
Thanks to the reviewers, we could greatly improve our manuscript and are now hopeful that 

all stated issues are solved to satisfaction. Most of the manuscript was completely rewritten 

and we therefore kindly ask the reviewers to have a look at the revised manuscript where all 

changes have been marked. Citing all changes in this letter would be too messy. 

Nevertheless, our answers are marked in red and if the changes were just slightly, we still 

cited them here in green.  

To give a broad overview over the changes, here a small summary: 

We changed the model setup in a way that the coordinate system follows the maximum melt 

fraction, which allowed us to zoom into the initial perturbation, which in turn helped us 

reaching the required resolutions for the compaction length. With this improved resolution we 

no longer observe channels, but solitary waves. These will build up independently of how 

slow the segregation velocity is, if the ascend time is high enough. For very high radii a diapir 

will split up into numerous solitary waves but ascend as a whole, mostly affected by the 

surrounding matrix. 

We got rid of the retention number in our mathematical description and replaced it by the 

squared ratio of compaction length to model length scale r. Following this the segregation to 

Stokes velocity ration analysis was expanded by a figure, which shows the results of it for a 

few initial perturbation maxima. They fit nicely to the observed results of our models. 

 

Reviewer 2 

Suggestions for revision or reasons for rejection (will be published if the paper is 
accepted for final publication) 

The submitted revised manuscript by Dohmen and Schmeling systematically investigates 
magma ascent dynamics in order to capture the transition from the solitary wave regime to 
diapirism. The authors explore this transition by varying the relative compaction length of the 
system - here by changing the model extend while keeping the compaction length constant. 
 
The authors addressed majority of the concerns raised during the first round of revisions. 
However, the new version of the submitted manuscript still suffers from major design issues, 
both in the content and form. Rather than "time investment and good enough-ness", focus 
should be on scientific approach and accuracy. To the point, the main story of the 
manuscript -channelling- is not receivable as such. The authors motivate their revised study 
by unveiling apparent channelling mechanism occurring while transitioning from the solitary-
wave to the Stokes regime. Their argumentation would only be receivable if following a 
scientific approach, i.e., including more than wishful thinking. 
 
Simple words for simple things; Assuming there is a not yet discovered channelling 
mechanisms, natural steps would be following: (1) provide a parameter accounting for it; (2) 
test and report the influence of this parameter in a systematic study; (3) prove the 
robustness of the suggested results by providing (numerical) convergence tests (physical 
results should no longer vary with further increase in numerical resolution - proof of a robust 
numerical implementation) targeting the configuration of interest. To date none of these 
steps are successfully implemented. 
 
Now, and unless proven otherwise, the underlying equation do not contain any channelling 
mechanism as such. Thus, the reported channels may rather be the expression of a lack in 
numerical resolution. This conclusion still confirms the outcome of previous reviews. 
 
Channelling ultimately requires an asymmetry in compaction versus decompaction regimes, 
obtained upon nonlinear bulk rheology by mechanisms such as e.g., decompaction 



weakening (Connolly and Podladchikov, 1998; Räss, 2018; Räss, 2019) or brittle failure 
(Keller, 2013; Yarushina, 2015). Moreover, including the full shear stress tensor for the 
mixture velocities and total pressure won't produce extra focussing and asymmetry; neither 
would porosity dependent and even strain-dependent shear rheology. Both may impact the 
compaction length which may further influence the relative inclusion size, at most. 
 
Now, after following, the remarks about numerical solution wo do not, as supposed above, 
observe channeling anymore. The finger-like features turned out to be not-sufficiently 
resolved solitary waves. We therefore got rid of all text passages concerning channeling. 
 
Finally, the effort spent in providing further insights into the underlying physics and 
mathematical model (Section 2.1) is very much appreciated. However, this new section 
reports inconsistent derivations. Equation (3) reports de analogy of the fluid momentum 
equations as a generalised Darcy law that contains de gradient of the fluid pressure P minus 
the buoyant fluid force ρfg. Equation (4) reports the total force or momentum balance, where 
the viscous stresses and total (mixture) pressure P equilibrate the total buoyancy force ρ̄g. 
The pressure term in equation (3) represents as such the fluid pressure Pf, while the 
pressure in equation (4) stands for the total pressure Ptot. Equation (10) and line 96 is thus 
wrong. Fluid pressure ≠ total pressure (Pf≠Ptot) and CANNOT be eliminated. 
 
