary35

Islands, Cape Verde or the Cameroon Volcanic Line). For many (or all) of these chains, several predictions of classic plume

theory are not fulfilled. For example, the Canary Islands do not display a strictly linear age progression, with coeval volcanism

occurring over hundreds of kilometers and sustained volcanism at a single island or seamount for >20 Ma (Abdel-Monem

et al., 1971, 1972; Carracedo, 1999; Geldmacher et al., 2005). Given these complexities, several alternative hypotheses have

been proposed. For instance, some authors have invoked the extraction of magmas along elongated shear zones of preexisting40

melt (Araña and Ortiz, 1991; Doblas et al., 2007; Martinez-Arevalo et al., 2013), possibly associated with a thermal anomaly

(Anguita and Hernan, 2000). Alternatively, the “passive” upwelling of “mantle blobs” (Hoernle and Schmincke, 1993; Thirlwall
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et al., 2000), or EDC with or without a contribution from a nearby plume (King and Ritsema, 2000; Geldmacher et al., 2005)

may sustain Canary volcanism. EDC has also been proposed as an underlying mechanism for other Atlantic hotspots such as

Bermuda or Cape Verde (Vogt, 1991; King and Ritsema, 2000).45

Despite the long-lasting debate on the origin of near-continental intraplate volcanism, there is no published comprehensive

geodynamic study of EDC and related magmatism in a continental-oceanic setting. Some authors (King and Ritsema, 2000;

Sacek, 2017) have explored the dynamics of this mechanism, and applied their results to the eastern Atlantic, but have not

explicitly and consistently modeled mantle melting. Others have studied EDC in great detail but for a purely continental setting

(van Wijk et al., 2008, 2010; Till et al., 2010; Kaislaniemi and Van Hunen, 2014; Ballmer et al., 2015; Currie and van Wijk,50

2016).

In this contribution, we study EDC-related flow and melting in the upper mantle using numerical models in order to un-

derstand the origin of intraplate volcanism in the eastern Atlantic. EDC can be approximated as a purely two-dimensional

(2D) mode of convection, with convection roll(s) infinitely extending along the continental margin (King and Anderson, 1995;

Kaislaniemi and Van Hunen, 2014). Therefore, we have chosen to investigate 2D models, which allows us to explore a wide55

parameter space, and to test the potential of EDC to systematically sustain intraplate volcanism. Finally, we compare model

predictions with observations at the Canaries and Cape Verde and evaluate the limitations of our results in the limit of our

model assumptions.

We find that melt generation by EDC alone is too restrictive and transient to be a suitable explanation for the occurrence of

large volcano chains such as the Canary Islands or Cape Verde. Our models predict that EDC sensu stricto generates volcanism60

only for a small subset of the parameter space, and if it does so, only with small amounts of very enriched volcanism, and only

below young and thin oceanic lithosphere. EDC remains a suitable explanation for small seamounts in the area (e.g. Van Den

Bogaard, 2013). A complementary paper (to be submitted) explores the dynamics of plume-EDC interaction, showing that a

contribution from at least a weak plume is required to sustain island-building volcanism.

2 Methods65

We run 2D numerical models using the mantle-convection code CITCOM (Moresi and Solomatov, 1995; Moresi and Gurnis,

1996; Zhong et al., 2000) with the additions described in Ballmer (2009). We use the code to solve the equations of conservation

of mass, momentum and energy according to the “extended Boussinesq approximation” (Christensen and Yuen, 1985), which

includes shear heating, latent heat of melt, adabatic heating, and internal heating due to radioactive nuclides. The code solves

these equations in a Cartesian frame of reference. Non-diffusive fields (e.g. composition or melt depletion) are advected by70

passive tracers. King and Ritsema (2000) demonstrate that EDC is confined to the upper mantle whenever the phase change at

660 km is present, so all our experiments are regional models with a vertical extent of 660 km. We do not include the phase

change at 410 km depth, since it is not expected to effect strongly EDC (King and Ritsema, 2000). The Cartesian model box

of dimensions 2640x660 km is resolved by 384x96 elements without grid refinement. Resolution tests confirm that results

converge well at this resolution.75
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Kinematic boundary conditions involve no slip at the top and bottom boundaries. In some models, a non-zero plate velocity

(vplate) is imposed. When vplate is 0, both side boundaries are free slip. Otherwise, we impose a self-consistent (Couette-like)

velocity profile in the inflow (left) boundary and open the opposite outflow boundary.

In terms of thermal boundary conditions, we impose temperatures of Tsurf = 0 ◦C and Tref = 1350 ◦C at the top and bottom,

respectively. These temperatures are potential in nature, and therefore do not take into account any possible adiabatic gradient.80

We then approximate the initial adiabatic gradient as a linear temperature increase with depth of 0.3 K·km−1. This addition

is necessary for the consistent calculations of viscosity and melting. According to this approximation, the bottom temperature

corresponds to 1350 + 0.3 ∗ 660 = 1548 ◦C. Lateral boundaries are reflective (zero heat flow) except when inflow happens

because of finite plate motion, in which case the thermal boundary condition is fixed at the initial profile. The models also

include internal (i.e., radioactive) heating with a reference value of H = 7.75·10−12 W·kg−1, but we also run models with85

higher values of H . In addition, we discuss models with increased radiogenic heating that occurs only in the continental crust.

The initial thermal profiles of the oceanic (left) and continental (right side of the box) lithosphere are calculated according

to the half-space cooling model (e.g. Turcotte and Schubert, 2014, figure 2a) plus a small random thermal noise to simulate

small-scale heterogeneity and advance the solution of the initial timesteps. Both the thermal age of the continental lithosphere

and the age of the oceanic lithosphere are free model parameters (τc, τo). The edge (i.e., the transition in lithospheric thickness)90

is imposed as a linear interpolation between the oceanic and continental lithospheric thermal profiles. We choose this setting

because it allows us to freely vary the geometry of the transition between oceanic and continental lithosphere.

The geometry of the edge is an unconstrained parameter, the effects of which on EDC have not yet been studied systemati-

cally. The edge is defined by the initial lithospheric thickness on either side, and the width of the linear transition between the

two (w). Hence, we systematically explore parameters age of the oceanic lithosphere (τo), age of the continental lithosphere95

(τc). To study how much the dynamics change due to a change in the aspect ratio of the transition between ocean and continent,

we also changed the width of the wedge between the two lithospheres (w).

The modeled mantle consists of a fine-scale mixture of peridotite (97 %) and recycled basaltic eclogite (3 %, from now on,

pyroxenite; Hirschmann and Stolper, 1996). Peridotite itself consists of a depleted peridotitic component (DC) and an enriched

peridotitic component (EC). Mantle depletion of both lithologies increase with increasing degrees of melting, which affects100

mantle density ρ:

ρ= ρref −α · ρref · (T −Tref ) +F ·∆ρF +φ ·∆ρφ (1)

where ρref is the mantle density at Tref , α the thermal expansivity, T the temperature, F the melt depletion extent, φ the

mantle porosity, and ∆ρF and ∆ρφ the density differences related to melt depletion and melt retention (Schutt and Lesher,

2006; Ballmer et al., 2009). The depleted lithosphere is, therefore, more buoyant than the underlying mantle. To calculate105

the initial depletion profile of the oceanic lithosphere for our EDC models, we run 2D simulations of flow and melting of a

simplified mid-ocean ridge using the same parameters as in the corresponding EDC models. An example of one of these ridge

models, with an extended explanation, can be found in Appendix A
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As for the initial depletion profile at the base of the continental lithosphere, we have chosen to impose the same ridge

depletion as in the oceanic side on the continental part, adding a depleted lid (with F = 1) on the top (figure 2b). This depleted110

lid mimics the excess buoyancy of continental crust, although it may underestimate the actual density values of the upper crust.

The initial thickness of this lid is arbitrarily defined as 40 km for the reference case, but it is adjusted for models with different

continental thicknesses to follow the same change in depth as the 0.9·Tref isotherm on the continental side (according to the

half-space cooling model). The edge itself consists on a wedge of crustal depletion (F = 1) of width w that thins toward the

oceanic lithosphere (figure 2). Indeed, it has been suggested that the subcontinental lithospheric mantle is harzburgitic in nature115

(Bodinier and Godard, 2013), but the specific profile remains unconstrained.
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Figure 2. Initial conditions for the reference model. (a) Initial field of potential temperature Tp (i.e. with the adiabatic gradient removed).

(b) Initial compositional field of depletion (F ) for the hydrous peridotite component. The areas where τ = τo and τ = τc, as well as w, are

labeled for clarity. A comparison of the fields for different lithologies can be found in Appendix A (figure A2).

We consider melting explicitly in our models following Ballmer et al. (2009), assuming (see above) that the lithological

assemblage consists of 82% depleted peridotite (DC), 15% enriched peridotite (EC, for the aforementioned sum of 97%) and

3% pyroxenite. Peridotite melting is calculated using the parameterization of Katz et al. (2003). We assume an H2O content of

100 ppm for the background depleted peridotitic component, and 300 ppm for the enriched peridotitic component (H2O is a120

placeholder for any kind of enrichment). The pyroxenite (PX) melting law is taken from Pertermann and Hirschmann (2003).
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Melt flow and extraction occurs on timescales much shorter than convective flow. We therefore assume instantaneous extraction

(outside the model box) of any melt fractions that exceed the critical porosity (φc).

We use a simplified rheology with a dependence of viscosity on temperature T and pressure P :

logη = logη0 +
Ea +P ·Va

R ·T
− Ea
R ·Tref

(2)125

where η is the viscosity,Ea and Va the activation energy and volume, respectively, T and P are the temperature and pressure,R

the ideal gas constant and Tref is the reference (potential) temperature. In this formulation, η0 is the reference viscosity defined

at T = Tref and zero pressure, and hence does not represent the viscosity of the asthenosphere. Our reference activation

energy is 200 kJ · mol−1, i.e., lower than the lower limit constrained by deformation experiments (Karato and Wu, 1993;

Hirth and Kohlstedt, 1996). We use such reduced values for Ea to account for the effects of stress-dependent viscosity (e.g.,130

due to dislocation creep) in a simplified Newtonian rheology description (Christensen, 1984; van Hunen et al., 2005). While

such a simplified approach cannot model the local effects and potential feedbacks of stress-dependent rheology, it correctly

replicates the major features of convection, including the thickness of the thermal boundary layer, which is critical for the

vigor of EDC and related melting. We do not systematically explore the effects of compositional (e.g. pyroxenite vs. peridotite,

water-dependent) rheology in this work. Nonetheless, we run some test cases with a simplified depletion-stiffening rheology135

(Appendix B). These tests confirm that EDC sensu stricto remains a transient even with aa stabilized lithosphere, and our

results (and the subsequent conclusions) are robust, even though the edge remains more stable with than without depletion

stiffening rheology.

Our choice of rheology parameterization causes the depth-dependency of viscosity to be due to both, Ea and Va (eq. 2). This

dependency is problematic because, due to the simplified parameterization and our decreased Ea, the effect of the physical140

parameters on the viscosity along the adiabat is unrealistic. Instead, we chose to keep the viscosity along the adiabat the same

between cases, and chose to focus on the effect of Ea on the stability of the Lithosphere-Astenosphere Boundary, which is

crucial for any kind of SSC (including EDC). To make sure that the slope of the viscosity profile along the adiabat remains

the same in all cases, we slightly adjust Va as parameter Ea is varied. Any variations in Va (see table 1) are only due to this

adjustment. For an example of a viscosity profile with depth, see Appendix B (figure B1).145

3 Results

3.1 Reference case

To characterize flow and melting of EDC, we first describe a reference case. Figure 3 shows a typical example of EDC as a

series of snapshots for the reference case. The convective pattern initially resembles (figure 3a) the pattern of the idealized case

in figure 1, as well as the cases reported by King and Anderson (1998): there is one major convection cell with a dominant150

downwelling on the continental side of the edge and upwelling return flow on the oceanic side. The downwelling is mainly

sustained by lateral inflow of sub-lithospheric material from the oceanic side due to the asymmetry in viscosity structure, but
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Table 1. Relevant reference parameters for the models described in this chapter. Values between parenthesis represent the explored parameter

space, with the exception of Va (see section 2 for explanation)

Notation Parameter Value(Range) Unit

Tref Reference temperature 1350 (1300-1400) ◦C

D Reference thickness 660 km

ρref Reference density 3300 kg·m−3

κ Thermal diffusivity 1·10−6 m2·s−1

g Gravity acceleration 9.8 m·s−2

α Thermal expansivity 3·10−5 K−1

cP Heat capacity (constant pres-

sure)