While the original study needed some revision, the here submitted revised version 
addresses none of the early design issues. Instead of providing scientifically robust proofs 
about potential new transient regimes, it further motivates wishful thinking instead of results. 
 
To accept the claims made by the authors about the existence of an intermediate regime 
leading to flow channelling while transitioning from solitary waves to diapirism, following 
steps should be included: 
1) identification of a physical and testable parameter accounting for focusing 
2) systematically testing and reporting of the influence of this physical parameter 
3) numerical convergence test to support the robustness of the numerical results 
(independent of the chosen numerical implementation) 
 
Due to a new procedure in in modeling our solitary waves, we are now able to zoom into the 
wave, which helps a lot to reach sufficient resolution for solitary waves. We now restrict our 
models in the paper to models where the compaction length is at least resolved by three grid 
lengths. 
 
 
-- Further detailed comments (line numbers refer to the manuscript version 4): 
l.9: Not only size but related to compaction length. Size could be kept constant but change in 
compaction length may lead to similar results 
 
This passage is no longer part of the paper. 
 
l.19-22: No channels will form. Results seem to report a lack of resolution here. To form 
channels, one needs an asymmetry in compaction versus decompaction rheology. This 
asymmetry one does not get with the shear rheology. Including porosity dependence in bulk 
and shear rheology may induce a change in compaction length but no asymmetry. 
 
s.a. 
 
l.45-47: It's the same, as compaction length and radius are interconnected. Changing 
compaction length using Rt may be the same than changing the bulk to shear viscosity ratio, 
which will ultimately also impact the compaction length. 
 



Yes, ultimately, we both are changing the compaction length. But in contrast to Scott (1988), 
we use a porosity dependent viscosity, while he uses a constant viscosity ratio. We changed 
the sentence to: 
 
Scott (1988) already had a look at a similar scenario. He calculated porosity waves changing 
the compaction length by altering the constant shear to bulk viscosity ratio, while we want to 
change the radius of a partially molten perturbation in terms of compaction lengths but 
keeping the porosity dependent viscosity laws the same 
 
l.68-72: Boussinesq approximation. There is no need for abbreviation since you only use 
"BA" twice. Also, the wording could be improved here as it is not very clear in the current 
form. 
 
We got rid of the abbreviation, but we don’t know how to improve the wording, as the 
sentence seams not to be too long and difficult.  
 
---- Section 2.1 
Equations (3) and (4) have a pressure issue. How can the same P both be used in the Darcy 
flow and in the total momentum balance, once relating to fluid density, once relating to total 
density? Needs revision, modification and clarification. 
 
Equ 10 contains the fluid pressure, indeed, and not the total pressure as claimed by the 

reviewer. A rigorous derivation of this equation from basic principles can be found in 

McKenzie (1984, J. Petr. 25, 713 – 765) in Appendix A. In that Appendix equ A9 gives the 

interphase force and contains the fluid pressure. This interphase force is inserted into equ 

A7, the momentum equation of the matrix. Inserting also other terms into that equation 

McKenzie arrives at A16 and furthermore A21 which then is the momentum equation of the 

mixture (see the mixture density) in the limit of low viscosity fluid (see the deviatoric stress 

tensor which neglects fluid shear stresses). The pressure in that equation is still the original 

fluid pressure. McKenzie eliminates the fluid pressure when arriving at A23, and that is what 

we are doing. In the late 80’s many papers used that way eliminating the pressure…  

Here from my personal notes on that issue:  

It should be noted that the fluid pressure 𝑃 also occurs in the momentum equation for the 

mixture, and the intrinsic (averaged) matrix pressure does not explicitly occur. Usually it is 

different from the fluid pressure (also for the case of neglecting surface tension). If ∇ ∙ �⃗�𝑠 = 0 

the intrinsic matrix pressure, the fluid pressure and the effective mixture pressure become 

equal. In the limit of zero melt porosity the effective mixture pressure and the intrinsic matrix 

pressure become equal, and the 𝑃 in equ 4 approaches the intrinsic matrix pressure. This 

happens smoothly as long as in the limit of vanishing porosity ∇ ∙ �⃗�𝑠 approaches faster to 

zero than 𝜂𝑏 approaches infinity. 

 

Minor notation issue: this section could be enhanced with notation homogenisation. Either 

adopting the ∇ or ∂/∂x notation. Also, some i,j,k may be missing if including those. 

The ∇ notation is used everywhere but in the momentum equation of the mixture and for the 

viscous stress tensor. Even though these equations look quite messy in the other notation 

we think it might be more clear what is done this way. 

 

---- Section 2.3 

What linear and nonlinear absolute and or relative tolerances are used (criterion to stop 

iteration and accept the current solution before starting the next physical time step)? 



We think this paragraph is already very detailed and does not need more technical insights. 

Anyways, we now cite Schmeling et al. (2019) here where the used code is described in 

more detail. 

 

---- Results Section: 

l.233-234: What is observed in Fig.1a-d is simply the evidence of the problem's internal 

length scale, the compaction length. Although the initial melt anomaly becomes larger, flow 

still re-organises within a blob of characteristic size given by the compaction length. 

 
Yes, that is true, and we do not state that this is a problem. The shrinking of the waves in 
comparison to the initial perturbation is totally expected and we just describe this 
observation. To make it clearer, we added:  
 
This shrinking of the wave in the model is a consequence of reducing the compaction length. 
The resulting solitary waves have always the same size in terms of 𝛿𝑐 and become smaller 
compared to the initial perturbation. 
 
l.244-245: There is no channelling. You may see focusing of melt from an original 
distribution into a new circular one, but the channels you refer to are numerical artefacts. A 
model including at least >10 grid points to resolve the channel width will be needed to 
validate your statement. 
 
s.a. 
 
l.245-267: If you can both model Stokes and porosity waves, why do you need analytical 
velocity formulation for your lines in Fig. 2? Basically, Fig. 2 should be obtained by tracking 
your results, or at least some of those. How does one know whether your results match the 
curves on Fig. 2? One does not need to run any numerical model to reach your conclusions 
if they're based upon evaluating semi-analytical solutions from literature. 
 
We use these semi analytical solutions from literature, because this solution is for a perfect 
solitary wave and benchmarked, whose results fit quite nicely to our observations made in 
this paper. Nevertheless, your point is valid and the reader does not know, whether our 
waves match these results, but we already compared our waves with the results of Simpson 
& Spiegelman (2011) in Dohmen et al. (2019). We now state this in the manuscript: 
 
These semi analytical solutions fit quite nicely to our solitary wave models, as already shown 
in Dohmen et al. (2019). 
 
l.319-325: Be careful with statement. You still do not resolve the small instabilities and those 
may just be small blobs if properly resolved. 
 
s.a. 
 
l.339-341: Receivable statement upon successful proof that those are not numerical 
artefacts. 
 
s.a. 
 
---- Numerical issues: 
As long as no convergence test neither benchmark (available in e.g., the Appendix of Räss 
(2019) and Keller (2013)) is provided, the reported results, especially channels, could well 
be under-resolved and thus numerical artefacts. 
 



We now added the small resolution test to section 2.3., where we can show that the features 
we observe can still be seen for not sufficiently resolved solitary waves. Anyways, a solitary 
wave benchmarking is not carried out in this publication, but we carried out a bigger 
resolution test, and compared our wave solutions to the semi-analytical solutions of Simpson 
& Spiegelman (2011), which we now cite within the numerical tests in this publication:  
 
The model resolution is a critical parameter in this kind of numerical calculations and should 

always be kept in mind. With increasing length scale ratio, the compaction length in the 

model gets smaller and the resolution needs to be increased to keep it equally resolved.  

According to several authors (e.g. Räss et al., 2019; Keller et al., 2013) the compaction length 

should be at least resolved by 4-8 grid points to accurately solve solitary waves. For small 

length scale ratios this is no problem, where, with a model resolution of 201 × 201,  up to 

nearly 30 grid points per compaction length can be achieved. The highest resolution our 

code can run is 601 × 601, which is enough to resolve the compaction length by three grid 

points for the model with a length scale ratio of 40. Everything above that cannot be 

sufficiently resolved.  

Fig. 1 shows the resulting models for a length scale ratio of 10 for three different resolutions. 