1250 J·kg−1·K−1

η0 Reference viscosity 8.61·1018 (2.87·1018-1.96·1019) Pa·s

Ea Activation energy 200 (120-300) kJ·mol−1

Va Activation volume 5.00·10−6 (4.54·10−6-5.82·10−6) m3·mol−1

γa Adiabatic gradient 0.3 K·km−1

H Internal heating 7.75·10−12 (7.75·10−12-2.33·10−11) W·kg−1

F Melt depletion 0-1 -

∆ρF Density anomaly due to melt

depletion

-100 kg·m−3

φc Critical porosity 0.01 -

∆ρφ density anomaly due to melt re-

tention

-100 kg·m−3

L Latent heat of melt 5.6·105 J·kg−1

vplate Plate velocity 0-6 cm·yr−1

τc Age of the continental litho-

sphere

100(70-300) Ma

τo Age of the oceanic lithosphere 40(30-50) Ma

w Width of the edge 264(132-396) km

some material from the continental side is also entrained. As a response to this entrainment, a secondary return-flow upwelling

is soon generated on the continental side (figure 3b). The flow patterns promptly change to more complex configurations,

with several upwellings and downwellings adjacent to the initial convection cell. Soon thereafter (at 35∼40 Myr), the oceanic155

lithosphere as a whole becomes thermally unstable triggering widespread small-scale convection (SSC; figure 3d). At this

point, EDC becomes almost undistinguishable from SSC (in our 2D models).

7



From this point, we do not characterize EDC further, as it is not possible to distinguish which properties are due to EDC and

which ones are due to SSC. We therefore define this onset of SSC as the maximum of the first time-derivative of the second

peak of the vz,rms (the first peak corresponds to EDC).160

Ultimately, SSC also develops beneath the continental lithosphere (∼45 Myr, not shown).
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Figure 3. Series of snapshots of potential temperature for the reference case (for parameters, see table 1). In black, the 1215 ◦C isotherm

(0.9·Tref ) is shown as a proxy for the base of the lithosphere. Arrows reflect the instantaneous velocity field. No melting is predicted by this

model at any timestep.

An important consequence of EDC (and subsequent SSC) is the erosion of the base of the lithosphere (represented by the

black contour in figure 3). At 21 Myr (figure 3b), a clear ‘bump’ (or small cavity; Conrad et al., 2010) appears at the base of

the lithosphere due to the upwelling pushing the material, as well as material entrainment by the major downwelling, hence

promoting local extension of thelithosphere. Not only is this thermal erosion partly responsible for triggering secondary down-165

wellings and transmitting SSC toward the oceanic side (figures 3c,d) (e.g. Dumoulin et al., 2005), but it is also a requirement

for melting. Displacement of at least the base of the depleted lid is necessary for melting, because the temperatures are below

the melting point of the lithosphere at timestep zero. Nonetheless, in this reference model, erosion of the depleted lid remains

insufficient to allow mantle melting to occur throughout model evolution.
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3.2 Effects of physical properties of the mantle170

To understand the optimal conditions for melting generated by Edge-Driven Convection, we systematically explore several

physical properties of the models. We focus on the effects of reference viscosity (η0), activation energy (Ea) and initial potential

temperature (Tref ).

Increasing the reference viscosity (according to eq. 2) tends to delay the onset of convective instability and hamper melting175

(figures 4a,b; 5a). Thereby, the duration of EDC (which starts immediately at t = 0, albeit with a smaller vigor compared to

the reference case) vs. SSC is enhanced (we would like to point out at this point that the ages in figure 5 are counted starting

from timestep=0, and therefore must be added to the age of 40 Ma of the initial oceanic lithosphere age). Figure 4 (b) shows

a snapshot of a case with η0 = 1.95·1019 Pa·s, which displays a similar pattern of convection as the reference case with η0

= 8.61·1018 Pa·s (figure 3c), but at a much later model time of 82 Myr. Accordingly, the onset of SSC is much later than180

estimated for a typical ocean basin on Earth (Stein and Stein, 1994; Doin and Fleitout, 1996), and the lithospheric thickness on

the oceanic side of the model is far too thick to potentially allow the astenosphere to melt. In turn, cases with η0 ≤ 3.83·1018

Pa·s (figures 4a, 5a) display melting during a limited period of time (i.e., over a few Myr), but based on the (late) timing and

(widespread) distribution of melting, most of this melting is associated with SSC rather than with EDC.

Decreasing activation energy (figures. 4c, 5b) tends to advance and increase the vigor of EDC and SSC. For low Ea, the185

viscosity of the base of the lithosphere is decreased, and hence the lithosphere becomes more mobile. For Ea ≤ 140 kJ·mol−1,

the related erosion of the base of the lithosphere is sufficient to permit early and localized EDC-related melting. However, in

these cases, more vigorous melting ultimately occurs across the entire oceanic domain due to SSC. Also, the onset of SSC

and related seafloor flattening is < 70 Myr, i.e., earlier than realistic for the Atlantic (Stein and Stein, 1994), although we can

compensate this by choosing a different reference viscosity. In turn, cases with high Ea ≥ 250 kJ·mol−1 display a late onset190

of SSC and a stable lithosphere with ultimate thicknesses greater than realistic (figures 4d, 5b).

Regarding convection patterns, the entrainment of sublithospheric material by the dominant downwelling near the edge tends

to be more symmetric for low Ea. This prediction implies that that the activation energy will have an important effect on the

final geometry of the oceanic-continental transition. Finally, cooling of the mantle is more efficient for low Ea than for high

Ea, since the base of the lithosphere is more mobile. This effect also occurs for decreasing η0, but is more pronounced for195

decreasing Ea (see isotherms in figure 4a vs. figure 4c).