The pictures were taken after 𝜑𝑚𝑎𝑥 has risen approximately 0.25 times the initial Stokes 

radius (𝑡′ = 0.25). With increasing resolution, the maximum melt fraction increases strongly 

from 101 × 101 to 401 × 401 by approximately 20% but the velocity of 𝜑𝑚𝑎𝑥  decreases by 

7% (not shown in the figure). Both values converge. Even though the compaction length is 

not sufficiently resolved in Fig. 1a), one can still observe the main features of the model: A 

main solitary wave has emerged from the original gaussian perturbation and secondary 

porosity waves are beginning to emerge within its remains. 

The solitary waves modeled with our code have been compared to the semi-analytical 

solution of Simpson & Spiegelman (2011), and more benchmarking was carried out in 

Dohmen et al. (2019). 

 

4.1 channelling: As long as bulk rheology is linear; no literature reports any growth of 

instabilities besides splitting of original wave into new size owing to dynamical change in 

compaction length. Richardson (1998) shows minor impact of external stresses on blob's 

shape, but no channelling as such is presented. 

s.a. 

 

l.404-405: No channelling here, changes in compaction length will change the characteristic 

diameter of the spherical wave which needs to be resolved. 



s.a. 

 

l.411-414: Unfounded claims. Connolly & Podladchikov (1998) do not suggest following "this 

upward weakening might not be strong enough to lead to the focusing needed for the 

nucleation of dykes". 

This sentence was deleted, due to the complains above and is not really of importance. 

 

l.422-428: No channelling. As long as there is no asymmetry in viscous compaction versus 

decompaction, you won't get channels out of blobs. Taking full stress tensor into account 

and having porosity dependent viscosity will just impact compaction length, nothing else 

(Räss, 2019). 

s.a. 

 

l.439: "the velocities fit quite nicely to the observed model velocities" where does one sees 

this? You report analytical solution from other authors and your analytical solutions, but 

nowhere your modelled results. Since your model includes the stress tensor and velocities, it 

would be very interesting to report those to support your statement and make them 

receivable. 

We now gave the comparison of our results a small paragraph in section 2.3: 

The solitary waves modeled with our code have been compared to the semi-analytical 

solution of Simpson & Spiegelman (2011), and more benchmarking was carried out in 

Dohmen et al. (2019).  

In a single-phase flow case, where the melt is not allowed to move relatively to the solid, the 

initial perturbation ascends, shortly after beginning, with a velocity of 0.95 times the 

calculated Stokes velocity, and then slowly decreases as the original Gauss-shaped wave 

deforms and loses in amplitude.  

l. 447-448: A mechanism needs a testable physical parameter, and a verification that this 

parameter delivers robust and resolution independent results. 

s.a. 

l. 451: (2) see previous comment. 

s.a. 

l. 459-463: Good point. Apply it; re-run the suggested simulations with 10 times higher 

resolutions and longer travel path to convince the reader that you won't get blobs but some 

real channels being resolved at least with more than 10 grid points. 



 

Reviewer 3 

s.a. 

 

As of the current state, major revisions are warmly suggested. 
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Suggestions for revision or reasons for rejection (will be published if the paper is 
accepted for final publication) 

This study focusses on the interesting and relevant question of the trade-off between 
compaction waves and melt-rich diapirs in partially molten systems of the upper mantle and 
crust. The topic has been covered in the literature in the past but perhaps there would still 
be room for a study to systematically investigate the transition between the two well-



accepted end-member regimes. However, in my opinion the manuscript in its revised form 
still suffers from a number of critical flaws that must be addressed fully before publication of 
the study is advised. The most important issues to be addressed in my view are the 
following: 
 