Increasing Tref tends to advance convective instability and boost magmatism. An increment of potential temperature from

1350 ◦C to 1400 ◦C (figure 4e) induces minor melting in the area of maximum erosion of the lithosphere during a limited

period of time. This effect is smaller than expected because it is largely compensated by an increase of the thickness of

the pre-calculated depleted lithosphere (see section 2), and because the lithosphere still cools via conduction. Increasing the200

temperature even more may further increase melting, but would also lead to unrealistic crustal thicknesses in the corresponding

pre-calculated models. Also note that the peridotite melting parameterization used in this study (Katz et al., 2003) is on the
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Figure 4. Effects of rheological parameters and reference temperature on Edge-Driven Convection, shown by snapshots of potential temper-

ature of various cases. (a) η0 = 3.83·1018. (b) η0 = 1.96·1019. (c) Ea = 120 kJ·mol−1. (d) Ea = 300 kJ·mol−1. (e) Tref = 1300 ◦C. (f) Tref

= 1400 ◦C. White contours outline areas with active melting. Black contour refers to the isotherm of T = 1215 ◦C = 0.9·Tref . Note that

snapshots are chosen such that they show a similar stage of model evolution as in figure 3b (i.e., mature EDC major downwelling), while

model times differ due to the effects of rheological parameters on onset and vigor of EDC/SSC. Also note that the reference case (figure

3b,c) corresponds to an intermediate case for the trends shown in any of the rows: η0 = 8.61·1018; Ea = 200 kJ·mol−1; Tref = 1350 ◦C.

10



150

200

250

300

350

400

500

50

60

55

45

40

35
100 150 200 250 300 350 400 450

Width of the Edge (km)

O
nset of SSC (M

yr)

450

V z
,rm

s
(m

 • 
M

yr
-1

)

150

200

250

300

400

450

500

0 50 100 150 200 250 300 350
Con�nental lithosphere age (Ma)

350 50

60

55

45

40

35

1050

900

750

600

450

300

150

0

210

180

150

120

90

60

30

0
100 150 200 250 300 350

Ea (kJ • mol-1)

O
nset of SSC (M

yr)

10193•1018

V z
,rm

s
(m

 • 
M

yr
-1

)
1050

900

750

600

450

300

150

0

210

180

150

120

90

60

30

0

η0 (Pa • s)
3•1019

(a) (b)

(c) (d)

Figure 5. Diagrams showing the sensitivities of vz,rms (root mean square of vertical velocities) and of the onset age of small scale convection

(starting from an oceanic crust of age 40 Ma, which needs to be added to the values in the figure) to selected parameters. (a) Reference

viscosity (η0). (b) Activation Energy (Ea). (c) Age (or thickness) of the continental lithosphere (τc). (d) Width in the horizontal direction of

the edge (w). Note that the vertical axes of panels (c) and (d) are exaggerated with respect to those of panels (a) and (b).

lower end in terms of solidus temperatures (e.g. McKenzie and Bickle, 1989; Iwamori et al., 1995; Hirschmann, 2000; Lambart

et al., 2016).

Figure 6 presents a summary of the joint effect of η0 and Ea on EDC-related mantle melting. We also label the viscosity205

at 206 km depth as a representative of the viscosity of the asthenosphere. The melting rate characteristic for EDC (figure 6a)

is determined at the first local maximum of root-mean square vertical velocity vz,rms, which corresponds to the development

of the first major downwelling from near the edge. Determining the exact volume of EDC-related melting remains difficult

because melting occurs before and/or after this maximum, and commonly transitions into persistent SSC-related melting. For

example, the model with Ea = 140 kJ·mol−1 (and with reference values of η0) displays some EDC-related melting just before210

the onset of SSC, but this melting episode is extremely short-lived and would likely be insufficient to sustain any significant
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volcanism. Nonetheless, there is a systematic trend between melt volume fluxes that are measured as described above with

both parameters. This result suggests that the stability and final thickness of the lithosphere ultimately controls melting due to

EDC and, probably, due to SSC. This final thickness (i.e., beneath old ocean basins) is constrained by seismic observations,

and seafloor topography (Stein and Stein, 1994; Doin and Fleitout, 1996; van Hunen et al., 2005).215
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Figure 6. Scatter plots showing the melt properties variation with respect to the reference viscosity (η0) and activation energy (Ea). The

upper axis η206 refers to the viscosity in the asthenosphere measured at z = 206 km depth on the oceanic side for all cases with Ea = 200

kJ·mol−1. For all other cases, this value slightly varies according to (very small) temperature changes related to the half-space cooling model

(see eq. 2), but by less than 5 %. (a) Melt volume flux due to EDC (colored circles), measured at the point of maximum EDC-related vertical

velocitites (i.e., vz,rms). Crosses mark cases in which no melting is detected. The size of the circles also scale with melt volume fluxes. Melt

volume fluxes are reported in km2·Myr−1 due to the 2D character of the model (i.e. corresponding to km3·Myr−1 per km of plate in the

out-of-plane direction). (b) Scatter plot showing the origin of the melting products (i.e. proportion of melt derived from pyroxenite vs. total

melt; colored circles). Notation of crosses and size of circles as in panel (a). Note that the color scale is set between 0.8 and 1.

Figure 6b shows the compositional origin of the melts from figure 6a. In many of the models, only the pyroxenite component

melts, if melting occurs at all. This prediction implies the formation of magmas that are extremely enriched. The enrichment

tends to slightly decrease with increasing melt flux. The least enriched case is consistent with the highest volume in figure 6a,

and corresponds to a model with Ea = 120 kJ·mol−1 and η0 = 2.87 · 1018 Pa·s. Even in this extreme case, the melts are mostly

pyroxenite-derived. Although the absolute numbers in figure 6b depend on the choices of our melting parameterizations and220

lithological assemblage (see section 2), the general trends will be similar as shown in figure 6b unless the pyroxenite component

melts at a higher temperature than peridotite (Yaxley and Green, 1998; Shorttle et al., 2014; Lambart et al., 2016).
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3.3 Effects of lithospheric-edge geometry

Modification of τo within the small range explored here controls the convection patterns of EDC. We explore τo only in a

small range (30 ≤ τo ≤ 50 Ma) because any smaller τo yields melting at time t = 0, and any larger τo yields a metastable225

base of the lithosphere (i.e., due to τo close to or larger than the onset age of SSC for η0 in the reference case). With τo =

30 Ma, melting appears during the early stages of EDC but quickly ceases (at t < 10 Myrs), consistent with the results of the

reference case (τo = 40 Ma). Reducing or increasing τo changes the convection patterns of EDC: decreasing the age (and hence

initial thickness) of the oceanic lithosphere tends to promote more asymmetric downwellings. For η0 as in the reference case,

significant EDC-related melting requires τo ≤ 30 Ma. Widespread SSC (and related melting) is largely independent of τo.230

Changing the continental thicknesses also modifies the patterns of convection. Figure 7 (a and b) shows that thicker con-

tinental lithospheres tend to increase the vigor of EDC, therefore augmenting the volume of related melting. However, this

increase only occurs up to some point: for τc > 150 Ma (figures 5c and 7b) the pattern of convection changes such that the

maximum vertical velocity occurs at significantly greater depths than in the reference case (figure 3). As a result, the character-

istic velocities of EDC slow down because the viscosity increases with depth (see eq. 2). The onset of SSC also decreases for235

τc > 150 Ma. Similar to the effects of decreasing τo, increasing τc enhances the asymmetry of the EDC cell. This asymmetry,

in turn, implies that less material from the base of the continental lithosphere, and more material from the base of the oceanic

lithosphere is entrained by the EDC downwelling for higher τc.