- Ratio of length scales as governing model parameter. Previous literature shows clearly that 
the ratio between the emergent physical length scale, the compaction length (here, "delta"), 
to the set system length scale (here, "r") is the crucial control on flow regimes between 
compaction waves and diapirism. If the compaction length is similar or larger than the 
system length scale, pore fluid segregation is more or similarly rapid than collective flow of 
both phases as a mixture. Conversely, if the system is much larger than the compaction 
wave, segregation becomes less relevant and collective flow becomes dominant. 
Dimensional analysis shows that the square ratio of length scales R = delta^2/r^2 is a 
dimensionless parameter arising in the governing equations if the system length scale is 
used to non-dimensionalise length. The parameter in fact arises from taking the ratio of 
characteristic Darcy and Stokes speeds driven by the buoyancy-contrast between phases 
(see the recent discussion in Keller & Suckale, GJI, 2019). As this ratio of length scales is at 
the heart of this study, it is surprising that the authors choose a different, rather more 
circuitous route in their dimensional analysis of the governing equations. They first introduce 
the retention number, Rt, not recognising that it is in fact both the ratio of segregation to 
diapirism speed as well as the square ratio of length scales. Later, apparently as a mere 
afterthought, the authors bring up the compaction length without putting it into context with 
their dimensional analysis. They then seek to explain in rather convoluted language how 
they are varying Rt to obtain an increase in system length scale compared to compaction 
length. I would regard it as critical to the clarity of their model description and the entire 
study to instead use a form of dimensional analysis that introduces the governing ratio of 
length scales clearly from the start and sidesteps the confusing and unnecessary reference 
to the retention number. 
 
We just never thought of the retention number as a ratio of length scales, but now, as the 
reviewer stated, we use this ratio as it is much more intuitive than the retention number. We 
use it in the description of our equations and in the small analysis.  
 
- Numerical benchmarking and resolution testing. One of the main results of this study is the 
apparent third regime at the transition between compaction waves and diapirism, which the 
authors characterise as "channelling instability" and discuss in context with rheological melt-
shear localisation first introduced by Stevenson (1989). However, as matters stand, the 
reader can have no confidence that the feature in question is in fact a robust model result 
rather than a numerical artefact. The numerical setup used in this study is critically flawed. 
To avoid interactions with boundaries, the domain is 20x larger than the radius of initial 
perturbations, r. The standard resolution is 200 cells in each direction, meaning r is resolved 
by 10 grid cells. Unfortunately, the authors then proceed to test parameters where r is 
roughly equal to or much larger than the compaction length, meaning that in most parameter 
tests, and notably the ones showing the apparent "channeling instability", the compaction 
length is not resolved even by one grid step. It would be best practice to present 
benchmarks of the numerical method against known solutions (or reference published 
literature if the numerical method has been benchmarked elsewhere). As an absolute 
minimum requirement, the authors would need to provide a resolution test where it is clear 
that the solution converges towards a well-resolved geometry, where the compaction length 
is resolved by at least 8 grid cells. Unfortunately, the authors do not provide either. Nor is it, 
to my understanding, possible to push the resolution to the necessary levels given the 
present implementation and model setup. 
 
The reviewer is correct in the statement that the resolution was much too slow to get 
trustable results. As in the original model setup the required resolution was not reachable, 
we now changed the model setup a bit. We now let the coordinate system follow the 



maximum melt fraction in the model, which allows us to zoom into the initial perturbation, as 
we no longer need model space for the ascend. Due to that we are now able to reach higher 
compaction length resolutions. Additionally, a new resolution test shows that the same 
geometries can be expected, even for lower resolutions. 
 
- Discussion of the apparent "channeling instability". Even if the feature in question be 
confirmed in well-resolved simulations, its discussion in context of rheological melt-shear 
channeling remains questionable at best. Previous discussions of channelling instabilities 
demonstrate that it can arise from strong melt-weakening or non-Newtonian stress-
weakening of matrix shear viscosity, decompaction weakening or tensile plastic failure. 
None of these effects are included in the present model. Therefore it is most likely that the 
feature in question, if sufficiently well resolved, will turn out to be simply a small compaction 
wave temporarily escaping ahead of the diapir. However, that would not necessarily be the 
expected outcome, since the diapir rise speed under the relevant conditions should exceed 
compaction wave speed. Either way, referring to the feature, if it should persist in revised 
models, as "channelling instability" is highly misleading. 
 
After changing our model setup and being able to increase the resolution of compaction 
length we no longer observe channels. Because of that we revised our whole results and 
discussion chapter. 
 
- Quality of language. The use of language and style in this manuscript falls short of 
expected standards in international journals. Clear and concise language is important to 
foster unambiguous udnerstanding. It is highly recommended to have the manuscript edited 
by a native speaker or professional editing service before resubmission. 
 
Some more detailed comments are given as annotations in the attached PDF file. 
 
L20 
The abstract has been rewritten. 
 
L79 
The pressure is no declared right after the equation and not later. 
 