Increasing w increases the vz,rms of EDC, probably due to more material from the lithosphere (thermal boundary layer)

entrained in the downwelling(s) (figure 7d). Contrary to the previous cases, changing w does not affect noticeably the onset of240

SSC, which remains largely constant (figure 5d). These differences between changing τo and τc, and changing w, suggests that

the geometrical effects cannot be simplified to an aspect-ratio-dependent parameter and that all geometrical parameters have a

distinct effect.

Finally, we devise a model for the Canary Islands with τo = 40 Ma, w = 528 km, and a continental thermal age τc = 350

Ma (corresponding to a depth of 275 km for the 1215 ◦C isotherm), consistent with the lithospheric thickness maps presented245

by Jessell et al. (2016, and references therein). The Canary islands are located on an oceanic crust much older than 40 Ma;

however, it is not possible within the limitations of our models to initiate a case with an oceanic crust of 100 to 150 Ma. Thus

we decide to keep τo as in the reference case. Results from this model conform with the combined predictions of our cases with

a very wide edge and with a very thick continental lithosphere (vz,rms = 287 m·Myr−1, and onset of SSC = 48 Myr), suggesting

that extrapolations from the trends in figure 5c,d are viable for settings outside the range of parameters systematically explored250

here. Also note that no melting was detected in this case.

3.4 Effects of internal heating

We also explore the effects of internal heating on model results. In principle, radioactive heating in the mantle should be much

lower than that in the crust, but chemical heterogeneity may locally increase internal heating. We explore cases with increased

internal heating everywhere, and others with increased internal heating just in the continental ‘crust’ (i.e., yellow area in figure255
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Figure 7. Effects of edge geometry on Edge-Driven Convection, shown by snapshots of potential temperature. (a) τc = 70 Ma. (b) τc = 150

Ma. (c) w = 132 km. (d) w = 396 km. All other parameters as in the reference case. Note that no melting occurs in any of the models. For

clarity, note that the values of the reference case are τc = 100 Ma; w = 64 km.

2 with F = 1; as defined in section 2). We find that tripling the radiogenic heat production compared to the reference case

everywhere has little influence on the vigor and geometry of EDC. However, it has an important influence on mantle melting,

and also advances the onset of SSC which, then, becomes more vigorous than in the reference case (i.e., with increased vz,rms).

Increasing internal heating can induce melting, and boost the degrees and rates of melting, by limiting asthenospheric

cooling. For example, as the mantle internal heating rate is unrealistically tripled in a model with activation energy Ea = 160260

kJ·mol−1, there is an increase in volcanism equivalent to reducing the Ea from 160 to 140 kJ·mol−1, or to reducing η0 from

8.61·1018 to 5.68·1018 Pa·s.

In nature, heat-producing elements tend to be concentrated in the continental crust due to their incompatible nature with

respect to the mantle. We run an additional set of models with increased internal heating only in the continental crust Hc.

Increasing the internal heating to Hc = 5 · H does not have any apparent effects on melting, nor it does affect the convection265

patters or vz,rms. For Hc = 10 · H , the average vz,rms is increased, but no substantial changes in terms of convection patterns

are detected. Only for Hc ≥ 50 · H , significant changes occur compared to the reference case, with progressive lithospheric
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thinning on the continental side due to the effects of radioactive heating on the viscosity. At Hc = 100 · H , melting occurs in

the lower crust (followed by melting in the eroded continental lithosphere). In any case, Hc ≥ 50 ·H = 3.875·10−10 W·kg are

unrealistic as an average value for the whole crustal thickness (Turcotte and Schubert, 2014).270

3.5 Effects of volatile contents

Fluids released from the transition zone or other volatile-rich heterogeneities entrained by upper-mantle convection may also

play an important role for intraplate volcanism, because they can greatly decrease melting temperatures. Unfortunately, dealing

with amounts of water in a rock greater than the ones presented above remains a challenge for modeling (Green, 2015). We

increase the water content in the enriched peridotitic component (EC) to 1000 ppm (0.1 %) in some models. In others, we also275

increase the abundance of EC (from 15 % to 25 %). However, we emphasize that we are limited by the melting parameterization

applied here (Katz et al., 2003), and hence are unable to explicitly model compositions that bear hydrous phases or other

volatiles such as CO2. In other words, H2O concentrations in these additional models is a qualitative proxy for bulk volatiles

in terms of their effects on melting behavior.

We find that for sufficiently large contents of H2O in EC, EC melting starts to occur for the reference setting. The solidus of280

hydrous peridotite for 1000 ppm H2O is below that of pyroxenite. In previous cases, pyroxenite was the main source (or even

the sole one) of mantle melting. In this case the composition of magmas/melts is different than in previous cases and mostly

peridotite-derived. In cases with high water contents in EC, melting is usually widespread, occurring due to EDC and SSC.

Nonetheless, the amount of melting is very limited because of the low productivity of melting at low F in hydrous peridotite

(Hirschmann et al., 1999; Katz et al., 2003; Asimow et al., 2004); and note that this productivity is much lower than that of285

the pyroxenite used here (Pertermann and Hirschmann, 2003). For example, the peak melt production in a case with 1000 ppm

H2O in EC and a content of 25 % EC in the mantle assemblage is two orders of magnitude lower than that of the case with

activation energy Ea = 120 kJ·mol−1 and η0 = 2.87·1018 (i.e., the case with maximum melt flux in figure 6).

3.6 Effects of plate motion

Another potentially important effect involves upper-mantle shear imposed by plate motion. All models presented above are290

stationary, i.e., with vplate = 0 cm·yr−1, but on Earth plates move at finite speeds. Hence, we run additional models with an

imposed plate velocity of 2, 4 and 6 cm·yr−1 in both directions perpendicular to the edge. Related shearing of the asthenosphere

may contribute to melt production near the continent-ocean transition for plate motions in the direction of the continent (and

hence opposite directions of mantle shear) due to shear-driven upwelling (King and Anderson, 1995, 1998; Conrad et al., 2010;

Till et al., 2010). We find however that no melting is generated for plate velocities ≤ 6 cm·yr−1, in models with a setting that295

otherwise conforms to the reference case.
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4 Discussion

To explore the potential of EDC in terms of sustaining mantle melting and intraplate oceanic volcanism, we run a series of 2D

convection models in a systematic parameter study. One robust result of our models involves the transient nature of EDC, with

an evolving flow pattern and vigor. In all cases, EDC is followed by SSC, and EDC alone (i.e., before the onset of widespread300

SSC) is never associated with high degrees or large volumes of mantle melting. In most models, EDC-related melting does not

occur at all and, when it does, it is often short-lived and almost invariably followed by widespread melting due to SSC (except

for the cases of Tref = 1400 ◦C and τo = 30 Ma).

In all models in which melting due to EDC occurs, it happens soon after the beginning of the model and for only a short

timespan. Keep in mind that EDC occurs mostly because the initial conditions of our models are metastable, and in reality305

should have started significantly earlier than time t = 0 Myr in our models, e.g., immediately following rifting (van Wijk et al.,

2010). Thus, any significant magmatism due to EDC beneath mature oceanic lithosphere is not realistic. On old lithosphere,

if any melting occurs, it should occur widespread (due to SSC) and not localized (due to EDC). Pushing mantle properties to

values that are more favorable for EDC-related melting invariably advances the onset of SSC (figure 5), therefore constraining

even more the timing of purely EDC-related melting.310

Although overall consistent (compare figure 6a with figure 6a of Kaislaniemi and Van Hunen, 2014), many of our results

may strike as surprising when compared to previous work. In particular, our main conclusion of little-to-no melting due to EDC

is in contrast to King and Anderson (1995, 1998), Till et al. (2010) and, to a smaller extent, Kaislaniemi and Van Hunen (2014).

To our knowledge, no other work has self-consistently calculated the initial oceanic lithosphere depletion profile, and the initial

condition has a big influence on melting in these models, mostly due to the very transient nature of EDC. Indeed, a step-like315

edge can promote at least short-lived vigorous EDC and melting, but may not be realistic. This is not necessarily a criticism of

previous work - for example, Kaislaniemi and Van Hunen (2014) deal with a tecton-craton transition in a continental setting -

but rather a cautionary tale for future work regarding melting in the oceanic domain.

Kaislaniemi and Van Hunen (2014) also used higher-than-realistic values for radiogenic heating to compensate for the

potential lack of basal heating due to whole-mantle convection in regional-scale models. This increased heating may maintain320

otherwise transient EDC-related melting, and cause hotter temperatures beneath the continents. Our results suggest that higher-

than-realistic internal heating can have a significant effect on melting by elevating mantle temperatures such that they exceed

those for which the initial mid-ocean ridge depletion profile was calculated on the oceanic side (but note that in this case, the

relevant origin of melting is not EDC anymore). Furthermore, the lack of basal heating is not necessarily unrealistic because,

for realistic rheologies, sub-adiabatic lower mantles have been inferred (e.g. Christensen and Yuen, 1985; Ulvrova et al., 2019).325

Indeed, EDC is a transient process and will be affected by re-heating of the upper mantle, but re-heating is achieved by other

processes than those studied here (e.g. mantle wind or mantle plumes).

To stabilize the continental lithosphere, some authors have applied composition-dependent rheology (e.g King and Anderson,

1995; Kaislaniemi and Van Hunen, 2014). Such approach has the advantage of keeping the edge geometry mostly constant and

being more suitable to study long-term processes. Unfortunately, there is no obvious and self-consistent way to calculate the330
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lithological and rheological profile at the base of the continental lithosphere (see methods) and any proper analysis would hence

require an extended parameter search. The models explored in Appendix B confirm that the results of our models predict upper

bounds in terms of amounts of melting. Moreover, the total amount of mantle melting due to EDC is smaller with rheological

stabilization than without (for details, see Appendix B).

Another effect that emerges in models with rheological stabilization and radiogenic heating is a blanketing effect that may335

cause melting by processes other than EDC (see Appendix B). In reality, although a local enrichment of radiogenic elements,

or a blanketing effect by a continent, is possible, Jain et al. (2019) showed recently that there is an inverse relation between

increased radiogenic heating and the ability of continents to “heat” the underlying mantle by isolation.

As demonstrated by our high-temperature models, EDC may (temporarily) sustain higher volume fluxes of melting, if hot

materials are brought to the oceanic-continental transition for any reason. Such hot materials may be transported to the base of340

the lithosphere mainly by two processes: flow related to whole mantle convection ( e.g., Behn et al., 2004; Conrad et al., 2011)

or mantle plumes (for detailed investigation, see companion paper). Alternatively, the entrainment of hydrous or enriched

materials by EDC may sustain moderate volcanism locally. For example, hydrous upwellings from the transition zone may

be conveyed by EDC or SSC to the base of the lithosphere (Long et al., 2019). In this case, the underlying origin of mantle

melting in the first place are the hydrous upwellings, and not EDC, even though the latter may ultimately control the geographic345

distribution of volcanism.

In any case, degrees of melting and related volume fluxes predicted by our models are unable to account for the high eruptions

rates of the Canary Islands or Cape Verde (Hoernle and Schmincke, 1993; Carracedo et al., 1998; Plesner et al., 2003), even

for a slow moving plate. We consider the case with greatest melt fluxes in figure 6a (Ea = 120 kJ·mol−1; η0 = 2.87·1018):

all magma produced in the mantle before the onset of SSC-related melting will result in a 2D edifice of only 2.55 km height,350

assuming the most favorable conditions (no melt retention in the mantle, and complete extrusion to the surface) and an edifice

slope of 18 degrees (Smith, 1988). This height is insufficient to explain emerged islands in the Canary archipelago, since the

seafloor is> 3 km below sea level. If we assume that 3D effects will focus melts into conical edifices with an spacing in the 3rd

dimension of 50 km (consistent with the separation of the islands La Palma and El Hierro), the height of the edifices would be

4.66 km above the sea floor, compatible with the height of small islands, such as El Hierro, but inadequate to explain the height355

of islands such as La Palma or Tenerife. These calculations demonstrate that not even this extreme case, with parameters that

are marginally realistic for the Earth’s mantle (Ea = 120 kJ·mol−1; η0 = 2.87·1018), and considering favorable assumptions,

can reproduce the volumes of major (subaerial) volcano chains such as the Canary Islands (or Cape Verde).