L92 
 
L95 
Yes, the intrinsic shear viscosity is constant in our models and it is now stated within its 
declaration. 
 
L102 
Thank you for pointing out this mistake. The following equations are based on Sramek et al. 
(2010) and not Sramek et al. (2007) as falsely stated in our manuscript. 
 
L120 
Yes, the pressure was already eliminated, but in another equation. Earlier we use equ. 4 to 
eliminate the pressure in equ. 3. But now we eliminate the pressure of equ. 4 by taking the 
curl. This way we do not have the segregation velocities in our equation. 
 
L139 
We now use, as stated already above, the ratio of compaction length to model length scale r 
for the equations and the following analysis. 
 
L154 
The ratio was flipped back again. 
 



L167 
s.a. 
 
L172 
We now use the compaction length earlier in the description of our equations and do not 
need to attach it at the as an afterthought as stated by the reviewer. Therefore, it is now 
introduced above at the non-dimensionalization, when it first appears. 
 
L177 
Thanks to the reviewers point we do it now as he stated. See above. 
 
L179 
Yes, we had concerns about the Stokes flow being affected by the boundaries and we 
needed some space for the wave to travel to be able to observe the evolution. Periodic 
boundaries would be a way to tackle this problem but would have been quite hard to 
implement in our already existing code. We now use a moving coordinate system which 
basically should lead to similar results and was not too hard to implement. The boundary 
effects to the Stokes flow get tackled by choosing the pre-factor of the calculated Stokes 
velocity according to a numerical solution of a cylinder rising within another cylinder and 
applying it to our square model box. Even though in nature “boundary effects” are never far 
away, we think it would be best our model as theoretical as possible. 
 
L180 
We changed A to phi_max as stated by the reviewer, but we still think the description of the 
initial perturbation fits best in the model setup. Nevertheless, we now give more information 
on the perturbation, earlier at the non-dimensionalization. 
 
For 𝑟 the half width of the prescribed initial perturbation, consisting of a 2D Gaussian bell, is 

chosen. This is reasonable as the rising velocity in our code is best described by the Stokes 

velocity, using this radius. The exact shape of the perturbation is given later in the model 

setup. 

L183 
s.a. 
 
L189 
s.a. 
 
L195 
Yes, this is correct, but as stated above periodic boundaries would have been not easy to 
implement. Anyways, with our prescribed boundary velocities we tackle the problem of melt 
accumulations at the top satisfactory and do not have any problems. We still need to 
prescribe them with our new moving coordinate system. 
 
L199 
We already thought about mirroring the solitary waves on the boundary, but this would 
probably lead to more problems. With our old model setup, the observed geometries were 
about the order of just one grid length, which would have probably led to even more 
erroneous conclusions. Additionally, even calculating just half of the domain would have 
been not enough to reach the required resolutions. 
 
L204 
The model setup was completely rewritten 
 



L210 
s.a. 
 
L212 
All used equations were referred to during the description of the code. We think that should 
be enough. 
 
L213 
We now cite Schmeling et al. (2019) where the code was described in detail. 
 
L214 
The sentence was removed. 
 
L218 
We exchanged the word “damping” by “underrelaxation”. We hope that that makes it clearer. 
 
L225 
s.a. 
 
L248 
s.a. 
 
L251 
s.a 
 
L254 
s.a. 
 
L293 
Sure, we agree. In our code, by default, we solve for advection of composition within the 
separate phases, and get local evolution of the bulk compositional field. However, in this 
study we do not distinguish between the chemical composition of melt and solid, 
melting/solidification is switched off, so we do not have compositional gradients. Pointing 
this out here may distract the reader. 
 
L318 
We now remember the reader that we use a viscosity law that evolves with the melt fraction, 
while Scott (1988) uses a constant viscosity ratio as model parameter: 
 
This switch from negative to positive mass flux was already observed by Scott (1988), but 
while he changed the viscosity ratio as an independent constant model parameter, we 
change the radius and keep the viscosity law the same, still evolving with 𝜑. 
 
L340 
s.a. 
 
L345 
The benchmark is now presented in 2.3 Numerical approach 
 
L348 
Yes, the resolution test could not reach the resolutions required to optimally resolve our 
models. With our new model setup we can now reach the required resolutions. 
 
L356 
s.a. 
 



 

L364 
s.a.  