In addition, the short lifespan of EDC-related melting in models with low τo suggests that any related volcanism should

occur on seafloor much younger than that underlying the Canaries or Cape Verde. Besides, no widespread magmatism such360

as due to SSC is observed in the vicinity of any of these archipelagos. Also, strictly-speaking, EDC melting is expected to

sustain volcanism in an elongated zone that is parallel to the cratonic margin, and not localized like a hotspot. On the basis of

the results of the models here presented, we draw the conclusion that Edge-Driven Convection alone is insufficient to sustain

island-building volcanism near the African margin.
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Furthermore, our models predict that EDC-related lavas invariably originate from mantle melting of enriched lithologies365

such as pyroxenite (figure 6b). While volcanic compositions in the shield building stage of the Canaries are slightly more

enriched than their Hawaiian counterparts (Abdel-Monem et al., 1971, 1972; Carracedo, 1999), they are not consistent with

mostly pyroxenite-derived primary magmas. The models in which hydrous peridotite melts first - i.e., the hydrous models -

present even lower productivities and melting volumes. Geochemically speaking, we cannot favor and EDC origin for the main

shield-building stage of the Canary or Cape Verde archipelagos either.370

Nonetheless, there are some enriched volcanic compositions in the Eastern Atlantic, for example, the outcrops of carbonatites

in the two archipelagos mentioned above (Allegre et al., 1971; Hoernle et al., 2002; Doucelance et al., 2010). Moreover, data

about fluid inclusions in recent work suggests that current eruptions are among the most CO2-rich for ocean islands (Taracsák

et al., 2019, Esteban Gazel, Cornell University, personal communication, 2018). Although it has been suggested that a high

amount of CO2 in the source is not required to explain the magmatic signatures of these islands (Schmidt and Weidendorfer,375

2018), the influence of CO2 on melting should not be ignored. Unfortunately, no parameterization which we could implement

with our numerical scheme includes the effects of CO2 on melting in the mantle, which remain poorly constrained. And the

high water models of section 3.5 are only a proxy for what could happen.

While an alternative origin (such as a thermal anomaly) is required for the volcanic archipelagos, this does not imply that

EDC does not happen near the western African margin. EDC occurs in all of our models and must occur along every continental380

margin on Earth. Patriat and Labails (2006) found a “bulge” in the basement of the ocean-continent transition between the

Canary Islands and Cape Verde. The location of this topographic anomaly coincides with the position of the main upwelling

in our models (i.e., at similar distances from the margin as predicted here). In turn, this “bulge” does not coincide with the

inferred position of the Canary or Cape Verde hotspots.

In addition, Van Den Bogaard (2013) describes the formation of seamounts near the current position of, but significantly385

preceding, the Canary hotspot (Geldmacher et al., 2005). The timing and location of these seamounts is consistent with EDC-

related melting beneath oceanic seafloor younger than 60 Ma, such as predicted by our models (for example, the Bisabuelas

seamount erupted 142 Ma ago in a much younger African Plate). Given our model results, the geochemical signatures of

these seamounts can be used as a test for their origin. We demonstrate that any EDC-related melting robustly implies strong

geochemical enrichment.390

One of the main conclusions of this study is the occurrence of EDC in absolutely all models run here, at least for a short

duration. This is an intuitive result, as mantle convection is driven by lateral density differences. Even for a lithosphere that

is intrinsically buoyant due to chemical anomalies, the thermal boundary layer will grow to the point where EDC starts (Lee

et al., 2005). It is very likely that EDC starts as soon as rifting indents the lithosphere, resulting in an increased magmatism and

erosion (King and Anderson, 1995; Sleep, 2007). Furthermore, although we have shown that EDC (by itself) is not a suitable395

mechanism for creating voluminous volcanic archipelagos, it could be responsible for smaller seamount provinces on young

oceanic crust, such as the Canary Islands seamount province of Van Den Bogaard (2013).

Gerya et al. (2015) suggested that several processes during the history of the lithosphere may weaken it sufficiently to

overcome the resistance to subduction initiation. In this sense, EDC-related low degree magmatism, although insufficient to
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generate archipelagos, may help to decrease the strength of the lithosphere in the continental-oceanic transition. This weakening400

could help to localize subduction zones along continental margins. The stresses related to EDC and SSC may further contribute

to break plates (Solomatov, 2004; Mulyukova and Bercovici, 2018). We show that EDC can thermally erode and indent the

lithosphere locally, and that melting will occur just below this indentation. Future work should focus on the role of EDC in

subduction initiation.

Concerning limitations, our models are intentionally simplified, because we attempt to explore the systematic effects of405

rheological and geometrical parameters on Edge-Driven Convection and melting. As the depleted and dehydrated lithosphere

is expected to be more viscous than modeled here, our predicted velocities of EDC can be understood as upper bounds (see

Appendix B). Moreover, we show that erosion of the lithosphere is a prerequisite for EDC-related melting, and considering

the effect of depletion stiffening will only reduce the degrees of melting and related volumes discussed in section 3. Lee et al.

(2005) showed the importance of composition-dependent rheology for stabilizing cratons, and the influence of these variables410

on EDC needs to be better constrained. On the other hand, Currie and van Wijk (2016) showed that EDC and craton stability

are intimately associated, and that the influence of EDC on craton formation and stability is poorly understood.

Finally, 3D models of EDC may present small differences with their 2D counterparts (Kaislaniemi and Van Hunen, 2014). We

expect these discrepancies to be small, however, in particular for models with small plate velocities. For large plate velocities,

the preferred geometry of SSC (longitudinal rolls; Richter and Parsons, 1975) is different than that prescribed in 2D models,415

and hence the onset age of SSC may be further advanced. In this sense, again, our model setup is conservative. Test models

indeed confirm that key model predictions remain robust in 3D geometry.

5 Conclusions

In this paper, we study the formation of mantle melting and oceanic intraplate volcanism due to Edge-Driven Convection

(EDC). As a complex, transient phenomenon, EDC is strongly affected by mantle rheological properties and the geometry of420

the base of the lithosphere. The following points summarize the key findings of this paper:

– Although EDC melting is not very vigorous, mantle flow due to EDC occurs for any combination of physical parameters

realistic for the Earth, albeit it remains a transient phenomenon. We predict that EDC should occur everywhere on Earth

where lateral density variations exist in the lithosphere, but is soon soon transition into widespread SSC.

– For a wide range of parameters, EDC is insufficient to sustain mantle melting at all. Only for a subset of the parameter425

space (e.g., for low Ea and/or low η0), EDC can sustain magmatism. However, even for these models, EDC-related

magmatism is rather weak and can only sustain the formation of small seamounts with very enriched geochemistry on

young oceanic crust (e.g the Cretaceous-to-Paleogene Canary islands seamount province).

– In turn, EDC is by far insufficient to sustain voluminous island-building volcanism, particularly on old seafloor (such as

the Canaries or Cape Verde). On old seafloor, volcanism is predicted by our models to occur widespread due to SSC, and430

not localized due to EDC (if it occurs at all).
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– Increased mantle temperatures or water contents can modify the vigor of convection and the amount of melting, but

future work is needed to quantify the conditions under which such thermal/compositional anomalies can be sustained

continuously in order to reproduce the large volumes of volcanism observed at the Eastern Atlantic Archipelagos.

A comprehensive (in prep.) will investigate the interaction between mantle plumes and Edge-Driven Convection.435

Code availability. The code used in this work together with the input files for the models shown can be obtained following the DOI:

10.5281/zenodo.4293656

Appendix A: Additional figures and explanations for the ’Methods’ section

The following figures complement those presented in section 2. Figure A1 shows a snapshot of a corner flow model simulating

flow and melting at a Mid-Ocean Ridge. These models are run to calculate the initial melt depletion profiles for the oceanic440

(and continental) lithosphere of the EDC models presented in the main text. Boundary conditions are different than those in

the main text, with open bottom and right boundary to simulate a corner flow (with lithosphere cooling) on the top-left corner.

Plate velocity (2 cm·yr−1) is imposed at the surface. We evaluate the models when a statistical steady state is reached. The

depletion profile is extracted from these models at a location sufficiently far away from the ridge axis (i.e., once melting ceases

in a determinate column moving away from the ridge axis) at the steady state.445

Figure A2 shows the different compositional fields for a snapshot of the reference case. The most important feature of this

figure is that the most enriched lithologies (EC and PX) are depleted also at the very base of the lithosphere. Erosion and

removal of these enriched lithologies are crucial for melting in any models without significant thermal anomalies in the mantle

(including our EDC models), and for which the depletion at the base of the lithosphere is self-consistently calculated.

Appendix B: Extended discussion on rheological stabilization of continents and EDC450

To explore the effects of rheological stiffening and estabilization of the continental lithosphere, we run additional models

of flow and melting with composition-dependent viscosity. A priori, there is no indication that accounting for compositional

rheology should strongly affect our results: a stiffer lithosphere is expected to promote less entrainment and erosion of the base

of the lithosphere, which in turn should result in less melting. On the other hand composition-dependent rheology may help to

maintain the edge, hence extending EDC-related flow.455

We follow the rheological stiffening method of Ballmer et al. (2009), which calculates the increase in viscosity due to

water loss in the main lithology (with increasing depletion of DC). We use a depletion stiffening coefficient ξ (for deffinition

of this coefficient see eq. 10 of Ballmer et al. (2009)) value of 274.8, which corresponds to a viscosity contrast of a factor

of 100 between a fully hydrated mantle (with water contents in DC and EC as defined in section 2) and a dry mantle. This

method relates stiffening with depletion as DC loses water during melting. Since the upper part of the continental lithosphere is460
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Figure A1. Temperature field and melting for an example mid-ocean ridge model (for description, see methods). For reference to contour

lines, see figures 3 and 4 captions.

simulated as an extremely depleted lid, this method leads to a greatly increased viscosity (i.e. a factor of 100) of the lithosphere

on the continental side of the model. Consistently, significant stiffening also happens on the oceanic side, as the oceanic

lithosphere is fully dehydrated at the top. For a comparison of viscosity profiles between the reference case of figure 3 and an

equivalent case with rheological stiffening, see figure B1

Figure B2a shows a comparison of a model with rheological stabilization and one without. Indeed, they show similar charac-465

teristics, but the case with composition-dependent rheology shows less removal of the base of the lithosphere (figure B2b). Due

to this less extensive removal, models with lithological stabilization produce lower melting volumes. For example, the models

shown in figure B2 feature the same η0 and Ea as the case with maximum melting in figure 6, but the case with compositional

stiffening, displays lower volumes of melting than its counterpart without viscosity adjustment (i.e. 2.49 vs. 5.32 Km2·Myr−1).

The effect of lithological stiffening also emerges when analyzing the vigor of convection. Figure B3 shows different vz,rms470

for equivalent cases with and without composition-dependent rheology. As can be seen, the cases with compositional rheology

display systematically lower vz,rms than cases without. This result suggests that the melt volumes and vigor of EDC pre-

dicted by our models without compositional rheology (as presented in the main text) can be taken as upper bounds, therefore

corroborating our conclusions.

21



(a) (b)

(c) (d)

0

0

0

0
660 660

660660
660 6601980 19801320 1320

x (Km) x (Km)

z (Km)

z (Km)

z (Km)

z (Km)

0.0 0.5 1.0
Tp (oC)

1000 1200 1400
F

0.00 0.05
F

0.10 0.15 0.20 1.00

DC EC

PX

Figure A2. Snapshots of composition and temperature of the same timestep of the reference model as shown in figure 3b. Panels (a) and (b)

show melt depletion the peridotitic compositions: DC and EC respectively. Panel (c) shows for the pyroxenitic (PX) component. Panel (d) is

identical to figure 3b. Note that while the depleted lithosphere of peridotitic components are barely eroded and entrained by EDC (with EC

being slightly more affected), this is not true for the depleted part of the PX component, which is more efficiently removed by the mantle

flow. Also note that the scale for panel (c) is different than that of panels (a) and (b).
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Figure B1. Viscosity profiles for cases with and without rheological stiffening. Solid lines correspond to cases without rheological stiffening,

while dashed lines correspond to cases which include rheological stiffening. In black and grey, profile at the oceanic side of the model; in

dark and light green, profile at the continental side of the model. All the remaining properties as in the reference case.

Finally, our models do not predict that the duration of EDC and EDC-related melting would be significantly exteded for475

cases with compositional rheology and with stable continent and edge geometries (as suggested by Kaislaniemi and Van

Hunen, 2014).
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